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Quantum walk algorithms

Exponential speedups
e Black box graph traversal [CCDFGS 03]
* Hidden sphere problem [CSV 07]

Polynomial speedups

e Search on graphs [Shenvi, Kempe, Whaley 02], [CG 03, 04],
[Ambainis, Kempe, Rivosh 04]

e Element distinctness [Ambainis 03]

° Triangle ﬁnding [Magniez, Santha, Szegedy 03]

e Checking matrix multiplication [Buhrman, Spalek 04]
e Testing group commutativity [Magniez, Nayak 05]

e Formula evaluation [Farhi, Goldstone, Gutmann 07], [ACRSZ 07],
[Cleve, Gavinsky, Yeung 08], [Reichardt, Spalek 08]

e Unstructured search [Grover 96] (+ many applications)
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Quantum walk

Quantum analog of a random walk on a graph G = (V, E).

Replace probabilities by quantum amplitudes.

qu (t)|v)

veV
amplltude for vertex v at time ¢

Define time-homogeneous, local dynamics on G.
d
—|(t)) = H|W(t
() = Hlu(t)
H = H'with Hy; # 0 iff (j,k) € E

1 (j,k) e E

Ex: Adjacency matrix. Hy; = Ay = {O (k) & E
J
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The question

How powerful is quantum walk?

In particular: Can it do universal quantum computation?

Loosely interpreted (any fixed Hamiltonian): Yes! [Feynman 85]

But what if we take the narrowest possible interpretation?

max degree of G = constant

Hamiltonian = adjacency matrix (no edge weights)
initial state = a single vertex

The resulting construction also suggests an approach to quantum walk
algorithms.



The plan

* Scattering theory on graphs
e Gate widgets

e Simplifying the initial state: Momentum filtering and separation
* Toward scattering algorithms



Scattering theory
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[Liboff, Introductory Quantum Mechanics]
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Momentum states

Consider an infinite line:

Hilbert space: span{|z):z € Z}

Eigenstates of the adjacency matrix: |k) with

<x\l~€> .— !h® ke |—mm)

We have (z|A|k) = (x — 1]k) + (z + 1|k)
_ 6ik(ac—l) n 6ik(ac—l—l)
= (2cos k)(z|k)

so this is an eigenstate with eigenvalue 2 cos k.
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Scattering on graphs

Now consider adding semi-infinite lines to two vertices of an arbitrary
finite graph:

Three kinds of eigenstates:

(x, left]l%, SCloft ) e kT | R(k)eikx (x, right]l%, SCoft )

T(k)eikx

<337 left"%v SC;:ght> — T(k)elka} <CC, right|l%, ch;;ht> — G_ikx + R(k)filkx
(x,left|&, bdT) = (e F)" (x,right|%, bdT) = BT (k)(L£e ")*

It can be shown that these states form a complete, orthonormal basis
of the Hilbert space, where k € |—m, 0] and x > 0 takes certain
discrete values.
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Scattering on graphs

This generalizes to any number of semi-infinite lines attached to any
finite graph.

Incoming scattering states:

(x,j|k,sc;) = e 4 Ri(k) el*®
(2, 5" |kyse;7) = Ty o (k) €™ 5" #

Bound states:

(z, j|&, bd™) = B (k) (£e™")"




The S-matrix

Scattering states characterize asymptotic transformations from
Incoming waves to outgoing waves:

Ry (k Ty o(k) -+ Tin(k)
(Tz 1 ( R2(k) TZ,N(k)\

\Twi(k) Two(k) - R(k))




The S-matrix

Scattering states characterize asymptotic transformations from
Incoming waves to outgoing waves:

( R1 Ty o(k) - T1,N(k)\
To 1 ( Rg(k) To n (k)
S(k) = : . ;
\Tw1(k) Twa(k) - Ry(k)

To understand the dynamics in general, expand the Hamiltonian in a
basis of scattering states and compute integrals by the method of
stationary phase.
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Solution of the quantum walk equation:

d

i) = Hgt) = [¢)) =e 7 p(0))

N 0
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Dynamics of scattering

Solution of the quantum walk equation:

d
dt

i— o) =HRpt) = [P)=e " (0)

N 0
(y, 5'le™ |z, 5) = Z/ e 2oty 3k, sy ) (k, sy |, j) dk
j=1-""

4 Z€:F2itCOShK<y,j/’/%,bdi></%,bdi‘$,j>
K,t

0
_ / 6—2175 cos k (Tj,j’ (k)eik(aj—l—y) 4 T;’,j (k)e—lk(a:—l—y))dk

4+ E :6:|221t cosh mB:If(K)B:I:
J J
K,t

(k)" (=

_6—f<:)a:—|—y
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The method of stationary phase

Suppose ¢(k), a(k) are smooth, real-valued functions. Then for large
z, the integral

/ TR o (k) dk
d

is dominated by those values of k for which @Mk) = 0.

In scattering on graphs, we have

0
(y, 'l |, ) = / MR (k) R

—T

The phase is stationary for k satisfying z +y + ¢, ;- (k) = v(k)t

d
v(k) = @2 cosk = —2sink
d
gj)jl(k) .= @ arg T],J/(k)



Finite lines suffice

To obtain a finite graph, truncate the semi-infinite lines at a length
O(t), where t is the total evolution time.

This gives nearly the same behavior since the quantum walk on a line
has a maximum propagation speed of 2.
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Computation by scattering

Encode quantum circuits into graphs.

Computational basis states correspond to lines (“quantum wires”).

4 )
Ex: With two Note: This is not extravagant.
00) # of vertices = Hilbert space dimension | —e—...
01) - The walk. can be efficiently simulated .
by a universal quantum computer.
10> \- Ve e
11) ~—e—o—e—o—o—o—0o—o—o—o—o—.

Quantum information propagates from left to right.

To perform gates, attach graphs along/connecting the wires.
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Any unitary operation on 1. qubits can be approximated
arbitrarily closely by a product of gates from the set
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A universal gate set

Any unitary operation on 1. qubits can be approximated
arbitrarily closely by a product of gates from the set

0
L0060

o OO =

1
0
0

0

0
0
1

O = O O

[Boykin et al. 00]

We can implement these elementary gates (and indeed, any product of

these gates) by scattering on graphs.
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8

Tin,out (k) = :
(1 0> out (k) 8 +icos 2k cse3 ksec k
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A basis-changing gate

e'*(cos k + isin 3k)
Lo 00 (F) = 2 cosk +i(sin 3k — sin k)
‘Oin>° —r—©° ‘Oout> .
T, (k) = —
* o Oin Tout 2cosk +i(sin 3k — sin k)
e'* cos 2k
. (k) =To, 1. (k) = —
‘11n> © ¢ ¢ © ‘]—OUt> Ro,, (k) Oin Lie (K) 2 cosk +i(sin 3k — sin k)




A basis-changing gate

() e'*(cos k + isin 3k)
OinaOout — . . o
‘01n> O—o—e—0O ‘Oout> 2008k+1(81n13k sin k)
To. (k) = —
* o Oin Tout 2cosk +i(sin 3k — sin k)
e'* cos 2k
‘ 11n> O ¢ ¢ O ‘ 1out> Roin(k) — TOirulin(k) —

 2cosk + i(sin 3k — sin k)

At k=—m/4 this
implements the
unitary transformation

- )

from inputs to outputs - i




A basis-changing gate

e'*(cos k + isin 3k)
Toinaoout(k) — T —oin
‘Oin> o, ® ® O ‘Oout> 2cosk+1(sm13k k)
T 7 Lo towe (B) =  2cosk + i(sin 3k — sin k)
L) — T 1) — e* cos 2k
‘11n> 7 ’ ’ ° ‘1OUt> Bos, (F) = oy, )__2008k+i(sin3k—sink)
( )
1 0\ 1 /i 1\ /(1 0\ eicbi 1 1
At k — - O 1 \/§ 1 1 O 1 T \/§ 1 _1 .......... !
implem(

unitary transformation

- )

from inputs to outputs
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Tensor product structure

To embed an m-qubit gate in an n-qubit system, simply include the

g & g Y PlY
gate widget 2" """ times, once for every possible computational basis
state of the n—m qubits not acted on by the gate.

Ex:  |00i,) o—¢——0 |00,y

¢ ¢

01;,) o—e——0 |01yt )

110, ) O——¢———0 [10,ys)
¢ ¢

11;,) O——6——0 |114y)
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To perform a sequence of gates, simply connect the output wires to
the next set of input wires.

Arrange the transmission/reflection coefficients as transformations
from inputs to outputs:

R, —j=j
737j/ — T.ina ! Rjaj/ — Jie . ]
T dons Th.jo J1#7
T B Rjout -] — j/
155 =T R =

./
outstin ' . . Y
Tjonerite JFJ



Composition law

To perform a sequence of gates, simply connect the output wires to
the next set of input wires.

Arrange the transmission/reflection coefficients as transformations
from inputs to outputs:

R; j=17
. ., — . . L Jin
73,3’ — Tjin,Jgut RJ,J’ — {

Ty, J7#J
T D, Rjout -] — j/
7}’j/ — TjOUt7ji,n Rj’j/ N {T ./ ,] # j,
JOUt)jout

Then we have  Tio = 71(1 — RoR1) T
Riz =Ri1+T1(1 - RaR1) RaoTy
Tio =T(1 —RiR2) ' T
Riz=Ro+T(1 —R1R2) " '"R17Ts
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Example in action

oo 0000 DD DMWMIBWsece oo -
. Y Y
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Simplifying the initial state

So far, we have assumed that the computation takes place using only
momenta near k=—7/4.

Can we relax this restriction? Start from a single vertex of the graph!?

A single vertex has equal amplitudes for all momenta. Filter out
momenta except within 1/poly(n) of k=—-n/4.
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The curse of symmetry

Our filter passes kK =—3x/4 in addition to k=—7/4.

Generically, distinct momenta propagate at different speeds; but
v(—7/4) = 2sin(n/4) = V2
v(—371/4) = 2sin(3n/4) = V2

In fact, all widgets so far have a symmetry under £k — —7 — k.

00in) ——— |00out) 3
R O W ﬁ Oin) < [ [ > [Oout) ::
1Oin> ° 1Oout> . .
11m>;’x0 oy lin) out)  |Lin) o o |Tout) mwijuw

This is because they are all bipartite. [Goldstone]
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Momentum separator

i(cos k + cos 3k) !

CZ—Vin,out<k) = |1+

sin k + 2sin 2k + sin 3k — sin bk

‘in) o—e—0 |Out>




Momentum separator

i(cos k + cos 3k) !
sin k + 2sin 2k + sin 3k — sin 5k

En,out(k) — [1 +

Uin.ous (—7/4) = 4(3 — 2v/2) =~ 0.686
Uin.out (—3m/4) = 4(3 + 2V/2) ~ 23.3

\in) o—e—0 |Out>
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A universal computer
Consider an m-gate quantum circuit (unitary transformation U).

Graph:
¢ log O(m?)filter widgets on input line 00...0
e Momentum separation widget on input line 00...0
* Widgets for m gates in the circuit

e Truncate input wires to length ©(m?)

Simulation:
e Start at vertex z = O(m?) on input line 00...0

e Evolve for time t = 7| (x 4+ £)/V27 | = O(m?)
e Measure in the vertex basis

e Conditioned on reaching vertex 0 on some output line s (which

happens with probability €2(1/m?)), the distribution over s is
approximately |(s|U]00...0)|°



Toward scattering algorithms

Query algorithm for a decision problem: [Farhi, Goldstone, Gutmann 07]

e Can we solve other problems by scattering?

e Can we implement quantum transforms (e.g., the Fourier transform)
more directly than by a circuit decomposition?

joint work with Gorjan Alagic,Aaron Denney, and Cris Moore



Relaxing the model

e Arbitrary edge weights (in complex conjugate pairs)

—— [

| et input/output states be wave packets (encoding/decoding can be
performed efficiently)

e Output wires can be separate from, or identical to, input wires

joint work with Gorjan Alagic,Aaron Denney, and Cris Moore



QFT over Zon

“Butterfly network”:

000 ¢ 000

001 o 100
010 a i 010
011 c \“’ 110
100 001
101 < ‘/ 101

110 o 011

111 o 111

With appropriate choice of weights, S(kg) = QFT(Zan).

Can we get further away from the circuit model?

joint work with Gorjan Alagic,Aaron Denney, and Cris Moore
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Random walk

A Markov process on a graph G = (V, E).

Stochastic matrix W € RIVIXIV] (> Wi =1)
with Wy, # 0 iff (j,k) € E

\

probability of taking a step from j to k

Dynamics:  p; = W'pg Pt € RV t=0,1,2,...

o5 k) EE
0 (J,k) ¢ E

Ex:Simple random walk. Wy, =
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Random walk

A Markov process on a graph G = (V, E).

Generator matrix M € RIVI*IV] (>, My; =0)
with My, # 0 iff (j, k) € £

1

probability per unit time of
taking a step from j to k

d
Dynamics: Ep(t) = Mp(t) p(t) € RV teR

—degy 7=k
Ex: Laplacian walk. Mj,;, = Li; = < 1 (7,k) € E
0 (J,k) & E
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Quantum walk

Quantum analog of a random walk on a graph G = (V, E).

Replace probabilities by quantum amplitudes.

%p(t) = Mp(t)  p(t)eRVI ¥ p,(t) =1
veV
oty = Hat) e YlamP =1
veV

H = H'with Hy; # 0 iff (j,k) € E

L (k)R

Ex:Adjacency matrix. Hy; = Ay = {O (k) & E
Js
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Aside: Discrete-time quantum walk

We can also define a quantum walk that proceeds by discrete steps.
[Watrous 99]

Unitary-operator-t-with-U—~0-iff (- k)< [Meyer 96], [Severini 03]
We must enlarge the state space: C!V'! @ C!V!instead of C!V.

Unitary operator U with U, 5y ;. ¢) # 0 iff (4, k) € E

In this talk we will focus on the continuous-time model.
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