
Optimal quantum adversary
lower bounds for ordered search

Troy Lee
Rutgers

Andrew Childs
Waterloo

arXiv:0708.3396

http://arxiv.org/abs/0708.3396
http://arxiv.org/abs/0708.3396

Quantum speedup

Quantum speedup
Classical Quantum

Exponential: Simon’s problem Ω(2n/2) Θ(n)

Quantum speedup
Classical Quantum

Exponential: Simon’s problem Ω(2n/2) Θ(n)

Super-polynomial: Factoring O(n3)2O(n1/3(log n)2/3)

Quantum speedup
Classical Quantum

Exponential: Simon’s problem Ω(2n/2) Θ(n)

Dihedral HSP Ω(2n/2) 2O(
√

log N)

Super-polynomial: Factoring O(n3)2O(n1/3(log n)2/3)

Quantum speedup
Classical Quantum

Exponential: Simon’s problem Ω(2n/2) Θ(n)

Polynomial: Unstructured search Θ(n) Θ(
√

n)

Dihedral HSP Ω(2n/2) 2O(
√

log N)

Super-polynomial: Factoring O(n3)2O(n1/3(log n)2/3)

Quantum speedup
Classical Quantum

Exponential: Simon’s problem Ω(2n/2) Θ(n)

Polynomial: Unstructured search Θ(n) Θ(
√

n)

Element distinctness Θ(n) Θ(n2/3)

Dihedral HSP Ω(2n/2) 2O(
√

log N)

Super-polynomial: Factoring O(n3)2O(n1/3(log n)2/3)

Quantum speedup
Classical Quantum

Exponential: Simon’s problem Ω(2n/2) Θ(n)

Polynomial: Unstructured search Θ(n) Θ(
√

n)

Element distinctness Θ(n) Θ(n2/3)

Dihedral HSP Ω(2n/2) 2O(
√

log N)

Constant: Parity n/2n

Super-polynomial: Factoring O(n3)2O(n1/3(log n)2/3)

Query complexity

Problem: Compute a function f : S → Σ
S ⊆ {0, 1}nInput set: Output set: Σ

Fix some (unknown) input x 2 S. Given a black box for the
bits of x, how many queries are required to compute f(x)?

Query complexity

Problem: Compute a function f : S → Σ

Example: Unstructured search (aka OR)

S ⊆ {0, 1}nInput set: Output set: Σ

Fix some (unknown) input x 2 S. Given a black box for the
bits of x, how many queries are required to compute f(x)?

Query complexity

Problem: Compute a function f : S → Σ

Example: Unstructured search (aka OR)

S = {0, 1}n Σ = {0, 1}

f(x) =

{
0 x = 00 . . . 0
1 otherwise

S ⊆ {0, 1}nInput set: Output set: Σ

Fix some (unknown) input x 2 S. Given a black box for the
bits of x, how many queries are required to compute f(x)?

Query complexity

Problem: Compute a function f : S → Σ

Example: Unstructured search (aka OR)

S = {0, 1}n Σ = {0, 1}

f(x) =

{
0 x = 00 . . . 0
1 otherwise

S ⊆ {0, 1}nInput set: Output set: Σ

Fix some (unknown) input x 2 S. Given a black box for the
bits of x, how many queries are required to compute f(x)?

(Deterministic) query complexity: n

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: x

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: xi

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: xi xi

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: xi xi

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state i of a classical computer, the
corresponding quantum computer has a basis vector . Any linear
combination of the basis vectors gives an allowed state.

!ei

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: xi xi

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state i of a classical computer, the
corresponding quantum computer has a basis vector . Any linear
combination of the basis vectors gives an allowed state.

!ei

Quantum query: x

!ei

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: xi xi

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state i of a classical computer, the
corresponding quantum computer has a basis vector . Any linear
combination of the basis vectors gives an allowed state.

!ei

Quantum query: x

!ei ⊗ !exi!ei

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: xi xi

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state i of a classical computer, the
corresponding quantum computer has a basis vector . Any linear
combination of the basis vectors gives an allowed state.

!ei

Quantum query: x

!ei ⊗ !exi!ei

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: xi xi

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state i of a classical computer, the
corresponding quantum computer has a basis vector . Any linear
combination of the basis vectors gives an allowed state.

!ei

Quantum query: x

!ei ⊗ !exi!ei

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: xi xi

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state i of a classical computer, the
corresponding quantum computer has a basis vector . Any linear
combination of the basis vectors gives an allowed state.

!ei

Quantum query: xα"ei + β "ej

α, β ∈ C

!ei ⊗ !exi!ei

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: xi xi

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state i of a classical computer, the
corresponding quantum computer has a basis vector . Any linear
combination of the basis vectors gives an allowed state.

!ei

Quantum query: x α"ei ⊗ "exi + β "ej ⊗ "exjα"ei + β "ej

α, β ∈ C

!ei ⊗ !exi!ei

Quantum query complexity

Recall that the black box contains a string .x ∈ {0, 1}n

Classical query: xi xi

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state i of a classical computer, the
corresponding quantum computer has a basis vector . Any linear
combination of the basis vectors gives an allowed state.

!ei

Quantum query: x α"ei ⊗ "exi + β "ej ⊗ "exjα"ei + β "ej

α, β ∈ C

Quantum query complexity: Minimum number of quantum queries
required to quantum compute f(x), given a black box for the input x.

Ordered search
Given a sorted list of n items, find the position of a desired item.

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal. (One bit per query.)

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal. (One bit per query.)

Query complexity formulation: f : S → Σ

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal. (One bit per query.)

Query complexity formulation: f : S → Σ

S = strings of the form with k = 0, ..., n — 10 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
n−k

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal. (One bit per query.)

Query complexity formulation: f : S → Σ

, and (i.e., this is an oracle identification problem)Σ = S f(x) = x

S = strings of the form with k = 0, ..., n — 10 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
n−k

Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal. (One bit per query.)

Query complexity formulation: f : S → Σ

, and (i.e., this is an oracle identification problem)Σ = S f(x) = x

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

In the above example, we have x =

S = strings of the form with k = 0, ..., n — 10 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
n−k

Quantum query complexity of ordered search

Quantum query complexity of ordered search

Upper bounds

Quantum query complexity of ordered search

Upper bounds

log3 n ≈ 0.631 log2 n
Høyer, Neerbek, Shi 01

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
Childs, Landahl, Parrilo 06

Quantum query complexity of ordered search

Upper bounds

log3 n ≈ 0.631 log2 n
Høyer, Neerbek, Shi 01

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
Childs, Landahl, Parrilo 06

≈ 0.32 log2 n
Ben-Or, Hassidim 07

(bounded-error)

Quantum query complexity of ordered search

Upper bounds Lower bounds

log3 n ≈ 0.631 log2 n
Høyer, Neerbek, Shi 01

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
Childs, Landahl, Parrilo 06

≈ 0.32 log2 n
Ben-Or, Hassidim 07

(bounded-error)

Quantum query complexity of ordered search

Upper bounds Lower bounds

log3 n ≈ 0.631 log2 n
Høyer, Neerbek, Shi 01

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
Childs, Landahl, Parrilo 06

≈ 0.32 log2 n
Ben-Or, Hassidim 07

(bounded-error)

Ω(log N
log log N)
Farhi, Goldstone, Gutmann, Sipser 98

Ω(
√

log N
log log N)

Buhrman, de Wolf 98

Quantum query complexity of ordered search

Upper bounds Lower bounds

log3 n ≈ 0.631 log2 n
Høyer, Neerbek, Shi 01

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
Childs, Landahl, Parrilo 06

≈ 0.32 log2 n
Ben-Or, Hassidim 07

(bounded-error)

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Ω(log N
log log N)
Farhi, Goldstone, Gutmann, Sipser 98

Ω(
√

log N
log log N)

Buhrman, de Wolf 98

Quantum query complexity of ordered search

Upper bounds Lower bounds

log3 n ≈ 0.631 log2 n
Høyer, Neerbek, Shi 01

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
Childs, Landahl, Parrilo 06

≈ 0.32 log2 n
Ben-Or, Hassidim 07

(bounded-error) 1
π lnn ≈ 0.221 log2 n

Høyer, Neerbek, Shi 01

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Ω(log N
log log N)
Farhi, Goldstone, Gutmann, Sipser 98

Ω(
√

log N
log log N)

Buhrman, de Wolf 98

Quantum query complexity of ordered search

Upper bounds Lower bounds

Quantum query complexity: c log2 n for some c. What is c?

log3 n ≈ 0.631 log2 n
Høyer, Neerbek, Shi 01

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
Childs, Landahl, Parrilo 06

≈ 0.32 log2 n
Ben-Or, Hassidim 07

(bounded-error) 1
π lnn ≈ 0.221 log2 n

Høyer, Neerbek, Shi 01

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Ω(log N
log log N)
Farhi, Goldstone, Gutmann, Sipser 98

Ω(
√

log N
log log N)

Buhrman, de Wolf 98

Quantum query complexity of ordered search

Upper bounds Lower bounds

Quantum query complexity: c log2 n for some c. What is c?

log3 n ≈ 0.631 log2 n
Høyer, Neerbek, Shi 01

3 log52 n ≈ 0.526 log2 n
Farhi, Goldstone, Gutmann, Sipser 99

4 log550 n ≈ 0.439 log2 n
Brookes, Jacokes, Landahl 04

4 log605 n ≈ 0.433 log2 n
Childs, Landahl, Parrilo 06

≈ 0.32 log2 n
Ben-Or, Hassidim 07

(bounded-error) 1
π lnn ≈ 0.221 log2 n

Høyer, Neerbek, Shi 01

1
12 log2 n ≈ 0.0833 log2 n

Ambainis 99

Ω(log N
log log N)
Farhi, Goldstone, Gutmann, Sipser 98

Ω(
√

log N
log log N)

Buhrman, de Wolf 98

Theorem.
This is asymptotically

optimal among all
adversary lower

bounds.

The quantum adversary method

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

where ¡ is an |S| £ |S| matrix
entries ¡[x, y] correspond to pairs of inputs x, y 2 S

Γi[x, y] :=

{
0 xi = yi

Γ[x, y] xi != yi

¡[x, y] = 0 if f(x) = f(y)

The quantum adversary method

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Theorem [Ambainis 00]: (Q. query complexity of f) .≥ 1
2ADV(f)

where ¡ is an |S| £ |S| matrix
entries ¡[x, y] correspond to pairs of inputs x, y 2 S

Γi[x, y] :=

{
0 xi = yi

Γ[x, y] xi != yi

¡[x, y] = 0 if f(x) = f(y)

The quantum adversary method

Proof idea: Define a progress measure for algorithms. It starts at 0 and
must reach k¡k for the algorithm to succeed; the maximum change
per query is 2 maxi k¡ik.

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Theorem [Ambainis 00]: (Q. query complexity of f) .≥ 1
2ADV(f)

where ¡ is an |S| £ |S| matrix
entries ¡[x, y] correspond to pairs of inputs x, y 2 S

Γi[x, y] :=

{
0 xi = yi

Γ[x, y] xi != yi

¡[x, y] = 0 if f(x) = f(y)

Semidefinite programming and ADV(f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Semidefinite programming and ADV(f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

Semidefinite programming and ADV(f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

• There is good software to solve semidefinite programs
numerically (using interior point methods).

Semidefinite programming and ADV(f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

• There is good software to solve semidefinite programs
numerically (using interior point methods).

• From a primal SDP (say, a maximization problem), we can
construct a dual SDP, which is a minimization problem.
The maximum value of the primal SDP equals the minimum
value of the dual SDP.
A particular solution of the primal gives a lower bound; a
particular solution of the dual gives an upper bound.

Semidefinite programming and ADV(f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

• There is good software to solve semidefinite programs
numerically (using interior point methods).

• From a primal SDP (say, a maximization problem), we can
construct a dual SDP, which is a minimization problem.
The maximum value of the primal SDP equals the minimum
value of the dual SDP.
A particular solution of the primal gives a lower bound; a
particular solution of the dual gives an upper bound.

Notice that computing ADV(f) is a semidefinite program!

Symmetry

Intuitively, symmetries of f should make it easier to deal with.

Symmetry

Intuitively, symmetries of f should make it easier to deal with.

f : S → Σ π ∈ SnDefinition: An automorphism of is a permutation
with

π(S) = S and .f(x) = f(y) ⇔ f(π(x)) = f(π(y)) ∀x, y ∈ S

Symmetry

Intuitively, symmetries of f should make it easier to deal with.

Automorphism principle [Høyer, Lee, Špalek 07]: If is an
automorphism of f, then we can choose an optimal adversary matrix ¡
satisfying for all pairs of inputs x, y.
Furthermore, if the automorphism group is transitive, then the uniform
vector is a principal eigenvector of ¡, and all are equal.

π

Γ[x, y] = Γ[π(x),π(y)]

‖Γi‖

f : S → Σ π ∈ SnDefinition: An automorphism of is a permutation
with

π(S) = S and .f(x) = f(y) ⇔ f(π(x)) = f(π(y)) ∀x, y ∈ S

Symmetrizing ordered search

Recall ordered search function: e.g., for n = 4, the inputs are

S = {1111, 0111, 0011, 0001}

Symmetrizing ordered search

Recall ordered search function: e.g., for n = 4, the inputs are

S = {1111, 0111, 0011, 0001}

The automorphism group is trivial! No permutation but id fixes S.

Symmetrizing ordered search

Recall ordered search function: e.g., for n = 4, the inputs are

S = {1111, 0111, 0011, 0001}

The automorphism group is trivial! No permutation but id fixes S.

Farhi, Goldstone, Gutmann, Sipser 99

Extend to a circle of 2n bits: e.g., for n = 4,

S′ = {11110000, 01111000, 00111100, 00011110,

00001111, 10000111, 11000011, 11100001}

Symmetrizing ordered search

Recall ordered search function: e.g., for n = 4, the inputs are

S = {1111, 0111, 0011, 0001}

The automorphism group is trivial! No permutation but id fixes S.

Farhi, Goldstone, Gutmann, Sipser 99

Extend to a circle of 2n bits: e.g., for n = 4,

S′ = {11110000, 01111000, 00111100, 00011110,

00001111, 10000111, 11000011, 11100001}

Again, the problem is to identify the input (f(x) = x).
Now the automorphism group is cyclic (2n elements).
We call this problem OSPn.

Symmetric ordered search ≈ Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

Symmetric ordered search ≈ Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

Symmetric ordered search ≈ Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

Reduction, original → symmetric: x′ = x1x2 . . . xnx̄1x̄2 . . . x̄n

Symmetric ordered search ≈ Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

x′ =

{
x1x2 . . . xn xn = 1
xn+1xn+2 . . . x2n xn = 0

Reduction, symmetric → original:

Reduction, original → symmetric: x′ = x1x2 . . . xnx̄1x̄2 . . . x̄n

Symmetric ordered search ≈ Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

x′ =

{
x1x2 . . . xn xn = 1
xn+1xn+2 . . . x2n xn = 0

Reduction, symmetric → original:

Reduction, original → symmetric: x′ = x1x2 . . . xnx̄1x̄2 . . . x̄n

one extra query

Symmetric ordered search ≈ Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

x′ =

{
x1x2 . . . xn xn = 1
xn+1xn+2 . . . x2n xn = 0

Reduction, symmetric → original:

Reduction, original → symmetric: x′ = x1x2 . . . xnx̄1x̄2 . . . x̄n

one extra query

Asymptotically, this is negligible.

Adversary SDP for ordered search

1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
0

0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1

1
0
0
0
0
1
1
1

1
1
0
0
0
0
1
1

1
1
1
0
0
0
0
1

Γ =

0 γ1 γ2 γ3 γ4 γ5 γ6 γ7

γ1 0 γ8 γ9 γ10 γ11 γ12 γ13

γ2 γ8 0 γ14 γ15 γ16 γ17 γ18

γ3 γ9 γ14 0 γ19 γ20 γ21 γ22

γ4 γ10 γ15 γ19 0 γ23 γ24 γ25

γ5 γ11 γ16 γ20 γ23 0 γ26 γ27

γ6 γ12 γ17 γ21 γ24 γ26 0 γ28

γ7 γ13 γ18 γ22 γ25 γ27 γ28 0

11110000

01111000

00111100

00011110

00001111

10000111

11000011

11100001

Adversary SDP for ordered search

By the automorphism principle, we can assume

1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
0

0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1

1
0
0
0
0
1
1
1

1
1
0
0
0
0
1
1

1
1
1
0
0
0
0
1

Γ =

0 γ1 γ2 γ3 γ4 γ3 γ2 γ1

γ1 0 γ1 γ2 γ3 γ4 γ3 γ2

γ2 γ1 0 γ1 γ2 γ3 γ4 γ3

γ3 γ2 γ1 0 γ1 γ2 γ3 γ4

γ4 γ3 γ2 γ1 0 γ1 γ2 γ3

γ3 γ4 γ3 γ2 γ1 0 γ1 γ2

γ2 γ3 γ4 γ3 γ2 γ1 0 γ1

γ1 γ2 γ3 γ4 γ3 γ2 γ1 0

11110000

01111000

00111100

00011110

00001111

10000111

11000011

11100001

Spectral norm achieved by uniform eigenvector: γn + 2
n−1∑

i=1

γi

Adversary SDP for ordered search

Also by the automorphism principle, it suffices to consider

‖Γ2n‖ = ‖Toeplitz(γn, γn−1, . . . , γ1)‖In general, .

1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
0

0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1

1
0
0
0
0
1
1
1

1
1
0
0
0
0
1
1

1
1
1
0
0
0
0
1

Γ8 =

0 0 0 0 γ4 γ3 γ2 γ1

0 0 0 0 γ3 γ4 γ3 γ2

0 0 0 0 γ2 γ3 γ4 γ3

0 0 0 0 γ1 γ2 γ3 γ4

γ4 γ3 γ2 γ1 0 0 0 0
γ3 γ4 γ3 γ2 0 0 0 0
γ2 γ3 γ4 γ3 0 0 0 0
γ1 γ2 γ3 γ4 0 0 0 0

11110000

01111000

00111100

00011110

00001111

10000111

11000011

11100001

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Høyer, Neerbek, Shi: Let γi =

{
1
πi i = 1, 2, . . . , !n/2"
0 otherwise

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Høyer, Neerbek, Shi: Let γi =

{
1
πi i = 1, 2, . . . , !n/2"
0 otherwise

2
!n/2"∑

i=1

1
πi
≈ 2

π
lnnObjective function:

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Høyer, Neerbek, Shi: Let γi =

{
1
πi i = 1, 2, . . . , !n/2"
0 otherwise

2
!n/2"∑

i=1

1
πi
≈ 2

π
lnnObjective function:

Hilbert matrix:

∥∥∥∥∥∥∥∥∥

1 1
2

1
3 · · ·

1
2

1
3

1
3
...

∥∥∥∥∥∥∥∥∥

= π

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Adversary SDP for ordered search

Primal:

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Theorem.
ADV(OSP2m) = 2

m−1∑

i=0

((2i
i

)

4i

)2

ADV(OSP2m+1) = 2
m−1∑

i=0

((2i
i

)

4i

)2

+

((2m
m

)

4m

)2

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

P := !u!uT

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

P := !u!uT

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

Then as claimed.tr(P) = 2

n
2−1∑

i=0

ξ2
i

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

P := !u!uT

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

tri(P) =
n−i∑

j=1

ujui+j =
n−i∑

j=1

ujun−i−j+1 ≥
n−i−1∑

j=0

ξjξn−i−j−1 = 1

Then as claimed.tr(P) = 2

n
2−1∑

i=0

ξ2
i

Optimal ordered search adversary: dual

Dual:

min tr(P) subject to P ! 0, tri(P) ≥ 1 for i = 0, . . . , n− 1

Let ξi :=
(2i

i

)

4i

P := !u!uT

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn

2−1, . . . , ξ1, ξ0)

Primal is more technical but uses similar ideas.

tri(P) =
n−i∑

j=1

ujui+j =
n−i∑

j=1

ujun−i−j+1 ≥
n−i−1∑

j=0

ξjξn−i−j−1 = 1

Then as claimed.tr(P) = 2

n
2−1∑

i=0

ξ2
i

A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition. For any j, .
j∑

i=0

ξi ξj−i = 1

A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition. For any j, .
j∑

i=0

ξi ξj−i = 1

j∑

i=0

(
2i

i

)(
2(j − i)
j − i

)
= 4ii.e.,

A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition. For any j, .
j∑

i=0

ξi ξj−i = 1

Proof.

j∑

i=0

(
2i

i

)(
2(j − i)
j − i

)
= 4ii.e.,

A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition. For any j, .
j∑

i=0

ξi ξj−i = 1

Proof.

GF for : g(z) :=
∞∑

i=0

ξiz
i =

1√
1− z

{ξi}

j∑

i=0

(
2i

i

)(
2(j − i)
j − i

)
= 4ii.e.,

A binomial identity

ξi :=
(2i

i

)

4iRecall

Proposition. For any j, .
j∑

i=0

ξi ξj−i = 1

GF for LHS:
1

1− z
=
∞∑

i=0

zi

Proof.

GF for : g(z) :=
∞∑

i=0

ξiz
i =

1√
1− z

{ξi}

j∑

i=0

(
2i

i

)(
2(j − i)
j − i

)
= 4ii.e.,

Asymptotic analysis

Asymptotically, we have ADV(OSPn) =
2
π

(lnn + γ + ln 8) + O(1/n)

ADV(OSPn) = 2

n
2−1∑

i=0

((2i
i

)

4i

)2

Asymptotic analysis

Asymptotically, we have ADV(OSPn) =
2
π

(lnn + γ + ln 8) + O(1/n)

Proof. GF of {ADV(OSP2m)} is
2 · 2F1(1

2 , 1
2 ; 1; z)

1− z

Result follows by analyzing the logarithmic singularity at z = 1
using Darboux’s method.

ADV(OSPn) = 2

n
2−1∑

i=0

((2i
i

)

4i

)2

Asymptotic analysis

Asymptotically, we have ADV(OSPn) =
2
π

(lnn + γ + ln 8) + O(1/n)

For comparison, the HNS bound says

ADV(OSPn) ≥ 2
π

(lnn + γ − ln 2) + O(1/n)

Proof. GF of {ADV(OSP2m)} is
2 · 2F1(1

2 , 1
2 ; 1; z)

1− z

Result follows by analyzing the logarithmic singularity at z = 1
using Darboux’s method.

ADV(OSPn) = 2

n
2−1∑

i=0

((2i
i

)

4i

)2

n
5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

i

γ i

0 2 4 6 8 10 12 14 16
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

The negative adversary

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Recall definition of adversary:

The negative adversary

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Recall definition of adversary:

ADV±(f) := max
Γ !=0

‖Γ‖
maxi ‖Γi‖

Negative adversary:

The negative adversary

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Recall definition of adversary:

Theorem [Høyer, Lee, Špalek 07]:
(Quantum query complexity of f) .≥ 1

2ADV±(f) ≥ 1
2ADV(f)

ADV±(f) := max
Γ !=0

‖Γ‖
maxi ‖Γi‖

Negative adversary:

The negative adversary

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Recall definition of adversary:

Theorem [Høyer, Lee, Špalek 07]:
(Quantum query complexity of f) .≥ 1

2ADV±(f) ≥ 1
2ADV(f)

Furthermore, there are functions for which the negative adversary
gives a significantly better lower bound.

ADV±(f) := max
Γ !=0

‖Γ‖
maxi ‖Γi‖

Negative adversary:

Negative adversary for ordered search

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Idea: Given R = P — Q satisfying tri R = 1, objective is tr |R|.

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Idea: Given R = P — Q satisfying tri R = 1, objective is tr |R|.

With ,!v := (ξ0, ξ1, . . . , ξn−1), !w := (ξn−1, . . . , ξ1, ξ0)
the matrix has correct above-diagonal traces.!v !wT

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Idea: Given R = P — Q satisfying tri R = 1, objective is tr |R|.

Replace below-diagonal entries with the above-diagonal ones.

With ,!v := (ξ0, ξ1, . . . , ξn−1), !w := (ξn−1, . . . , ξ1, ξ0)
the matrix has correct above-diagonal traces.!v !wT

Negative adversary for ordered search

Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Idea: Given R = P — Q satisfying tri R = 1, objective is tr |R|.

Replace below-diagonal entries with the above-diagonal ones.

With ,!v := (ξ0, ξ1, . . . , ξn−1), !w := (ξn−1, . . . , ξ1, ξ0)
the matrix has correct above-diagonal traces.!v !wT

We give a general analysis of the spectra of such matrices.

Summary

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Open problems

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Open problems

• What is the constant?

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Open problems

• What is the constant?

• Can we use insights from the optimal adversary to find a better
algorithm? (Note: Quantum query complexity is an SDP.)

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Open problems

• What is the constant?

• Can we use insights from the optimal adversary to find a better
algorithm? (Note: Quantum query complexity is an SDP.)

• Can we find optimal adversary lower bounds for other problems?
(Element distinctness?)

