
Quantum algorithms for
simulating quantum mechanics

Andrew Childs

Department of Computer Science
Institute for Advanced Computer Studies

Joint Center for Quantum Information and Computer Science
University of Maryland

“... nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)

The ultimate quantum physics lab

Fault-tolerance Threshold Theorem: If we can manipulate qubits
sufficiently well (constant error rate, say 10-4), we can effectively make
them perfect through an encoding with reasonable overhead.

Universal quantum computer

• Prepare system in a pure state of n qubits
• Apply 2-qubit unitary operations
• Measure in standard basis

Many possible implementations
trapped ions



〉





 

 



〉





(Monroe & Wineland)

nuclear spins

(Chuang et al.)

quantum dots

/u/divince/tex/revtex/mmm2000/divloss3

e ee

quantum well
heterostructure magnetized

e

or high-g layerback gates

e

(Loss & DiVincenzo)

superconducting circuits

(Nakamura et al.)

Motivation

• Coherent control of an artificial two-level system in solid-
state device

• Understanding the mechanism of decoherence

φ

2 µm

Fast algorithms for classically hard problems

• Computing discrete logarithms
• Decomposing Abelian groups
• Computations in number fields
• Approximating Gauss sums
• Shifted Legendre symbol
• Counting points on algebraic curves
• Approximating the Jones polynomial (and

other topological invariants)
• Simulating quantum mechanics
• Linear systems
• Computing effective resistance
• …

• Formula evaluation
• Collision finding (k-distinctness, k-sum, etc.)
• Minimum spanning tree, connectivity,

shortest paths, bipartiteness of graphs
• Network flows, maximal matchings
• Finding subgraphs
• Minor-closed graph properties
• Property testing (distance between

distributions, bipartiteness/expansion of
graphs, etc.)

• Checking matrix multiplication
• Group commutativity
• Subset sum
• …

000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000001000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

3107418240490043721350750035888567
9300373460228427275457201619488232
0644051808150455634682967172328678
2437916272838033415471073108501919
5485290073377248227835257423864540

14691736602477652346609
=

163473364580925384844313388386509
085984178367003309231218111085238
9333100104508151212118167511579

×
190087128166482211312685157393541
397547189678996851549366663853908
8027103802104498957191261465571

Two kinds of quantum simulation

Analog simulation: Build a device whose Hamiltonian effectively
models a desired target system

Ex: Use an optical lattice to simulate spin models

Digital simulation: Build a universal, fault-tolerant quantum
computer and perform a controlled approximation of the dynamics of
the target system

Why simulate quantum mechanics?

Implementing quantum algorithms

• continuous-time quantum walk (e.g., for formula evaluation)

• adiabatic quantum computation (e.g., for optimization)

• linear/differential equations

Computational chemistry/physics

• chemical reactions

• properties of materials

Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the
state, but by performing measurements on the state, it can answer
questions that (apparently) a classical computer cannot

i
d

dt
| (t)i = H| (t)i

| (t)i = e�iHt| (0)i

)

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time t, and an initial state , produce
the final state (to within some error tolerance ²)

| (0)i
| (t)i

Local Hamiltonians

Lie Product Formula:
lim
r!1

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

Approximate version:

Hjwhere each acts on k = O(1) qubitsH =
Pm

j=1 Hj

Ex: Spin system on a lattice

Simple class of systems that can be simulated efficiently [Lloyd 96]:

poly(logN) (kHkt)2/✏Complexity (number of elementary gates):

where H is N £ N

Sparse Hamiltonians

In any given row, the
location of the jth nonzero
entry and its value can be
computed efficiently (or is
given by a black box)

Note: A k-local Hamiltonian with m terms is d-sparse with d = 2k m

At most d nonzero entries
per row, d = poly(log N)
(where H is N £ N)

H =

More general class of Hamiltonians that can be simulated efficiently
[Aharonov, Ta-Shma 03]:

Sparse Hamiltonians and coloring

Strategy [Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 03;
Aharonov, Ta-Shma 03]: Color the edges of the graph of H. Then the
simulation breaks into small pieces that are easy to handle.

= + +

A sparse graph can be efficiently colored using only local information
[Linial 87], so this gives efficient simulations.

Can also use other decompositions (e.g., stars [Childs, Kothari 10])

Higher-order product formulas

..
.

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

�
e�iAt/2re�iBt/re�iAt/2r

�r
= e�i(A+B)t +O(t3/r2)

[Suzuki 91]: Systematic construction of arbitrarily high-order formulas

Number of terms in the formula grows exponentially with order

Complexity of best known simulation, using pth order:

O

52pd3kHkt

✓
dkHkt

✏

◆1/2p!

[Berry, Ahokas, Cleve, Sanders 07;
Childs, Kothari 11; Berry, Childs,

Cleve, Kothari, Somma 14]

High-precision simulation
We have recently developed a novel approach that directly
implements the Taylor series of the evolution operator

• Implementing linear combinations of unitary operations

• Oblivious amplitude amplification

New tools:

Dependence on simulation error is poly(log(1/²)), an exponential
improvement over previous work

Algorithms are also simpler, with less overhead

[Berry, Childs, Cleve, Kothari, Somma 14 & 15]

Linear combinations of unitaries

LCU Lemma: Given the ability to perform unitaries Vj with unit
complexity, one can perform the operation with
complexity . Furthermore, if U is (nearly) unitary then this
implementation can be made (nearly) deterministic.

U =
P

j �jVj

O(
P

j |�j |)

Main ideas:

• Boost the amplitude for success by oblivious amplitude amplification

• Using controlled-Vj operations, implement U with some amplitude:

|0i| i 7! sin ✓|0iU | i+ cos ✓|�i

Implementing U with some amplitude

U =
X

j

�jVj (WLOG)�j > 0

|0i

| i

9
=

;
1

s
|0iU | i+

r
1� 1

s2
|�i

h0|�i = 0with

B B†

Vj

j

Ancilla state: B|0i = 1p
s

X

j

p
�j |ji s :=

X

j

�j

Oblivious amplitude amplification

To perform U with amplitude close to 1: use amplitude amplification?

Suppose W implements U with amplitude sin µ:

With this oblivious amplitude amplification, we can perform the ideal
evolution with only about 1/sin µ steps.

Using ideas from [Marriott, Watrous 05], we can show that a -
independent reflection suffices to do effective amplitude amplification.

| i

But the input state is unknown!

We also give a robust version that works even when U is not exactly
unitary.

W |0i| i = sin ✓|0iU | i+ cos ✓|�i

Simulating the Taylor series

e�iHt =
1X

k=0

(�iHt)k

k!

⇡
KX

k=0

(�iHt)k

k!

Taylor series of the dynamics generated by H:

Write where each is unitaryH =
P

` ↵`H` H`

Then e�iHt ⇡
KX

k=0

X

`1,...,lk

(�it)k

k!
↵`1 · · ·↵`k H`1 · · ·H`k

is a linear combination of unitaries

Decomposing sparse Hamiltonians
To express H as a linear combination of unitaries:

• Approximately decompose into terms with all nonzero entries equal
0

BBBBBB@

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 2 0 0
0 0 2 0 0 0
0 0 0 0 0 3
0 0 0 0 3 0

1

CCCCCCA
=

0

BBBBBB@

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA
+

0

BBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA
+

0

BBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA

Ex:

• Remove zero blocks so that all terms are rescaled unitaries
0

BB@

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

1

CCA =
1

2

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA+
1

2

0

BB@

�1 0 0 0
0 �1 0 0
0 0 0 1
0 0 1 0

1

CCA
Ex:

H =
Pd2

j=1 Hj• Edge coloring: where each Hj is 1-sparse
new trick: H is bipartite wlog since it suffices to simulate H ⌦ �

x

color(`, r) = (idx(`, r), idx(r, `))d2-coloring:

Why poly(log(1/²))?

Higher-order formulas exist, but they only improve the power of ²

Lowest-order product formula:

(e�iA/re�iB/r)r = e�i(A+B) +O(1/r)

so we must take r = O(1/²) to achieve error at most ²

The approximation e�iHt ⇡
KX

k=0

(�iHt)k

k!
has error ² provided

K = O

✓
log(1/✏)

log log(1/✏)

◆

Lower bounds
No-fast-forwarding theorem [BACS 07]: ⌦(t)

New lower bound: ⌦(log(1/✏)
log log(1/✏))

Main idea:
• Query complexity of parity is even for unbounded error.
• The same Hamiltonian as above computes parity with unbounded

error by running for any positive time. Running for constant time
gives the parity with probability £(1/n!).

⌦(n)

Main idea:
• Query complexity of computing the parity of n bits is .
• There is a Hamiltonian that can compute parity by running for

time O(n).

⌦(n)

0 0 1 0 1 1 0

Discrete-time quantum walk
Quantum walk: quantum analog of a random walk on a graph

Natural definition of a discrete-time quantum walk [Szegedy 04]:

• Represent state by two locations: (u is the current vertex; v is
the next vertex)

• Conditioned on u, reflect about some superposition of its neighbors

• Swap the two registers

|u, vi

Such walks have many nice properties and have been used extensively
to construct quantum algorithms

In general, locality is inconsistent with unitarity [Severini 03]

Ex: no unitary matrix
has this pattern:

0

@
0 • 0
• 0 •
0 • 0

1

A

Phase estimation
Problem: Given a unitary operator U with eigenvectors , where

U | ji = ei✓j | ji
| ji

, produce an estimate of ✓j

|0i QFT
x

Ux

QFT†

| ji | ji

|✓̃ji

X

j

↵j |0i| ji 7!
X

j

↵j |✓̃ji| ji

To get an estimate with precision ², we need O(1/²) uses of U.

[Kitaev 95]

Quantum walk simulation

Each eigenvalue ¸ of H corresponds to two eigenvalues
of the walk operator (with eigenvectors closely related to those of H)

±e±i arcsin�

Strategy: Use phase estimation to determine and correct the phase

[Childs 10], [Berry, Childs 12]

⌧ := dkHk
max

tComplexity: whereO(⌧/
p
✏)

This matches the no fast-forwarding bound: real-time simulation!

Define a Szegedy walk operator for any given Hamiltonian H

| i 7! | i| ^arcsin�i

7! e�i�t| i| ^arcsin�i
7! e�i�t| i

Linear combination of quantum walk steps
Another approach: find coefficients so that

and implement this using the LCU Lemma

e�iH ⇡ T †
KX

k=�K

�kU
k T

By a generating series for Bessel functions,

e�i�t =
1X

k=�1
Jk(�t) eik arcsin�

Coefficients drop off rapidly for large k, so we can truncate the series

Query complexity of this approach: O

✓
⌧

log(⌧/✏)

log log(⌧/✏)

◆

⌧ := dkHk
max

t

[Berry, Childs, Kothari 15]

Lower bounds revisited
No-fast-forwarding theorem [BACS 07]: ⌦(t)

Main idea:
• Query complexity of computing the parity of n bits is .
• There is a Hamiltonian that can compute parity by running for

time O(n).

⌦(n)

0 0 1 0 1 1 0

New lower bound: ⌦(dt)
• Replacing each edge with Kd,d effectively boosts Hamiltonian by d.

dd

) Our algorithm is (nearly) optimal with respect to each of t, d, and ²

Query complexity of sparse Hamiltonian simulation

Lower bound: ⌦
�
⌧ + log(1/✏)

log log(1/✏)

�

or for :↵ 2 (0, 1] O
�
⌧1+↵/2

+ ⌧1�↵/2
log(1/✏)

�

Quantum walk + LCU [BCK 15]: O

✓
⌧

log(⌧/✏)

log log(⌧/✏)

◆

• Gate complexity is only slightly larger than query complexity
• These techniques assume time-independent Hamiltonians (otherwise,

use fractional queries/LCU on Dyson series [BCCKS 14])

Notes:

Quantum walk + phase estimation [BC 10]: ⌧ := dkHk
max

tO

✓
⌧p
✏

◆

Summary

Product formulas are the obvious approach to quantum simulation,
but they are suboptimal!

Recently-developed algorithms are both
• asymptotically faster
• likely to be competitive in practice

Quantum simulation will probably be the first practical application of
quantum computers; recent advances make this all the more likely

Outlook
Improved simulation algorithms

New quantum algorithms

Applications to simulating physics
• What is the cost in practice for simulating molecular systems?
• How do recent algorithms compare to naive methods?

• Optimal tradeoff for sparse Hamiltonian simulation
• Faster algorithms for structured problems
• Simulating open quantum systems

• Improved algorithms for linear systems
• New applications of linear systems
• Other quantum algorithms from quantum simulation

