
The quantum query complexity
of read-many formulas

Andrew Childs

Waterloo

Robin Kothari

Waterloo

Shelby Kimmel

MIT

Boolean formulas

x1 x3
x1

x2

_

x3

^
^

¬

¬

Boolean formulas

x1 x3
x1

x2

_

x3

^
^

¬

¬

A formula is read-once if every input appears at most once.

x1

x2

_

x3

^
^

x4 x5

¬

¬

Evaluating read-once formulas

Problem: Given a black box for , evaluate , where f is a
fixed read-once formula

x 2 {0, 1}n f(x)

Evaluating read-once formulas

Problem: Given a black box for , evaluate , where f is a
fixed read-once formula

x 2 {0, 1}n f(x)

Upper bounds:

• Grover 96: for OR

• Buhrman, Cleve, Wigderson 98: for balanced, constant-depth
• Høyer, Mosca, de Wolf 03: for balanced, constant-depth
• Farhi, Goldstone, Gutmann 07: for balanced, binary
• Ambainis, Childs, Reichardt, Špalek, Zhang 07: for

approximately balanced formulas, in general
• Reichardt 11: for any formula

O(
p
n)

Õ(
p
n)

O(
p
n)
n

1
2+o(1)

n
1
2+o(1)

O(
p
n)

O(
p
n)

Lower bound:

• Barnum, Saks 04: ⌦(
p
n)

Formula size

The size S of a formula is its total number of inputs, counted with
multiplicity.

x1 x3
x1

x2

_

x3

^
^

¬

¬

S = 5

n = 3

Every Boolean function can be computed by some formula. The
formula size is a natural complexity measure.

Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper
bound of for general formulas, but this can be suboptimal for
read-many formulas.

O(
p
S)

Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper
bound of for general formulas, but this can be suboptimal for
read-many formulas.

O(
p
S)

Trivial example: x1 _ x̄1 _ x2 _ x̄2 _ · · · _ xn _ x̄n = 1

S = 2n but no queries are required to evaluate

Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper
bound of for general formulas, but this can be suboptimal for
read-many formulas.

O(
p
S)

Trivial example: x1 _ x̄1 _ x2 _ x̄2 _ · · · _ xn _ x̄n = 1

S = 2n but no queries are required to evaluate

Nontrivial example: Graph collision.
Fix an n-vertex graph. Given a black box for . Is there
an edge (v,w) of the graph with ?

x 2 {0, 1}n
xv = xw = 1

Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper
bound of for general formulas, but this can be suboptimal for
read-many formulas.

O(
p
S)

Trivial example: x1 _ x̄1 _ x2 _ x̄2 _ · · · _ xn _ x̄n = 1

S = 2n but no queries are required to evaluate

Nontrivial example: Graph collision.
Fix an n-vertex graph. Given a black box for . Is there
an edge (v,w) of the graph with ?

x 2 {0, 1}n
xv = xw = 1

Upper bound of for any graph [Magniez, Santha, Szegedy
05]. Best lower bound for any particular graph is .

O(n2/3)
⌦(n1/2)

Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper
bound of for general formulas, but this can be suboptimal for
read-many formulas.

O(
p
S)

Trivial example: x1 _ x̄1 _ x2 _ x̄2 _ · · · _ xn _ x̄n = 1

S = 2n but no queries are required to evaluate

Nontrivial example: Graph collision.
Fix an n-vertex graph. Given a black box for . Is there
an edge (v,w) of the graph with ?

x 2 {0, 1}n
xv = xw = 1

Upper bound of for any graph [Magniez, Santha, Szegedy
05]. Best lower bound for any particular graph is .

O(n2/3)
⌦(n1/2)

Can be expressed by a simple formula:
n inputs
size S = 2m = O(n2)

_

edges (v, w)

xv ^ xw

More parameters

To get nontrivial bounds for read-many formula evaluation, we must
take other properties into account.

More parameters

To get nontrivial bounds for read-many formula evaluation, we must
take other properties into account.

Gate count G: Number of AND and OR gates in the formula
(Note that : worst case is a binary tree, with)G < S G = S � 1

More parameters

Depth: Length of a longest path from the output to an input (not
counting NOT gates)

To get nontrivial bounds for read-many formula evaluation, we must
take other properties into account.

Gate count G: Number of AND and OR gates in the formula
(Note that : worst case is a binary tree, with)G < S G = S � 1

Results

The quantum query complexity of evaluating a formula with n inputs,
size S, and G gates is .O(min{n,

p
S, n1/2G1/4})

Results

The quantum query complexity of evaluating a formula with n inputs,
size S, and G gates is .O(min{n,

p
S, n1/2G1/4})

For any n, S, G, there is a formula with n inputs, size at most S, and at
most G gates that requires queries to
evaluate.

⌦(min{n,
p
S, n1/2G1/4})

Results

The quantum query complexity of evaluating a formula with n inputs,
size S, and G gates is .O(min{n,

p
S, n1/2G1/4})

For any n, S, G, there is a formula with n inputs, size at most S, and at
most G gates that requires queries to
evaluate.

⌦(min{n,
p
S, n1/2G1/4})

The above lower bound still holds for any fixed constant depth .k � 3

Results

The quantum query complexity of evaluating a formula with n inputs,
size S, and G gates is .O(min{n,

p
S, n1/2G1/4})

For any n, S, G, there is a formula with n inputs, size at most S, and at
most G gates that requires queries to
evaluate.

⌦(min{n,
p
S, n1/2G1/4})

The above lower bound still holds for any fixed constant depth .k � 3

There is a depth-2 circuit of linear gate count that requires
queries to evaluate (compare , trivial lower bound of).

⌦(n0.555)
⌦(

p
n)O(n3/4)

Quantum applications

Quantum applications

 lower bound for checking Boolean matrix multiplication⌦(n1.055)

Best known upper bound is [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

O(n3/2)

Given Boolean matrices A, B, C,n⇥ n

decide whether for all i, j.Cij =
n_

k=1

Aik ^Bkj

Quantum applications

 lower bound for checking Boolean matrix multiplication⌦(n1.055)

Best known upper bound is [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

O(n3/2)

Given Boolean matrices A, B, C,n⇥ n

decide whether for all i, j.Cij =
n_

k=1

Aik ^Bkj

Constant-depth, bounded-fanout circuits with n inputs and G gates
(i.e., circuit size G) have query complexity .⇥̃(min{n, n1/2G1/4})

Classical applications

Classical applications

Formula gate count lower bound of for PARITY (improving over
[Khrapchenko 71]).

⌦(n2)

Classical applications

Formula gate count lower bound of for PARITY (improving over
[Khrapchenko 71]).

⌦(n2)

(Best previous result we know of this kind gave a similar lower bound
for formula size [Nechiporuk 66, Jukna 12], which is weaker.)

Constant-depth circuit of size that requires gates to
express as a formula.

O(n) ⌦(n2�✏)

Idea of the formula evaluation algorithm

Idea of the formula evaluation algorithm

Large formula size some inputs feed into many gates.)

Idea of the formula evaluation algorithm

Search for a 1 among inputs that feed into many OR gates.
If we find one, we eliminate many OR gates.
If we don’t find one, we eliminate many wires.

Large formula size some inputs feed into many gates.)

Idea of the formula evaluation algorithm

Search for a 1 among inputs that feed into many OR gates.
If we find one, we eliminate many OR gates.
If we don’t find one, we eliminate many wires.

Search for a 0 among inputs that feed into many AND gates.
If we find one, we eliminate many AND gates.
If we don’t find one, we eliminate many wires.

Large formula size some inputs feed into many gates.)

Idea of the formula evaluation algorithm

Search for a 1 among inputs that feed into many OR gates.
If we find one, we eliminate many OR gates.
If we don’t find one, we eliminate many wires.

Search for a 0 among inputs that feed into many AND gates.
If we find one, we eliminate many AND gates.
If we don’t find one, we eliminate many wires.

Then apply the read-once formula evaluation algorithm.

Lemma: Using queries, we can produce a formula of size
 with the same value on the given input.

O(n1/2G1/4)
O(n

p
G)

Large formula size some inputs feed into many gates.)

Pruning a formula

Note: No log factors in the analysis.

Same thing for AND gates.

When there are no marked high-degree inputs, we can delete all wires
from high-degree inputs to OR gates.

Call an input high-degree if it feeds into more than OR gates.
p
G

Every input has degree at most formula size is .
p
G) O(n

p
G)

Repeatedly search for a marked high-degree input.

jth iteration takes time , where is the number of
marked high-degree inputs

O(
p
n/mj) mj

 decreases each stepmj) mk�j � j

Total query complexity:
PO(

p
G)

j=1 O
⇣q

n
j

⌘
= O(n1/2G1/4)

We delete at least OR gates each time, so we repeat
 times.

p
G

k = O(
p
G)

Lower bounds for composed formulas

f

g g g...

Q
�
f � (g, . . . , g)

�
= ⌦

�
Q(f)Q(g)

�

[Reichardt 11]

Lower bounds for composed formulas

If the top gate of g is the same as all the bottom gates of f, then these
gates can be combined, and we reduce the depth by 1.

f

g g g...

Q
�
f � (g, . . . , g)

�
= ⌦

�
Q(f)Q(g)

�

[Reichardt 11]

Lower bounds for composed formulas

If the top gate of g is the same as all the bottom gates of f, then these
gates can be combined, and we reduce the depth by 1.

f

g g g...

Q
�
f � (g, . . . , g)

�
= ⌦

�
Q(f)Q(g)

�

[Reichardt 11]

Lemma: Let be circuits with inputs, depth , size .
Then there exists a circuit h with inputs, depth
 , size , such that
 . Furthermore, if f is a formula and , then
h is a formula of size .

nf , ng kf , kg Gf , Ggf, g
nh = 4nfng

kh = kf + kg � 1 Gh 2Gf + 4nfGg

Q(h) = ⌦(Q(f)Q(g)) kg = 1
Sh = SfSg

Optimality of the formula evaluation algorithm

Claim: For any n, S, G, there is a formula with n inputs, size at most S,
and at most G gates that requires queries
to evaluate.

⌦(min{n,
p
S, n1/2G1/4})

Optimality of the formula evaluation algorithm

Claim: For any n, S, G, there is a formula with n inputs, size at most S,
and at most G gates that requires queries
to evaluate.

⌦(min{n,
p
S, n1/2G1/4})

If the min is n, consider PARITY:
⌦(n)Query complexity [BBCMW 98, FGGS 98]

Formula size (use recursively)O(n2) x� y = (x ^ ȳ) _ (x̄ ^ y)

Optimality of the formula evaluation algorithm

Claim: For any n, S, G, there is a formula with n inputs, size at most S,
and at most G gates that requires queries
to evaluate.

⌦(min{n,
p
S, n1/2G1/4})

If the min is n, consider PARITY:
⌦(n)Query complexity [BBCMW 98, FGGS 98]

Formula size (use recursively)O(n2) x� y = (x ^ ȳ) _ (x̄ ^ y)

Otherwise, compose PARITY with AND:

...
andn

m

paritym

andn
m

andn
m

⇥(n) inputs

G = O(m2)gate count
query complexity ⌦(n

p
n/m) = ⌦(

p
nm)

size S = O(m2(n/m)) = O(nm)

Optimality of the formula evaluation algorithm

Claim: For any n, S, G, there is a formula with n inputs, size at most S,
and at most G gates that requires queries
to evaluate.

⌦(min{n,
p
S, n1/2G1/4})

If the min is n, consider PARITY:
⌦(n)Query complexity [BBCMW 98, FGGS 98]

Formula size (use recursively)O(n2) x� y = (x ^ ȳ) _ (x̄ ^ y)

Otherwise, compose PARITY with AND:

...
andn

m

paritym

andn
m

andn
m

⇥(n) inputs

G = O(m2)gate count
query complexity ⌦(n

p
n/m) = ⌦(

p
nm)

size S = O(m2(n/m)) = O(nm)

Choosing m appropriately gives the desired result.
(if the min is ; if the min is)m = S/n

p
S m =

p
G n1/2G1/4

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst,
Saxe, Sipser 84].

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst,
Saxe, Sipser 84].

Instead, use the ONTO function [Beame, Machmouchi 10]:

onto : Xn ! {0, 1} Xn = functions from [2n — 2] to [n]

onto(f) = 1 iff f is surjective

encode as a Boolean function of N = (2n — 2) log n bits

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst,
Saxe, Sipser 84].

Instead, use the ONTO function [Beame, Machmouchi 10]:

onto : Xn ! {0, 1} Xn = functions from [2n — 2] to [n]

onto(f) = 1 iff f is surjective

encode as a Boolean function of N = (2n — 2) log n bits

Depth-3 formula of size :⇥̃(N2)
onto(f) =

^

j2[n]

_

i2[2n�2]

logn�1^

`=0

f(i)j``

x

b =

(
x if b = 1

x̄ if b = 0

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst,
Saxe, Sipser 84].

Instead, use the ONTO function [Beame, Machmouchi 10]:

onto : Xn ! {0, 1} Xn = functions from [2n — 2] to [n]

onto(f) = 1 iff f is surjective

encode as a Boolean function of N = (2n — 2) log n bits

Proposition [BM 10]: The query complexity of is .ontoN ⌦(N/ logN)

Depth-3 formula of size :⇥̃(N2)
onto(f) =

^

j2[n]

_

i2[2n�2]

logn�1^

`=0

f(i)j``

x

b =

(
x if b = 1

x̄ if b = 0

Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst,
Saxe, Sipser 84].

Instead, use the ONTO function [Beame, Machmouchi 10]:

onto : Xn ! {0, 1} Xn = functions from [2n — 2] to [n]

onto(f) = 1 iff f is surjective

encode as a Boolean function of N = (2n — 2) log n bits

Proposition [BM 10]: The query complexity of is .ontoN ⌦(N/ logN)

Using this in place of PARITY gives the same lower bounds for depth-3
formulas, up to a log factor.

Depth-3 formula of size :⇥̃(N2)
onto(f) =

^

j2[n]

_

i2[2n�2]

logn�1^

`=0

f(i)j``

x

b =

(
x if b = 1

x̄ if b = 0

Depth-2 formulas

Element distinctness

Given , does there exist with ?x1, . . . , xn 2 [n] i 6= j xi = xj

Depth-2 formulas

Element distinctness

Given , does there exist with ?x1, . . . , xn 2 [n] i 6= j xi = xj

Query complexity [Aaronson, Shi 02; Ambainis 05; Kutin 05]⌦(n2/3)

Depth-2 formulas

Element distinctness

Given , does there exist with ?x1, . . . , xn 2 [n] i 6= j xi = xj

Encode as a Boolean function of bitsN = n log n

Query complexity [Aaronson, Shi 02; Ambainis 05; Kutin 05]⌦(n2/3)

Depth-2 formulas

Element distinctness

Given , does there exist with ?x1, . . . , xn 2 [n] i 6= j xi = xj

Encode as a Boolean function of bitsN = n log n

Query complexity [Aaronson, Shi 02; Ambainis 05; Kutin 05]⌦(n2/3)

Depth-2 circuit of size :O(n3)

edN (x) =
_

i,j,k2[n]

log n̂

`=1

(xi)
k`
` ^ (xj)

k`
`

Depth-2 formulas

Using composition to produce a circuit of size n gives a lower bound
of .⌦̃(n5/9) = ⌦(n0.555)

Element distinctness

Given , does there exist with ?x1, . . . , xn 2 [n] i 6= j xi = xj

Encode as a Boolean function of bitsN = n log n

Query complexity [Aaronson, Shi 02; Ambainis 05; Kutin 05]⌦(n2/3)

Depth-2 circuit of size :O(n3)

edN (x) =
_

i,j,k2[n]

log n̂

`=1

(xi)
k`
` ^ (xj)

k`
`

Boolean matrix product verification

Boolean semiring: “sum” is OR, “product” is AND

Boolean matrix product verification

Boolean semiring: “sum” is OR, “product” is AND

(AB)ij =
_

k

Aik ^BkjBoolean matrix product:

Boolean matrix product verification

Boolean semiring: “sum” is OR, “product” is AND

(AB)ij =
_

k

Aik ^BkjBoolean matrix product:

Best known upper bound is [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

O(n3/2)

Claim: Checking whether requires queries to the
entries of A, B, C.

C = AB ⌦(n1.055)

Boolean matrix product verification

Boolean semiring: “sum” is OR, “product” is AND

(AB)ij =
_

k

Aik ^BkjBoolean matrix product:

Best known upper bound is [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

O(n3/2)

Claim: Checking whether requires queries to the
entries of A, B, C.

C = AB ⌦(n1.055)

Matrix-vector product verification: check whether (A fixed, v
given by a black box)

Av = 1

Boolean matrix product verification

Boolean semiring: “sum” is OR, “product” is AND

(AB)ij =
_

k

Aik ^BkjBoolean matrix product:

Best known upper bound is [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

O(n3/2)

Claim: Checking whether requires queries to the
entries of A, B, C.

C = AB ⌦(n1.055)

Matrix-vector product verification: check whether (A fixed, v
given by a black box)

Av = 1

Formula: which is a generic monotone depth-2 circuit
W

i

V
j Aijvj

lower bound of ⌦̃(n5/9) = ⌦(n0.555))

Boolean matrix product verification

Boolean semiring: “sum” is OR, “product” is AND

(AB)ij =
_

k

Aik ^BkjBoolean matrix product:

Best known upper bound is [Buhrman, Spalek 06]; their
techniques give a linear lower bound.

O(n3/2)

Claim: Checking whether requires queries to the
entries of A, B, C.

C = AB ⌦(n1.055)

Matrix-vector product verification: check whether (A fixed, v
given by a black box)

Av = 1

Formula: which is a generic monotone depth-2 circuit
W

i

V
j Aijvj

lower bound of ⌦̃(n5/9) = ⌦(n0.555))

lower bound of ⌦̃(
p
n · n5/9) = ⌦̃(n19/18) = ⌦(n1.055))

 is the logical AND of n instances of the above problemAB = J

Formula gate count lower bounds

Formula gate count lower bounds

Read-many formula evaluation algorithm:
The quantum query complexity of evaluating a formula f with n inputs
and G gates is .Q(f) = O(n1/2G1/4)

Formula gate count lower bounds

Corollary: Any formula representing a function f with n inputs
requires gates.⌦(Q(f)4/n2)

Read-many formula evaluation algorithm:
The quantum query complexity of evaluating a formula f with n inputs
and G gates is .Q(f) = O(n1/2G1/4)

Formula gate count lower bounds

Corollary: Any formula representing a function f with n inputs
requires gates.⌦(Q(f)4/n2)

Read-many formula evaluation algorithm:
The quantum query complexity of evaluating a formula f with n inputs
and G gates is .Q(f) = O(n1/2G1/4)

For example, any formula for PARITY must have gates.⌦(n2)

Formula gate count lower bounds

Corollary: Any formula representing a function f with n inputs
requires gates.⌦(Q(f)4/n2)

Read-many formula evaluation algorithm:
The quantum query complexity of evaluating a formula f with n inputs
and G gates is .Q(f) = O(n1/2G1/4)

For example, any formula for PARITY must have gates.⌦(n2)

Since , this improves the classic result that the formula size of
PARITY is [Khrapchenko 71].

G < S
⌦(n2)

Lower bounds on formula gate count of AC0

Problem: How efficiently can we reexpress a given constant-depth
circuit as a formula?

Lower bounds on formula gate count of AC0

Problem: How efficiently can we reexpress a given constant-depth
circuit as a formula?

Prior work [Nechiporuk 66, Jukna 12]: There is a constant-depth
circuit of linear size such that any formula for the same function has
size at least .n2�o(1)

Lower bounds on formula gate count of AC0

Problem: How efficiently can we reexpress a given constant-depth
circuit as a formula?

We show that there is a constant-depth circuit of linear size that
requires gates to express as a formula.⌦(n2�✏)

Prior work [Nechiporuk 66, Jukna 12]: There is a constant-depth
circuit of linear size such that any formula for the same function has
size at least .n2�o(1)

Lower bounds on formula gate count of AC0

Problem: How efficiently can we reexpress a given constant-depth
circuit as a formula?

We show that there is a constant-depth circuit of linear size that
requires gates to express as a formula.⌦(n2�✏)

Prior work [Nechiporuk 66, Jukna 12]: There is a constant-depth
circuit of linear size such that any formula for the same function has
size at least .n2�o(1)

Main idea:

Recursively composing ONTO with itself gives a circuit with smaller
size but nearly the same query complexity

ONTO has query complexity , circuit size⌦̃(n) Õ(n2)

Open problems

Open problems

Tighter bounds for evaluating depth-2 formulas (= circuits)

Open problems

Tighter bounds for evaluating depth-2 formulas (= circuits)

_

`2L

^

i2`

xi set of lines in a finite projective planeL =

Possible candidate for an improved lower bound:

Open problems

Formula evaluation upper/lower bounds taking other properties into
account (beyond number of inputs, size, gate count, depth)

Tighter bounds for evaluating depth-2 formulas (= circuits)

_

`2L

^

i2`

xi set of lines in a finite projective planeL =

Possible candidate for an improved lower bound:

Open problems

Formula evaluation upper/lower bounds taking other properties into
account (beyond number of inputs, size, gate count, depth)

Tighter bounds for evaluating depth-2 formulas (= circuits)

_

`2L

^

i2`

xi set of lines in a finite projective planeL =

Possible candidate for an improved lower bound:

Circuit evaluation

Open problems

Formula evaluation upper/lower bounds taking other properties into
account (beyond number of inputs, size, gate count, depth)

Tighter bounds for evaluating depth-2 formulas (= circuits)

_

`2L

^

i2`

xi set of lines in a finite projective planeL =

Possible candidate for an improved lower bound:

Circuit evaluation

Upper/lower bounds as a function of number of inputs, size, depth

Open problems

Formula evaluation upper/lower bounds taking other properties into
account (beyond number of inputs, size, gate count, depth)

Tighter bounds for evaluating depth-2 formulas (= circuits)

_

`2L

^

i2`

xi set of lines in a finite projective planeL =

Possible candidate for an improved lower bound:

Circuit evaluation

Upper/lower bounds as a function of number of inputs, size, depth

Graph collision as a depth-2 circuit of quadratic size or a depth-3
circuit of linear size

