Optimal quantum adversary
lower bounds for ordered search

Andrew Childs Troy Lee
Waterloo Rutgers

arXiv:0708.3396

http://arxiv.org/abs/0708.3396
http://arxiv.org/abs/0708.3396

Quantum speedup

Quantum speedup

Classical Quantum

Exponential: Simon’s problem 0(2"/2) O(n)

Quantum speedup

Classical Quantum

Exponential: Simon’s problem 0(2"/2) O(n)

Super-polynomial: Factoring 9O (n'/? (log n)*/?) O(n?)

Quantum speedup

Classical Quantum
Exponential: Simon’s problem Q(Q”/Q) O(n)
Super-polynomial: Factoring 9O (n'/? (log n)*/?) O(n?)

Dihedral HSP 0(27/2) 90(VIog N)

Quantum speedup

Classical Quantum
Exponential: Simon’s problem Q(Z”/Q) O(n)
Super-polynomial: Factoring 9O (n'/? (log n)*/?) O(n?)
Dihedral HSP 0(27/2) 90(VIog N)

Polynomial: Unstructured search O(n) O(y/n)

Quantum speedup

Classical Quantum
Exponential: Simon’s problem Q(Q”/Q) O(n)
Super-polynomial: Factoring 9O (n'/? (log n)*/?) O(n?)
Dihedral HSP 0(27/2) 90(VIog N)
Polynomial: Unstructured search O(n) O(y/n)

Element distinctness O(n) @(nz/g)

Quantum speedup

Classical Quantum
Exponential: Simon’s problem 0(27/2) O(n)
Super-polynomial: Factoring 9O (n'/? (log n)*/?) O(n°)
Dihedral HSP Q(27/2) 90(v/Iog N)
Polynomial: Unstructured search O(n) O(y/n)
Element distinctness O(n) O (n?/3)

Constant: Parity n n/2

Query complexity

Problem: Compute a function f : § — X
Input set: S C {0,1}" Output set: X

Fix some (unknown) input = € S. Given a black box for the
bits of x, how many queries are required to compute f(x)?

Query complexity

Problem: Compute a function f : § — X
Input set: S C {0,1}" Output set: X

Fix some (unknown) input = € S. Given a black box for the
bits of x, how many queries are required to compute f(x)?

Example: Unstructured search (aka OR)

Query complexity
Problem: Compute a function f : § — X
Input set: S C {0,1}" Output set: X
Fix some (unknown) input = € S. Given a black box for the

bits of x, how many queries are required to compute f(x)?

Example: Unstructured search (aka OR)

S={0,1}" ¥ =1{01)

f(x)_{o z=00...0

1 otherwise

Query complexity

Problem: Compute a function f : § — X
Input set: S C {0,1}" Output set: X
Fix some (unknown) input = € S. Given a black box for the

bits of x, how many queries are required to compute f(x)?

Example: Unstructured search (aka OR)

S={0,1}" ¥ =1{01)

f(x)_{o z=00...0

1 otherwise

(Deterministic) query complexity: n

Quantum query complexity

Recall that the black box contains a string € {0, 1}".

Quantum query complexity

Recall that the black box contains a string € {0, 1}".

Classical query: _-_

Quantum query complexity

Recall that the black box contains a string € {0, 1}".

Classical query: ; _-_

Quantum query complexity

Recall that the black box contains a string € {0, 1}".

Classical query: ; _-_ -

Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

Quantum query: _-_

Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

Quantum query: z _-_
1

Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

uantum query: — — —

Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

Quantum query: _-_

Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

Quantum query: 0E + B¢, _-_
i J

a,3eC

Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

uantum query: — — — — — =

a,3eC

Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

uantum query: — — — — — =

a,3eC

Quantum query complexity: Minimum number of quantum queries
required to quantum compute f(x), given a black box for the input .

Ordered search

Given a sorted list of n items, find the position of a desired item.

Ordered search

Given a sorted list of n items, find the position of a desired item.

Exam

ble: Search for 54 in t

ne list

1

4

7

8

12

13

16

20

28

41

49

o0

o4

57

62

78

Ordered search

Given a sorted list of n items, find the position of a desired item.

Exam

ble: Search for 54 in t

ne list

1

4

7

8

12

13

1628

41

49

o0

o4

57

62

78

Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

NOUDEENEE

41

49

50

54

57

62

78

Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

NOUDEENEE

41

4954

57

62

78

Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

TR -

57

62

78

Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

78

Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

T EEEEEE - - @[

Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

T EEEEER R - - @[

Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

This is optimal. (One bit per query.)

Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

This is optimal. (One bit per query.)

Query complexity formulation: f:.5 — X

Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

This is optimal. (One bit per query.)

Query complexity formulation: f:.5 — X

S = strings of the form 0---01---1 with k=0, ...,n—-1
N N —
k n—k

Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

This is optimal. (One bit per query.)

Query complexity formulation: f:.5 — X

S = strings of the form 0---01---1 with k=0, ...,n—-1
N N —

k n—k
>, = S,and f(z) = x (i.e., this is an oracle identification problem)

Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

This is optimal. (One bit per query.)

Query complexity formulation: f:.5 — X

S = strings of the form 0---01---1 with k=0, ...,n—-1
N N —
k n—k
>, = S,and f(z) = x (i.e., this is an oracle identification problem)

In the above example, we have 1 =

O(0f{OfOf[OfOfOfOfOfOfOfOfT [T [1]]1

Quantum query complexity of ordered search

Quantum query complexity of ordered search

Upper bounds

Quantum query complexity of ordered search

Upper bounds

logsn ~ 0.631 logy 1
Hayer, Neerbek, Shi Ol

3 log:on ~ 0.526 log, n

Farhi, Goldstone, Gutmann, Sipser 99

4logsrgn ~ 0.439logy n

Brookes, Jacokes, Landahl 04

4loggos n ~ 0.433 logs n
Childs, Landahl, Parrilo 06

Quantum query complexity of ordered search

Upper bounds

logsn ~ 0.631 logy 1
Hayer, Neerbek, Shi Ol

3 log:on ~ 0.526 log, n

Farhi, Goldstone, Gutmann, Sipser 99

4logsrgn ~ 0.439logy n

Brookes, Jacokes, Landahl 04

4loggos n ~ 0.433 logs n
Childs, Landahl, Parrilo 06

~ 0.321og, n (bounded-error)
Ben-Or, Hassidim 07

Quantum query complexity of ordered search

Upper bounds Lower bounds

logan ~ 0.631log, n
Hayer, Neerbek, Shi Ol

3 logs, n ~ 0.526 log, n

Farhi, Goldstone, Gutmann, Sipser 99

4logsrgn ~ 0.439logy n

Brookes, Jacokes, Landahl 04

4loggos n ~ 0.433logy n
Childs, Landahl, Parrilo 06

~ 0.321og, n (bounded-error)
Ben-Or, Hassidim 07

Quantum query complexity of ordered search

Upper bounds Lower bounds
logs n ~ 0.631 log, n Q(oe Ny
Hayer, Neerbek, Shi Ol log log N

Buhrman, de Wolf 98
3 log:on ~ 0.526 log, n

Farhi, Goldstone, Gutmann, Sipser 99 Q(log N)
loglog N
4 10g550 n ~ 0.439 log2 n Farhi, Goldstone, Gutmann, Sipser 98

Brookes, Jacokes, Landahl 04

4loggos n ~ 0.433 logs n
Childs, Landahl, Parrilo 06

~ 0.321og, n (bounded-error)
Ben-Or, Hassidim 07

Quantum query complexity of ordered search

Upper bounds Lower bounds
logs n ~ 0.631 log, n Q(oe Ny
Hayer, Neerbek, Shi Ol log log N

Buhrman, de Wolf 98
3 log:on ~ 0.526 log, n

Farhi, Goldstone, Gutmann, Sipser 99 O log N)
loglog N
4 10g550 n ~ 0.439 log2 n Farhi, Goldstone, Gutmann, Sipser 98

Brookes, Jacokes, Landahl 04
1 ~~
- logy n ~ 0.0833 log, n

41 ~ (0.4331
05605 Tt 052 Tt Ambainis 99

Childs, Landahl, Parrilo 06

~ 0.321og, n (bounded-error)
Ben-Or, Hassidim 07

Quantum query complexity of ordered search

Upper bounds Lower bounds
logs n ~ 0.631 log, n Q(oe Ny
Hayer, Neerbek, Shi Ol log log N

Buhrman, de Wolf 98
3 log:on ~ 0.526 log, n

Farhi, Goldstone, Gutmann, Sipser 99 O log N)
loglog N
4 10g550 n ~ 0.439 log2 n Farhi, Goldstone, Gutmann, Sipser 98

Brookes, Jacokes, Landahl 04
1 ~~
- logy n ~ 0.0833 log, n

41 ~ (0.4331
8605 ™ 062 Tt Ambainis 99

Childs, Landahl, Parrilo 06

1 ~
~ 0.321og,n (bounded-error) —Inn = 0.221 log, n
Ben-Or, Hassidim 07 Hayer, Neerbek, Shi Ol

Quantum query complexity of ordered search

Upper bounds

logsn ~ 0.631 logy 1
Hayer, Neerbek, Shi Ol

3 log:on ~ 0.526 log, n

Farhi, Goldstone, Gutmann, Sipser 99

4logsrgn ~ 0.439logy n

Brookes, Jacokes, Landahl 04

4loggos n ~ 0.433 logs n
Childs, Landahl, Parrilo 06

~ 0.321og, n (bounded-error)
Ben-Or, Hassidim 07

Lower bounds

g n)

log log N
Buhrman, de Wolf 98

log N
(logofgogN)

Farhi, Goldstone, Gutmann, Sipser 98

1—12 log, n ~ 0.0833 log, n
Ambainis 99

1 ~
—Inn =~ 0.221logy n
Hayer, Neerbek, Shi Ol

Quantum query complexity: clogy n for some c. VWhat is ¢!

Quantum query complexity of ordered search

Upper bounds Lower bounds
logs n ~ 0.631 log, n Q(oe Ny
Hayer, Neerbek, Shi Ol log log N

Buhrman, de Wolf 98

Jlog:,n ~ 0.5261
Farhi, G

log N
(logoﬁ)gN)

Theorem.
4logs” This is asymptotically
optimal among all

Farhi, Goldstone, Gutmann, Sipser 98

1—12 log, n ~ 0.0833 log, n

4logy ~ adversary lower
Ambainis 99
bounds.
~ 0.32log, n (bounded-error) ~Inn =~ 0.2211og, n
Ben-Or, Hassidim 07 Hayer, Neerbek, Shi Ol

Quantum query complexity: clogy n for some c. VWhat is ¢!

The quantum adversary method

T
ADV —
) = e T
20

where T is an |S] x | S| matrix

entries I'[x, y| correspond to pairs of inputs z,y € S

[z, y| =0if f(z) = f(y)

L2,y 0 Ti = Y
i |, L=

The quantum adversary method

T
ADV —
) = e T
20

where T is an |S] x | S| matrix

entries I'[x, y| correspond to pairs of inputs z,y € S

[z, y| =0if f(z) = f(y)

L2,y 0 Ti = Y
i |, L=

Theorem [Ambainis 00]: (Q. query complexity of f) > 2 ADV(f).

The quantum adversary method

T
ADV —
) = e T
20

where T is an |S| x |S| matrix

entries I'[x, y| correspond to pairs of inputs z,y € S

[z, y| =0if f(z) = f(y)

Cilz.y] 0 Ti = Y
i |, L=

Theorem [Ambainis 00]: (Q. query complexity of f) > 2 ADV(f).

Proof idea: Define a progress measure for algorithms. It starts at 0 and
must reach ||T'|| for the algorithm to succeed; the maximum change
per query is 2 max; ||L;]|-

Semidefinite programming and ADV/(f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Semidefinite programming and ADV/(f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

Semidefinite programming and ADV/(f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

* There is good software to solve semidefinite programs
numerically (using interior point methods).

Semidefinite programming and ADV/(f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

* There is good software to solve semidefinite programs
numerically (using interior point methods).

* From a primal SDP (say,a maximization problem), we can
construct a dual SDP, which is a minimization problem.
The maximum value of the primal SDP equals the minimum
value of the dual SDP.
A particular solution of the primal gives a lower bound; a
particular solution of the dual gives an upper bound.

Semidefinite programming and ADV/(f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

* There is good software to solve semidefinite programs
numerically (using interior point methods).

* From a primal SDP (say,a maximization problem), we can
construct a dual SDP, which is a minimization problem.
The maximum value of the primal SDP equals the minimum
value of the dual SDP.
A particular solution of the primal gives a lower bound; a
particular solution of the dual gives an upper bound.

Notice that computing ADV/(f) is a semidefinite program!

Symmetry

Intuitively, symmetries of f should make it easier to deal with.

Symmetry

Intuitively, symmetries of f should make it easier to deal with.

Definition: An automorphism of f : S — Y is a permutation 7w € S,,
with
m(S) =5 and f(z)=f(y) & f(r(z)) = f(n(y)) Yo,y € S.

Symmetry

Intuitively, symmetries of f should make it easier to deal with.

Definition: An automorphism of f : S — > is a permutation 7™ € S,,
with

m(S) =5 and f(z)=f(y) & f(r(z)) = f(n(y)) Yo,y € S.

Automorphism principle [Hayer, Lee, Spalek 07]: If 7 is an
automorphism of f, then we can choose an optimal adversary matrix I'
satisfying I'|z, y| = I'|m(x), m(y)] for all pairs of inputs z, y.

Furthermore, if the automorphism group is transitive, then the uniform
vector is a principal eigenvector of I',and all ||I';|| are equal.

Symmetrizing ordered search

Recall ordered search function: e.g., for n =4, the inputs are

S = {1111,0111,0011, 0001}

Symmetrizing ordered search

Recall ordered search function: e.g., for n =4, the inputs are
S ={1111,0111,0011, 0001}

The automorphism group is triviall No permutation but id fixes S.

Symmetrizing ordered search

Recall ordered search function: e.g., for n =4, the inputs are
S ={1111,0111,0011, 0001}

The automorphism group is triviall No permutation but id fixes S.

Extend to a circle of 2n bits: e.g., for n =4,

S’ = {11110000,01111000,00111100,00011110,
00001111, 10000111, 11000011, 11100001}

Farhi, Goldstone, Gutmann, Sipser 99

Symmetrizing ordered search

Recall ordered search function: e.g., for n =4, the inputs are
S ={1111,0111,0011, 0001}

The automorphism group is triviall No permutation but id fixes S.

Extend to a circle of 2n bits: e.g., for n =4,

S’ = {11110000,01111000,00111100,00011110,
00001111, 10000111, 11000011, 11100001}

Again, the problem is to identify the input (f(z) = x).
Now the automorphism group is cyclic (2n elements).
We call this problem OSP,,.

Farhi, Goldstone, Gutmann, Sipser 99

Symmetric ordered search = Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

Symmetric ordered search = Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

Symmetric ordered search = Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

. . . / _
Reduction, original =@ symmetric: ©' = x> ... 2,212 ...Txp

Symmetric ordered search = Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

. . . / _
Reduction, original =@ symmetric: ©' = x> ... 2,212 ...Txp

: : . L1L2 ... Inp Ln =
Reduction, symmetric = original: 2’ = {

Zlfn_|_1$n_|_2 o o ZEQTL xn —

Symmetric ordered search = Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

Reduction, original = symmetric: ' = 122 ...2,T1T2...Tn

: : . L1L2 ... Inp Ln =
Reduction, symmetric = original: 2’ = {

Zlfn_|_1$n_|_2 o o ZEQTL xn —

/

one extra query

Symmetric ordered search = Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

. . . / _
Reduction, original =@ symmetric: ©' = x> ... 2,212 ...Txp

: : . L1L2 ... Inp Ln =
Reduction, symmetric = original: 2’ = {

'./I;n_l_lxn_I_z o o ZEQTL $n —

/

one extra query

Asymptotically, this is negligible.

Adversary SDP for ordered search

-) -]) O — — — —

- - - — — — — -)

- - — — — — - -

-) — — — — - - -

— — — — - - - -

— i — - - - - —

— — - - - - — —

— - - - (- — — —

0 Yt Y2 Y3 Y4 Y5 Ye o Y7 | 11110000

g4l 0 Y8 Y9 7Yio Y11 Y12 713 | 01111000

Yo 8 0 Y14 Y15 Yie Y17 Y18 | 00111100
r— |7 Y9 74 0 719 720 721 72200011110

Y4 Yo Y15 Y19 O 723 Y24 7yo5 | 00001111

Y5 Y11 Y16 Y20 Y23 0 y26 727 | 10000111

Yo Y12 Y17 Y21 Y24 Y26 O y2g| 11000011

Y7 13 Y18 Y22 Yes et 7ves O | 11100001

Adversary SDP for ordered search

By the automorphism principle, we can assume

- - -) — — — —
- - - \m — — —)
- - — — — - - -
) — — ™ ™ - - -
— — ™ ™ - - - -
— — ™ - - - - —
— ™ - - - - — ™
— -) - - - — — —
0 7 V3 Y3 1 | 11110000
v 0 7 Y3 Y3 01111000
v 0 7 Y3 Y3 | 00111100
I 1 0 ™ Y3 00011110
V3 v 0 ™ v | 00001111
Y3 Y3 Y1 0 Y1 10000111
Y3 Y3 v 0 71| 11000011
Y1 Y3 V3 v1 0] 11100001
n—1

Spectral norm achieved by uniform eigenvector: -, + 2 Z Vi
i=1

Adversary SDP for ordered search

Also by the automorphism principle, it suffices to consider

S

S

0

0

0

I's = 0
V3

V1

In general,

00001111
10000111
11000011
11100001

Y1

S O O O 01111000
S O O O 00111100
S O O O 00011110
)
W

3 Y1

s || = || Toeplitz(vn, Yn—-1, - - -

11110000
01111000
00111100
00011110
00001111
10000111
11000011
11100001

771)”

Adversary SDP for ordered search

Primal:
n—1

max vy, + 2 Z% subject to || Toeplitz(vn,...,v1)|| <1, v >0
i=1

Adversary SDP for ordered search

Primal:
n—1

max vy, + 2 Z% subject to || Toeplitz(vn,...,v1)|| <1, v >0
i=1

. 1, Z:l,2,,|_’ﬁ,/2j
Hoyer, Neerbek, Shi: Let v; =< ™ |
0 otherwise

Adversary SDP for ordered search

Primal:
n—1

max vy, + 2 Z% subject to || Toeplitz(vn,...,v1)|| <1, v >0
i=1

. 1, 2:1,2,,Ln/2j
Hoyer, Neerbek, Shi: Let v; =< ™ |
0 otherwise

[n/2]
Obijective function: 2 Z

1=1

1 2

—~ —1Inn
™ T

Adversary SDP for ordered search

Primal:
n—1

max vy, + 2 Z v; subject to || Toeplitz(vy,,...,v1)|| <1, v, >0
i=1

Hayer, Neerbek, Shi: Let v; =

{7}7; i=1,2..., |n/2

0 otherwise

[n/2] 1 9
Objective function: 2 — ~ —1
jective function ; — N nn
11 _
117
: . 2 3
Hilbert matrix: 1 —

Adversary SDP for ordered search

Primal:
n—1

max vy, + 2 Z% subject to || Toeplitz(vn,...,v1)|| <1, v >0
i=1

Adversary SDP for ordered search

Primal:
n—1

max vy, + 2 Z% subject to || Toeplitz(vn,...,v1)|| <1, v >0
i=1

Dual:

mintr(P) subjectto P >0, tr;(P)>1fori=0,...,n—1

Adversary SDP for ordered search

Primal:
n—1

max vy, + 2 Z v; subject to || Toeplitz(vy,,...,v1)|| <1, v, >0
i=1

Dual:

mintr(P) subjectto P >0, tr;(P)>1fori=0,...,n—1

Theorem. m—1 (21) °
ADV(OSP2y,) =2) (T)
i=0

m—1 (27,)
wovioseu.. 25" (D)

Optimal ordered search adversary: dual

Dual:
mintr(P) subjectto P >0, tr;(P)>1fort=0,...,n—1

Optimal ordered search adversary: dual

Dual:
mintr(P) subjectto P >0, tr;(P)>1fort=0,...,n—1

217
Let ¢, := (i.)

47,

Optimal ordered search adversary: dual

Dual:
mintr(P) subjectto P >0, tr;(P)>1fort=0,...,n—1
(%)
Let &; := 42
U= (g()a'fla---75%—17‘5%—17---751750)

Optimal ordered search adversary: dual

Dual:
mintr(P) subjectto P >0, tr;(P)>1fort=0,...,n—1

217
Let ¢, := (i.)

Optimal ordered search adversary: dual

Dual:
mintr(P) subjectto P >0, tr;(P)>1fort=0,...,n—1

21
Let ¢, := (i.)

47,
ﬁ :(507517 75%—176%—17 751750)
P := qut

n_1
Then tr(P) =2 Z £7 as claimed.
i=0

Optimal ordered search adversary: dual

Dual:
mintr(P) subjectto P >0, tr;(P)>1fori=0,...,n—1

21
Let ¢, := (i.)

4Z
U = (507517"'753—17‘5—— 751 ‘SO)
P := d@i’
n_q
Then tr(P) =2 Z f as claimed.

n——1

tri(P):ZUjuiﬂ Z“J“n 1—7+1 > Z fjfn 1—J—1 =1
j=1

Optimal ordered search adversary: dual

Dual:
min tr(P) subjectto P >0, tr;(P)>1fort=0,...,n—1

()

Let &, := 1
U = (f(),gl,---75%—175%—17°"7€17€0)

P .= git

n_1
Then tr(P) =2 Z £7 as claimed.

n—i—1

n—1
tri(P):ZUjuiﬂ Zu]un 1—7+1 > Z fjfn 1—J—1 =1
j=1

Primal is more technical but uses similar ideas.

A binomial identity

21
Recall & := (422)

J
Proposition. For any 7, Zﬁi §i—i = L.
i=0

A binomial identity

21
Recall & := (422)

J
Proposition. For any 7, Zﬁi §i—i = 1.
i=0

e 3 () () s

A binomial identity

21
Recall & := (422)

J
Proposition. For any 7, Zﬁi §i—i = 1.
i=0

e 3 () () s

Proof.

A binomial identity

21
Recall & := (422)

J
Proposition. For any 7, Zﬁi §i—i = 1.
i=0

e 3 () () s

1

— Z

Proof.

GF for{&;}: g(z) := 2 =
g ;O 7

A binomial identity

21
Recall & := (422)

J
Proposition. For any 7, Zﬁi §i—i = 1.

i=0
7 . .)
20\ (2(7 — 7) -
.e. , — 4
e 2 <z> (j—i)
1=0
Proof.
GF for{&;}: g(z) := Zﬁizz —
P V1—z
1 =, .
GF for LHS: — 2"
1 — 2z :

Asymptotic analysis

poviosr -5 ()

2(1nn+’y+ln8) + O(1/n)

T

Asymptotically, we have ADV(OSP,,) =

Asymptotic analysis

ADV(OSP,,) = 2 _z_: ((z))

2
Asymptotically, we have ADV(OSP,,) = —(Inn+ v+ 1In8) + O(1/n)
T

2 - 2F1(27 2717Z)
1 -2

Result follows by analyzing the logarithmic singularity at z =1
using Darboux’s method.

Proof. GF of {ADV(OSP,,,)} is

Asymptotic analysis

poviosr -5 ()

2
Asymptotically, we have ADV(OSP,,) = —(Inn+ v+ 1In8) + O(1/n)
T

2 - 2F1(27 27172)
1 -2

Result follows by analyzing the logarithmic singularity at z =1
using Darboux’s method.

Proof. GF of {ADV(OSP,,,)} is

For comparison, the HNS bound says

2
ADV(OSP,,) > —(Inn+~v—1n2)+ O(1/n)

T

0.7

0.6

0.5

0.4

0.3

i

0.2

0.1

—0.1

—0.2

[]
B O
A H
O A A A
© 0 o 4 AAAAA
O 0O 0O OO0 B 0
AN
4 0 8 10 12 14 16

The negative adversary

I
Recall definition of adversary: ADV(f) := max Il

>0 max; ||I']]
20

The negative adversary

r
Recall definition of adversary: ADV(f) := Ifgéc maz!;i ‘|“F®H

F
Negative adversary: ADVi(f) = IIQ%C maH \‘\‘F |
X |1

The negative adversary

r
Recall definition of adversary: ADV(f) := Ililgéc maz‘x‘:i NEH

I
Negative adversary: ADVi(f) = IIQ%C aH |‘\‘F |
max;)

Theorem [Hoyer, Lee, Spalek 07]:
(Quantum query complexity of f)> %ADVi(f) > 2ADV(f).

The negative adversary

r
Recall definition of adversary: ADV(f) := Ifgéc maz!;i ‘|“F®H

I
Negative adversary: ADVi(f) = IIQ%C H \‘\‘F |
max; ')

Theorem [Hoyer, Lee, Spalek 07]:
(Quantum query complexity of f)> %ADVi(f) > 2ADV(f).

Furthermore, there are functions for which the negative adversary
gives a significantly better lower bound.

Negative adversary for ordered search

Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Negative adversary for ordered search

n—1
Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Theorem. ADV*(0OSP,,) < ADV(OSP3,) + 1

Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Theorem. ADV*(0OSP,,) < ADV(OSP3,) + 1

ldea: Given R = P — () satisfying tr; R =1, objective is tr | R)|.

Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Theorem. ADV*(0OSP,,) < ADV(OSP3,) + 1

ldea: Given R = P — () satisfying tr; R =1, objective is tr | R)|.

With v = (fg,fl, e 7€n—1)7 W = (gn—la - ,51,50),
the matrix 7w’ has correct above-diagonal traces.

Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Theorem. ADV*(0OSP,,) < ADV(OSP3,) + 1

ldea: Given R = P — () satisfying tr; R =1, objective is tr | R)|.
With 7 := (&,&1,.. ., 6n_1), W= (En_1,...,€1,&),
the matrix 7w’ has correct above-diagonal traces.

Replace below-diagonal entries with the above-diagonal ones.

Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Theorem. ADV*(0OSP,,) < ADV(OSP3,) + 1

ldea: Given R = P — () satisfying tr; R =1, objective is tr | R)|.

With v = (fg,fl, e 7€n—1)7 W = (gn—la - ,fl,f()),
the matrix 7w’ has correct above-diagonal traces.

Replace below-diagonal entries with the above-diagonal ones.

We give a general analysis of the spectra of such matrices.

Summary

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to
* Find a better algorithm, and/or
* Prove a better lower bound by a non-adversary technique

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to
* Find a better algorithm, and/or
* Prove a better lower bound by a non-adversary technique

Open problems

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to
* Find a better algorithm, and/or
* Prove a better lower bound by a non-adversary technique

Open problems

e What is the constant?

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to
* Find a better algorithm, and/or
* Prove a better lower bound by a non-adversary technique

Open problems

e What is the constant?

e Can we use insights from the optimal adversary to find a better
algorithm? (Note: Quantum query complexity is an SDP)

Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to
* Find a better algorithm, and/or
* Prove a better lower bound by a non-adversary technique

Open problems

e What is the constant?

e Can we use insights from the optimal adversary to find a better
algorithm? (Note: Quantum query complexity is an SDP)

e Can we find optimal adversary lower bounds for other problems?
(Element distinctness?)

