Optimal quantum adversary
lower bounds for ordered search

Andrew Childs Troy Lee
Waterloo Rutgers

arXiv:0708.3396


http://arxiv.org/abs/0708.3396
http://arxiv.org/abs/0708.3396

Quantum speedup



Quantum speedup

Classical Quantum

Exponential: Simon’s problem 0(2"/2) O(n)



Quantum speedup

Classical Quantum

Exponential: Simon’s problem 0(2"/2) O(n)

Super-polynomial:  Factoring 9O (n'/? (log n)*/?) O(n?)



Quantum speedup

Classical Quantum
Exponential: Simon’s problem Q(Q”/Q) O(n)
Super-polynomial:  Factoring 9O (n'/? (log n)*/?) O(n?)

Dihedral HSP 0(27/2) 90(VIog N)



Quantum speedup

Classical Quantum
Exponential: Simon’s problem Q(Z”/Q) O(n)
Super-polynomial:  Factoring 9O (n'/? (log n)*/?) O(n?)
Dihedral HSP 0(27/2) 90(VIog N)

Polynomial: Unstructured search O(n) O(y/n)



Quantum speedup

Classical Quantum
Exponential: Simon’s problem Q(Q”/Q) O(n)
Super-polynomial:  Factoring 9O (n'/? (log n)*/?) O(n?)
Dihedral HSP 0(27/2) 90(VIog N)
Polynomial: Unstructured search O(n) O(y/n)

Element distinctness O(n) @(nz/g)



Quantum speedup

Classical Quantum
Exponential: Simon’s problem 0(27/2) O(n)
Super-polynomial: Factoring 9O (n'/? (log n)*/?) O(n°)
Dihedral HSP Q(27/2) 90(v/Iog N)
Polynomial: Unstructured search O(n) O(y/n)
Element distinctness O(n) O (n?/3)

Constant: Parity n n/2



Query complexity

Problem: Compute a function f : § — X
Input set: S C {0,1}"  Output set: X

Fix some (unknown) input = € S. Given a black box for the
bits of x, how many queries are required to compute f(x)?



Query complexity

Problem: Compute a function f : § — X
Input set: S C {0,1}"  Output set: X

Fix some (unknown) input = € S. Given a black box for the
bits of x, how many queries are required to compute f(x)?

Example: Unstructured search (aka OR)



Query complexity
Problem: Compute a function f : § — X
Input set: S C {0,1}"  Output set: X
Fix some (unknown) input = € S. Given a black box for the

bits of x, how many queries are required to compute f(x)?

Example: Unstructured search (aka OR)

S={0,1}" ¥ =1{01)

f(x)_{o z=00...0

1 otherwise



Query complexity

Problem: Compute a function f : § — X
Input set: S C {0,1}"  Output set: X
Fix some (unknown) input = € S. Given a black box for the

bits of x, how many queries are required to compute f(x)?
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1 otherwise

(Deterministic) query complexity: n



Quantum query complexity

Recall that the black box contains a string € {0, 1}".



Quantum query complexity

Recall that the black box contains a string € {0, 1}".

Classical query: _-_



Quantum query complexity

Recall that the black box contains a string € {0, 1}".

Classical query: ; _-_



Quantum query complexity

Recall that the black box contains a string € {0, 1}".

Classical query: ; _-_ -



Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.



Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

Quantum query: _-_



Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

Quantum query: z _-_
1



Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

uantum query: — — —



Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

Quantum query: _-_



Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

Quantum query: 0E + B¢, _-_
i J

a,3eC



Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

uantum query: — — — — — =

a,3eC



Quantum query complexity

Recall that the black box contains a string = € {0, 1}".

Classical query: ; _-_ -

In a quantum computer, the state space is a vector space (instead of a
finite set). For every possible state ¢ of a classical computer, the
corresponding quantum computer has a basis vector ¢;. Any linear
combination of the basis vectors gives an allowed state.

uantum query: — — — — — =

a,3eC

Quantum query complexity: Minimum number of quantum queries
required to quantum compute f(x), given a black box for the input .



Ordered search

Given a sorted list of n items, find the position of a desired item.



Ordered search

Given a sorted list of n items, find the position of a desired item.

Exam

ble: Search for 54 in t

ne list

1

4

7

8

12

13

16

20

28

41

49

o0

o4

57

62

78




Ordered search

Given a sorted list of n items, find the position of a desired item.

Exam

ble: Search for 54 in t

ne list

1

4

7

8

12

13

1628

41

49

o0

o4

57

62

78




Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

NOUDEENEE

41

49

50

54

57

62

78




Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

NOUDEENEE

41

4954

57

62

78




Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

TR -

57

62

78




Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

78




Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

T EEEEEE - - @[




Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list

T EEEEER R - - @[




Ordered search

Given a sorted list of n items, find the position of a desired item.

Example: Search for 54 in the list




Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list




Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

This is optimal. (One bit per query.)



Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

This is optimal. (One bit per query.)

Query complexity formulation: f:.5 — X



Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

This is optimal. (One bit per query.)

Query complexity formulation: f:.5 — X

S = strings of the form 0---01---1 with k=0, ...,n—-1
N N —
k n—k



Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

This is optimal. (One bit per query.)

Query complexity formulation: f:.5 — X

S = strings of the form 0---01---1 with k=0, ...,n—-1
N N —

k n—k
>, = S,and f(z) = x (i.e., this is an oracle identification problem)



Ordered search

Given a sorted list of n items, find the position of a desired item.

This algorithm (binary search) uses about logy 1 queries.

Example: Search for 54 in the list

This is optimal. (One bit per query.)

Query complexity formulation: f:.5 — X

S = strings of the form 0---01---1 with k=0, ...,n—-1
N N —
k n—k
>, = S,and f(z) = x (i.e., this is an oracle identification problem)

In the above example, we have 1 =

O(0f{OfOf[OfOfOfOfOfOfOfOfT [T [1]]1
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) = e T
20

where T is an |S| x |S| matrix

entries I'[x, y| correspond to pairs of inputs z,y € S

[z, y| =0if f(z) = f(y)

Cilz.y] 0 Ti = Y
i |, L=

Theorem [Ambainis 00]: (Q. query complexity of f) > 2 ADV(f).

Proof idea: Define a progress measure for algorithms. It starts at 0 and
must reach ||T'|| for the algorithm to succeed; the maximum change
per query is 2 max; ||L;]|-



Semidefinite programming and ADV/( f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.



Semidefinite programming and ADV/( f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:



Semidefinite programming and ADV/( f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

* There is good software to solve semidefinite programs
numerically (using interior point methods).



Semidefinite programming and ADV/( f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

* There is good software to solve semidefinite programs
numerically (using interior point methods).

* From a primal SDP (say,a maximization problem), we can
construct a dual SDP, which is a minimization problem.
The maximum value of the primal SDP equals the minimum
value of the dual SDP.
A particular solution of the primal gives a lower bound; a
particular solution of the dual gives an upper bound.



Semidefinite programming and ADV/( f)

In a semidefinite program, we optimize a linear objective function
subject to matrix positivity constraints.

Two important features:

* There is good software to solve semidefinite programs
numerically (using interior point methods).

* From a primal SDP (say,a maximization problem), we can
construct a dual SDP, which is a minimization problem.
The maximum value of the primal SDP equals the minimum
value of the dual SDP.
A particular solution of the primal gives a lower bound; a
particular solution of the dual gives an upper bound.

Notice that computing ADV/( f) is a semidefinite program!
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Symmetry

Intuitively, symmetries of f should make it easier to deal with.

Definition: An automorphism of f : S — > is a permutation 7™ € S,,
with

m(S) =5 and f(z)=f(y) & f(r(z)) = f(n(y)) Yo,y € S.

Automorphism principle [Hayer, Lee, Spalek 07]: If 7 is an
automorphism of f, then we can choose an optimal adversary matrix I'
satisfying I'|z, y| = I'|m(x), m(y)] for all pairs of inputs z, y.

Furthermore, if the automorphism group is transitive, then the uniform
vector is a principal eigenvector of I',and all ||I';|| are equal.
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Symmetrizing ordered search

Recall ordered search function: e.g., for n =4, the inputs are
S ={1111,0111,0011, 0001}

The automorphism group is triviall No permutation but id fixes S.

Extend to a circle of 2n bits: e.g., for n =4,

S’ = {11110000,01111000,00111100,00011110,
00001111, 10000111, 11000011, 11100001}

Again, the problem is to identify the input (f(z) = x).
Now the automorphism group is cyclic (2n elements).
We call this problem OSP,,.

Farhi, Goldstone, Gutmann, Sipser 99
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Symmetric ordered search = Ordered search

This problem looks similar, but maybe its query complexity is
dramatically different!

In fact, the query complexity differs by at most 1.

. . . / _
Reduction, original =@ symmetric: ©' = x> ... 2,212 ...Txp

: : . L1L2 ... Inp Ln =
Reduction, symmetric = original: 2’ = {

'./I;n_l_lxn_I_z o o ZEQTL $n —

/

one extra query

Asymptotically, this is negligible.
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Adversary SDP for ordered search

By the automorphism principle, we can assume

- - - ) — — — —
- - - \m — — — )
- - — — — - - -
) — — ™ ™ - - -
— — ™ ™ - - - -
— — ™ - - - - —
— ™ - - - - — ™
— -) - - - — — —
0 7 V3 Y3 1 | 11110000
v 0 7 Y3 Y3 01111000
v 0 7 Y3 Y3 | 00111100
I 1 0 ™ Y3 00011110
V3 v 0 ™ v | 00001111
Y3 Y3 Y1 0 Y1 10000111
Y3 Y3 v 0 71| 11000011
Y1 Y3 V3 v1 0 ] 11100001
n—1

Spectral norm achieved by uniform eigenvector: -, + 2 Z Vi
i=1



Adversary SDP for ordered search

Also by the automorphism principle, it suffices to consider

S

S

0

0

0

I's = 0
V3

V1

In general,

00001111
10000111
11000011
11100001

Y1

S O O O 01111000
S O O O 00111100
S O O O 00011110
)
W

3 Y1

s || = || Toeplitz(vn, Yn—-1, - - -

11110000
01111000
00111100
00011110
00001111
10000111
11000011
11100001

771)”
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Adversary SDP for ordered search

Primal:
n—1

max vy, + 2 Z v; subject to || Toeplitz(vy,,...,v1)|| <1, v, >0
i=1

Hayer, Neerbek, Shi: Let v; =

{7}7; i=1,2..., |n/2

0 otherwise

[n/2] 1 9
Objective function: 2 — ~ —1
jective function ; — N nn
11 _
117
: . 2 3
Hilbert matrix: 1 —
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Primal:
n—1

max vy, + 2 Z v; subject to || Toeplitz(vy,,...,v1)|| <1, v, >0
i=1

Dual:

mintr(P) subjectto P >0, tr;(P)>1fori=0,...,n—1

Theorem. m—1 (21) °
ADV(OSP2y,) =2 ) ( T )
i=0

m—1 (27,)
wovioseu.. 25" (D)
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Optimal ordered search adversary: dual

Dual:
min tr(P) subjectto P >0, tr;(P)>1fort=0,...,n—1

()

Let &, := 1
U = (f(),gl,---75%—175%—17°"7€17€0)

P .= git

n_1
Then tr(P) =2 Z £7 as claimed.

n—i—1

n—1
tri(P):ZUjuiﬂ Zu]un 1—7+1 > Z fjfn 1—J—1 =1
j=1

Primal is more technical but uses similar ideas.
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Proposition. For any 7, Zﬁi §i—i = 1.
i=0

e 3 () () s

1

— Z

Proof.
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A binomial identity

21
Recall & := (422)

J
Proposition. For any 7, Zﬁi §i—i = 1.

i=0
7 . . )
20\ (2(7 — 7) -
.e. , — 4
e 2 <z> ( j—i )
1=0
Proof.
GF for{&;}:  g(z) := Zﬁizz —
P V1—z
1 =, .
GF for LHS: — 2"
1 — 2z :
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Asymptotic analysis

poviosr -5 ()

2
Asymptotically, we have ADV(OSP,,) = —(Inn+ v+ 1In8) + O(1/n)
T

2 - 2F1(27 27172)
1 -2

Result follows by analyzing the logarithmic singularity at z =1
using Darboux’s method.

Proof. GF of {ADV(OSP,,,)} is

For comparison, the HNS bound says

2
ADV(OSP,,) > —(Inn+~v—1n2)+ O(1/n)

T
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The negative adversary

r
Recall definition of adversary: ADV(f) := Ifgéc maz!;i ‘|“F®H

I
Negative adversary: ADVi(f ) = IIQ%C H \‘\‘F |
max; ')

Theorem [Hoyer, Lee, Spalek 07]:
(Quantum query complexity of f)> %ADVi(f) > 2ADV(f).

Furthermore, there are functions for which the negative adversary
gives a significantly better lower bound.



Negative adversary for ordered search



Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1



Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1



Negative adversary for ordered search

n—1
Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Theorem. ADV*(0OSP,,) < ADV(OSP3,) + 1



Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Theorem. ADV*(0OSP,,) < ADV(OSP3,) + 1

ldea: Given R = P — () satisfying tr; R =1, objective is tr | R)|.



Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Theorem. ADV*(0OSP,,) < ADV(OSP3,) + 1

ldea: Given R = P — () satisfying tr; R =1, objective is tr | R)|.

With v = (fg,fl, e 7€n—1)7 W = (gn—la - ,51,50),
the matrix 7w’ has correct above-diagonal traces.



Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Theorem. ADV*(0OSP,,) < ADV(OSP3,) + 1

ldea: Given R = P — () satisfying tr; R =1, objective is tr | R)|.
With 7 := (&,&1,.. ., 6n_1), W= (En_1,...,€1,&),
the matrix 7w’ has correct above-diagonal traces.

Replace below-diagonal entries with the above-diagonal ones.



Negative adversary for ordered search

n—1

Primal: max -y, + 2 Z v; subject to ||Toeplitz(v,,...,71)| <1
i=1

Dual: mintr(P + @) subjectto P,Q >0, tr;(P—Q)=1

Theorem. ADV*(0OSP,,) < ADV(OSP3,) + 1

ldea: Given R = P — () satisfying tr; R =1, objective is tr | R)|.

With v = (fg,fl, e 7€n—1)7 W = (gn—la - ,fl,f()),
the matrix 7w’ has correct above-diagonal traces.

Replace below-diagonal entries with the above-diagonal ones.

We give a general analysis of the spectra of such matrices.
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Summary

Quantum computers can search ordered lists faster than classical
computers, by a constant factor between 2.3 and 4.6.

To find that constant, we will have to
* Find a better algorithm, and/or
* Prove a better lower bound by a non-adversary technique

Open problems

e What is the constant?

e Can we use insights from the optimal adversary to find a better
algorithm? (Note: Quantum query complexity is an SDP)

e Can we find optimal adversary lower bounds for other problems?
(Element distinctness?)



