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“... nature isn’t classical, dammit, and if you 
want to make a simulation of nature, you’d 
better make it quantum mechanical, and by 
golly it’s a wonderful problem, because it 
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)



The ultimate quantum physics lab

Fault-tolerance Threshold Theorem:  If we can manipulate qubits 
sufficiently well (constant error rate, say 10-4), we can effectively make 
them perfect through an encoding with reasonable overhead.

Universal quantum computer

• Prepare system in a pure state of n qubits
• Apply 2-qubit unitary operations
• Measure in standard basis

Many possible implementations
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Motivation

• Coherent control of an artificial two-level system in solid-
state device

• Understanding the mechanism of decoherence
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Fast algorithms for classically hard problems

• Computing discrete logarithms
• Decomposing Abelian groups
• Computations in number fields
• Approximating Gauss sums
• Shifted Legendre symbol
• Counting points on algebraic curves
• Approximating the Jones polynomial (and 

other topological invariants)
• Simulating quantum mechanics
• Linear systems
• Computing effective resistance
• …

• Formula evaluation
• Collision finding (k-distinctness, k-sum, etc.)
• Minimum spanning tree, connectivity, 

shortest paths, bipartiteness of graphs
• Network flows, maximal matchings
• Finding subgraphs
• Minor-closed graph properties
• Property testing (distance between 

distributions, bipartiteness/expansion of 
graphs, etc.)

• Checking matrix multiplication
• Group commutativity
• Subset sum
• …

000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000001000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540

14691736602477652346609
=

163473364580925384844313388386509
085984178367003309231218111085238
9333100104508151212118167511579

×
190087128166482211312685157393541
397547189678996851549366663853908
8027103802104498957191261465571



Two kinds of quantum simulation

Analog simulation:  Build a device whose Hamiltonian effectively 
models a desired target system 

Ex:  Use an optical lattice to simulate spin models

Digital simulation:  Build a universal, fault-tolerant quantum 
computer and perform a controlled approximation of the dynamics of 
the target system



Why simulate quantum mechanics?

Implementing quantum algorithms

• continuous-time quantum walk (e.g., for formula evaluation)

• adiabatic quantum computation (e.g., for optimization)

• linear/differential equations

Computational chemistry/physics

• chemical reactions

• properties of materials



Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the 
state, but by performing measurements on the state, it can answer 
questions that (apparently) a classical computer cannot

i
d

dt
| (t)i = H| (t)i

| (t)i = e�iHt| (0)i

)

Quantum simulation problem: Given a description of the 
Hamiltonian H, an evolution time t, and an initial state          , produce 
the final state          (to within some error tolerance ²)

| (0)i
| (t)i



Local Hamiltonians

Lie Product Formula:
lim
r!1

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

Approximate version:

Hjwhere each      acts on k = O(1) qubitsH =
Pm

j=1 Hj

Ex:  Spin system on a lattice

Simple class of systems that can be simulated efficiently [Lloyd 96]:

poly(logN) (kHkt)2/✏Complexity (number of elementary gates):

where H is N £ N



Sparse Hamiltonians

In any given row, the 
location of the jth nonzero 
entry and its value can be 
computed efficiently (or is 
given by a black box)

Note:  A k-local Hamiltonian with m terms is d-sparse with d = 2k m

At most d nonzero entries 
per row, d = poly(log N) 
(where H is N £ N)

H =

More general class of Hamiltonians that can be simulated efficiently 
[Aharonov, Ta-Shma 03]:



Sparse Hamiltonians and coloring

Strategy [Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 03; 
Aharonov, Ta-Shma 03]: Color the edges of the graph of H.  Then the 
simulation breaks into small pieces that are easy to handle.

= + +

A sparse graph can be efficiently colored using only local information 
[Linial 87], so this gives efficient simulations.

Can also use other decompositions (e.g., stars [Childs, Kothari 10])



Higher-order product formulas

..
.

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

�
e�iAt/2re�iBt/re�iAt/2r

�r
= e�i(A+B)t +O(t3/r2)

[Suzuki 91]: Systematic construction of arbitrarily high-order formulas

Number of terms in the formula grows exponentially with order

Complexity of best known simulation, using pth order:

O

 
52pd3kHkt

✓
dkHkt

✏

◆1/2p!

[Berry, Ahokas, Cleve, Sanders 07; 
Childs, Kothari 11; Berry, Childs, 

Cleve, Kothari, Somma 14]



High-precision simulation
We have recently developed a novel approach that directly 
implements the Taylor series of the evolution operator

• Implementing linear combinations of unitary operations

• Oblivious amplitude amplification

New tools:

Dependence on simulation error is poly(log(1/²)), an exponential 
improvement over previous work

Algorithms are also simpler, with less overhead

[Berry, Childs, Cleve, Kothari, Somma 14 & 15]



Linear combinations of unitaries

LCU Lemma:  Given the ability to perform unitaries Vj with unit 
complexity, one can perform the operation                       with 
complexity                  .  Furthermore, if U is (nearly) unitary then this 
implementation can be made (nearly) deterministic.

U =
P

j �jVj

O(
P

j |�j |)

Main ideas:

• Boost the amplitude for success by oblivious amplitude amplification

• Using controlled-Vj operations, implement U with some amplitude:

|0i| i 7! sin ✓|0iU | i+ cos ✓|�i



Implementing U with some amplitude

U =
X

j

�jVj (WLOG           )�j > 0

|0i

| i
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=

;
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s
|0iU | i+

r
1� 1

s2
|�i

h0|�i = 0with

B B†
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Ancilla state: B|0i = 1p
s

X

j

p
�j |ji s :=

X

j

�j



Oblivious amplitude amplification

To perform U with amplitude close to 1: use amplitude amplification?

Suppose W implements U with amplitude sin µ:

With this oblivious amplitude amplification, we can perform the ideal 
evolution with only about 1/sin µ steps.

Using ideas from [Marriott, Watrous 05], we can show that a      -
independent reflection suffices to do effective amplitude amplification.

| i

But the input state is unknown!

We also give a robust version that works even when U is not exactly 
unitary.

W |0i| i = sin ✓|0iU | i+ cos ✓|�i



Simulating the Taylor series

e�iHt =
1X

k=0

(�iHt)k

k!

⇡
KX

k=0

(�iHt)k

k!

Taylor series of the dynamics generated by H:

Write                        where each      is unitaryH =
P

` ↵`H` H`

Then e�iHt ⇡
KX

k=0

X

`1,...,lk

(�it)k

k!
↵`1 · · ·↵`k H`1 · · ·H`k

is a linear combination of unitaries



Decomposing sparse Hamiltonians
To express H as a linear combination of unitaries:

• Approximately decompose into terms with all nonzero entries equal
0
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Ex:

• Remove zero blocks so that all terms are rescaled unitaries
0
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H =
Pd2

j=1 Hj• Edge coloring:                         where each Hj is 1-sparse
new trick:  H is bipartite wlog since it suffices to simulate            H ⌦ �

x

color(`, r) = (idx(`, r), idx(r, `))d2-coloring:



Why poly(log(1/²))?

Higher-order formulas exist, but they only improve the power of ²

Lowest-order product formula:

(e�iA/re�iB/r)r = e�i(A+B) +O(1/r)

so we must take r = O(1/²) to achieve error at most ²

The approximation e�iHt ⇡
KX

k=0

(�iHt)k

k!
has error ² provided

K = O

✓
log(1/✏)

log log(1/✏)

◆



Lower bounds
No-fast-forwarding theorem [BACS 07]: ⌦(t)

New lower bound: ⌦( log(1/✏)
log log(1/✏) )

Main idea:
• Query complexity of parity is         even for unbounded error.
• The same Hamiltonian as above computes parity with unbounded 

error by running for any positive time.  Running for constant time 
gives the parity with probability £(1/n!).

⌦(n)

Main idea:
• Query complexity of computing the parity of n bits is        .
• There is a Hamiltonian that can compute parity by running for 

time O(n).

⌦(n)

0 0 1 0 1 1 0



Discrete-time quantum walk
Quantum walk:  quantum analog of a random walk on a graph

Natural definition of a discrete-time quantum walk [Szegedy 04]:

• Represent state by two locations:           (u is the current vertex; v is 
the next vertex)

• Conditioned on u, reflect about some superposition of its neighbors

• Swap the two registers

|u, vi

Such walks have many nice properties and have been used extensively 
to construct quantum algorithms

In general, locality is inconsistent with unitarity [Severini 03]

Ex: no unitary matrix 
has this pattern:

0

@
0 • 0
• 0 •
0 • 0

1

A



Phase estimation
Problem:  Given a unitary operator U with eigenvectors       , where

U | ji = ei✓j | ji
| ji

, produce an estimate of ✓j

|0i QFT
x

Ux

QFT†

| ji | ji

|✓̃ji

X

j

↵j |0i| ji 7!
X

j

↵j |✓̃ji| ji

To get an estimate with precision ², we need O(1/²) uses of U.

[Kitaev 95]



Quantum walk simulation

Each eigenvalue ¸  of H  corresponds to two eigenvalues                   
of the walk operator (with eigenvectors closely related to those of H)

±e±i arcsin�

Strategy: Use phase estimation to determine and correct the phase

[Childs 10], [Berry, Childs 12]

⌧ := dkHk
max

tComplexity:                  whereO(⌧/
p
✏)

This matches the no fast-forwarding bound: real-time simulation!

Define a Szegedy walk operator for any given Hamiltonian H

| i 7! | i| ^arcsin�i

7! e�i�t| i| ^arcsin�i
7! e�i�t| i



Linear combination of quantum walk steps
Another approach: find coefficients so that

and implement this using the LCU Lemma

e�iH ⇡ T †
KX

k=�K

�kU
k T

By a generating series for Bessel functions,

e�i�t =
1X

k=�1
Jk(�t) eik arcsin�

Coefficients drop off rapidly for large k, so we can truncate the series

Query complexity of this approach: O

✓
⌧

log(⌧/✏)

log log(⌧/✏)

◆

⌧ := dkHk
max

t

[Berry, Childs, Kothari 15]



Lower bounds revisited
No-fast-forwarding theorem [BACS 07]: ⌦(t)

Main idea:
• Query complexity of computing the parity of n bits is        .
• There is a Hamiltonian that can compute parity by running for 

time O(n).

⌦(n)

0 0 1 0 1 1 0

New lower bound: ⌦(dt)
• Replacing each edge with Kd,d effectively boosts Hamiltonian by d.

dd

) Our algorithm is (nearly) optimal with respect to each of t, d, and ²



Query complexity of sparse Hamiltonian simulation

Lower bound: ⌦
�
⌧ + log(1/✏)

log log(1/✏)

�

or for               :↵ 2 (0, 1] O
�
⌧1+↵/2

+ ⌧1�↵/2
log(1/✏)

�

Quantum walk + LCU [BCK 15]: O

✓
⌧

log(⌧/✏)

log log(⌧/✏)

◆

• Gate complexity is only slightly larger than query complexity
• These techniques assume time-independent Hamiltonians (otherwise, 

use fractional queries/LCU on Dyson series [BCCKS 14])

Notes:

Quantum walk + phase estimation [BC 10]: ⌧ := dkHk
max

tO

✓
⌧p
✏

◆



Summary

Product formulas are the obvious approach to quantum simulation, 
but they are suboptimal!

Recently-developed algorithms are both
• asymptotically faster
• likely to be competitive in practice

Quantum simulation will probably be the first practical application of 
quantum computers; recent advances make this all the more likely



Outlook
Improved simulation algorithms

New quantum algorithms

Applications to simulating physics
• What is the cost in practice for simulating molecular systems?
• How do recent algorithms compare to naive methods?

• Optimal tradeoff for sparse Hamiltonian simulation
• Faster algorithms for structured problems
• Simulating open quantum systems

• Improved algorithms for linear systems
• New applications of linear systems
• Other quantum algorithms from quantum simulation


