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Problem: Given a black box for                 , evaluate        , where f is a 
fixed read-once formula

x 2 {0, 1}n f(x)

Upper bounds:

• Grover 96:             for OR

• Buhrman, Cleve, Wigderson 98:             for balanced, constant-depth
• Høyer, Mosca, de Wolf 03:             for balanced, constant-depth
• Farhi, Goldstone, Gutmann 07:              for balanced, binary
• Ambainis, Childs, Reichardt, Špalek, Zhang 07:             for 

approximately balanced formulas,             in general
• Reichardt 11:             for any formula
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Formula size

The size S of a formula is its total number of inputs, counted with 
multiplicity.
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Every Boolean function can be computed by some formula.  The 
formula size is a natural complexity measure.
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Evaluating read-many formulas

The optimal read-once formula evaluation algorithm gives an upper 
bound of             for general formulas, but this can be suboptimal for 
read-many formulas.
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Trivial example: x1 _ x̄1 _ x2 _ x̄2 _ · · · _ xn _ x̄n = 1

S = 2n but no queries are required to evaluate

Nontrivial example:  Graph collision.
Fix an n-vertex graph.  Given a black box for                  .  Is there 
an edge (v,w) of the graph with                    ? 

x 2 {0, 1}n
xv = xw = 1

Upper bound of              for any graph [Magniez, Santha, Szegedy 
05].  Best lower bound for any particular graph is             .

O(n2/3)
⌦(n1/2)

Can be expressed by a simple formula:
n inputs
size S = 2m = O(n2)

_

edges (v, w)

xv ^ xw
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More parameters

Depth:  Length of a longest path from the output to an input (not 
counting NOT gates)

To get nontrivial bounds for read-many formula evaluation, we must 
take other properties into account.

Gate count G:  Number of AND and OR gates in the formula
(Note that           : worst case is a binary tree, with                 )G < S G = S � 1
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Results

The quantum query complexity of evaluating a formula with n inputs, 
size S, and G gates is                                         .O(min{n,

p
S, n1/2G1/4})

For any n, S, G, there is a formula with n inputs, size at most S, and at 
most G gates that requires                                         queries to 
evaluate.

⌦(min{n,
p
S, n1/2G1/4})

The above lower bound still holds for any fixed constant depth         .k � 3

There is a depth-2 circuit of linear gate count that requires             
queries to evaluate (compare             , trivial lower bound of           ).

⌦(n0.555)
⌦(

p
n)O(n3/4)
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Quantum applications

               lower bound for checking Boolean matrix multiplication⌦(n1.055)

Best known upper bound is              [Buhrman, Spalek 06]; their 
techniques give a linear lower bound.

O(n3/2)

Given           Boolean matrices A, B, C,n⇥ n

decide whether                                 for all i, j.Cij =
n_

k=1

Aik ^Bkj

Constant-depth, bounded-fanout circuits with n inputs and G gates 
(i.e., circuit size G) have query complexity                                  .⇥̃(min{n, n1/2G1/4})
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[Khrapchenko 71]).

⌦(n2)



Classical applications

Formula gate count lower bound of           for PARITY (improving over 
[Khrapchenko 71]).

⌦(n2)

(Best previous result we know of this kind gave a similar lower bound 
for formula size [Nechiporuk 66, Jukna 12], which is weaker.)

Constant-depth circuit of size         that requires              gates to 
express as a formula.

O(n) ⌦(n2�✏)
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Idea of the formula evaluation algorithm

Search for a 1 among inputs that feed into many OR gates.
If we find one, we eliminate many OR gates.
If we don’t find one, we eliminate many wires.

Search for a 0 among inputs that feed into many AND gates.
If we find one, we eliminate many AND gates.
If we don’t find one, we eliminate many wires.

Then apply the read-once formula evaluation algorithm.

Lemma:  Using                     queries, we can produce a formula of size 
              with the same value on the given input.

O(n1/2G1/4)
O(n

p
G)

Large formula size     some inputs feed into many gates.)



Pruning a formula

Note:  No log factors in the analysis.

Same thing for AND gates.

When there are no marked high-degree inputs, we can delete all wires 
from high-degree inputs to OR gates.

Call an input high-degree if it feeds into more than        OR gates.
p
G

Every input has degree at most            formula size is              .
p
G ) O(n

p
G)

Repeatedly search for a marked high-degree input.

jth iteration takes time                   , where      is the number of 
marked high-degree inputs

O(
p
n/mj) mj

     decreases each stepmj ) mk�j � j

Total query complexity:
PO(

p
G)

j=1 O
⇣q

n
j

⌘
= O(n1/2G1/4)

We delete at least        OR gates each time, so we repeat
                   times.

p
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Lower bounds for composed formulas

If the top gate of g is the same as all the bottom gates of f, then these 
gates can be combined, and we reduce the depth by 1.

f

g g g...

Q
�
f � (g, . . . , g)

�
= ⌦

�
Q(f)Q(g)

�

[Reichardt 11]

Lemma: Let       be circuits with          inputs, depth         , size           .  
Then there exists a circuit h with                    inputs, depth
                          , size                                , such that 
                                 .  Furthermore, if f is a formula and           , then 
h is a formula of size                  .

nf , ng kf , kg Gf , Ggf, g
nh = 4nfng

kh = kf + kg � 1 Gh  2Gf + 4nfGg

Q(h) = ⌦(Q(f)Q(g)) kg = 1
Sh = SfSg
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Optimality of the formula evaluation algorithm

Claim: For any n, S, G, there is a formula with n inputs, size at most S, 
and at most G gates that requires                                         queries 
to evaluate.

⌦(min{n,
p
S, n1/2G1/4})

If the min is n, consider PARITY:
⌦(n)Query complexity          [BBCMW 98, FGGS 98]

Formula size            (use                                        recursively)O(n2) x� y = (x ^ ȳ) _ (x̄ ^ y)

Otherwise, compose PARITY with AND:

...
andn

m

paritym

andn
m

andn
m

⇥(n) inputs

G = O(m2)gate count
query complexity ⌦(n

p
n/m) = ⌦(

p
nm)

size S = O(m2(n/m)) = O(nm)

Choosing m appropriately gives the desired result.
(               if the min is       ;                if the min is               )m = S/n

p
S m =

p
G n1/2G1/4
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Constant-depth formulas (depth ¸ 3)

Constant-depth formulas for PARITY have superpolynomial size [Furst, 
Saxe, Sipser 84].

Instead, use the ONTO function [Beame, Machmouchi 10]:

onto : Xn ! {0, 1} Xn = functions from [2n — 2] to [n]

onto(f) = 1 iff f is surjective

encode as a Boolean function of N = (2n — 2) log n bits

Proposition [BM 10]:  The query complexity of             is                    .ontoN ⌦(N/ logN)

Using this in place of PARITY gives the same lower bounds for depth-3 
formulas, up to a log factor.
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Given                         , does there exist          with            ?x1, . . . , xn 2 [n] i 6= j xi = xj

Encode as a Boolean function of                    bitsN = n log n
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Boolean matrix product verification

Boolean semiring: “sum” is OR, “product” is AND

(AB)ij =
_

k

Aik ^BkjBoolean matrix product:

Best known upper bound is              [Buhrman, Spalek 06]; their 
techniques give a linear lower bound.

O(n3/2)

Claim: Checking whether               requires                queries to the 
entries of A, B, C.

C = AB ⌦(n1.055)

Matrix-vector product verification: check whether             (A fixed, v 
given by a black box)

Av = 1

Formula:                      which is a generic monotone depth-2 circuit
W

i

V
j Aijvj

lower bound of ⌦̃(n5/9) = ⌦(n0.555))

lower bound of ⌦̃(
p
n · n5/9) = ⌦̃(n19/18) = ⌦(n1.055))

              is the logical AND of n instances of the above problemAB = J
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Formula gate count lower bounds

Corollary:  Any formula representing a function f with n inputs 
requires                      gates.⌦(Q(f)4/n2)

Read-many formula evaluation algorithm:
The quantum query complexity of evaluating a formula f with n inputs 
and G gates is                                 .Q(f) = O(n1/2G1/4)

For example, any formula for PARITY must have           gates.⌦(n2)

Since           , this improves the classic result that the formula size of 
PARITY is           [Khrapchenko 71].

G < S
⌦(n2)
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Lower bounds on formula gate count of AC0

Problem:  How efficiently can we reexpress a given constant-depth 
circuit as a formula?

We show that there is a constant-depth circuit of linear size that 
requires              gates to express as a formula.⌦(n2�✏)

Prior work [Nechiporuk 66, Jukna 12]: There is a constant-depth 
circuit of linear size such that any formula for the same function has 
size at least            .n2�o(1)

Main idea:

Recursively composing ONTO with itself gives a circuit with smaller 
size but nearly the same query complexity

ONTO has query complexity        , circuit size⌦̃(n) Õ(n2)
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Open problems

Formula evaluation upper/lower bounds taking other properties into 
account (beyond number of inputs, size, gate count, depth)

Tighter bounds for evaluating depth-2 formulas (= circuits)

_

`2L

^

i2`

xi set of lines in a finite projective planeL =

Possible candidate for an improved lower bound:

Circuit evaluation

Upper/lower bounds as a function of number of inputs, size, depth

Graph collision as a depth-2 circuit of quadratic size or a depth-3 
circuit of linear size


