Quantum divide and conquer

$

UMIACS

University of Maryland
Institute for Advanced

COMPUTER SCIENCE Computer Studies
LLLLLLL SITY OF MARYLAND

Andrew Childs
University of Maryland

JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

RobinKotari Matt Kovacs-Deak Aarthi Sundaram Daochen Wang
Microsoft University of Maryland Microsoft University of Maryland

arXiv:2210.06419

https://arxiv.org/abs/2210.06419

The power of quantum computers

Using carefully designed interference between different computational paths, quantum
computers can solve some problems dramatically faster than classical computers.

Some problems admit exponential quantum speedup.

Period finding, factoring, discrete log, quantum simulation, quantum linear algebra, Jones
polynomial approximation, counting points on curves, graph connectivity with cut queries, ...

Other problems admit polynomial quantum speedup.

Unstructured search, formula evaluation, collision finding, network flows, finding subgraphs,
minor-closed graph properties, group commutativity, convex optimization, string problemes, ...

What problems can be solved significantly faster by quantum computers than classical ones?

Tools for quantum algorithms

* Fourier sampling

» Grover search/amplitude amplification
e Quantum walk

* Adiabatic optimization/QAOA

* Span programs

* Learning graphs

e Quantum linear systems

* Quantum signal processing

Divide and conquer

* Divide a problem into subproblems
* Recursively solve the subproblems
* Combine the solutions (with some additional computation) to solve the full problem

Example: Mergesort | | 8| 6 | 7|5 |3 |09
e Divide list in half (816 711 >]3]0}9
* Sort left and right halves (recursively) | |6 |7 (8] 0] 3]5]9
* Merge the halves in linear time oIl |3 |5|6|7|8]9

Recurrence for cost C(n): C(n) =2C(n/2)+0(n) = C(n)=0(nlogn)

From classical to quantum divide and conquer

Simple example: OR(z) =x1 Va2V ---V x,
Divide and conquer: OR(z) = OR(OR(ZE]eft), OR($right))

Classical: C(n) <2C(n/2) = (Cn)<n

Quantum: Co(n) < VZCo(n/2) = Co(n) < /i

But this is not justified!

* The quantum query complexity of OR is only O(1/n)
* Grover’s algorithm has bounded error

*\/2 is not an Integer

From classical to quantum divide and conquer

Typical classical divide-and-conquer recurrence:

Divide an instance of size n into a instances of size n /b

C'(n) <aC(n/b)+ C*"*(n)
\

cost of solving auxiliary problem

Corresponding quantum divide-and-conquer recurrence:

Co(n) < vaCqln/b) + C3*(n)
N

cost of solving auxiliary problem is O(C5™(n))

Query complexity

The model of query complexity provides a useful way of exploring the relative power of classical
and quantum computers.

Main idea: Input string is described by a black box that can be queried to learn any given
character. How many queries are needed to learn some property of the input?

* Deterministic query complexity, D: how many queries are needed for a deterministic classical
algorithm to produce the correct answer?

* Randomized query complexity, : how many queries are needed for a randomized classical
algorithm to produce the correct answer with probability at least 2/3?

e Quantum query complexity, (): how many queries are needed for a quantum algorithm to
produce the correct answer with probability at least 2/3?

Example: Input describes an n-bit string. Compute the logical OR of the bits.

D(OR)=0(n) R(OR)=06(n) @Q(OR)=06(n!/2)

Adversary method

The quantum adversary method is a lower bound technique that turns out to be tight.

8T, ScCyn

Adv(f) = max Ll

' max;eq1,. n) [T

where I'z, =01if f(z) = f(y)

(Fi)xy — ’ : .
0 it x; = vy,

Theorem . Q(f) = ©(Adv(/f))

Adversary composition

OR composition: Let g(z,y) = fi(x) V f2(y)
Then Adv(g)* < Adv(f1)* + Adv(f>)?

Generalizes to arbitrary AND-OR formulas

SWITCH-CASE composition: Let A(x) = gf,) ()
Then Adv(h) < O(Adv(f)) + max Adv(gs)

Quantum divide-and-conquer framework

Suppose fis computed as an AND-OR formula of f1,..., f, and f*"

Then Adv(f)? <3 Adv(£,)? + O(Q(f*™))’
1=1

Suppose f is computed by first computing s = f*"*(x) and then computing some function g,

Then Adv(f) < O(Q(f*™)) + max Adv(gs)

These strategies combine the adversary method (for the term where the constant matters)
with the world of quantum algorithms (which are easier to design)

Other strategies are possible using other quantum adversary primitives

Applications

Simpler analysis with slightly improved upper bounds:

* Regular languages: Deciding whether a string over {0, 1,2} contains 20*2.
This is a key algorithmic result in the query complexity trichotomy for regular languages

* String minimality problems: Decision versions of Minimal Length-/ Substring, Minimal String
Rotation, and Minimal Suffix. Simpler, tighter analysis than

The first nontrivial quantum algorithms for subsequence problems:
* Does = have an increasing subsequence of length k! 0(\/%)

» Do z and y have a common subsequence of length k? O(n?/3)

Regular languages
Let X ={0,1,2}
Problem: Givenx € " is x € >72072X™

String & contains 20*2 iff ;.5 contains 20*2 or
Tright contains 20*2 or

17 Tlefr €nds in 20* and x,i.1¢ starts with 0*2

Can be checked by Grover search in time O(y/n):
* Search for the last 2 in x1¢f; and the first 2 in @it
* Search for a non-0 in the string between them

Recurrence for adversary quantity: a(n)? < 2a(n/2)> + O(v/n)? = a(n) = O(y/nlogn)

This improves the log factors of with a simpler proof.

Increasing subsequences

A subsequence of a string is obtained by taking a (not necessarily consecutive) subset of the
characters, without changing their order.

Longest Increasing Subsequence (LIS): Given x € X" over an ordered alphabet ., find a longest
increasing subsequence of x

Example: The LIS of 8, 6, 7, 5, 3, 0, 9is 6, 7, 9

Unfortunately, Q(LIS) = ©(n)

k-IS: For fixed k, does x € X" have an increasing subsequence of length k?
R(k-1S) = ©(n) for k > 2 (1-IS is trivial)

Q(2-1S) = ©(y/n) (equivalent to unstructured search)

Q(k-1S) = O(n*/**t1) by a generalization of Ambainis’s k-distinctness algorithm

Can we do better?

k-Increasing subsequence

Theorem. For any fixed k, Q(k-1S) = O(y/nlog®*~1/2)
String x contains a k-IS iff

T1eft cONtains a k-IS or
Tright contains a k-IS or
l_ x contains a k-IS with 7 elements in x.¢ and k — 7 elements in Zyjgn¢

Can be checked by computing smallest ending value of an 2-IS on left
and largest starting value of a (k£ — 7)-IS on right
These can be computed with O(logn) computations of j-IS (for j < k) and Grover search
Recurrence for adversary quantity: ax(n)? < 2a;(n/2)? + O(ap—1(n)?log® n)

Result follows by induction on k.

Common subsequences

Longest Common Subsequence (LCS): Given z,y € X", find a common subsequence of x and y
that is as long as possible

Example: The LCS of QUANTUM** and ALGORITHM is ATM

Q(LCS) = Q(n)

k-CS: For fixed k,do =,y € 22" have a common subsequence of length k?
R(k-CS) = Q(n) for k > 1

Q(1-CS) = O(n?/3) since this is bipartite element distinctness

Q(k-CS) = O(n?*/(2*+1)) also using

Can we do better?

k-Common subsequence

Theorem. For any fixed k, Q(k-CS) = O(n?/3log3*=1)/2),
This follows from a quantum divide-and-conquer algorithm with seven parts, but not fewer!

Strategy:

* Divide both x and y into m parts of length n/m
* Determine which parts have collisions

* Consider two cases:

- “Simple”: a k-CS appears between one part of £ and one part of y
Limited number of cases to check

- “Composite’: everything else
Can be checked by finding 7-CSs for 3 < £

Subproblems and signatures

Divide the strings into m parts, giving m~ subproblems

X Q UJ/‘

T.| U

‘\L % %

N

y [&] L

G

R

| H [™

The signature indicates which subproblems contain at least one collision

In the above example, the signature includes (1,1), (2, 3), (3, 3)

Can compute the signature with O(n?/3) queries

(m? instances of bipartite element distinctness)

Simple and composite solutions

Definition: A k-CS is simple if it is a £-CS of some subproblem; otherwise it is composite.

To find composite solutions, it suffices to solve O(logn) instances of j-CS subproblems for
7 < k,ata cost of O(ax_1(n)logn).

When considering simple solutions, it suffices to consider critical subproblems, those that cannot
be combined with a known collision from another part of the signature.

There can be at most 2m — 1 critical subproblems to consider, at a cost of v/2m — 1 aj(n/m).

B -

k-CS complexity analysis
Claim: a;(n) = O(n?*31og" ' (n))
Let ax(n) = adversary quantity for k-CS with input length n

Computing the signature: O(n?/3)

Composite subproblems: O(ar_1(n)logn)

Simple subproblems: v2m — 1 ax(n/m)

0.76
0.74
0.72
0.70

0.68

0.66

So ax(n) < O(n?3) + O(ax_1(n)logn) + vV2m — Lag(n/m)

< V2m —1ai(n/m)+O(n*3log" *n) by induction on k

Master Theorem: aj(n) = O(n?/3log" *(n)) provided log, (v2m —1) < 2/3

which is satisfied with m =7

2

4

6

8

«««««««««« ~—_

10

Summary

We have introduced a divide-and-conquer framework for developing quantum algorithms using

classical reasoning about division into subproblems, with speedup from quantum combining
operations and the use of quantum subroutines.

Applications:

* Simpler analysis for regular language and minimal substring problems with tighter bounds
* O(1/n) algorithm for k-IS
» O(n?/3) algorithm for k-CS

Open problems

* Can we apply quantum divide and conquer to search problems? For example, is there a
quantum divide-and-conquer algorithm for minimum finding?

* Can we find applications of quantum divide and conquer using combining functions other than
AND-OR formulas and SWITCH-CASE?

* Can we obtain super-quadratic speedups using quantum divide and conquer?

