The relationship between continuous- and discrete-time quantum walk

Andrew Childs

Department of Combinatorics & Optimization and Institute for Quantum Computing University of Waterloo

arXiv:0810.0312 PacNQuInT 2009

Quantum walk algorithms

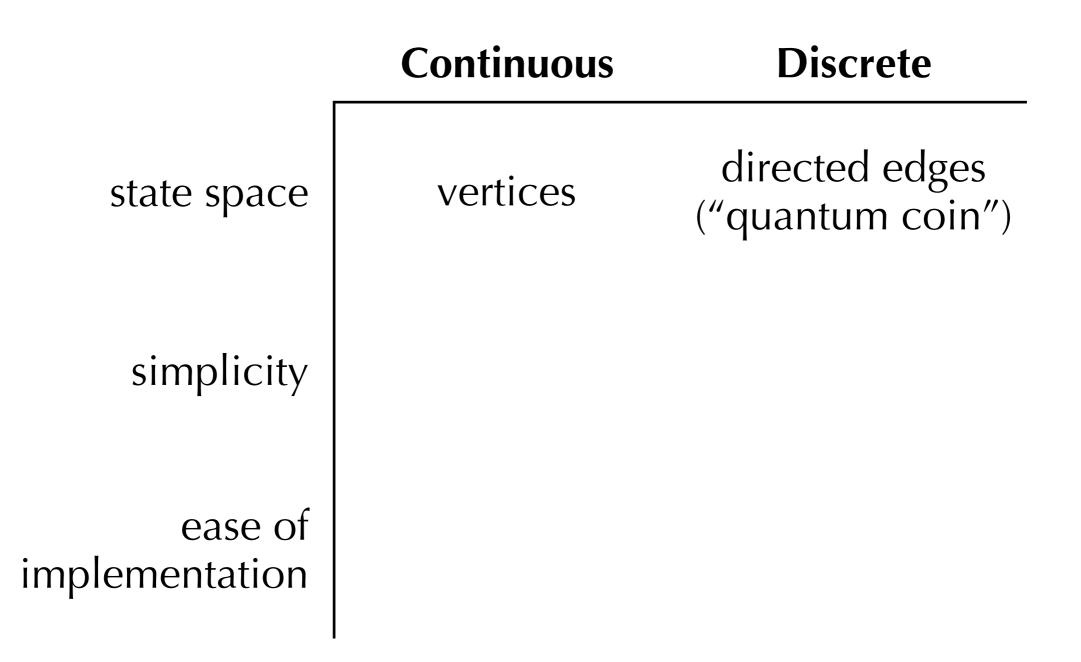
Exponential speedups

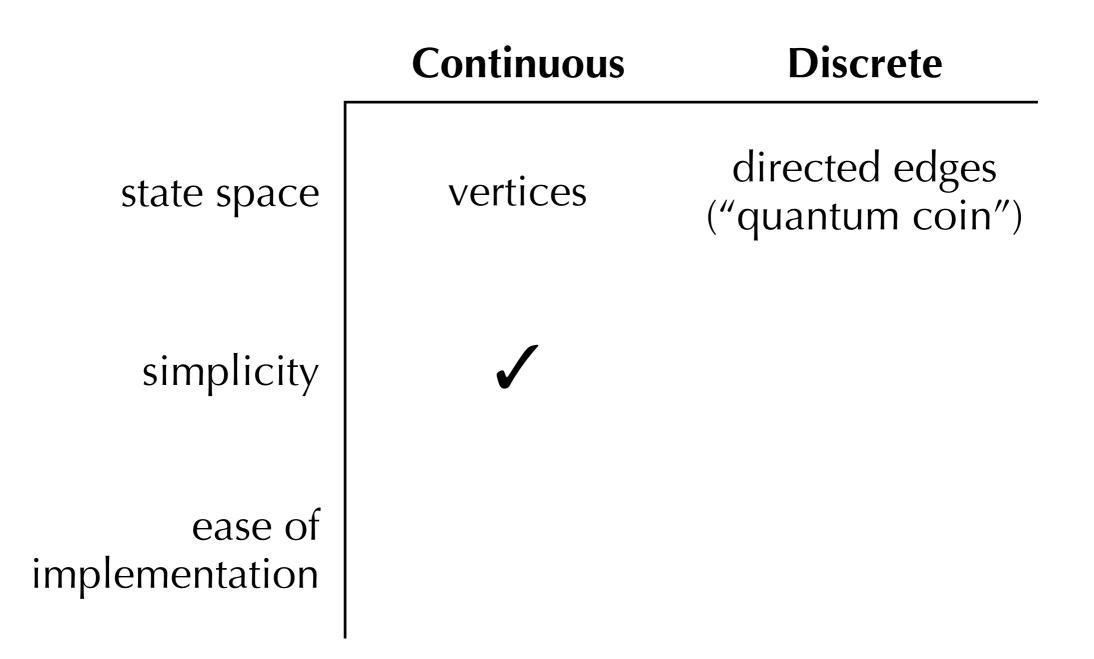
- Black box graph traversal [CCDFGS 03]
- Hidden sphere problem [CSV 07]

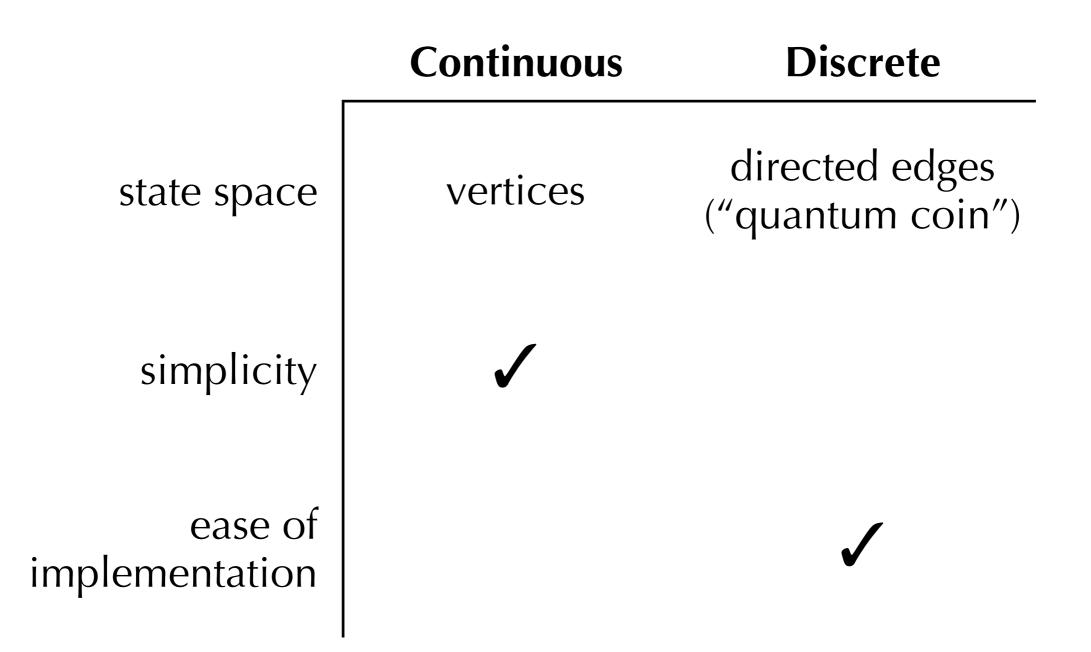
Polynomial speedups

- Search on graphs [Shenvi, Kempe, Whaley 02], [CG 03, 04], [Ambainis, Kempe, Rivosh 04]
- Element distinctness [Ambainis 03]
- Triangle finding [Magniez, Santha, Szegedy 03]
- Checking matrix multiplication [Buhrman, Špalek 04]
- Testing group commutativity [Magniez, Nayak 05]
- Formula evaluation [Farhi, Goldstone, Gutmann 07], [ACRŠZ 07], [Cleve, Gavinsky, Yeung 08], [Reichardt, Špalek 08]
- Unstructured search [Grover 96] (+ many applications)

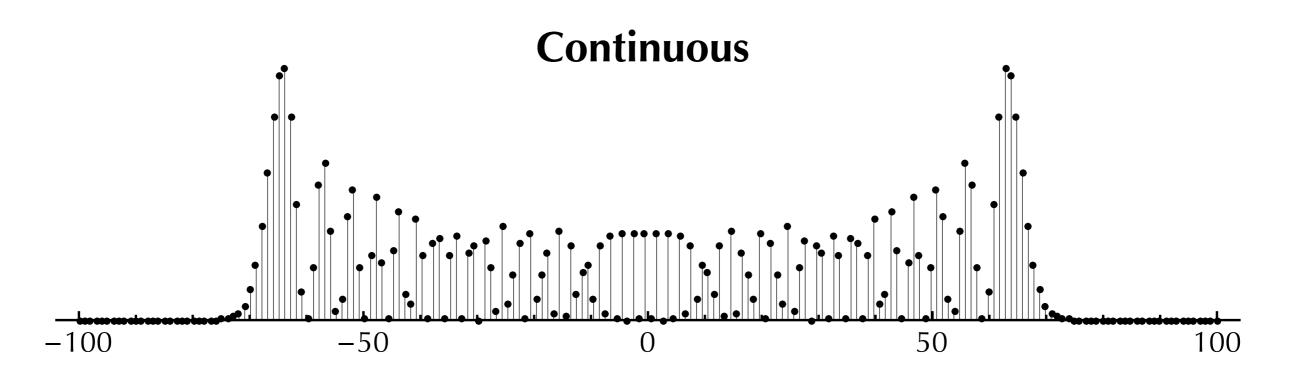


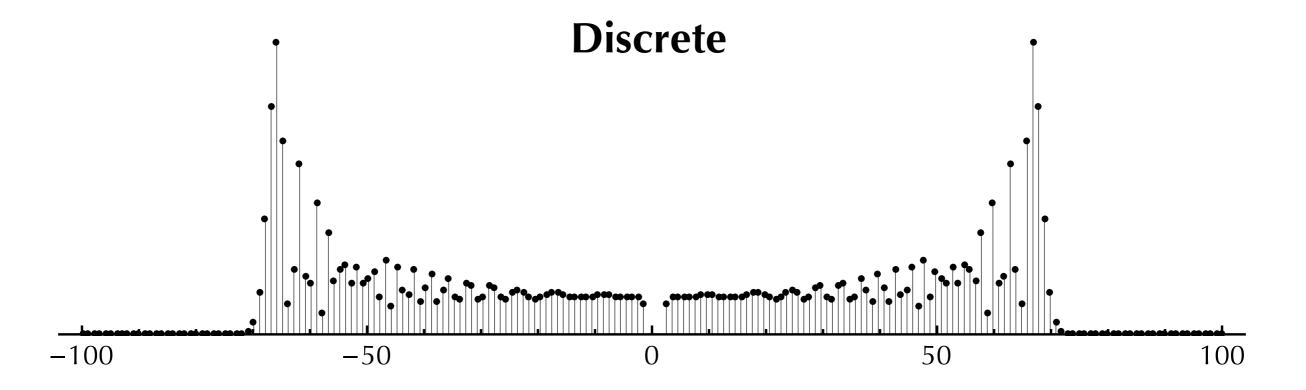


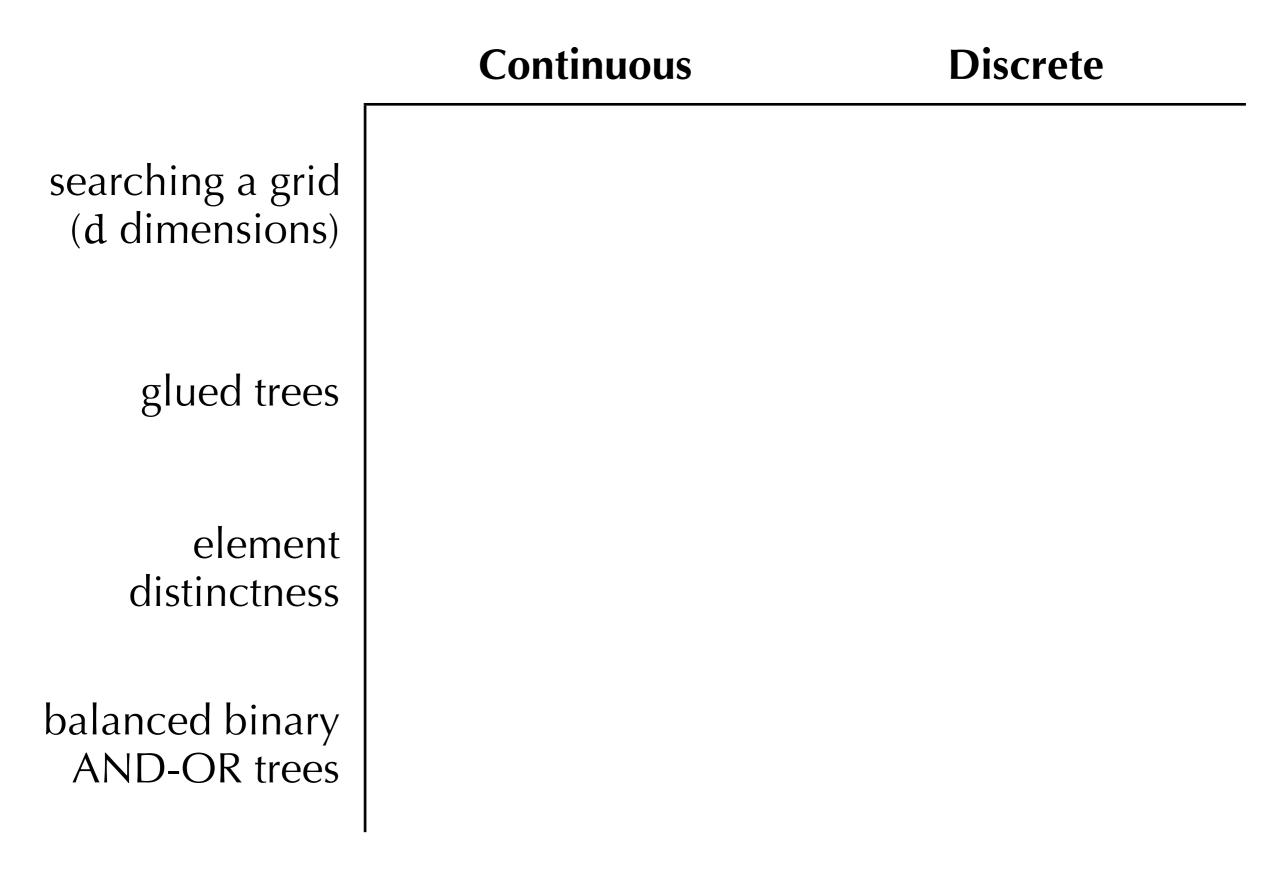


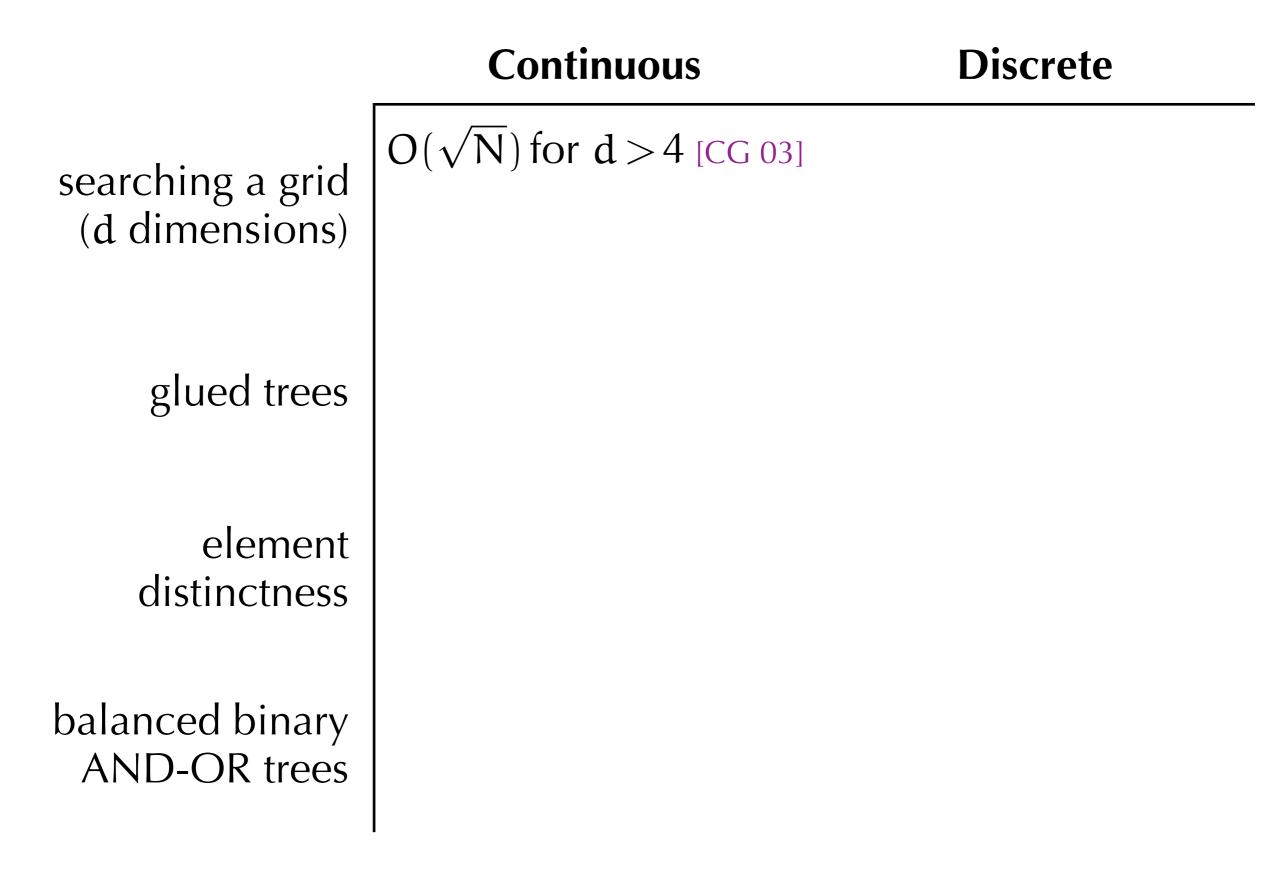


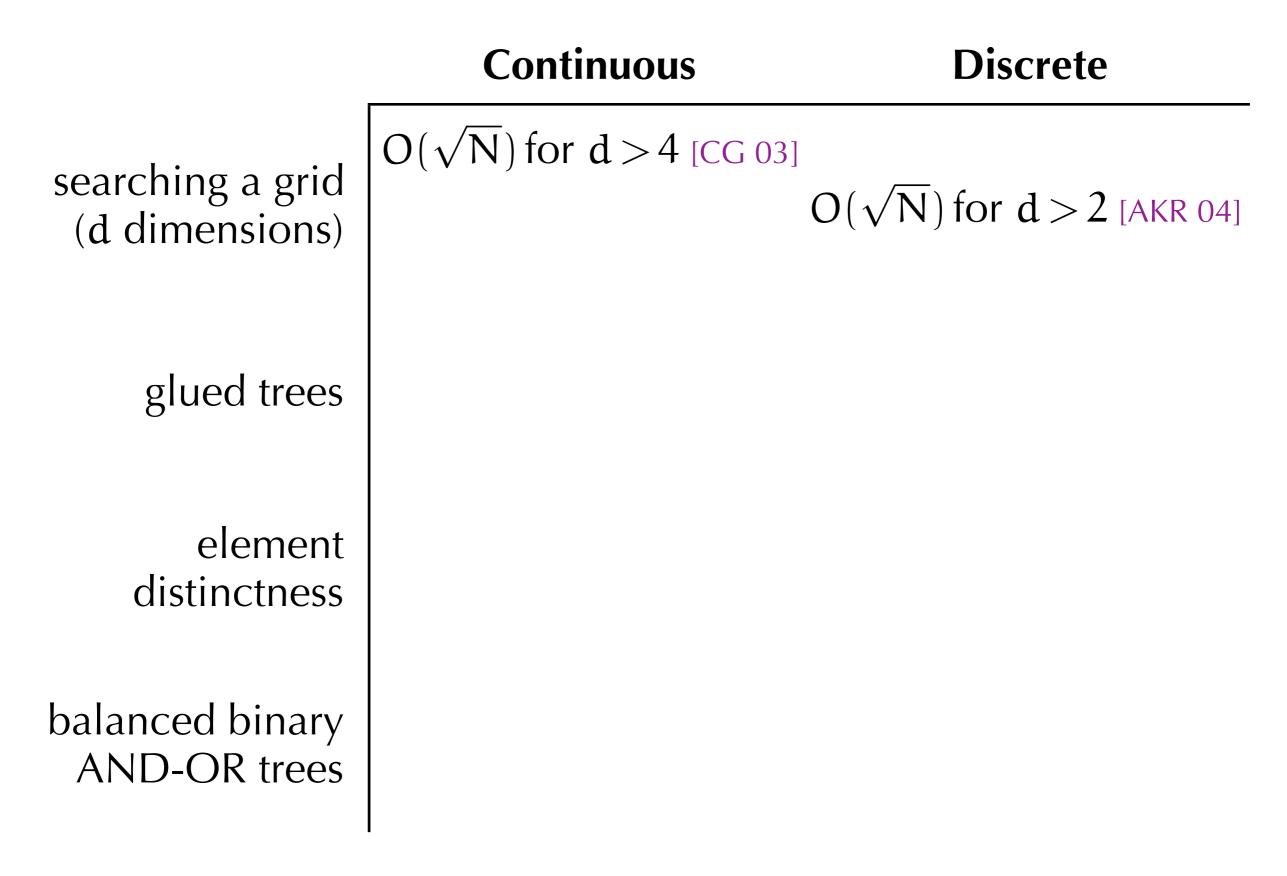
Walks on lines











	Continuous	Discrete
searching a grid (d dimensions)	$O(\sqrt{N})$ for $d > 4$ [CG 03] $O(\sqrt{N})$ for $d > 2$ [CG 04]	$O(\sqrt{N})$ for $d > 2$ [AKR 04]
glued trees		
element distinctness		
balanced binary AND-OR trees		

	Continuous	Discrete
searching a grid (d dimensions)	$O(\sqrt{N})$ for $d > 4$ [CG 03] $O(\sqrt{N})$ for $d > 2$ [CG 04]	
glued trees	exponential speedup over classical [CCDFGS 03]	
element distinctness		
balanced binary AND-OR trees		

	Continuous	Discrete
searching a grid (d dimensions)	$O(\sqrt{N})$ for $d > 4$ [CG 03] $O(\sqrt{N})$ for $d > 2$ [CG 04]	$O(\sqrt{N})$ for $d > 2$ [AKR 04]
glued trees	exponential speedup over classical [CCDFGS 03]	?
element distinctness		
balanced binary AND-OR trees		

	Continuous	Discrete
searching a grid (d dimensions)	$O(\sqrt{N})$ for $d > 4$ [CG 03] $O(\sqrt{N})$ for $d > 2$ [CG 04]	$O(\sqrt{N})$ for $d > 2$ [AKR 04]
glued trees	exponential speedup over classical [CCDFGS 03]	?
element distinctness		$O(N^{2/3})$ [Ambainis 03]
balanced binary AND-OR trees		

	Continuous	Discrete
searching a grid (d dimensions)	$O(\sqrt{N})$ for $d > 4$ [CG 03] $O(\sqrt{N})$ for $d > 2$ [CG 04]	
glued trees	exponential speedup over classical [CCDFGS 03]	Ş
element distinctness	?	$O(N^{2/3})$ [Ambainis 03]
balanced binary AND-OR trees		

	Continuous	Discrete
searching a grid (d dimensions)	$O(\sqrt{N})$ for d > 4 [CG 03] $O(\sqrt{N})$ for d > 2 [CG 04]	$O(\sqrt{N})$ for $d > 2$ [AKR 04]
glued trees	exponential speedup over classical [CCDFGS 03]	?
element distinctness	?	$O(N^{2/3})$ [Ambainis 03]
balanced binary AND-OR trees	$O(\sqrt{N})$ [FGG 07]	

	Continuous	Discrete
searching a grid (d dimensions)	$O(\sqrt{N})$ for $d > 4$ [CG 03] $O(\sqrt{N})$ for $d > 2$ [CG 04]	$O(\sqrt{N})$ for $d > 2$ [AKR 04]
glued trees	exponential speedup over classical [CCDFGS 03]	Ş
element distinctness	?	$O(N^{2/3})$ [Ambainis 03]
balanced binary AND-OR trees	$O(\sqrt{N}) [FGG 07]$ $N^{\frac{1}{2}+o(1)} in circuit$ model [CCJY 07]	

	Continuous	Discrete
searching a grid (d dimensions)	$O(\sqrt{N})$ for $d > 4$ [CG 03] $O(\sqrt{N})$ for $d > 2$ [CG 04]	$O(\sqrt{N})$ for $d > 2$ [AKR 04]
glued trees	exponential speedup over classical [CCDFGS 03]	Ş
element distinctness	?	$O(N^{2/3})$ [Ambainis 03]
balanced binary AND-OR trees	$O(\sqrt{N})$ [FGG 07] $N^{\frac{1}{2}+o(1)}$ in circuit model [CCJY 07]	$O(\sqrt{N})$ [ACRŠZ 07]

A formal equivalence?

Is there a single framework describing both kinds of walks?

A formal equivalence?

Is there a single framework describing both kinds of walks?

E.g., do the walks behave the same in some limit?

A formal equivalence?

Is there a single framework describing both kinds of walks?

E.g., do the walks behave the same in some limit?

Of course not! The state spaces aren't even the same!

Reconciliation

In fact, there is a close correspondence between the continuousand discrete-time models (suitably defined).

In particular:

- There is a sequence of discrete-time quantum walks whose behavior (in an appropriate subspace) converges to the dynamics of the continuous-time quantum walk.
- By applying phase estimation instead of taking that limit, we can obtain the continuous-time quantum walk more efficiently.
 (⇒ improved simulations of Hamiltonian dynamics)

Outline

- Models
 - Classical and quantum, continuous- and discrete-time
 - Szegedy's theorem
 - Szegedizing Hamiltonians
- Continuous-time walk as a limit of discrete-time walks
- Hamiltonian simulation
- Applications
 - Algorithms
 - Hamiltonian oracles
- Open question: A sign problem for Hamiltonian simulation

Models

A Markov process on a graph G = (V, E).

A Markov process on a graph G = (V, E).

In discrete time:

Stochastic matrix $W \in \mathbb{R}^{|V| \times |V|}$ $(W_{kj} \ge 0, \sum_{k} W_{kj} = 1)$ with $W_{kj} \ne 0$ iff $(j, k) \in \mathbb{E}$ \uparrow probability of taking a step from j to k

A Markov process on a graph G = (V, E).

In discrete time:

Stochastic matrix $W \in \mathbb{R}^{|V| \times |V|}$ $(W_{kj} \ge 0, \sum_{k} W_{kj} = 1)$ with $W_{kj} \ne 0$ iff $(j, k) \in \mathbb{E}$ \uparrow probability of taking a step from j to k Dynamics: $p_t = W^t p_0$ $p_t \in \mathbb{R}^{|V|}$ t = 0, 1, 2, ...

A Markov process on a graph G = (V, E).

In discrete time:

Stochastic matrix $W \in \mathbb{R}^{|V| \times |V|}$ $(W_{kj} \ge 0, \sum_{k} W_{kj} = 1)$ with $W_{ki} \neq 0$ iff $(j, k) \in E$ probability of taking a step from j to k Dynamics: $p_t = W^t p_0$ $p_t \in \mathbb{R}^{|V|}$ t = 0, 1, 2, ...**Ex:** Simple random walk. $W_{kj} = \begin{cases} \frac{1}{\deg j} & (j,k) \in E \\ 0 & (j,k) \notin E \end{cases}$

A Markov process on a graph G = (V, E).

In continuous time:

A Markov process on a graph G = (V, E).

In continuous time:

Generator matrix $M \in \mathbb{R}^{|V| \times |V|}$ $(\sum_{k} M_{kj} = 0)$ with $M_{kj} \neq 0$ iff $(j, k) \in E$ \uparrow probability *per unit time* of taking a step from j to k

A Markov process on a graph G = (V, E).

In continuous time:

Generator matrix
$$M \in \mathbb{R}^{|V| \times |V|}$$
 $(\sum_{k} M_{kj} = 0)$
with $M_{kj} \neq 0$ iff $(j, k) \in E$
 \uparrow
probability per unit time of
taking a step from j to k
Dynamics: $\frac{d}{dt}p(t) = Mp(t)$ $p(t) \in \mathbb{R}^{|V|}$ $t \in \mathbb{R}$

A Markov process on a graph G = (V, E).

In continuous time:

Generator matrix $M \in \mathbb{R}^{|V| \times |V|}$ $(\sum_{k} M_{kj} = 0)$ with $M_{ki} \neq 0$ iff $(j, k) \in E$ probability per unit time of taking a step from j to k Dynamics: $\frac{d}{dt}p(t) = Mp(t)$ $p(t) \in \mathbb{R}^{|V|}$ $t \in \mathbb{R}$ **Ex:** Laplacian walk. $M_{kj} = \begin{cases} -\deg j & j = k \\ 1 & (j,k) \in E \\ 0 & (j,k) \notin E \end{cases}$

Quantum analog of a random walk on a graph G = (V, E).

Quantum analog of a random walk on a graph G = (V, E).

Idea: Replace probabilities by quantum amplitudes.

$$\begin{aligned} |\psi(t)\rangle &= \sum_{\nu \in V} q_{\nu}(t) |\nu\rangle \\ & \swarrow \end{aligned}$$
 amplitude for vertex ν at time t

Quantum analog of a random walk on a graph G = (V, E).

Idea: Replace probabilities by quantum amplitudes.

$$\begin{split} |\psi(t)\rangle &= \sum_{\nu \in V} \mathfrak{q}_{\nu}(t) |\nu\rangle \\ & \bigstar \\ & \texttt{amplitude for vertex } \nu \text{ at time t} \end{split}$$

Define time-homogeneous, local dynamics on G.

$$i\frac{d}{dt}|\psi(t)\rangle = H|\psi(t)\rangle$$

Quantum analog of a random walk on a graph G = (V, E).

Idea: Replace probabilities by quantum amplitudes.

$$\begin{aligned} |\psi(t)\rangle &= \sum_{\nu \in V} \mathfrak{q}_{\nu}(t) |\nu\rangle \\ & \swarrow \end{aligned}$$
 amplitude for vertex ν at time t

Define time-homogeneous, local dynamics on G.

$$\begin{split} &i\frac{d}{dt}|\psi(t)\rangle = H|\psi(t)\rangle \\ &H = H^{\dagger} \, \text{with} \, \, H_{kj} \neq 0 \, \, \text{iff} \, \, (j,k) \in E \end{split}$$

Continuous-time quantum walk

Quantum analog of a random walk on a graph G = (V, E).

Idea: Replace probabilities by quantum amplitudes.

$$\begin{split} |\psi(t)\rangle &= \sum_{\nu \in V} \mathfrak{q}_{\nu}(t) |\nu\rangle \\ & \bigstar \\ & \texttt{amplitude for vertex } \nu \text{ at time t} \end{split}$$

Define time-homogeneous, local dynamics on G.

$$\begin{split} i\frac{d}{dt}|\psi(t)\rangle &= H|\psi(t)\rangle\\ H &= H^{\dagger} \text{ with } H_{kj} \neq 0 \text{ iff } (j,k) \in E\\ \end{split}$$

Ex: Adjacency matrix.
$$H_{kj} = \begin{cases} 1 & (j,k) \in E\\ 0 & (j,k) \notin E \end{cases}$$

We can also define a quantum walk with discrete steps. [Watrous 99]

We can also define a quantum walk with discrete steps. [Watrous 99]

Unitary matrix $U \in \mathbb{C}^{|V| \times |V|}$ with $U_{kj} \neq 0$ iff $(j, k) \in E$

We can also define a quantum walk with discrete steps. [Watrous 99]

Unitary matrix $U \in \mathbb{C}^{|V| \times |V|}$ with $U_{kj} \neq 0$ iff $(j, k) \in E$

Ex: On an infinite line,
$$|x\rangle \mapsto \frac{1}{\sqrt{2}}(|x-1\rangle + |x+1\rangle)$$

We can also define a quantum walk with discrete steps. [Watrous 99]

Unitary matrix $U \in \mathbb{C}^{|V| \times |V|}$ with $U_{kj} \neq 0$ iff $(j, k) \in E$

Ex: On an infinite line,
$$|x\rangle \mapsto \frac{1}{\sqrt{2}}(|x-1\rangle + |x+1\rangle)$$

but then $|x+2\rangle \mapsto \frac{1}{\sqrt{2}}(|x+1\rangle + |x+3\rangle)$
which is not orthogonal!

We can also define a quantum walk with discrete steps. [Watrous 99]

Unitary matrix
$$U \in \mathbb{C}^{|V| \times |V|}$$
 with $U_{kj} \neq 0$ iff $(j, k) \in E$
[Meyer 96], [Severini 03]

Ex: On an infinite line,
$$|x\rangle \mapsto \frac{1}{\sqrt{2}}(|x-1\rangle + |x+1\rangle)$$

but then $|x+2\rangle \mapsto \frac{1}{\sqrt{2}}(|x+1\rangle + |x+3\rangle)$
which is not orthogonal!

In general, we must enlarge the state space.

State space: span{ $|j,k\rangle, |k,j\rangle : (j,k) \in E$ }

State space: span{ $|j,k\rangle, |k,j\rangle : (j,k) \in E$ }

State space: span{ $|j,k\rangle, |k,j\rangle : (j,k) \in E$ }

Define
$$|\psi_{j}\rangle \coloneqq \sum_{k \in V} \sqrt{W_{kj}} |j,k\rangle$$
 (note $\langle \psi_{j} | \psi_{k} \rangle = \delta_{j,k}$)

State space: span{ $|j,k\rangle, |k,j\rangle : (j,k) \in E$ }

$$\begin{array}{ll} \text{Define} & |\psi_{j}\rangle \coloneqq \sum_{k \in V} \sqrt{W_{kj}} |j,k\rangle & (\text{note } \langle \psi_{j} | \psi_{k}\rangle = \delta_{j,k}) \\ \\ & \text{R} \coloneqq 2 \sum_{j \in V} |\psi_{j}\rangle \langle \psi_{j} | - I \end{array}$$

State space: span{ $|j,k\rangle, |k,j\rangle : (j,k) \in E$ }

$$\begin{array}{ll} \text{Define} & |\psi_{j}\rangle \coloneqq \sum_{k \in V} \sqrt{W_{kj}} |j,k\rangle & (\text{note } \langle \psi_{j} | \psi_{k}\rangle = \delta_{j,k}) \\ \\ & R \coloneqq 2 \sum_{j \in V} |\psi_{j}\rangle \langle \psi_{j} | - I \\ \\ & S | j,k\rangle \coloneqq |k,j\rangle \end{array}$$

State space: span{ $|j,k\rangle, |k,j\rangle : (j,k) \in E$ }

Let W be a stochastic matrix (a discrete-time random walk).

$$\begin{array}{ll} \text{Define} & |\psi_{j}\rangle \coloneqq \sum_{k \in V} \sqrt{W_{kj}} |j,k\rangle & (\text{note } \langle \psi_{j} | \psi_{k}\rangle = \delta_{j,k}) \\ \\ & R \coloneqq 2 \sum_{j \in V} |\psi_{j}\rangle \langle \psi_{j} | - I \\ \\ & S | j,k\rangle \coloneqq |k,j\rangle \end{array}$$

Then a step of the walk is the unitary operator U := iSR.

Szegedy's spectral theorem

Theorem. Let $|\psi_j\rangle := \sum_k \sqrt{W_{kj}} |j,k\rangle$ where $\sum_k |W_{kj}| = 1$.

Suppose the matrix $\sum_{j,k} \sqrt{W_{jk}^* W_{kj}} |k\rangle \langle j|$ has an eigenvector $|\lambda\rangle$ with eigenvalue λ .

Let $T := \sum_{j} |\psi_{j}\rangle \langle j|$.

Then
$$\frac{I - e^{\pm i \arccos \lambda} S}{\sqrt{2(1 - \lambda^2)}} T |\lambda\rangle$$

are eigenvectors of $U := iS(2TT^{\dagger} - I)$ with eigenvalues $\pm e^{\pm i \arcsin \lambda}$.

Idea: Let H be a Hermitian matrix. If we find a matrix W with $\sum_{k} |W_{kj}| = 1$ and $H_{jk} = h \sqrt{W_{jk} W_{kj}^*}$

for some real number h, then W defines a discrete-time quantum walk closely related to H.

Idea: Let H be a Hermitian matrix. If we find a matrix W with $\sum_{k} |W_{kj}| = 1$ and $H_{jk} = h \sqrt{W_{jk} W_{kj}^*}$

for some real number h, then W defines a discrete-time quantum walk closely related to H.

Two strategies:

Idea: Let H be a Hermitian matrix. If we find a matrix W with $\sum_{k} |W_{kj}| = 1$ and $H_{jk} = h \sqrt{W_{jk} W_{kj}^*}$

for some real number h, then W defines a discrete-time quantum walk closely related to H.

Two strategies:

1. Let abs(H) denote the matrix with elements $abs(H)_{jk} = |H_{jk}|$.

Let
$$|d\rangle = \sum_{j} d_{j}|j\rangle$$
 be the principal eigenvector of $abs(H)$.
Then $W_{jk} = \frac{H_{jk}}{\|abs(H)\|} \frac{d_{k}}{d_{j}}$ gives $h = \|abs(H)\|$.

[ACRŠZ 07]

Idea: Let H be a Hermitian matrix. If we find a matrix W with $\sum_{k} |W_{kj}| = 1$ and $H_{jk} = h \sqrt{W_{jk} W_{kj}^*}$

for some real number h, then W defines a discrete-time quantum walk closely related to H.

Two strategies:

2. Let
$$||H||_1 := \max_j \sum_k |H_{jk}|$$
.

Introduce another state, denoted $|\emptyset\rangle$.

Then
$$W = \frac{H}{\|H\|_1} + \sum_k \left(1 - \sum_j \frac{|H_{jk}|}{\|H\|_1}\right) |\emptyset\rangle\langle k| \text{ gives } h = \|H\|_1.$$

[ACRŠZ 07]

Continuous-time walk as a limit of discrete-time walks

Discrete-time random walk: $p_{t+1} = W p_t$

Discrete-time random walk: $p_{t+1} = W p_t$

Discrete-time random walk: $p_{t+1} = W p_t$

$$p_{t+1} = [\varepsilon W + (1 - \varepsilon)I]p_t$$

Discrete-time random walk: $p_{t+1} = W p_t$

$$p_{t+1} = [\varepsilon W + (1 - \varepsilon)I]p_t$$
$$\frac{p_{t+1} - p_t}{\varepsilon} = (W - I)p_t$$

Discrete-time random walk: $p_{t+1} = W p_t$

$$p_{t+1} = [\varepsilon W + (1 - \varepsilon)I]p_t$$
$$\frac{p_{t+1} - p_t}{\varepsilon} = (W - I)p_t$$

As
$$\epsilon \to 0$$
 with $\tau = \epsilon t$, $\frac{d}{d\tau} p(\tau) = (W - I)p(\tau)$

With a suitable "lazy discrete-time quantum walk" U_{ε} , defined by an isometry $T_{\varepsilon} := \sum_{j,k} \sqrt{W_{kj}(\varepsilon)} |j,k\rangle \langle j|$,

With a suitable "lazy discrete-time quantum walk" U_{ε} , defined by an isometry $T_{\varepsilon} := \sum_{j,k} \sqrt{W_{kj}(\varepsilon)} |j,k\rangle \langle j|$,

1. Apply
$$\frac{I+iS}{\sqrt{2}}T_{\varepsilon}$$
 to the input state $|\psi\rangle$.

With a suitable "lazy discrete-time quantum walk" U_{ε} , defined by an isometry $T_{\varepsilon} := \sum_{j,k} \sqrt{W_{kj}(\varepsilon)} |j,k\rangle \langle j|$,

1. Apply
$$\frac{I+iS}{\sqrt{2}}T_{\varepsilon}$$
 to the input state $|\psi\rangle$.

2. Perform ht/ϵ steps of the walk, $U_{\epsilon} := iS(2T_{\epsilon}T_{\epsilon}^{\dagger} - I)$ (where h = ||abs(H)|| or $||H||_1$).

With a suitable "lazy discrete-time quantum walk" U_{ε} , defined by an isometry $T_{\varepsilon} := \sum_{j,k} \sqrt{W_{kj}(\varepsilon)} |j,k\rangle \langle j|$,

1. Apply
$$\frac{I+iS}{\sqrt{2}}T_{\varepsilon}$$
 to the input state $|\psi\rangle$.

- 2. Perform ht/ϵ steps of the walk, $U_{\epsilon} := iS(2T_{\epsilon}T_{\epsilon}^{\dagger} I)$ (where h = ||abs(H)|| or $||H||_1$).
- 3. Measure in the basis $\left\{ \frac{I+iS}{\sqrt{2}} T_{\varepsilon} |j\rangle \right\}$.

With a suitable "lazy discrete-time quantum walk" U_{ε} , defined by an isometry $T_{\varepsilon} := \sum_{j,k} \sqrt{W_{kj}(\varepsilon)} |j,k\rangle \langle j|$,

1. Apply
$$\frac{I+iS}{\sqrt{2}}T_{\varepsilon}$$
 to the input state $|\psi\rangle$.

2. Perform ht/ϵ steps of the walk, $U_{\epsilon} := iS(2T_{\epsilon}T_{\epsilon}^{\dagger} - I)$ (where h = ||abs(H)|| or $||H||_1$).

3. Measure in the basis
$$\left\{\frac{I+iS}{\sqrt{2}}T_{\varepsilon}|j
ight\}$$
.

Then as $\epsilon \to 0$, $\Pr(j) \to |\langle j|e^{-iHt}|\psi \rangle|^2$.

With a suitable "lazy discrete-time quantum walk" U_{ε} , defined by an isometry $T_{\varepsilon} := \sum_{j,k} \sqrt{W_{kj}(\varepsilon)} |j,k\rangle \langle j|$,

1. Apply
$$\frac{I+iS}{\sqrt{2}}T_{\varepsilon}$$
 to the input state $|\psi\rangle$.

2. Perform ht/ϵ steps of the walk, $U_{\epsilon} := iS(2T_{\epsilon}T_{\epsilon}^{\dagger} - I)$ (where h = ||abs(H)|| or $||H||_1$).

3. Measure in the basis
$$\left\{\frac{I+iS}{\sqrt{2}}T_{\varepsilon}|j\rangle\right\}$$
.

Then as $\epsilon \to 0$, $\Pr(j) \to |\langle j|e^{-iHt}|\psi \rangle|^2$.

(We can get error at most δ in O(ht, $(||H||t)^{3/2}/\sqrt{\delta}$) steps.)

Hamiltonian simulation

Problem: For a given Hamiltonian H, simulate the unitary time evolution e^{-iHt} for any desired t.

Problem: For a given Hamiltonian H, simulate the unitary time evolution e^{-iHt} for any desired t.

Suppose H is **sparse**: for any x, we can efficiently compute all the nonzero matrix elements $\langle y|H|x \rangle$ (so in particular, there are only polynomially many such y).

Problem: For a given Hamiltonian H, simulate the unitary time evolution e^{-iHt} for any desired t.

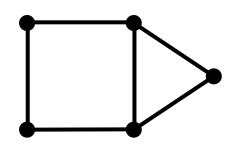
Suppose H is **sparse**: for any x, we can efficiently compute all the nonzero matrix elements $\langle y|H|x \rangle$ (so in particular, there are only polynomially many such y).

Approach: Color the graph of H. Then the simulation breaks into small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]

Problem: For a given Hamiltonian H, simulate the unitary time evolution e^{-iHt} for any desired t.

Suppose H is **sparse**: for any x, we can efficiently compute all the nonzero matrix elements $\langle y|H|x \rangle$ (so in particular, there are only polynomially many such y).

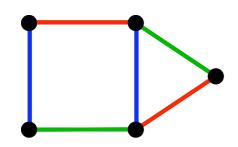
Approach: Color the graph of H. Then the simulation breaks into small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]



Problem: For a given Hamiltonian H, simulate the unitary time evolution e^{-iHt} for any desired t.

Suppose H is **sparse**: for any x, we can efficiently compute all the nonzero matrix elements $\langle y|H|x \rangle$ (so in particular, there are only polynomially many such y).

Approach: Color the graph of H. Then the simulation breaks into small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]

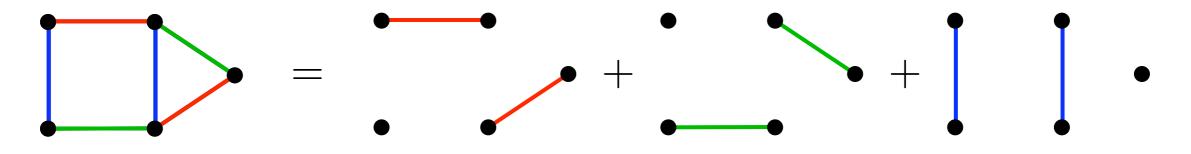


Simulating sparse Hamiltonians

Problem: For a given Hamiltonian H, simulate the unitary time evolution e^{-iHt} for any desired t.

Suppose H is **sparse**: for any x, we can efficiently compute all the nonzero matrix elements $\langle y|H|x \rangle$ (so in particular, there are only polynomially many such y).

Approach: Color the graph of H. Then the simulation breaks into small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]

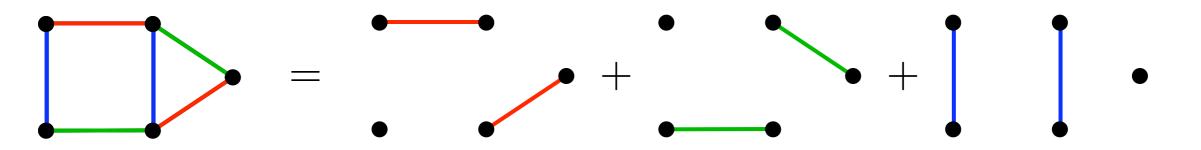


Simulating sparse Hamiltonians

Problem: For a given Hamiltonian H, simulate the unitary time evolution e^{-iHt} for any desired t.

Suppose H is **sparse**: for any x, we can efficiently compute all the nonzero matrix elements $\langle y|H|x \rangle$ (so in particular, there are only polynomially many such y).

Approach: Color the graph of H. Then the simulation breaks into small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]



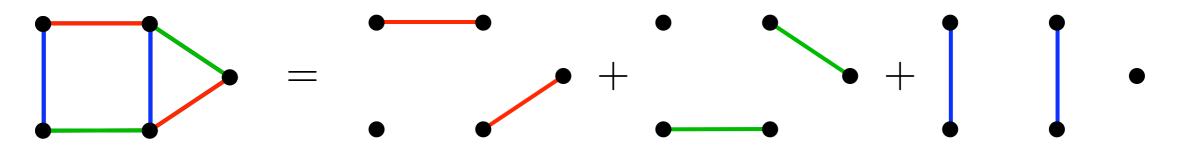
Any sufficiently sparse graph can be efficiently colored using only local information. [Linial 87]

Simulating sparse Hamiltonians

Problem: For a given Hamiltonian H, simulate the unitary time evolution e^{-iHt} for any desired t.

Suppose H is **sparse**: for any x, we can efficiently compute all the nonzero matrix elements $\langle y|H|x \rangle$ (so in particular, there are only polynomially many such y).

Approach: Color the graph of H. Then the simulation breaks into small pieces that are easy to handle. [Aharonov, Ta-Shma 03], [CCDFGS 03]



Any sufficiently sparse graph can be efficiently colored using only local information. [Linial 87]

So we can simulate H in $poly(deg(H), log dim(H), t, 1/\varepsilon)$ steps.

Lie product formula: $\lim_{n \to \infty} (e^{-iA/N}e^{-iB/n})^n = e^{-i(A+B)}$

Lie product formula:
$$\lim_{n \to \infty} (e^{-iA/N}e^{-iB/n})^n = e^{-i(A+B)}$$

We can approximately simulate A + B for time t using

$$\left(e^{-iAt/n}e^{-iBt/n}\right)^n \approx e^{-i(A+B)t}.$$

To get error ε , it suffices to use $O(t^2/\varepsilon)$ steps.

Lie product formula:
$$\lim_{n \to \infty} (e^{-iA/N}e^{-iB/n})^n = e^{-i(A+B)}$$

We can approximately simulate A + B for time t using

$$\left(e^{-iAt/n}e^{-iBt/n}\right)^n \approx e^{-i(A+B)t}$$

To get error ε , it suffices to use $O(t^2/\varepsilon)$ steps.

We can do better using a higher-order formula:

$$\left(e^{-iAt/2n}e^{-iBt/n}e^{-iAt/2n}\right)^n \approx e^{-i(A+B)t}$$

Then $O(t^{3/2}/\varepsilon^{1/2})$ steps suffice.

Lie product formula:
$$\lim_{n \to \infty} (e^{-iA/N}e^{-iB/n})^n = e^{-i(A+B)}$$

We can approximately simulate A + B for time t using

$$\left(e^{-iAt/n}e^{-iBt/n}\right)^n \approx e^{-i(A+B)t}.$$

To get error ε , it suffices to use $O(t^2/\varepsilon)$ steps.

We can do better using a higher-order formula:

$$\left(e^{-iAt/2n}e^{-iBt/n}e^{-iAt/2n}\right)^n \approx e^{-i(A+B)t}$$

Then $O(t^{3/2}/\varepsilon^{1/2})$ steps suffice.

Using even better approximations (systematically constructed by Suzuki), we can simulate A + B for time t in $t^{1+o(1)}$ steps.

The no fast-forwarding theorem

Can we simulate H for time t using a number of operations that is sublinear in t?

In special cases, yes! (e.g., whenever $e^{-iH\tau} = I$ for a small τ)

[Berry, Ahokas, Cleve, Sanders 05]

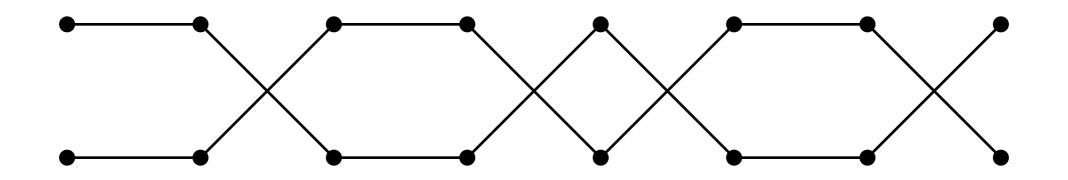
The no fast-forwarding theorem

Can we simulate H for time t using a number of operations that is sublinear in t?

In special cases, yes! (e.g., whenever $e^{-iH\tau} = I$ for a small τ)

But this is not possible in general: for some Hamiltonians, $\Omega(t)$ operations are required.

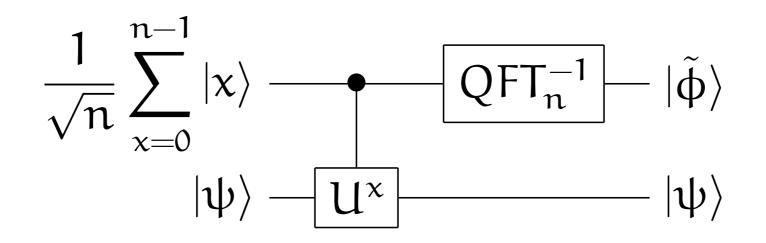
Proof is by reduction of parity to simulating a Hamiltonian.



[Berry, Ahokas, Cleve, Sanders 05]

Phase estimation

 $| \psi \rangle = e^{i\phi} | \psi \rangle$



Precision δ with error probability at most ϵ using O(1/ $\delta\epsilon$) applications of U.

To simulate H for time t:

1. Apply T to the input state $|\psi\rangle.$

- 1. Apply T to the input state $|\psi\rangle.$
- 2. Perform phase estimation with $U = iS(2TT^{\dagger} I)$, estimating a phase $\pm e^{\pm i \arcsin \lambda}$ for the component of $T|\psi\rangle$ corresponding to an eigenvector of H with eigenvalue λ .

- 1. Apply T to the input state $|\psi\rangle.$
- 2. Perform phase estimation with $U = iS(2TT^{\dagger} I)$, estimating a phase $\pm e^{\pm i \arcsin \lambda}$ for the component of $T|\psi\rangle$ corresponding to an eigenvector of H with eigenvalue λ .
- 3. Use the estimate of $\arcsin \lambda$ to estimate λ , and apply the phase $e^{-i\lambda t}$.

- 1. Apply T to the input state $|\psi\rangle.$
- 2. Perform phase estimation with $U = iS(2TT^{\dagger} I)$, estimating a phase $\pm e^{\pm i \arcsin \lambda}$ for the component of $T|\psi\rangle$ corresponding to an eigenvector of H with eigenvalue λ .
- 3. Use the estimate of $\arcsin \lambda$ to estimate λ , and apply the phase $e^{-i\lambda t}$.
- 4. Uncompute the phase estimation and T, giving an approximation of $e^{-iHt}|\psi\rangle$.

To simulate H for time t:

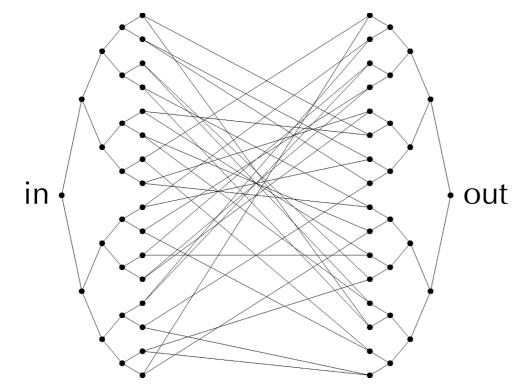
- 1. Apply T to the input state $|\psi\rangle.$
- 2. Perform phase estimation with $U = iS(2TT^{\dagger} I)$, estimating a phase $\pm e^{\pm i \arcsin \lambda}$ for the component of $T|\psi\rangle$ corresponding to an eigenvector of H with eigenvalue λ .
- 3. Use the estimate of $\arcsin \lambda$ to estimate λ , and apply the phase $e^{-i\lambda t}$.
- 4. Uncompute the phase estimation and T, giving an approximation of $e^{-iHt}|\psi\rangle$.

Theorem. To achieve fidelity $1 - \epsilon$, it suffices to use $O(\|abs(H)\|t/\epsilon^{3/2})$ steps of the discrete-time quantum walk. This is linear in t, and works even in cases where H is not sparse!

Applications

Algorithms

Glued trees



There is a discrete-time quantum walk that travels from "in" to "out" in polynomial time.

Element distinctness

Given a black box for $f : \{0, 1, ..., n\} \rightarrow S$, are there are distinct indices x,y such that f(x) = f(y)?

There is a continuous-time quantum walk algorithm that can be implemented with $O(N^{2/3})$ queries.

Walk takes place on a Johnson graph (not sparse).

Conventional quantum query model:

- Query operator Q_x , where $Q_x|i,b\rangle = |i,b\oplus x_i\rangle$.
- Unitary operators $U_0, U_1, ..., U_n$.
- Algorithm is $U_n Q_x ... Q_x U_1 Q_x U_0$.

Conventional quantum query model:

- Query operator Q_x , where $Q_x|i,b\rangle = |i,b\oplus x_i\rangle$.
- Unitary operators $U_0, U_1, ..., U_n$.
- Algorithm is $U_n Q_x ... Q_x U_1 Q_x U_0$.

Hamiltonian query model:

- Hamiltonian H_x that generates Q_x .
- Driving Hamiltonian $H_D(t)$.
- Algorithm is $H_D(t) + H_x$, from t = 0 to T.

Conventional quantum query model:

- Query operator Q_x , where $Q_x|i,b\rangle = |i,b\oplus x_i\rangle$.
- Unitary operators $U_0, U_1, ..., U_n$.
- Algorithm is $U_n Q_x ... Q_x U_1 Q_x U_0$.

Hamiltonian query model:

- Hamiltonian H_x that generates Q_x .
- Driving Hamiltonian $H_D(t)$.
- Algorithm is $H_D(t) + H_x$, from t = 0 to T.

The Hamiltonian model is potentially more powerful!

Conventional quantum query model:

- Query operator Q_x , where $Q_x|i,b\rangle = |i,b\oplus x_i\rangle$.
- Unitary operators $U_0, U_1, ..., U_n$.
- Algorithm is $U_n Q_x ... Q_x U_1 Q_x U_0$.

Hamiltonian query model:

- Hamiltonian H_x that generates Q_x .
- Driving Hamiltonian $H_D(t)$.
- Algorithm is $H_D(t) + H_x$, from t = 0 to T.

The Hamiltonian model is potentially more powerful!

Theorem. [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 08] If a function can be evaluated with Hamiltonian queries for time T, then it can be evaluated with O(T log T) discrete queries.

Conventional quantum query model:

- Query operator Q_x , where $Q_x|i,b\rangle = |i,b\oplus x_i\rangle$.
- Unitary operators $U_0, U_1, ..., U_n$.
- Algorithm is $U_n Q_x ... Q_x U_1 Q_x U_0$.

Hamiltonian query model:

- Hamiltonian H_x that generates Q_x .
- Driving Hamiltonian $H_D(t)$.
- Algorithm is $H_D(t) + H_x$, from t = 0 to T.

The Hamiltonian model is potentially more powerful!

Theorem. [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 08] If a function can be evaluated with Hamiltonian queries for time T, then it can be evaluated with O(T log T) discrete queries.

Theorem. If H_D is time-independent, $O(\|abs(H_D)\|T)$ discrete queries suffice.

Open question: A sign problem for Hamiltonain simulation

By the no fast forwarding theorem, $\Omega(||H||t)$ operations are necessary.

By the no fast forwarding theorem, $\Omega(||H||t)$ operations are necessary.

We have seen that $O(\|abs(H)\|t)$ steps (of the corresponding discrete-time quantum walk) are sufficient. *Is this a fundamental barrier?*

By the no fast forwarding theorem, $\Omega(||H||t)$ operations are necessary.

We have seen that $O(\|abs(H)\|t)$ steps (of the corresponding discrete-time quantum walk) are sufficient. *Is this a fundamental barrier?*

For $H \in \mathbb{C}^{N \times N}$, we have $\|H\| \le \|abs(H)\| \le \sqrt{N} \|H\|$ (and these bounds are the best possible).

By the no fast forwarding theorem, $\Omega(||H||t)$ operations are necessary.

We have seen that $O(\|abs(H)\|t)$ steps (of the corresponding discrete-time quantum walk) are sufficient. *Is this a fundamental barrier?*

For
$$H \in \mathbb{C}^{N \times N}$$
, we have

 $\|H\| \le \|abs(H)\| \le \sqrt{N} \|H\|$

(and these bounds are the best possible).

Simulations using O(||H||t) steps would have applications such as

- approximately computing exponential sums
- breaking pseudorandom generators derived from strongly regular graphs.