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Polarization



Superposition

A basic feature of quantum mechanics is the principle of superposition:

The superposition principle is also shared by classical waves.

We’ll explore superposition in the context of polarization of light.
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If a quantum system can be in the state      or in the state     , then it 
can also be in state                    for any complex numbers        
(subject to normalization).
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The electromagnetic field

In classical electromagnetism, there is an

at every spacetime point                .(x, y, z, t)

electric field �E(x, y, z, t)
�B(x, y, z, t)magnetic field

These fields obey the Maxwell equations:

�∇ · �E = ρ �∇× �E = −∂ �B

∂t

�∇ · �B = 0 �∇× �B = �J +
1

c2
∂ �E

∂t



Traveling waves
The Maxwell equations have solutions that correspond to waves 
propagating through space.

The vector           indicates the polarization of the wave.

�
αx

αy

�

Example:  Plane wave propagating in the   directionẑ

�B(x, y, z, t) = ẑ × �E(x, y, z, t)

�E(x, y, z, t) = Re
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Superposition of polarization states

Horizontal polarization: |→� =
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45° diagonal polarization (normalized states):
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The 45° states also form an orthonormal basis:
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Polarizing filters

Most sources of light are unpolarized.

We can create polarized light using a filter that only allows one of two 
orthogonal polarizations to pass.

Mathematically, this implements a projection onto a the polarization 
direction of the filter.

• The component along the filter direction passes through.

• The component orthogonal to the filter direction is blocked.

Analogous to quantum measurement:

• The fraction of light that passes through the filter is given by the 
inner product squared with the filter direction.

• The outgoing light is entirely in the same direction as the filter.



Polarizing filter examples

Incident polarization: |��

How much light passes? 50%

Outgoing polarization? |→�

Polarizing filter orientation: →

How much light passes?

Outgoing polarization?

cos2 θ

cos θ|→�+ sin θ|↑�

Incident polarization: |→�

Polarizing filter orientation:
�
cos θ
sin θ

�

!



Polarizing filter demo

What happens to the incident light if we orient polarizers as follows?

• crossed polarizers (0 and 90 degrees)

• diagonal polarizers (0 and 45 degrees)

• polarizers at 0, 45, 90 degrees



Circular polarization

We can also consider superpositions involving complex numbers.

The direction of the electric field moves in a circle as the wave 
propagates, so this is called circular polarization.
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2
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Examples:



Exercise: Stacked polarizers

Suppose we stack    polarizers so that the angle between the 
polarization direction of each filter and the next is       .  What fraction 
of the light passing the first polarizer passes the last polarizer?

n
π/n

a.Compute exact values for                 .
b.Give a symbolic expression for general   .
c.Using a computer, plot the values for           through     .
d.What happens in the limit as             ?

n = 2, 3, 4

n

n = 2 50

n → ∞



Double-slit experiment



Firing bullets at a slit



Firing bullets at a double slit



Firing bullets at a double slit



Firing bullets at a double slit



Firing bullets at a double slit



Double slit with waves



Double slit with waves



Double slit with waves



Demo



Interference

wavelength ¸

amplitude

Amplitude can be positive (water is above sea level)
or negative (water is below sea level)
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Form of the interference pattern

...

...

µ

µ

¢

∆sin θ

One fringe: ∆sin θ = λ θ ≈ λ

∆

Screen at a distance d away:  fringe spacing is approximately d · θ ≈ d · λ
∆



Double slit with electrons

What if we observe which slit the electrons go through?

How will the experiment behave if we use electrons instead of bullets 
or water waves?

• Electrons come in discrete chunks, like bullets.

• Nevertheless, the experiment shows an interference pattern!

Same behavior with light, which is composed of individual photons.

What does this mean?  Is an electron a particle or a wave?

• Yes.  (“wave-particle duality”)



Uncertainty principle

In classical mechanics, nothing prevents us from measuring the state of 
a particle (its position and momentum) with arbitrary precision.

Quantum mechanics forbids this: it places fundamental limitations on 
the kinds of measurements that can be carried out.

Heisenberg uncertainty principle: ∆x∆p ≥ �
2



Uncertainty principle and diffraction



Exercise: Double slit with laser light

Suppose you perform the double slit experiment using a green laser 
with a wavelength of 523 nm and slits spaced by 1 mm.

a. What is the angular spacing between two adjacent fringes of the 
interference pattern?

b. If the pattern is projected onto a screen at a distance of 5 m, what is 
the distance between adjacent fringes?



Photoelectric effect



The photoelectric effect
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Photons and electrons

Light is made up of massless particles called photons.

Photons are characterized by their wavelength λ
or equivalently, their frequency   .ν

E = hν =
hc

λ

h = 6.62× 10−34 J · s
c = 3× 108 m/s

Electrons are massive particles with negative electric charge.

E =
1

2
mv2 + φ

m = 9.11× 10−31 kg

e = 1.60× 10−19 C



The work function

Whether emission occurs depends on the frequency of the light, not 
on its intensity (the number of photons arriving per unit time).

Removing an electron from a material costs energy.

In the context of the photoelectric effect, this is called the work 
function, denoted   .  Its value depends on the material.  Typical values 
are a few electron volts.

φ

By conservation of energy, for a photon of frequency    to eject an 
electron with velocity   , we havev

ν

hν =
1

2
mv2 + φ



Photoelectric effect experiment

⊝

hν =
1

2
mv2 + φ

1

2
mv2 = eV0 where     is the stopping potential, the voltage that 

must be applied to stop the current from flowing
V0



Photoelectric effect experiment: results

V0

ν

hν =
1

2
mv2 + φ

1

2
mv2 = eV0

V0 =
hν − φ

e

φ/h

h/
e
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pe



Exercise: Photoelectric effect in platinum

For this problem, the following values may be useful:

h = 4.14× 10−15 eV · s
c = 3× 108 m/s

a. When a platinum electrode is illuminated with light of wavelength 
150 nm, the stopping potential is 2 V.  What is the work function of 
platinum in eV?

b. What is the maximum wavelength of light that will eject electrons 
from platinum?



Demo



Mach-Zehnder interferometer



A simple experiment

laser 50%

50%

detectors

50/50 beamsplitter (half-silvered mirror)



Interferometer

laser

50%?

50%?



Interferometer

0%

100%

laser



Mathematical model

laser
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Calculation
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After first beamsplitter:

H|0� = 1√
2

�
1 1
1 −1

��
1
0

�

=
1√
2

�
1
1

�

After second beamsplitter:

H
1√
2

�
1
1

�
=

1

2

�
1 1
1 −1

��
1
1

�

=

�
1
0

�

Probability of measuring     :|0�
|�0|0�|2 = 1

Probability of measuring     :|1�
|�1|0�|2 = 0



Phase shifter

Another simple optical element is a phase shifter, which shifts the 
phase of the light passing through it by some amount.

φ multiplies this portion of the state by eiϕ

φ1

φ0 |0�

|1�

�
eiϕ0 0
0 eiϕ1

�
implements the unitary transformation



Exercise: Interferometry with phase shifts

laser

φ1

φ0

?

?



Deutsch’s problem

Four possible functions:

x f1(x)

0 0

1 0

x f2(x)

0 1

1 1

x f3(x)

0 0

1 1

x f4(x)

0 1

1 0
constant not constant

Classically, two function calls are required to solve this problem.

Given: A function f: {0,1} → {0,1}

Task: Determine whether f is constant.

(As a black box:  You can call the 
function f, but you can’t read its 
source code.)



Deutsch’s algorithm as interferometry

laser

π f(1)

π f(0)

f is not constant

f is constant



Exercise: More linear optics

What unitary transformation is implemented by the following optical 
setup?

π/2

π/2

|0�

|1�



No-cloning theorem



Classical cloning

In principle, such a device is possible.

cloning 
machine



Classical cloning (digital)

cloning 
machine

file1.txt

Lorem ipsum dolor sit 
amet, consectetur 
adipisicing elit...

file2.txt

file1.txt

Lorem ipsum dolor sit 
amet, consectetur 
adipisicing elit...

file2.txt

Lorem ipsum dolor sit 
amet, consectetur 
adipisicing elit...



Quantum cloning?

cloning 
machine

The uncertainty principle prevents us from 
learning an unknown quantum state.

Such a device is impossible!



Quantum cloning?

Even digital quantum information (qubits) cannot be cloned.

cloning 
machine

|0�

α|0�+ β|1� α|0�+ β|1�

α|0�+ β|1�

This is also impossible.



No-cloning theorem

Theorem [Wootters, Zurek, Dieks 1982]:  There is no valid quantum 
process that takes as input an unknown quantum state      and an 
ancillary system in a known state, and outputs two copies of      .

|ψ�
|ψ�

|0�

|ψ� |ψ�

|ψ�
U



Proof of the no-cloning theorem

By linearity,

U [(α|ψ�+ β|φ�)⊗ |0�] = αU(|ψ� ⊗ |0�) + βU(|φ� ⊗ |0�)
= α|ψ� ⊗ |ψ�+ β|φ� ⊗ |φ�

U(|ψ� ⊗ |0�) = |ψ� ⊗ |ψ�
U(|φ� ⊗ |0�) = |φ� ⊗ |φ�

Consider two orthogonal states            .  By the definition of cloning,|ψ�, |φ�

But again by the definition of cloning, we should have

U [(α|ψ�+ β|φ�)⊗ |0�]
= (α|ψ�+ β|φ�)⊗ (α|ψ�+ β|φ�)
= α2|ψ� ⊗ |ψ�+ αβ|ψ� ⊗ |φ�+ αβ|φ� ⊗ |ψ�+ β2|φ� ⊗ |φ�

Therefore α2 = α, αβ = 0, β2 = β

So either           or          .α = 0 β = 0



Cloning in a fixed basis

While we cannot copy quantum information, we can copy classical 
information.  In particular, we can copy quantum states in a fixed basis.

Example:  Controlled-not gate

|00� �→ |00�
|01� �→ |01�
|10� �→ |11�
|11� �→ |10�

ASSIGNMENT 1: Solutions CO 481/CS 467/PHYS 467 (Winter 2010)

1. Universality of reversible logic gates.

(a) [3 points] The cccnot (triple-controlled not) gate is a four-bit reversible gate that flips

its fourth bit if and only if the first three bits are all in the state 1. Show how to implement

a cccnot gate using Toffoli gates. You may use additional workspace as needed. You may

assume that bits in the workspace start with a particular value, either 0 or 1, provided you

return them to that value. For a bonus point, give a circuit that works regardless of the

values of any bits of workspace.

Solution: The following circuit shows a simple construction using one bit of workspace in

the 0 state:

•
•
•��������

0

=

• •
• •

•��������
0 �������� • ��������

The first gate computes the and of the first two bits in the fifth (workspace) bit. The

second gate computes the and of the third and fifth bits (i.e., the and of the first three

bits) in the fourth (target) bit. The final gate uncomputes the value in the workspace.

This circuit can be modified to work for a workspace bit with any value as follows:

•
•
•�������� =

• •
• •

• •�������� ���������������� • �������� •
(b) [5 points] Show that a Toffoli gate cannot be implemented using any number of cnot gates,

with any amount of workspace. Hence the cnot gate alone is not universal. (Hint: It may

be helpful to think of the gates as performing arithmetic operations on integers mod 2.)

Solution: The cnot gate acts as

x • x
y �������� x⊕ y

(where ⊕ denotes addition modulo 2), so composing any number of cnot gates gives output

bits that can be expressed as a sum modulo 2 of a subset of input bits. However, the Toffoli

gate acts as

x • x
y • y

z �������� xy ⊕ z

and the product xy (representing logical and) cannot be expressed as a sum modulo 2 of

terms involving x and y (and the constants 0 and 1 if we allow work bits with known initial

states), the only possibilities being 0, x, y, x⊕ y (and their negations if we allow work bits

known to be in the 1 state).

1

|x�

|y� |x⊕ y�

|x�




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





Inputting non-basis states produces an entangled state:

ASSIGNMENT 1: Solutions CO 481/CS 467/PHYS 467 (Winter 2010)

1. Universality of reversible logic gates.

(a) [3 points] The cccnot (triple-controlled not) gate is a four-bit reversible gate that flips

its fourth bit if and only if the first three bits are all in the state 1. Show how to implement

a cccnot gate using Toffoli gates. You may use additional workspace as needed. You may

assume that bits in the workspace start with a particular value, either 0 or 1, provided you

return them to that value. For a bonus point, give a circuit that works regardless of the

values of any bits of workspace.

Solution: The following circuit shows a simple construction using one bit of workspace in

the 0 state:

•
•
•��������

0

=

• •
• •

•��������
0 �������� • ��������

The first gate computes the and of the first two bits in the fifth (workspace) bit. The

second gate computes the and of the third and fifth bits (i.e., the and of the first three

bits) in the fourth (target) bit. The final gate uncomputes the value in the workspace.

This circuit can be modified to work for a workspace bit with any value as follows:

•
•
•�������� =

• •
• •

• •�������� ���������������� • �������� •
(b) [5 points] Show that a Toffoli gate cannot be implemented using any number of cnot gates,

with any amount of workspace. Hence the cnot gate alone is not universal. (Hint: It may

be helpful to think of the gates as performing arithmetic operations on integers mod 2.)

Solution: The cnot gate acts as

x • x
y �������� x⊕ y

(where ⊕ denotes addition modulo 2), so composing any number of cnot gates gives output

bits that can be expressed as a sum modulo 2 of a subset of input bits. However, the Toffoli

gate acts as

x • x
y • y

z �������� xy ⊕ z

and the product xy (representing logical and) cannot be expressed as a sum modulo 2 of

terms involving x and y (and the constants 0 and 1 if we allow work bits with known initial

states), the only possibilities being 0, x, y, x⊕ y (and their negations if we allow work bits

known to be in the 1 state).

1

|0�

1√
2
(|0�+ |1�)

1√
2
(|00�+ |11�)



Exercise: Distinguishing non-orthogonal states

No device can clone two non-orthogonal states, and in particular, it is 
not possible to perfectly distinguish such states.  But if we want to 
distinguish them, how well can we do?

Suppose Alice prepares the state     or                               , each with 
probability   .

|0� |+� = 1√
2
(|0�+ |1�)

1
2

a. If you measure in the basis              , with what probability can you 
correctly guess which state Alice prepared?

b. What if you measure in the basis                , 
where                               ?

c. Can you think of another measurement that distinguishes the states 
with higher probability?  (Hint: Consider the given states as 
polarizations of light.  How would you orient a polarizer to get the 
most information about which polarization was prepared?)

{|+�, |−�}

{|0�, |1�}

|−� = 1√
2
(|0� − |1�)


