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Constant: Parity n/2n

Super-polynomial: Factoring O(n3)2O(n1/3(log n)2/3)
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Query complexity

Problem: Compute a function f : S → Σ

Example: Unstructured search (aka OR)

S = {0, 1}n Σ = {0, 1}

f(x) =

{
0 x = 00 . . . 0
1 otherwise

S ⊆ {0, 1}nInput set: Output set: Σ

Fix some (unknown) input x 2 S.  Given a black box for the 
bits of x, how many queries are required to compute f(x)?

(Deterministic) query complexity: n
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Quantum query complexity

Recall that the black box contains a string                  .x ∈ {0, 1}n

Classical query: xi xi

In a quantum computer, the state space is a vector space (instead of a 
finite set).  For every possible state i of a classical computer, the 
corresponding quantum computer has a basis vector    .  Any linear 
combination of the basis vectors gives an allowed state.

!ei

Quantum query: x α"ei ⊗ "exi + β "ej ⊗ "exjα"ei + β "ej

α, β ∈ C

Quantum query complexity: Minimum number of quantum queries 
required to quantum compute f(x), given a black box for the input x.
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Ordered search
Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

1 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 781 4 7 8 12 13 16 25 28 41 49 50 54 57 62 78

This algorithm (binary search) uses about log2 n queries.

This is optimal.  (One bit per query.)

Query complexity formulation: f : S → Σ

, and                (i.e., this is an oracle identification problem)Σ = S f(x) = x

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

In the above example, we have x =

S = strings of the form                     with k = 0, ..., n — 10 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
n−k
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Proof idea: Define a progress measure for algorithms.  It starts at 0 and 
must reach k¡k for the algorithm to succeed; the maximum change 
per query is 2 maxi k¡ik.
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{
0 xi = yi

Γ[x, y] xi != yi
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Semidefinite programming and ADV(f )

In a semidefinite program, we optimize a linear objective function 
subject to matrix positivity constraints.

Two important features:

• There is good software to solve semidefinite programs 
numerically (using interior point methods).

• From a primal SDP (say, a maximization problem), we can 
construct a dual SDP, which is a minimization problem.
The maximum value of the primal SDP equals the minimum 
value of the dual SDP.
A particular solution of the primal gives a lower bound; a 
particular solution of the dual gives an upper bound.

Notice that computing ADV(f) is a semidefinite program!
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Symmetry

Intuitively, symmetries of f should make it easier to deal with.

Automorphism principle [Høyer, Lee, Špalek 07]:  If    is an 
automorphism of f, then we can choose an optimal adversary matrix ¡ 
satisfying                                    for all pairs of inputs x, y.
Furthermore, if the automorphism group is transitive, then the uniform 
vector is a principal eigenvector of ¡, and all         are equal. 

π

Γ[x, y] = Γ[π(x),π(y)]

‖Γi‖

f : S → Σ π ∈ SnDefinition:  An automorphism of                  is a permutation           
with

π(S) = S and                                                                         .f(x) = f(y) ⇔ f(π(x)) = f(π(y)) ∀x, y ∈ S
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Symmetrizing ordered search

Recall ordered search function: e.g., for n = 4, the inputs are

S = {1111, 0111, 0011, 0001}

The automorphism group is trivial!  No permutation but id fixes S.

Farhi, Goldstone, Gutmann, Sipser 99

Extend to a circle of 2n bits: e.g., for n = 4,

S′ = {11110000, 01111000, 00111100, 00011110,

00001111, 10000111, 11000011, 11100001}

Again, the problem is to identify the input (f(x) = x).
Now the automorphism group is cyclic (2n elements).
We call this problem OSPn.
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Symmetric ordered search ≈ Ordered search

This problem looks similar, but maybe its query complexity is 
dramatically different!

In fact, the query complexity differs by at most 1.

x′ =

{
x1x2 . . . xn xn = 1
xn+1xn+2 . . . x2n xn = 0

Reduction, symmetric → original:

Reduction, original → symmetric: x′ = x1x2 . . . xnx̄1x̄2 . . . x̄n

one extra query

Asymptotically, this is negligible.



Adversary SDP for ordered search

1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
0

0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1

1
0
0
0
0
1
1
1

1
1
0
0
0
0
1
1

1
1
1
0
0
0
0
1

Γ =





0 γ1 γ2 γ3 γ4 γ5 γ6 γ7
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max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1, γi ≥ 0

Dual:

min tr(P ) subject to P ! 0, tri(P ) ≥ 1 for i = 0, . . . , n− 1

Theorem.
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Dual:
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P := !u!uT

!u := (ξ0, ξ1, . . . , ξn
2−1, ξn
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Primal is more technical but uses similar ideas.
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A binomial identity

ξi :=
(2i
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)

4iRecall

Proposition.  For any j,                        .
j∑

i=0

ξi ξj−i = 1

GF for LHS:
1
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=
∞∑

i=0
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Proof.
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Asymptotic analysis

Asymptotically, we have ADV(OSPn) =
2
π

(lnn + γ + ln 8) + O(1/n)

For comparison, the HNS bound says

ADV(OSPn) ≥ 2
π

(lnn + γ − ln 2) + O(1/n)

Proof.  GF of {ADV(OSP2m)} is
2 · 2F1( 1

2 , 1
2 ; 1; z)

1− z

Result follows by analyzing the logarithmic singularity at z = 1 
using Darboux’s method.
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The negative adversary

ADV(f) := max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γi‖

Recall definition of adversary:

Theorem [Høyer, Lee, Špalek 07]:
(Quantum query complexity of f )                                          .≥ 1

2ADV±(f) ≥ 1
2ADV(f)

Furthermore, there are functions for which the negative adversary 
gives a significantly better lower bound.

ADV±(f) := max
Γ !=0

‖Γ‖
maxi ‖Γi‖

Negative adversary:
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Primal: max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1

Dual: min tr(P + Q) subject to P,Q ! 0, tri(P −Q) = 1

Theorem. ADV±(OSPn) ≤ ADV(OSP2n) + 1

Idea: Given R = P — Q satisfying tri R = 1, objective is tr |R|.

Replace below-diagonal entries with the above-diagonal ones.

With                                                                        ,!v := (ξ0, ξ1, . . . , ξn−1), !w := (ξn−1, . . . , ξ1, ξ0)
the matrix         has correct above-diagonal traces.!v !wT

We give a general analysis of the spectra of such matrices.
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Summary

Quantum computers can search ordered lists faster than classical 
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to

• Find a better algorithm, and/or

• Prove a better lower bound by a non-adversary technique

Open problems

• What is the constant?

• Can we use insights from the optimal adversary to find a better 
algorithm?  (Note: Quantum query complexity is an SDP.)

• Can we find optimal adversary lower bounds for other problems?  
(Element distinctness?)


