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Why quantum computation?
Quantum computers can solve certain problems dramatically 
faster than classical computers can.

• What other problems can we solve faster with a quantum 
computer?

• How can we actually build a quantum computer, despite the 
extreme sensitivity of quantum systems to noise?

Main questions:

• Simulating quantum 
dynamics

• Factoring
• Discrete log
• Pell’s equation

• Abelian HSP
• Some nonabelian HSPs
• Shifted Legendre symbol/

polynomial reconstruction
• Estimating Gauss sums

• Graph traversal
• Approximating Jones 

polynomial
• Counting solutions of 

finite field equations



• Prepare n qubits in the state

• Apply a sequence of poly(n) unitary operations acting on one 
or two qubits at a time

• Measure in the computational basis to get the result

Quantum circuits
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Hamiltonian dynamics

In the circuit model, we say a unitary operation can be 
implemented efficiently if it can be realized (approximately) by a 
short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?

i
d
dt

|ψ(t)〉 = H(t)|ψ(t)〉
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Hamiltonian dynamics

In the circuit model, we say a unitary operation can be 
implemented efficiently if it can be realized (approximately) by a 
short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?

• Hamiltonians we can directly realize in the laboratory

• Hamiltonians we can efficiently simulate using quantum 
circuits

H =
∑

〈i,j〉

Hij

i
d
dt

|ψ(t)〉 = H(t)|ψ(t)〉



Simulating Hamiltonian dynamics

Definition.  A Hamiltonian H acting on n qubits can be 
efficiently simulated if for any error ε>0 and time t>0 there is a 
quantum circuit U consisting of poly(n, t, 1/ε) gates such that 
‖U – e–iHt ‖<ε.
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Simulating Hamiltonian dynamics

Definition.  A Hamiltonian H acting on n qubits can be 
efficiently simulated if for any error ε>0 and time t>0 there is a 
quantum circuit U consisting of poly(n, t, 1/ε) gates such that 
‖U – e–iHt ‖<ε.

Theorem. If H is a sum of local terms, then it can be efficiently 
simulated. [Lloyd 1996]

Basic idea: Lie product formula

e−i(H1+···+Hk)t = (e−iH1t/r · · · e−iHkt/r)r

+ O(kt2 max{‖Hj‖2}/r)



Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently 
compute all the nonzero values of            .  (In particular, there 
must be only polynomially many such values.)  Then H can be 
simulated efficiently. [Aharonov & Ta-Shma 2003, Childs et al. 
2003,  Ahokas et al. 2005]
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The adiabatic theorem

Let          be a smoothly varying Hamiltonian for s∈[0,1]

                         where E0(s) < E1(s) ≤ E2(s) ≤ ∙∙∙ ≤ ED-1(s)

H̃(s)

H̃(s) =
D−1∑

j=0

Ej(s)|Ej(s)〉〈Ej(s)|

H̃(0)
H̃(1)

H̃(s)
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The adiabatic theorem

Let          be a smoothly varying Hamiltonian for s∈[0,1]

                         where E0(s) < E1(s) ≤ E2(s) ≤ ∙∙∙ ≤ ED-1(s)

                         where T is the total run time

Suppose

Then as T→∞,

For large T,                            .  But how large must it be?

H̃(s)

H̃(s) =
D−1∑

j=0

Ej(s)|Ej(s)〉〈Ej(s)|

|〈E0(1)|ψ(T )〉|2 → 1

|ψ(0)〉 = |E0(0)〉

|ψ(T )〉 ≈ |E0(1)〉

H(0) = H̃(0) H(t) = H̃(t/T )

H(T ) = H̃(1)

H(t) = H̃(t/T )



Approximately adiabatic evolution

The total run time required for adiabaticity depends on the 
spectrum of the Hamiltonian.

Gap: ∆(s) = E1(s)− E0(s) , ∆ = min
s∈[0,1]

∆(s)
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Approximately adiabatic evolution

The total run time required for adiabaticity depends on the 
spectrum of the Hamiltonian.

Gap:

Rough estimates (see for example [Messiah 1961]) suggest the 
condition

Theorem. [Teufel 2003 + perturbation theory]

implies
∥∥|ψ(T )〉 − |E0(1)〉

∥∥ ≤ ε

T ! Γ2

∆2
, Γ2 = max

s∈[0,1]

∥∥[ ˙̃H(s)
]2∥∥

∆(s) = E1(s)− E0(s) , ∆ = min
s∈[0,1]

∆(s)

T ≥ 4
ε

[
‖ ˙̃H(0)‖
∆(0)2

+
‖ ˙̃H(1)‖
∆(1)2

+
∫ 1

0
ds

(
10
‖ ˙̃H‖2

∆3
+
‖ ¨̃H‖
∆

)]



Satisfiability problems

• Given h: {0,1}n → {0,1,2,...}, is there a value of z ∈ {0,1}n such 

that h(z)=0?

• Alternatively, what z minimizes h(z)?

• Example: 3SAT.

         where

(z1 ∨ z2 ∨ z̄3) ∧ · · · ∧ (z̄17 ∨ z37 ∨ z̄42)

h(z) =
∑

c

hc(z)

hc(z) =

{
0 clause c satisfied by z

1 otherwise



Adiabatic optimization

• Define a problem Hamiltonian whose ground state encodes the 
solution:

• Define a beginning Hamiltonian whose ground state is easy to 
create, for example

• Choose          to interpolate from HB to HP, for example

• Choose total run time T so the evolution is nearly adiabatic

H̃(s)

H̃(s) = (1− s)HB + sHP

HP =
∑

z∈{0,1}n

h(z)|z〉〈z|

HB = −
n∑

j=1

σ(j)
x

[Farhi et al. 2000]



Please mind the gap

Recall rough estimate:

For                                           ,

Crucial question: How big is Δ?

• ≥1/poly(n): Efficient quantum algorithm

• 1/exp(n): Inefficient quantum algorithm

T ! Γ2

∆2
, Γ2 = max

s∈[0,1]

∥∥[ ˙̃H(s)
]2∥∥

H̃(s) = (1− s)HB + sHP

‖ ˙̃H‖ = ‖HP −HB‖
≤ ‖HB‖+ ‖HP ‖





Unstructured search

Finding a needle in a haystack:
  (here h: {0,1,...,N-1}→{0,1})

h(z) =

{
0 z = w

1 z != w



Unstructured search

Finding a needle in a haystack:
  (here h: {0,1,...,N-1}→{0,1})

Query complexity (given black box for h) 

• Classically,           queries

• Quantumly,              queries are sufficient to find w 
[Grover 1996]

• This cannot be improved:              queries are necessary 
[Bennett et al. 1997]

Θ(N)

O(
√

N)

Ω(
√

N)

h(z) =

{
0 z = w

1 z != w

(|z〉|a〉 "→ |z〉|a⊕ h(z)〉)



Example: Adiabatic unstructured search
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Example: Adiabatic unstructured search

h(z) =

{
0 z = w

1 z != w
⇒ HP =

∑

z

h(z)|z〉〈z| = 1− |w〉〈w|

HB = 1 − |s〉〈s|

|s〉 =
1√
N

∑

z

|z〉Start in

H̃(s) = (1− s)HB

+ sHP

H̃(s) = [1− f(s)]HB

+ f(s) HP

Δ(s)
s(f)

[Roland, Cerf 2002; van Dam et al. 2001]



Example: Transverse Ising model

HB = −
n∑

j=1

σ(j)
x

H̃(s) = (1− s)HB + sHP

Diagonalize by fermionization (Jordan-Wigner transformation)

Result:               (at critical point of quantum phase transition)∆ ∝ 1
n

“agree”

with ground state

[Farhi et al. 2000]

|E0(s ≈ 0)〉 ≈ | + · · · +〉
|E0(s ≈ 1)〉 ≈ 1√

2
(|0 · · · 0〉+ |1 · · · 1〉)

|s〉 = |+ · · · +〉

=
∑

z∈{0,1}n

|z〉

HP =
∑

j∈Zn

1
2
(
1− σ(j)

z σ(j+1)
z

)



Example: The Fisher problem

[Fisher 1992; Reichardt 2004]

HB = −
n∑

j=1

σ(j)
x

Jj=1 or 2, chosen randomly

Then typically ∆ ≈ exp(−c
√

n)

HP =
∑

j∈Zn

Jj

2
(
1− σ(j)

z σ(j+1)
z

)



Example: The Fisher problem

[Fisher 1992; Reichardt 2004]

HB = −
n∑

j=1

σ(j)
x

Jj=1 or 2, chosen randomly

Then typically ∆ ≈ exp(−c
√

n)

|0000000〉
+|1111111〉

|++++++〉

|0000000〉
+|1111111〉

HP =
∑

j∈Zn

Jj

2
(
1− σ(j)

z σ(j+1)
z

)



Robustness of adiabatic QC

• Unitary control error

• Dephasing in instantaneous eigenstate basis

• Transitions between instantaneous eigenstates: thermal noise

Potential sources of error:



Unitary control error

Adiabatic algorithm depends on going smoothly from HB to HP, 
not on the particular path between them.

For smooth perturbations, we have no reason to expect the gap 
will become smaller rather than larger, even if the perturbation 
is not small (provided it is zero at the beginning and end of the 
evolution).

H(t)

HB
HP

H’(t)=H(t)+K(t)

[Childs, Farhi, Preskill 2001]



Error in the final Hamiltonian

K̃1(s) = C1 s
n∑

j=1

m̂j · !σ(j)

n = 7 n = 10



Error in the interpolation

n = 7 n = 10

K̃2(s) = C2 sin(πs)
n∑

j=1

m̂j · "σ(j)



K̃3(s) =
1
2

sin(C3πs)
n∑

j=1

m̂j · "σ(j)

High frequency error

n = 10n = 8

n = 8 n = 10



Thermal noise

Efficient adiabatic quantum computation requires that the 
minimum gap Δ is not too small.

Provided kB T << Δ, thermal fluctuations are unlikely to drive the 
system out of the ground state.  So a big gap not only allows for 
adiabaticity, but also provides protection against thermal noise!

Note: Here it is important that H is the actual Hamiltonian of 
the of the quantum computer, not just a simulated Hamiltonian.

[Childs, Farhi, Preskill 2001]



Markovian master equations

[Davies 1974]:
dρ

dt
= −i[HS , ρ] + λ2K!ρ

H = HS + HE + λV

Weak coupling limit: λ! 1

Product initial state: ρ(0)⊗ ρE

Kρ = −
∫ ∞

0
dx trE [U(−x)V U(x), [V, ρ⊗ ρE ]]

K!ρ = lim
x→∞

1
x

∫ x

0
dy U(−y){K[U(y)ρU(−y)]}U(y)

U(x) = e−ix(HS+HE)

where



Markovian master equation for thermal noise

Spins coupled to photons:

V =
∑

i

∫ ∞

0
dω [g(ω)aωσ(i)

+ + g∗(ω)a†ωσ(i)
− ]

ρE =
e−βHE

tr e−βHE

Then we find

dρ

dt
= − i[HS , ρ]

−
∑

i,a,b

[
Nba|gba|2〈a|σ(i)

− |b〉〈b|σ(i)
+ |a〉

+ (Nab + 1)|gab|2〈b|σ(i)
− |a〉〈a|σ(i)

+ |b〉
]

{
(|a〉〈a|ρ) + (ρ|a〉〈a|) − 2|b〉〈a|ρ|a〉〈b|

}

Nba =
1

eβ(ωb−ωa) − 1

gba =

{
λg(ωb − ωa) ωb > ωa

0 ωb ≤ ωa



Implications for adiabatic QC

Decoherence terms are suppressed by a factor

Nba =
1

eβ(ωb−ωa) − 1
≤ 1

eβ∆ − 1

which is very small provided Δ << 1/β.

(Note that this effect is difficult to see in simulations for two 
reasons:

• Simulating open quantum systems is very computationally 
intensive, so we can only consider small numbers of qubits.

• Cooling alone may be a good algorithm.)

Question: Is this good enough?  I.e., is T = 1/poly(n) reasonable?



Some questions

• Can we better understand what problems have efficient 
adiabatic optimization algorithms?

• When can we improve the performance by choosing different 
interpolation paths?

• Can we increase the robustness of adiabatic quantum 
computers by careful encoding?  In particular, can we make 
them robust against a small but n-independent temperature?


