Quantum property testing for sparse graphs

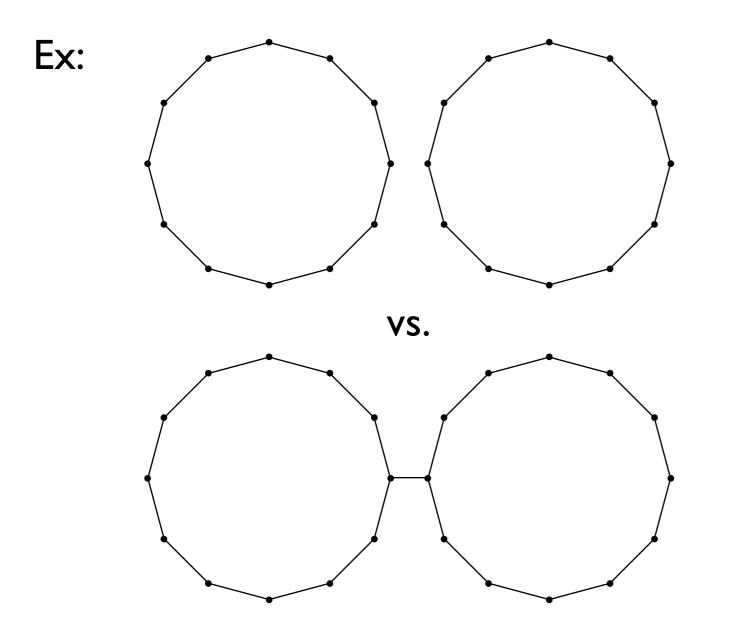
Andrew Childs

Waterloo

Yi-Kai Liu Caltech

Deciding connectivity

Given an n-vertex graph G (in terms of a black box for its adjacency matrix), how hard is it to tell if G is connected?



 $\Omega(n^2)$ queries are required

Testing connectivity

Promise: Either G is connected or it is ϵ -far from connected. (must change $\epsilon \binom{n}{2}$ edges to make it connected)

Trivial fact: for $\epsilon > (n-1)/{\binom{n}{2}}$, no graph is ϵ -far from connected. So we can test connectivity in $poly(1/\epsilon)$ queries.

Many natural graph properties can be tested in only $poly(1/\epsilon)$ queries. Ex (trivial): Eulerian, Hamiltonian, acyclicity, planarity, regularity, etc. Ex (nontrivial): Bipartiteness, k-colorability, k-clique, etc.

[Goldreich, Goldwasser, Ron 95]

Quantum testing of graph properties

Can there be a significant quantum speedup for testing some graph property?

To say anything nontrivial, we need a property that can't be already be tested fast classically.

Can there be an exponential quantum speedup?

Outline

I. The model

- 2. Testing bipartiteness
- 3. Testing expansion
- 4. Open questions

Property testing

Given a black-box input $x \in \Sigma^N$ (equivalently, a function $f_x : \{1, \ldots, N\} \to \Sigma$)

Property $P \subseteq \Sigma^N$

Promise: either $x \in P$ or x is ϵ -far from P

Determine (with error probability at most 1/3) which holds

Quantum property testing

- O(1) quantum vs. $\Omega(\log N)$ classical [Buhrman, Fortnow, Newman, and Roehrig 03]
- Exponential separation between quantum and classical testing [BFNR 03]
- Some properties need $\Omega(N)$ quantum queries [BFNR 03]
- Testing juntas logarithmically faster than the best known classical tester [Atici and Servedio 07]
- Efficient quantum algorithm for testing solvability of a black box group [Inui and Le Gall 08]
- Quantum algorithms for testing uniformity/orthogonality of distributions [Bravyi, Harrow, Hassidim 09; Chakraborty, Fischer, Matsliah, de Wolf 09]
- ... but no work on testing graph properties

Sparse graphs

Fix a positive integer d. Call a graph d-sparse if every vertex has degree at most d.

Black box description of a graph G ("adjacency-list model"):

$$f_G: V(G) \times \{1, \dots, d\} \to V \cup \{*\}$$
$$f_G(v, i) = \begin{cases} w & \text{if } w \text{ is the } i\text{th neighbor of } v \text{ in } G \\ * & \text{if } v \text{ has fewer than } i \text{ neighbors} \end{cases}$$

Quantumly: $|v, i, z\rangle \mapsto |v, i, z \oplus f_G(v, i)\rangle$

 $\epsilon\text{-far}$ means we must change ϵnd edges

Note: Can still test connectivity in time $poly(1/\epsilon)$ in this model [Goldreich and Ron 97].

Results

Quantum algorithms for

- ϵ -testing bipartiteness in time $O(n^{1/3} \operatorname{poly}(\log n, 1/\epsilon))$
- testing whether a graph is an α -vertex expander or ϵ -far from a $c\mu\alpha^2$ -vertex expander in time $O(n^{\frac{1}{3}+3\mu} \operatorname{poly}(\log N, 1/\epsilon, 1/\alpha))$

Both tasks require $\Omega(\sqrt{n})$ queries classically [Goldreich and Ron 97].

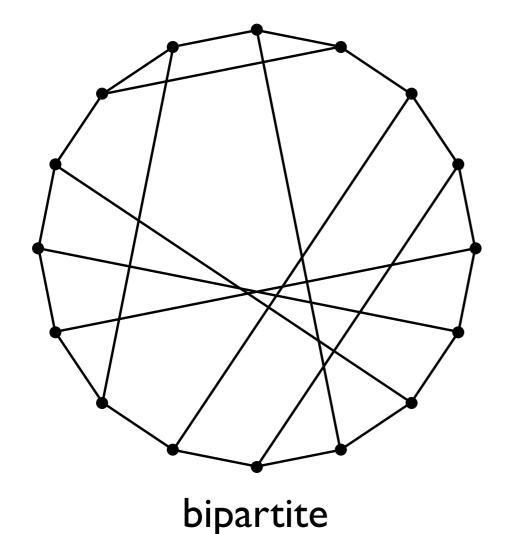
No nontrivial quantum lower bound!

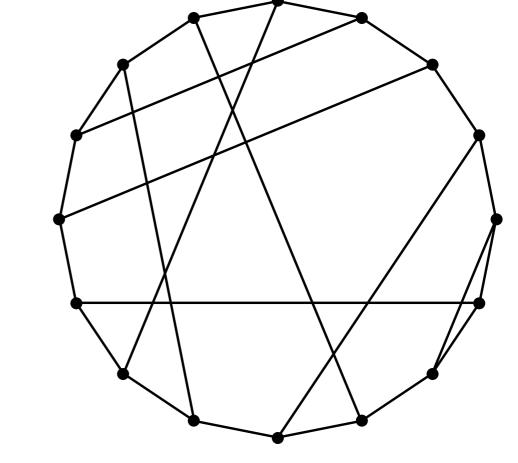
Bipartiteness

The problem

Given an adjacency-list black box for a d-sparse graph, decide whether the graph is

or





 ϵ -far from bipartite

Classical algorithm

Idea: Take many (short) random walks in G starting from a fixed vertex; look for a pair of walks that form an odd cycle.

Algorithm.

Repeat the following $O(1/\epsilon)$ times: Pick a random $v \in V(G)$. For i=1 to K, where $K = \sqrt{n} \operatorname{poly}(\log n, 1/\epsilon)$: Let $w_{i,0} = v$. Let j = 1. Repeat L times, where $L = \operatorname{poly}(\log n, 1/\epsilon)$: With probability 1/2d, let $w_{i,j}$ be the kth neighbor of $w_{i,j-1}$ (assuming such a neighbor exists) and increment j. If $w_{i,j} = w_{i',j'}$ for some i, i', j, j' with j even and j' odd, reject. If no iteration rejected, accept.

Theorem [Goldreich and Ron 99]: This algorithm accepts when G is bipartite, rejects with constant probability when G is ϵ -far from bipartite, and runs in time $O(\sqrt{n} \operatorname{poly}(\log n, 1/\epsilon))$.

Element distinctness

Given a black-box input $x \in \Sigma^N$, are there distinct $i, j \in \{1, ..., N\}$ such that $x_i = x_j$ (a collision)?

Classical query complexity $\Theta(N)$.

There is a quantum algorithm that decides element distinctness using only $O(N^{2/3})$ queries [Ambainis 04].

Strategy: Quantum walk on the Johnson graph $J(N, N^{2/3})$, with vertices corresponding to subsets of $N^{2/3}$ indices.

When a collision exists, the algorithm returns one.

A quantum strategy

Fix a choice of random bits for the classical algorithm. $O(\sqrt{n} \operatorname{poly}(\log n, 1/\epsilon))$ of them

Search for an odd collision among the endpoints of the walks using the element distinctness algorithm.

Query complexity: $(\sqrt{n} \operatorname{poly}(\log n, 1/\epsilon))^{2/3} = n^{1/3} \operatorname{poly}(\log n, 1/\epsilon)$

Caveat: Just flipping the coins takes time $\Omega(\sqrt{n})$, so the running time is significantly more than the query complexity.

Derandomization

We modify the classical tester to use significantly less randomess.

Idea: Replace the uniformly random bits by t-wise independent bits (where $t = poly(\log n, \log d, 1/\epsilon)$).

We call a set of random variables t-wise independent if the distribution is uniform for any subset of t or fewer random variables.

Theorem [Alon, Babai, Itai 86]: There is an algorithm to generate m bits that are t-wise independent in time $O(t \log m)$, using $O(t \log m)$ uniformly random bits.

By taking the random walk using t-wise independent random variables in place of uniformly random ones, we can give a classical bipartiteness testing algorithm whose running time is still $O(\sqrt{n} \operatorname{poly}(\log n, 1/\epsilon))$, and that only uses $\operatorname{poly}(\log n, \log d, 1/\epsilon)$ random bits.

Key idea: the analysis only depends on correlations among at most 4 random walks (and the walks are not very long).

The quantum algorithm

Algorithm.

Repeat the following $O(1/\epsilon)$ times:

Use the element distinctness algorithm to search for a "collision", where such an event is defined as an odd cycle obtained from a pair of pseudorandom walks executed as in the algorithm of Goldreich and Ron, but using $poly(\log n, \log d, 1/\epsilon)$ -wise independent random variables in place of uniformly random ones.

If a collision is found, reject.

If no iteration rejected, accept.

Theorem: This algorithm accepts when G is bipartite, rejects with constant probability when G is ϵ -far from bipartite, and runs in time $O(n^{1/3} \operatorname{poly}(\log n, 1/\epsilon))$.

Expansion

Informally, expanders are graphs that are well-connected.

```
Definition. We say G is an \alpha-expander if for every U \subset V(G)
with |U| \leq |V(G)|/2, |\partial(U)| \geq \alpha |U|.
vertex boundary of U: vertices in V(G) \setminus U
adjacent to some vertex in U
```

Many applications: Derandomization, PCP, hash functions, error correcting codes, network design, ...

How hard is it to test if a (d-sparse) graph is an α -expander or ϵ -far from an α -expander?

We'll actually consider something slightly weaker: either the graph is an α -expander or ϵ -far from a β -expander, where $\beta < \alpha$.

Even this weaker task requires $\Omega(\sqrt{n})$ classical queries [GR 97].

Classical algorithm

Idea: Random walks on expanders are rapidly mixing.

Take many (short) random walks in G starting from a fixed vertex; check whether there are more collisions between their endpoints than expected from a near-uniform distribution.

Algorithm(μ) [GR 00].

Repeat the following $O(1/\epsilon)$ times: Pick a random $v \in V(G)$. For i=1 to $n^{\frac{1}{2}+\mu}$:

Let w_i be the endpoint of a random walk of length $\frac{16d^2}{\alpha^2} \log n$ starting from v, with steps taken as in the bipartiteness tester. If the number of pairwise collisions among the w_i is more than $\frac{1}{2}n^{2\mu} + \frac{1}{128}n^{7\mu/4}$, reject. If no iteration rejected, accept.

Theorem [Nachmias and Shapira 07]: If G is an α -expander, we accept with probability at least 2/3. If G is ϵ -far from a $c\mu\alpha^2$ -expander, where the constant c depends on d, we reject with probability at least 2/3. The running time is $O(n^{\frac{1}{2}+\mu} \operatorname{poly}(\log n, 1/\epsilon, 1/\alpha))$.

Derandomization

As before, it is helpful to reduce the amount of randomness used by the classical algorithm.

One can show that it suffices to use t-wise independent random variables, where $t = poly(\log n, d, 1/\epsilon, 1/\alpha)$.

The result is a classical algorithm using only $poly(\log n, d, 1/\epsilon, 1/\alpha)$ random bits whose running time is still $O(n^{1/2+\mu} poly(\log n, 1/\epsilon, 1/\alpha))$.

Counting collisions

The classical algorithm counts the collisions between walk endpoints.

In general, counting collisions is hard! ($\Omega(N)$ [Buhrman et al. 01])

But we only care of the number of collisions is above some small threshold M.

Strategy: Repeatedly find collisions, unmarking those found previously.

Claim. There is a bounded-error quantum algorithm to decide whether there are M or more collisions using $O(N^{2/3}M\log M)$ queries.

The quantum algorithm

Algorithm(μ).

Repeat the following $O(1/\epsilon)$ times:

Use the element distinctness algorithm to determine whether there are more than $\frac{1}{2}n^{2\mu} + \frac{1}{128}n^{7\mu/4}$ collisions among the endpoints of pseudorandom walks executed as in the classical expansion-testing algorithm, but using $poly(\log n, d, 1/\epsilon, 1/\alpha)$ -wise independent random variables in place of uniformly random ones.

If more collisions are found, reject.

If no iteration rejected, accept.

Theorem: If G is an α -expander, we accept with probability at least 2/3. If G is ϵ -far from a $c\mu\alpha^2$ -expander, where the constant c depends on d, we reject with probability at least 2/3. The running time is $O(n^{\frac{1}{3}+3\mu} \operatorname{poly}(\log N, 1/\epsilon, 1/\alpha))$.

Results

Quantum algorithms for

- ϵ -testing bipartiteness in time $O(n^{1/3} \operatorname{poly}(\log n, 1/\epsilon))$
- testing whether a graph is an α -vertex expander or ϵ -far from a $c\mu\alpha^2$ -vertex expander in time $O(n^{\frac{1}{3}+3\mu} \operatorname{poly}(\log N, 1/\epsilon, 1/\alpha))$

Both tasks require $\Omega(\sqrt{n})$ queries classically [Goldreich and Ron 97].

No nontrivial quantum lower bound!

Open questions

- Find any nontrivial quantum lower bound.
- Improve the algorithms? Quantum walk?
- Time-efficient quantum collision finding without derandomization?
- Quantum property testing of other graph properties: is there any example with an exponential speedup?