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Quantum walk algorithms

• Black box graph traversal [CCDFGS 03]

• Hidden sphere problem [CSV 07]

• Search on graphs [Shenvi, Kempe, Whaley 02], [CG 03, 04], 
[Ambainis, Kempe, Rivosh 04]

• Element distinctness [Ambainis 03]

• Triangle finding [Magniez, Santha, Szegedy 03]

• Checking matrix multiplication [Buhrman, Špalek 04]

• Testing group commutativity [Magniez, Nayak 05]

• Formula evaluation [Farhi, Goldstone, Gutmann 07], [ACRŠZ 07], 
[Cleve, Gavinsky, Yeung 08], [Reichardt, Špalek 08]

• Unstructured search [Grover 96] (+ many applications)

Exponential speedups

Polynomial speedups
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qv(t)|v〉

amplitude for vertex v at time t

with               iff (j, k) ∈ EH = H† Hkj != 0
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Quantum walk
Quantum analog of a random walk on a graph G = (V, E).

Ex:  Adjacency matrix. Hkj = Akj =

{
1 (j, k) ∈ E

0 (j, k) "∈ E

Idea: Replace probabilities by quantum amplitudes.

|ψ(t)〉 =
∑

v∈V

qv(t)|v〉

amplitude for vertex v at time t

with               iff (j, k) ∈ EH = H† Hkj != 0

Define time-homogeneous, local dynamics on G.

i
d
dt

|ψ(t)〉 = H|ψ(t)〉


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The question
How powerful is quantum walk?

In particular: Can it do universal quantum computation?

But what if we take the narrowest possible interpretation?

max degree of G = constant
Hamiltonian = adjacency matrix (no edge weights)
initial state = a single vertex

Loosely interpreted (any fixed Hamiltonian): Yes!  [Feynman 85]

The resulting construction also suggests an approach to quantum walk 
algorithms.



The plan
• Scattering theory on graphs

• Gate widgets

• Simplifying the initial state: Momentum filtering and separation

• Toward scattering algorithms



Scattering theory

[Liboff, Introductory Quantum Mechanics]



Momentum states

Consider an infinite line:

0 1 2 3 4 5 6 7—1—2—3—4—5—6—7



Momentum states

Consider an infinite line:

Hilbert space: span{|x〉 : x ∈ Z}

0 1 2 3 4 5 6 7—1—2—3—4—5—6—7



Momentum states

Consider an infinite line:

Hilbert space: span{|x〉 : x ∈ Z}

0 1 2 3 4 5 6 7—1—2—3—4—5—6—7

Eigenstates of the adjacency matrix:       with|k̃〉

〈x|k̃〉 := eikx k ∈ [−π,π)



Momentum states

Consider an infinite line:

Hilbert space: span{|x〉 : x ∈ Z}

0 1 2 3 4 5 6 7—1—2—3—4—5—6—7

Eigenstates of the adjacency matrix:       with|k̃〉

〈x|k̃〉 := eikx k ∈ [−π,π)

We have 〈x|A|k̃〉



Momentum states

Consider an infinite line:

Hilbert space: span{|x〉 : x ∈ Z}

0 1 2 3 4 5 6 7—1—2—3—4—5—6—7

Eigenstates of the adjacency matrix:       with|k̃〉

〈x|k̃〉 := eikx k ∈ [−π,π)

We have 〈x|A|k̃〉 = 〈x − 1|k̃〉 + 〈x + 1|k̃〉



Momentum states

Consider an infinite line:

Hilbert space: span{|x〉 : x ∈ Z}

0 1 2 3 4 5 6 7—1—2—3—4—5—6—7
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Consider an infinite line:

Hilbert space: span{|x〉 : x ∈ Z}
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Eigenstates of the adjacency matrix:       with|k̃〉
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Momentum states

Consider an infinite line:

Hilbert space: span{|x〉 : x ∈ Z}

0 1 2 3 4 5 6 7—1—2—3—4—5—6—7

Eigenstates of the adjacency matrix:       with|k̃〉

〈x|k̃〉 := eikx k ∈ [−π,π)

= eik(x−1) + eik(x+1)

= (2 cos k)〈x|k̃〉
so this is an eigenstate with eigenvalue 2 cos k.

We have 〈x|A|k̃〉 = 〈x − 1|k̃〉 + 〈x + 1|k̃〉
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Scattering on graphs

G

Now consider adding semi-infinite lines to two vertices of an arbitrary 
finite graph:

〈x, right|k̃, sc→left〉 = T (k)eikx

〈x, right|k̃, sc→right〉 = e−ikx + R̄(k)eikx

〈x, right|κ̃, bd±〉 = B±(κ)(±e−κ)x

〈x, left|k̃, sc→left〉 = e−ikx + R(k)eikx

〈x, left|k̃, sc→right〉 = T̄ (k)eikx

〈x, left|κ̃, bd±〉 = (±e−κ)x

Three kinds of eigenstates:

G
1 2 3 4 5 66 5 4 3 2 1

It can be shown that these states form a complete, orthonormal basis 
of the Hilbert space, where                   and ∙ > 0 takes certain 
discrete values.

k ∈ [−π, 0]
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Scattering on graphs
This generalizes to any number of semi-infinite lines attached to any 
finite graph. 

G
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line j = 1

line j = 2

lin
e j

 =
 3

〈x, j|k̃, sc→j 〉 = e−ikx + Rj(k) eikx

〈x, j′|k̃, sc→j 〉 = Tj,j′(k) eikx j′ #= j

Incoming scattering states:

Bound states:

〈x, j|κ̃, bd±〉 = B±j (κ) (±e−κ)x



The S-matrix
Scattering states characterize asymptotic transformations from 
incoming waves to outgoing waves:
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S(k) =
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The S-matrix
Scattering states characterize asymptotic transformations from 
incoming waves to outgoing waves:
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
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R1(k) T1,2(k) · · · T1,N (k)
T2,1(k) R2(k) T2,N (k)

...
. . .

...
TN,1(k) TN,2(k) · · · RN (k)


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To understand the dynamics in general, expand the Hamiltonian in a 
basis of scattering states and compute integrals by the method of 
stationary phase.
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i
d
dt
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Dynamics of scattering
Solution of the quantum walk equation:

i
d
dt

|ψ(t)〉 = H|ψ(t)〉 =⇒ |ψ(t)〉 = e−iHt|ψ(0)〉

=
∫ 0

−π
e−2it cos k

(
Tj,j′(k)eik(x+y) + T ∗j′,j(k)e−ik(x+y)

)
d̄k

+
∑

κ,±
e∓2it cosh κB±j′ (κ)B±j (κ)∗(±e−κ)x+y

〈y, j′|e−iHt|x, j〉 =
N∑

̄=1

∫ 0

−π
e−2it cos k〈y, j′|k̃, sc→̄ 〉〈k̃, sc→̄ |x, j〉 d̄k

+
∑

κ,±
e∓2it cosh κ〈y, j′|κ̃, bd±〉〈κ̃, bd±|x, j〉
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The method of stationary phase
Suppose Á(k), a(k) are smooth, real-valued functions.  Then for large 
x, the integral ∫

eixφ(k)a(k)dk

is dominated by those values of k for which                    .
d
dk

φ(k) = 0

In scattering on graphs, we have

〈y, j′|e−iHt|x, j〉 ≈
∫ 0

−π
eik(x+y)−2it cos kTj,j′(k)d̄k

The phase is stationary for k satisfying x + y + !j,j′(k) = v(k)t

v(k) :=
d
dk

2 cos k = −2 sin k group velocity

!j,j′(k) :=
d
dk

arg Tj,j′(k) effective length



Finite lines suffice
To obtain a finite graph, truncate the semi-infinite lines at a length 
O(t), where t is the total evolution time.

This gives nearly the same behavior since the quantum walk on a line 
has a maximum propagation speed of 2.
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Computation by scattering
Encode quantum circuits into graphs.

Computational basis states correspond to lines (“quantum wires”).

|00〉

|11〉

|10〉

|01〉

Ex:  With two qubits, we use four wires:

Quantum information propagates from left to right.

To perform gates, attach graphs along/connecting the wires.

Note:  This is not extravagant.

# of vertices = Hilbert space dimension

The walk can be efficiently simulated 
by a universal quantum computer.



A universal gate set
Theorem.  Any unitary operation on n qubits can be approximated 
arbitrarily closely by a product of gates from the set

[Boykin et al. 00]






1√
2

(
1 1
1 −1

)
,

(
1 0
0
√

i

)
,





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




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A universal gate set
Theorem.  Any unitary operation on n qubits can be approximated 
arbitrarily closely by a product of gates from the set

We can implement these elementary gates (and indeed, any product of 
these gates) by scattering on graphs.

[Boykin et al. 00]
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)
,
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0
√

i

)
,





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


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Controlled-not





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







Controlled-not

3

any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for

x + y + !j,j′(k) = v(k)t, (8)

where

v(k) :=
d
dk

2 cos k = −2 sin k (9)

is the group velocity at momentum k, and

!j,j′(k) :=
d
dk

arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]

|〈y, j′|e−iHt|x, j〉| ∼ |Tj,j′(k!)|√
2π|c(k!)|

, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
d2

dk2
arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.

(a) |00in〉
|01in〉
|10in〉
|11in〉

|00out〉
|01out〉
|10out〉
|11out〉

(b)

|in〉 |out〉

(c) |0in〉

|1in〉

|0out〉

|1out〉

(d)

|in〉 |out〉

(e)

|in〉 |out〉

FIG. 1: Widgets used to construct a universal quantum com-
puter. Open circles indicate vertices where previous or suc-
cessive widgets can be attached. (a) Controlled-note gate. (b)
Phase shift. (c) Basis-changing gate. (d) Momentum filter.
(e) Momentum separator.

with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




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any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for

x + y + !j,j′(k) = v(k)t, (8)

where

v(k) :=
d
dk

2 cos k = −2 sin k (9)

is the group velocity at momentum k, and

!j,j′(k) :=
d
dk

arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]

|〈y, j′|e−iHt|x, j〉| ∼ |Tj,j′(k!)|√
2π|c(k!)|

, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
d2

dk2
arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.
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(b)
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FIG. 1: Widgets used to construct a universal quantum com-
puter. Open circles indicate vertices where previous or suc-
cessive widgets can be attached. (a) Controlled-note gate. (b)
Phase shift. (c) Basis-changing gate. (d) Momentum filter.
(e) Momentum separator.

with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for

x + y + !j,j′(k) = v(k)t, (8)

where

v(k) :=
d
dk

2 cos k = −2 sin k (9)

is the group velocity at momentum k, and

!j,j′(k) :=
d
dk

arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]

|〈y, j′|e−iHt|x, j〉| ∼ |Tj,j′(k!)|√
2π|c(k!)|

, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
d2

dk2
arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.
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FIG. 1: Widgets used to construct a universal quantum com-
puter. Open circles indicate vertices where previous or suc-
cessive widgets can be attached. (a) Controlled-note gate. (b)
Phase shift. (c) Basis-changing gate. (d) Momentum filter.
(e) Momentum separator.

with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for

x + y + !j,j′(k) = v(k)t, (8)

where

v(k) :=
d
dk

2 cos k = −2 sin k (9)

is the group velocity at momentum k, and

!j,j′(k) :=
d
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arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]

|〈y, j′|e−iHt|x, j〉| ∼ |Tj,j′(k!)|√
2π|c(k!)|

, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
d2

dk2
arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.
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FIG. 1: Widgets used to construct a universal quantum com-
puter. Open circles indicate vertices where previous or suc-
cessive widgets can be attached. (a) Controlled-note gate. (b)
Phase shift. (c) Basis-changing gate. (d) Momentum filter.
(e) Momentum separator.

with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for
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where
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, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
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While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.
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FIG. 1: Widgets used to construct a universal quantum com-
puter. Open circles indicate vertices where previous or suc-
cessive widgets can be attached. (a) Controlled-note gate. (b)
Phase shift. (c) Basis-changing gate. (d) Momentum filter.
(e) Momentum separator.

with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for

x + y + !j,j′(k) = v(k)t, (8)

where

v(k) :=
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is the group velocity at momentum k, and

!j,j′(k) :=
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arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]

|〈y, j′|e−iHt|x, j〉| ∼ |Tj,j′(k!)|√
2π|c(k!)|

, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
d2

dk2
arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.
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FIG. 1: Widgets used to construct a universal quantum com-
puter. Open circles indicate vertices where previous or suc-
cessive widgets can be attached. (a) Controlled-note gate. (b)
Phase shift. (c) Basis-changing gate. (d) Momentum filter.
(e) Momentum separator.

with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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tionary for
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where k = k! satisfies (8), and

c(k) := 2t cos k +
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While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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Tensor product structure
To embed an m-qubit gate in an n-qubit system, simply include the 
gate widget          times, once for every possible computational basis 
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any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for

x + y + !j,j′(k) = v(k)t, (8)

where

v(k) :=
d
dk

2 cos k = −2 sin k (9)

is the group velocity at momentum k, and

!j,j′(k) :=
d
dk

arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]

|〈y, j′|e−iHt|x, j〉| ∼ |Tj,j′(k!)|√
2π|c(k!)|

, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
d2

dk2
arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.

(a) |00in〉
|01in〉
|10in〉
|11in〉

|00out〉
|01out〉
|10out〉
|11out〉

(b)

|in〉 |out〉
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|0out〉
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(d)
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(e)
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FIG. 1: Widgets used to construct a universal quantum com-
puter. Open circles indicate vertices where previous or suc-
cessive widgets can be attached. (a) Controlled-note gate. (b)
Phase shift. (c) Basis-changing gate. (d) Momentum filter.
(e) Momentum separator.

with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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Arrange the transmission/reflection coefficients as transformations 
from inputs to outputs:

To perform a sequence of gates, simply connect the output wires to 
the next set of input wires.

T12 = T1(1−R2R̄1)−1T2

R12 = R1 + T1(1−R2R̄1)−1R2T̄1

T̄12 = T̄2(1− R̄1R2)−1T̄1

R̄12 = R̄2 + T̄2(1− R̄1R2)−1R̄1T2

Then we have
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FIG. 2: Transmission probability for the phase shift widget
(Fig. 1(b)).

reflection and transmission coefficients for a wave of mo-
mentum k incident on one terminal (say, the one labeled
|0in〉 in Fig. 1(c); the others are related by symmetry).
We find

T (c)
0in,0out

=
eik(cos k + i sin 3k)

2 cos k + i(sin 3k − sin k)
(17)

T (c)
0in,1out

= − 1
2 cos k + i(sin 3k − sin k)

(18)

R(c)
0in

= T (c)
0in,1in

= − eik cos 2k

2 cos k + i(sin 3k − sin k)
. (19)

The corresponding transmission probabilities are shown
in Fig. 3. At k = −π/4, the input amplitude is trans-
formed into an equal superposition of output amplitudes,
with no amplitude reflected back to the input chan-
nels. The effective lengths for forward transmission are
"(c)0in,0out

(−π/4) = "(c)0in,1out
(−π/4) = 2, so that the wid-

get effectively lengthens the wires involved by two units.
Considering the phases of the transmission coefficients,
we see that transmission through the widget effectively
performs the unitary transformation

Uc := − 1√
2

(
i 1
1 i

)
. (20)

It is straightforward to show that this gate, together with
the phase gate (16), generate a dense subset of SU(2)—
for example, because U2

bUcU2
b is the Hadamard gate (up

to a global phase) [26].
So far, we have only described how these gates act on

one or two qubits at a time, but it is straightforward to
embed them in a graph representing a computation on n
qubits. For the controlled-not gate, we simply include its
widget 2n−2 times, once for every possible setting of the
n − 2 qubits not involved in the gate. Similarly, for the
single-qubit gates, we include their widgets 2n−1 times.
As an example, Fig. 4 shows the graph corresponding to a
simple two-qubit quantum circuit. Notice that, although

k
−π −3π

4
−π

2 −π
4

0
0

1
4

1
2

FIG. 3: Transmission probabilities for the basis-changing gate
widget (Fig. 1(c)) with input at |0in〉 and outputs at |0out〉
(solid line), |1out〉 (dashed line), and |1in〉 (dot-dashed line).

|11in〉

|10in〉
|01in〉

|00in〉

|11out〉

|10out〉
|01out〉

|00out〉

FIG. 4: Graph implementing a Hadamard gate on the second
qubit followed by a controlled-not gate with the second qubit
as the control.

the graph corresponding to an n-qubit circuit is exponen-
tially large in n (as it must be to represent an exponential
number of basis states), it has a succinct description in
terms of the original circuit being simulated.

Using only the three gate widgets (a), (b), and (c),
we can already construct a universal quantum computer,
provided the input state is chosen appropriately. Since
there is no reflection at k = −π/4, the transmission co-
efficients at this momentum compose multiplicatively, so
the concatenation of gate widgets can describe an arbi-
trary quantum circuit. If the input state is prepared in a
narrow wave packet consisting only of momenta close to
k = −π/4, the propagation of this wave packet through
the widgets implements that circuit. However, we will
see next that it is possible to use a much simpler start-
ing state, corresponding to one particular vertex of the
graph.

IV. MOMENTUM FILTERING

To construct a Hamiltonian that works with a simple
starting state, we design a filter that only allows mo-
menta near k = −π/4 to pass. The basic building block
of this filter is shown in Fig. 1(d). Unlike the widgets for
implementing gates, this widget includes a semi-infinite



Example in action



Simplifying the initial state
So far, we have assumed that the computation takes place using only 
momenta near k = —¼/4.



Simplifying the initial state
So far, we have assumed that the computation takes place using only 
momenta near k = —¼/4.

Can we relax this restriction?  Start from a single vertex of the graph?



Simplifying the initial state
So far, we have assumed that the computation takes place using only 
momenta near k = —¼/4.

Can we relax this restriction?  Start from a single vertex of the graph?

Idea:  A single vertex has equal amplitudes for all momenta.  Filter out 
momenta except within 1/poly(n) of k = —¼/4. 
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3

any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for

x + y + !j,j′(k) = v(k)t, (8)

where

v(k) :=
d
dk

2 cos k = −2 sin k (9)

is the group velocity at momentum k, and

!j,j′(k) :=
d
dk

arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]

|〈y, j′|e−iHt|x, j〉| ∼ |Tj,j′(k!)|√
2π|c(k!)|

, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
d2

dk2
arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.

(a) |00in〉
|01in〉
|10in〉
|11in〉

|00out〉
|01out〉
|10out〉
|11out〉

(b)

|in〉 |out〉

(c) |0in〉

|1in〉

|0out〉

|1out〉

(d)

|in〉 |out〉

(e)

|in〉 |out〉

FIG. 1: Widgets used to construct a universal quantum com-
puter. Open circles indicate vertices where previous or suc-
cessive widgets can be attached. (a) Controlled-note gate. (b)
Phase shift. (c) Basis-changing gate. (d) Momentum filter.
(e) Momentum separator.

with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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The curse of symmetry
Problem: Our filter passes k = —3¼/4 in addition to k = —¼/4.

Generically, distinct momenta propagate at different speeds; but

v(−π/4) = 2 sin(π/4) =
√

2

v(−3π/4) = 2 sin(3π/4) =
√

2
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pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
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dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
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−π
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where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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This is because they are all bipartite.  [Goldstone]

3

any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for

x + y + !j,j′(k) = v(k)t, (8)

where

v(k) :=
d
dk

2 cos k = −2 sin k (9)

is the group velocity at momentum k, and

!j,j′(k) :=
d
dk

arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]

|〈y, j′|e−iHt|x, j〉| ∼ |Tj,j′(k!)|√
2π|c(k!)|

, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
d2

dk2
arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the

3

any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for

x + y + !j,j′(k) = v(k)t, (8)

where

v(k) :=
d
dk

2 cos k = −2 sin k (9)

is the group velocity at momentum k, and

!j,j′(k) :=
d
dk

arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]

|〈y, j′|e−iHt|x, j〉| ∼ |Tj,j′(k!)|√
2π|c(k!)|

, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
d2

dk2
arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
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mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for
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where
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arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]
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where k = k! satisfies (8), and
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arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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any stationary points, and the phase of the first term is
given by k(x + y) + arg Tj,j′(k) − 2t cos k, which is sta-
tionary for

x + y + !j,j′(k) = v(k)t, (8)

where
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is the group velocity at momentum k, and
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arg Tj,j′(k) (10)

is the effective length of the path through G from line j
to line j′.4 Then for large x + y we have [25, Eq. 3.2]
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, (11)

where k = k! satisfies (8), and

c(k) := 2t cos k +
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dk2
arg Tj,j′(k). (12)

While semi-infinite lines are convenient for the pur-
pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
∫ π

−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.
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FIG. 1: Widgets used to construct a universal quantum com-
puter. Open circles indicate vertices where previous or suc-
cessive widgets can be attached. (a) Controlled-note gate. (b)
Phase shift. (c) Basis-changing gate. (d) Momentum filter.
(e) Momentum separator.

with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
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−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
fect of truncating the lines is negligible.

III. UNIVERSAL GATE SET

We now show how to implement a universal set of
quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together

4 If the graph G is simply a line of ! edges, then the transmis-
sion coefficient is T (k) = eik!, and the effective length is pre-
cisely !. In general, however, the effective length is momentum-
dependent, i.e., the propagation is dispersive.
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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pose of analysis, they can be replaced by long but finite
lines to give a construction based on a finite graph (cf.
[2]). This replacement does not significantly change the
dynamics since the quantum walk on a line has a maxi-
mum propagation speed. To see this, note that in (9), a
maximum group velocity of 2 is obtained at k = −π/2.
Alternatively, consider the propagator on an infinite line
with adjacency matrix H:

〈y|e−iHt|x〉 =
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−π
eik(y−x)−2it cos kd̄k (13)

= (−i)y−xJy−x(2t), (14)

where Jν(t) is a Bessel function of order ν. Since Jν(t)
decays exponentially in ν when ν = t(1+ ε) for any fixed
ε > 0, (14) describes a wavefront moving with speed 2.
Thus, provided the lengths of all the attached lines are
large compared to twice the total evolution time, the ef-
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quantum gates by scattering on graphs. We use a univer-
sal gate set consisting of the controlled-not gate together
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with two single-qubit gates that generate a dense subset
of SU(2).

The controlled-not gate is trivial to implement. This
two-qubit gate exchanges the computational basis states
|10〉 and |11〉, while leaving the other two states un-
changed. This transformation can be effected by sim-
ply exchanging the appropriate wires, using the widget
shown in Fig. 1(a). An incoming wave of any momentum
k is transmitted perfectly through this widget, accumu-
lating a phase of eik.

To implement a phase gate, we would like to apply
some nontrivial phase to the |1〉 wire, while leaving the
|0〉 wire unchanged. This can be accomplished by insert-
ing the widget shown in Fig. 1(b) into the |1〉 wire. To
understand this widget, consider attaching semi-infinite
lines to its terminals, and calculate the transmission co-
efficient for a wave of momentum k incident on the input
terminal. We find

T (b)
in,out =

8
8 + i cos 2k csc3 k sec k

, (15)

whose magnitude squared is plotted in Fig. 2. In partic-
ular, this widget has perfect transmission at k = −π/4,
where T (b)(−π/4) = 1 and !(b)(−π/4) = 1. Relative to
the effect of a straight wire of length 1, the widget ef-
fectively introduces a phase of eiπ/4 at this momentum.
Combining the widget on the |1〉 wire with a straight wire
for the |0〉 state, we see that for momenta near −π/4, the
widget implements the phase gate

Ub :=
(

1 0
0 eiπ/4

)
. (16)

Note that momenta far from −π/4 (and −3π/4) will not
only be transmitted with a different phase, but will also
include a substantial reflected component. However, we
will see that the computation can be performed entirely
with wave packets consisting of momenta near −π/4.

To implement a basis-changing single-qubit gate, we
must design a widget that includes interactions between
different quantum wires. Such a widget is shown in
Fig. 1(c). To characterize this widget, we calculate the
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A universal computer
Consider an m-gate quantum circuit (unitary transformation U).

Θ(m2)

Graph:

•                 filter widgets on input line 00...0

• Momentum separation widget on input line 00...0

• Widgets for m gates in the circuit

• Truncate input wires to length

log Θ(m2)

Ω(1/m2)

t = π!(x + ")/
√

2π# = O(m2)
x = Θ(m2)

Simulation:

• Start at vertex                   on input line 00...0

• Evolve for time

• Measure in the vertex basis

• Conditioned on reaching vertex 0 on some output line s (which 
happens with probability               ), the distribution over s is 
approximately |〈s|U |00 . . . 0〉|2



Toward scattering algorithms

• Can we solve other problems by scattering?

• Can we implement quantum transforms (e.g., the Fourier transform) 
more directly than by a circuit decomposition?

Query algorithm for a decision problem: [Farhi, Goldstone, Gutmann 07]

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

k

joint work with Gorjan Alagic, Aaron Denney, and Cris Moore



Relaxing the model

• Output wires can be separate from, or identical to, input wires

• Arbitrary edge weights (in complex conjugate pairs)

• Let input/output states be wave packets (encoding/decoding can be 
performed efficiently)

c

c∗

(
0 c∗

c 0

)

joint work with Gorjan Alagic, Aaron Denney, and Cris Moore



QFT over  

joint work with Gorjan Alagic, Aaron Denney, and Cris Moore

Z2n

“Butterfly network”:

With appropriate choice of weights,                               .S(k0) = QFT(Z2n)

000 0̃00

1̃00

0̃10

1̃10

0̃01

1̃01

0̃11

1̃11

001

010

011

100

101

110

111

Can we get further away from the circuit model?
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Random walk
A Markov process on a graph G = (V, E).

Ex: Simple random walk. Wkj =

{
1

deg j (j, k) ∈ E

0 (j, k) "∈ E

with               iffWkj != 0 (j, k) ∈ E

probability of taking a step from j to k

In discrete time:

Stochastic matrix                              (                    )
∑

k Wkj = 1W ∈ R|V |×|V |

Dynamics: pt = W tp0 pt ∈ R|V | t = 0, 1, 2, . . .
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Random walk
A Markov process on a graph G = (V, E).

with               iff (j, k) ∈ E

probability per unit time of 
taking a step from j to k

In continuous time:

Generator matrix                              (                    )M ∈ R|V |×|V | ∑
k Mkj = 0

Mkj != 0

Dynamics:
d
dt

p(t) = Mp(t) p(t) ∈ R|V | t ∈ R

Ex: Laplacian walk. Mkj = Lkj =






−deg j j = k

1 (j, k) ∈ E

0 (j, k) #∈ E
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Quantum walk
Quantum analog of a random walk on a graph G = (V, E).

Idea: Replace probabilities by quantum amplitudes.

d
dt

p(t) = Mp(t) p(t) ∈ R|V |
∑

v∈V

pv(t) = 1

i
d
dt

q(t) = Hq(t) q(t) ∈ C|V |
∑

v∈V

|qv(t)|2 = 1

with               iff (j, k) ∈ EH = H† Hkj != 0

Ex: Adjacency matrix. Hkj = Akj =

{
1 (j, k) ∈ E

0 (j, k) "∈ E



Aside: Discrete-time quantum walk
We can also define a quantum walk that proceeds by discrete steps.

[Watrous 99]
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Unitary operator U with              iffUkj != 0 (j, k) ∈ E

We can also define a quantum walk that proceeds by discrete steps.
[Watrous 99]
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Aside: Discrete-time quantum walk

Unitary operator U with              iffUkj != 0 (j, k) ∈ E [Meyer 96], [Severini 03]

We can also define a quantum walk that proceeds by discrete steps.
[Watrous 99]
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Aside: Discrete-time quantum walk

Unitary operator U with              iffUkj != 0 (j, k) ∈ E [Meyer 96], [Severini 03]

C|V |We must enlarge the state space:                    instead of        .C|V | ⊗ C|V |

Unitary operator U with                        iff (j, k) ∈ EU(k,j),(j,!) != 0

In this talk we will focus on the continuous-time model.

We can also define a quantum walk that proceeds by discrete steps.
[Watrous 99]


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Transfer matrix
To create a narrow filter, repeat the basic filter many times in series.

This can be analyzed using a transfer matrix approach.
(
〈x + 1|k̃, sc→in 〉
〈x|k̃, sc→in 〉

)
= M

(
〈x|k̃, sc→in 〉

〈x − 1|k̃, sc→in 〉

)
Write

k

−π −3π
4

−π
2 −π

4
0
0

1
2

1

3
2

2
Eigenvalues of M

T =
2ie−ikm sin k

−ae−ik − b + c + deik

Mm =
(

a b
c d

)
For m filters, suppose

Then




