The Bose-Hubbard and XY models are QMA-complete

Andrew Childs

David Gosset

Zak Webb

QuICS University of Maryland

IQIM Caltech IQC University of Waterloo

arXiv:1311.3297, ICALP 2014 arXiv:1503.07083

Hamiltonian complexity

Classical constraint satisfaction:

How hard is it to determine whether a Boolean formula has a satisfying assignment (or find minimum number of violated clauses)?

$$(x_1 \vee \bar{x}_2 \vee x_5) \wedge (x_{17} \vee x_{22} \vee \bar{x}_{25}) \wedge \cdots \wedge (\bar{x}_2 \vee \bar{x}_{25} \vee x_{99})$$

Quantum analog:

How hard is it to (approximately) compute the smallest eigenvalue of a Hermitian matrix?

$$H = \sum_{j} H_{j}$$
 each term H_{j} acts on k qubits

Quantum Merlin-Arthur

QMA: the quantum analog of NP

Merlin wants to prove to Arthur that some statement is true.

efficient quantum verification circuit

- If the statement is true, there exists a $|\psi\rangle$ that Arthur will accept with probability at least 2/3.
- If the statement is false, any $|\psi\rangle$ will be rejected by Arthur with probability at least 2/3.

Complexity of ground energy problems

- k-Local Hamiltonian problem: QMA-complete for k≥2 [Kitaev 99; Kempe, Kitaev, Regev 06]
- Quantum k-SAT (is there a frustration-free ground state?): in P for k=2; QMA₁-complete for k≥3 [Bravyi 06; Gosset, Nagaj 13]
- Stoquastic *k*-local Hamiltonian problem: in AM [Bravyi, DiVincenzo, Oliveira, Terhal 06]
- Fermion/boson problems: QMA-complete [Liu, Christandl, Verstraete 07; Wei, Mosca, Nayak 10]
- 2-local Hamiltonian on a grid: QMA-complete [Oliveira, Terhal 08]
- 2-local Hamiltonian on a line of qudits: QMA-complete [Aharonov, Gottesman, Irani, Kempe 09]
- Hubbard model on a 2d grid with a site-dependent magnetic field: QMA-complete [Schuch, Verstraete 09]
- Heisenberg and XY models with site-dependent couplings: QMAcomplete [Cubitt, Montanaro 13]

Dynamics are universal; ground states are hard

Theorem: The Schrödinger dynamics generated by time-independent local Hamiltonians can perform universal quantum computation. [Feynman 85]

$$\overline{H} = \sum_{j} \left(U_{j} \otimes |j+1\rangle \langle j| + U_{j}^{\dagger} \otimes |j\rangle \langle j+1| \right)$$

Theorem: Local Hamiltonian is QMA-complete. [Kitaev 99]

Theorem: The dynamics generated by the adjacency matrix of an unweighted sparse graph (i.e., a continuous-time quantum walk) can perform universal quantum computation. [C 09]

Theorem: Approximating the smallest eigenvalue of an unweighted sparse graph is QMA-complete. [CGW 14]

Dynamics are universal; ground states are hard

Theorem: Any *n*-qubit, *g*-gate quantum circuit can be simulated by a Bose-Hubbard model with n + 1 particles interacting for time poly(n,g) on an unweighted poly(n,g)-vertex graph. [CGW I3]

Consequences:

- Architecture for a quantum computer with no time-dependent control
- Simulating dynamics of interacting many-body systems is BQP-hard (e.g., Bose-Hubbard model on a sparse, unweighted, planar graph)

Theorem: Approximating the ground energy of the *n*-particle Bose-Hubbard model on a graph is QMA-complete. [CGW 14]

Consequences:

- Computing the ground energy of the Bose-Hubbard model is (probably) intractable
- New techniques for quantum Hamiltonian complexity

... but not always

model	dynamics	ground energy
Local Hamiltonians	BQP-complete	QMA-complete
Sparse adjacency matrices	BQP-complete	QMA-complete
Bose-Hubbard model (positive hopping)	BQP-complete	QMA-complete
stoquastic Local Hamiltonians	BQP-complete	AM
Bose-Hubbard model (negative hopping)	BQP-complete	AM
ferromagnetic Heisenberg model on a graph	BQP-complete	trivial

Bose-Hubbard model

Consider n distinguishable particles:

states:
$$|v_1, \ldots, v_n\rangle$$
 $v_i \in V(G)$ Hilbert space dimension: $|V(G)|^n$
Hamiltonian: $H_G^{(n)} = t_{hop} \sum_{i=1}^n A(G)_i + \mathcal{U}$

Indistinguishable bosons: symmetric subspace

On-site interaction:
$$\mathcal{U} = J_{\text{int}} \sum_{v \in V(G)} \hat{n}_v (\hat{n}_v - 1) \quad \hat{n}_v = \sum_{i=1}^n |v\rangle \langle v|_i$$

Second-quantized notation:

$$H_G = t_{\text{hop}} \sum_{u,v \in V(G)} A(G)_{uv} a_u^{\dagger} a_v + J_{\text{int}} \sum_{v \in V(G)} \hat{n}_v (\hat{n}_v - 1)$$
$$\hat{n}_v = a_v^{\dagger} a_v$$

Bose-Hubbard Hamiltonian is QMA-complete

Bose-Hubbard model on G:

$$H_G = t_{\text{hop}} \sum_{u,v \in V(G)} A(G)_{uv} a_u^{\dagger} a_v + J_{\text{int}} \sum_{v \in V(G)} \hat{n}_v (\hat{n}_v - 1)$$

Theorem: Determining whether the ground energy for n particles on the graph G is less than $ne_1 + \epsilon$ or more than $ne_1 + 2\epsilon$ is QMAcomplete, where e_1 is the I-particle ground energy.

- Fixed movement and interaction terms (A(G) is a 0-1 matrix)
- Applies for any fixed $t_{hop}, J_{int} > 0$
- It is QMA-hard even to determine whether the instance is approximately frustration free
- Analysis does not use perturbation theory

Dependence on signs of coefficients

Frustration-freeness

$$\begin{split} H_{G} &= t_{\mathrm{hop}} \underbrace{\sum_{u,v \in V(G)} A(G)_{uv} a_{u}^{\dagger} a_{v} + J_{\mathrm{int}} \sum_{v \in V(G)} \hat{n}_{v} (\hat{n}_{v} - 1)}_{\geq 0 \quad \geq 0 \quad \\ \mu(G) = \mathrm{smallest \ eigenvalue \ of} \ A(G) \end{split}$$

If a ground state of H_G has energy $t_{hop} n \mu(G)$, we call it frustration free.

We encode a computation in frustration-free states; this is why our result holds for any positive J_{int} .

XY model

Frustration-free states have at most one boson per site ("hard-core bosons")

Thus we can translate our results to spin systems, giving a generalization of the XY model on a graph:

$$\sum_{\substack{A(G)_{ij}=1\\i\neq j}} \frac{\sigma_x^i \sigma_x^j + \sigma_y^i \sigma_y^j}{2} + \sum_{\substack{A(G)_{ii}=1}} \frac{1 - \sigma_z^i}{2}$$

Theorem: Approximating the ground energy in the sector with magnetization $\sum_{i} \frac{1-\sigma_{z}^{i}}{2} = n$ is QMA-complete.

Removing self-loops

In our original proof, the adjacency matrix can be any symmetric 0-1 matrix (i.e., the adjacency matrix of an undirected graph with at most one self-loop per vertex).

We improve this to show that the ground energy problems remain hard without self-loops.

Bose-Hubbard model:

$$H_G = t_{\text{hop}} \sum_{u,v \in V(G)} A(G)_{uv} a_u^{\dagger} a_v + J_{\text{int}} \sum_{v \in V(G)} \hat{n}_v (\hat{n}_v - 1)$$

XY model:

$$\sum_{u,v \in V(G)} A(G)_{uv} \frac{\sigma_x^u \sigma_x^v + \sigma_y^u \sigma_y^v}{2}$$

Containment in QMA

Ground energy problems are usually in QMA

Strategy:

- Merlin provides the ground state
- Arthur measures the energy using phase estimation and Hamiltonian simulation

Only one small twist for boson problems: project onto the symmetric subspace

The quantum Cook-Levin Theorem

Theorem: Local Hamiltonian is QMA-complete [Kitaev 99]

Consider a QMA verification circuit $U_t \dots U_2 U_1$ with witness $|\psi
angle$

The Feynman Hamiltonian

$$H = \sum_{j=1}^{t} (I \otimes |j\rangle \langle j| + I \otimes |j-1\rangle \langle j-1| - U_j \otimes |j\rangle \langle j-1| - U_j^{\dagger} \otimes |j-1\rangle \langle j|)$$

has ground states $|\text{hist}_{\psi}\rangle = \frac{1}{\sqrt{t+1}} \sum_{j=0}^{t} U_j \dots U_1 |\psi\rangle \otimes |j\rangle$

- Implement the "clock" using local terms
- Add a term penalizing states with low acceptance probability

Establish a promise gap:

- \bullet yes instances have ground energy $\leq a$
- \bullet no instances have ground energy $\geq b$

QMA-hardness for sparse graphs

Theorem: Approximating the smallest eigenvalue of an unweighted sparse graph is QMA-complete.

Use the Feynman-Kitaev Hamiltonian $-\sqrt{2}\sum_{j} (U_{j} \otimes |j+1\rangle\langle j| + U_{j}^{\dagger} \otimes |j\rangle\langle j+1|)$ with gates $\{H, HT, (HT)^{\dagger}, (H \otimes 1) \text{CNOT}\}$

Then every nonzero matrix element is a power of $\omega = e^{i\pi/4}$

Replace $\omega^k \mapsto S^k$ where S = cyclic shift mod 8

Penalty term $S^3+S^4+S^5$ penalizes ancilla states with eigenvalues other than ω or ω^*

Single-qubit gates

Construct a graph encoding a universal set of single-qubit gates in the single-particle sector:

- Start from Feynman-Kitaev Hamiltonian for a particular sequence of gates
- Obtain matrix elements ω^j by careful choice of gate set and scaling
- Make all entries 0 or 1 using an ancilla

Ground state subspace is spanned by

$$\begin{split} |\psi_{z,0}\rangle &= \frac{1}{\sqrt{8}} \left(|z\rangle(|1\rangle + |3\rangle + |5\rangle + |7\rangle \right) & \xrightarrow{}_{HT} & \underbrace{}_{t=5} & \underbrace{}^{(HT)^{t}} \\ &+ H|z\rangle(|2\rangle + |8\rangle) + HT|z\rangle(|4\rangle + |6\rangle) \right) |\omega\rangle \\ &+ |\psi_{z,1}\rangle &= |\psi_{z,0}\rangle^{*} & \xrightarrow{}_{\text{some ancilla state}} \\ \text{for } z \in \{0,1\} & \xrightarrow{} \\ \end{split}$$

Two-qubit gates

Two-qubit gate gadgets: 4096-vertex graphs built from 32 copies of the single-qubit graph, joined by edges and with some added self-loops

Single-particle ground states are associated with one of two input regions or one of two output regions:

(States also carry labels associated with the logical state & complex conjugation.)

Two-particle ground states encode two-qubit computations:

Constructing a verification circuit

Connect two-qubit gate gadgets to implement the whole verification circuit, e.g.:

Some multi-particle ground states encode computations:

But there are also ground states that do not encode computations (two particles for the same qubit; particles not synchronized).

To avoid this, we introduce a way of enforcing *occupancy constraints*, forbidding certain kinds of configurations. We establish a promise gap using nonperturbative spectral analysis (no large coefficients).

Spectral analysis

For $H \ge 0$, let $\gamma(H)$ denote the smallest nonzero eigenvalue of H.

Nullspace Projection Lemma: Let $H_A, H_B \ge 0$ and let S denote the nullspace of H_A . Suppose $\gamma(H_B|_S) \ge c$ and $\gamma(H_A) \ge d$. Then $\gamma(H_A + H_B) \ge \frac{cd}{c+d+\|H_B\|}$.

Using this repeatedly, we can establish a promise gap between yes and no instances.

Advantage over other techniques: we do not need to add terms with large coefficients (as with the KKR projection lemma or perturbative gadgets).

Removing self-loops

Main idea: Add a self-loop to every vertex (without significantly changing the ground energy). This is just an overall energy shift (in a sector with fixed particle number).

Make two copies of the graph. For every vertex without a self-loop, add a self-loop in each copy and an edge between the two copies.

Ground space: States $|\psi\rangle|-\rangle$ where $|\psi\rangle$ is an eigenstate of the original graph.

Also, the interaction term within the space of states $|\psi\rangle|-\rangle$ is just 1/2 times the usual interaction term.

Promise gap of the Bose-Hubbard model on the original graph \Rightarrow promise gap for the new graph

Summary

Approximating the ground energy of the Bose-Hubbard model on a simple graph at fixed particle number is QMA-complete.

Consequently, approximating the ground energy of the XY model on a simple graph at fixed magnetization is QMA-complete.

A frustration-free encoding and the Nullspace Projection Lemma let us establish these results without using perturbation theory.

Open questions

- Related improvements for k-local Hamiltonian
 - Constant-size coefficients
 - Finite set of allowed terms without variable coefficients
 - Instances of Local Hamiltonian defined entirely by a (hyper)graph
- Complexity of other models of multi-particle quantum walk
 - Attractive interactions
 - Negative hopping strength (stoquastic; is it AM-hard?)
 - Bosons or fermions with nearest-neighbor interactions
 - Unrestricted particle number
- Complexity of other quantum spin models defined on graphs
 - Antiferromagnetic Heisenberg model