Algorithmic advances in quantum simulation

Andrew Childs University of Maryland

Quantum simulation

"... nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Richard Feynman (1981)
Simulating physics with computers

Quantum simulation problem: Given a description of the Hamiltonian H, an evolution time t, and an initial state $|\psi(0)\rangle$, produce the final state $|\psi(t)\rangle$ (to within some error tolerance ϵ)

A classical computer cannot even represent the state efficiently.

A quantum computer cannot produce a complete description of the state.

But given succinct descriptions of

- the initial state (suitable for a quantum computer to prepare it efficiently) and
- a final measurement (say, measurements of the individual qubits in some basis), a quantum computer can efficiently answer questions that (apparently) a classical one cannot.

Computational quantum physics

chemical reactions (e.g., nitrogen fixation)

condensed matter physics/ properties of materials

nuclear/particle physics

Implementing quantum algorithms

$$A|x\rangle = |b\rangle$$

adiabatic optimization

exponential speedup by quantum walk

evaluating
Boolean
formulas

linear/
differential
equations,
convex
optimization

Product formula simulation

Suppose we want to simulate
$$H = \sum_{\ell=1}^L H_\ell$$

Combine individual simulations with the Lie product formula. E.g., with two terms:

$$\lim_{r \to \infty} \left(e^{-iAt/r} e^{-iBt/r} \right)^r = e^{-i(A+B)t}$$

Product formula simulation

Suppose we want to simulate
$$H = \sum_{\ell=1}^L H_\ell$$

Combine individual simulations with the Lie product formula. E.g., with two terms:

$$\lim_{r \to \infty} (e^{-iAt/r} e^{-iBt/r})^r = e^{-i(A+B)t}$$
$$(e^{-iAt/r} e^{-iBt/r})^r = e^{-i(A+B)t} + O(t^2/r)$$

To ensure error at most ϵ , take

$$r = O((\|H\|t)^2/\epsilon)$$

To get a better approximation, use higher-order formulas.

E.g., second order:

$$(e^{-iAt/2r}e^{-iBt}e^{-iAt/2r})^r = e^{-i(A+B)t} + O(t^3/r^2)$$

Systematic expansions to arbitrary order are known [Suzuki 92]

Using the 2kth order expansion, the number of exponentials required for an approximation with error at most ϵ is at most

$$5^{2k}L^2 \|H\|t\left(\frac{L\|H\|t}{\epsilon}\right)^{1/2k}$$

[Berry, Ahokas, Cleve, Sanders 07]

Simulating quantum mechanics in real time

No fast-forwarding theorem: Simulating Hamiltonian dynamics for time t requires $\Omega(t)$ gates.

[Berry, Ahokas, Cleve, Sanders 05]

Complexity of kth order product formula simulation is $O(5^{2k}t^{1+1/2k})$.

Can we give an algorithm with complexity precisely O(t)?

Pro: Systems simulate their own dynamics in real time!

Con: Mismatch between continuous-time dynamics and the discrete-time circuit model.

Hamiltonian simulation by quantum walk

Quantum walk corresponding to ${\cal H}$

Alternately reflect about span $\{|\psi_j\rangle\}_{j=1}^N$,

$$|\psi_j
angle:=|j
angle\otimes\left(
u\sum_{k=1}^N\sqrt{H_{jk}^*}|k
angle+
u_j|N+1
angle
ight)$$
,

and swap the two registers.

If H is sparse, this walk is easy to implement.

Spectral theorem: Each eigenvalue λ of H corresponds to two eigenvalues $\pm e^{\pm i \arcsin \lambda}$ of the walk operator (with eigenvectors closely related to those of H).

Simulation by phase estimation

$$|\lambda\rangle\mapsto |\lambda\rangle| \widetilde{\arcsin\lambda}\rangle$$
 (phase estimation)
$$\mapsto e^{-i\lambda t}|\lambda\rangle| \widetilde{\arcsin\lambda}\rangle$$
 $\mapsto e^{-i\lambda t}|\lambda\rangle$ (inverse phase est)

Theorem: $O(t/\sqrt{\epsilon})$ steps of this walk suffice to simulate H for time t with error at most ϵ .

High-precision simulation?

Can we improve the dependence on ϵ ?

Many approximate computations can be done with complexity $poly(log(1/\epsilon))$:

- •computing numerical constants (e.g., π)
- boosting a bounded-error subroutine
- Solovay-Kitaev circuit synthesis
- •and more...

Lower bound (based on the *unbounded-error* query complexity of parity): $\Omega(\frac{\log(1/\epsilon)}{\log\log(1/\epsilon)})$

Quantum walk simulation: $O(1/\sqrt{\epsilon})$

Product formulas (2kth order): $O(5^{2k}\epsilon^{-2k})$

Can we do better?

Hamiltonian simulation by linear combinations of unitaries

Main idea: Directly implement the series

$$e^{-iHt} = \sum_{k=0}^{\infty} \frac{(-iHt)^k}{k!}$$

$$\approx \sum_{k=0}^{K} \frac{(-iHt)^k}{k!}$$

Write $H=\sum_{\ell} \alpha_{\ell} H_{\ell}$ with H_{ℓ} unitary.

Then

$$\sum_{k=0}^{K} \sum_{\ell_1,\dots,\ell_k} \frac{(-it)^k}{k!} \alpha_{\ell_1} \cdots \alpha_{\ell_k} H_{\ell_1} \cdots H_{\ell_k}$$

is a linear combination of unitaries.

LCU Lemma: Given the ability to perform unitaries V_j with unit complexity, one can perform the operation $U = \sum_j \beta_j V_j$ with complexity $O(\sum_j |\beta_j|)$. Furthermore, if U is (nearly) unitary then this implementation can be made (nearly) deterministic.

Main ideas:

ullet Implement U with some amplitude:

$$|0\rangle|\psi\rangle \mapsto \sin\theta|0\rangle U|\psi\rangle + \cos\theta|\Phi\rangle$$

• Boost the amplitude for success by oblivious amplitude amplification

Query complexity: $O(t \frac{\log(t/\epsilon)}{\log\log(t/\epsilon)})$

Tradeoff between t and ϵ

Combining known lower bounds on the complexity of simulation as a function of t and ϵ gives

$$\Omega\Big(t + rac{\lograc{1}{\epsilon}}{\log\lograc{1}{\epsilon}}\Big)$$
 vs. upper bound of $O\Big(trac{\lograc{t}{\epsilon}}{\log\lograc{t}{\epsilon}}\Big)$

An alternative method for implementing a linear combination of unitary operations, quantum signal processing, gives an optimal tradeoff. [Low, Chuang 16, 17]

Main idea: Encode the eigenvalues of H in a two-dimensional subspace; use a carefully-chosen sequence of single-qubit rotations to manipulate those eigenvalues.

Computing the rotation angles is challenging, but can be done efficiently (classically) [Haah 18]. Recent approaches are faster [Dong, Meng, Whaley, Lin 20; Chao, Ding, Gilyén, Huang, Szegedy 20].

Quantum signal processing (and more general quantum singular value transformation) gives a powerful framework for designing other quantum algorithms [Gilyén, Su, Low, Wiebe 19].

Algorithm comparison

Algorithm	Query complexity	Gate complexity
Product formula, 1st order	$O(d^4t^2/\epsilon)$	$O(d^4t^2/\epsilon)$
Product formula, (2k)th order	$O(5^{2k}d^3t(\frac{dt}{\epsilon})^{1/2k})$	$O(5^{2k}d^3t(\frac{dt}{\epsilon})^{1/2k})$
Quantum walk	$O(dt/\sqrt{\epsilon})$	$O(dt/\sqrt{\epsilon})$
Fractional-query simulation		$O(d^2t \frac{\log^2(dt/\epsilon)}{\log\log(dt/\epsilon)})$
Taylor series	$O(d^2t \frac{\log(dt/\epsilon)}{\log\log(dt/\epsilon)})$	$O(d^2t \frac{\log^2(dt/\epsilon)}{\log\log(dt/\epsilon)})$
Linear combination of q. walk steps	$O(dt \frac{\log(dt/\epsilon)}{\log\log(dt/\epsilon)})$	$O(dt \frac{\log^{3.5}(dt/\epsilon)}{\log\log(dt/\epsilon)})$
Quantum signal processing	$O(dt + \frac{\log(1/\epsilon)}{\log\log(1/\epsilon)})$	$O(dt + \frac{\log(1/\epsilon)}{\log\log(1/\epsilon)})$

Toward practical quantum speedup

Important early goal: demonstrate quantum computational advantage

... but can we find a practical application of near-term devices?

Challenges

- Improve experimental systems
- Improve algorithms and their implementation, making the best use of available hardware

Goal: Produce concrete resource estimates for the simplest possible practical application of quantum computers

What to simulate?

Quantum chemistry? Spin systems!

Heisenberg model on a ring:
$$H=\sum_{j=1}^n \left(\vec{\sigma}_j\cdot\vec{\sigma}_{j+1}+h_j\sigma_j^z\right)$$
 $h_j\in[-h,h]$ uniformly random

This provides a model of self-thermalization and many-body localization.

The transition between thermalized and localized phases (as a function of h) is poorly understood. Most extensive numerical study: fewer than 25 spins. [Luitz, Laflorencie, Alet 15]

Could explore the transition by preparing a simple initial state, evolving, and performing a simple final measurement. Focus on the cost of simulating dynamics.

For concreteness: $h=1, \quad t=n, \quad \epsilon=10^{-3}, \quad 20 \leq n \leq 100$

Resource estimates

Comparison

Factoring a 1024-bit number [Kutin 06]

- •3132 qubits
- •5.7×10⁹ T gates

Simulating FeMoco [Reiher et al. 16]

- III qubits
- $1.0 \times 10^{14} T$ gates

Simulating 50 spins (segmented QSP)

- •67 qubits
- $\bullet 2.4 \times 10^9 T$ gates

Simulating 50 spins (PF6 empirical)

- •50 qubits
- 1.8×10⁸ T gates

[Childs, Maslov, Nam, Ross, Su 18]

Lattice Hamiltonians

We've focused on the complexity as a function of t (evolution time) and ϵ (precision). What about the dependence on system size?

Consider a system of n spins with nearest-neighbor interactions on a grid of fixed dimension. To simulate for constant time, best previous methods (TS, QSP, high-order PF) give:

- total number of gates: $O(n^2)$
- circuit depth (execution time with parallel gates): O(n)

Execution time should not have to be extensive!

Recent improvement: simulation with $\tilde{O}(n)$ gates, $\tilde{O}(1)$ depth (optimal!) [Haah, Hastings, Kothari, Low 18]

- Lieb-Robinson bound limits the speed of propagation
- Simulate small regions with negative-time evolutions to correct the boundaries

Local error analysis

In fact, product formulas achieve nearly the same complexity!

Main technique: local error analysis provides a convenient integral representation of the error [Descombes, Thalhammer 10]

Example (first order):

$$e^{-iBt}e^{-iAt} - e^{-i(A+B)t} = \int_0^t d\tau_1 \int_0^{\tau_1} d\tau_2 e^{-i(A+B)(t-\tau_1)} e^{i(\tau_2-\tau_1)B} [A, B] e^{-i\tau_2 B} e^{-i\tau_1 A}$$

For an n-site lattice system, letting A = even terms and B = odd terms, we find a simulation error of $O(nt^2)$, so $O(n^2t^2)$ gates suffice to simulate with constant accuracy (vs. $O(n^3t^2)$ with standard analysis).

Generalizations give similar (though more complicated!) expressions for the error in higher-order product formulas.

Complexity at order $p: O\left((nt)^{1+\frac{1}{p}}\right)$ (vs. $O\left(n(nt)^{1+\frac{1}{p}}\right)$ with standard analysis)

A theory of Trotter error

Local error analysis can be generalized to give tight bounds on the error of product formula approximations depending on commutators of the terms.

Theorem. A pth order product formula approximates the evolution of $H=\sum_{\gamma=1}^\Gamma H_\gamma$ with additive error $O(\alpha t^{p+1})$ where

$$\alpha := \sum_{\gamma_1, \dots, \gamma_{p+1}} ||[H_{\gamma_{p+1}}, [\cdots, [H_{\gamma_2}, H_{\gamma_1}] \cdots]]||.$$

Therefore $O(\Gamma \alpha^{1/p} t^{1+1/p})$ gates suffice to give a simulation with constant accuracy.

Applications:

- Tighter rigorous analysis of product formulation simulations (e.g., only off by factor of ~5 for 50-qubit Heisenberg model)
- Simpler simulation of plane-wave electronic structure, nearly matching interaction picture simulation
- \bullet Simulation of k-local Hamiltonians with better norm scaling than qubitization
- Faster simulation of power-law interactions
- Faster hybrid quantum/classical simulation of clustered Hamiltonians
- Tighter analysis of quantum Monte Carlo methods

Randomized simulation

Another approach to speeding up simulation: introduce classical randomness

Example:
$$e^{-i(A+B)t} = I - i(A+B)t - \frac{1}{2}(A^2 + AB + BA + B^2)t^2 + O(t^3)$$

$$e^{-iAt}e^{-iBt} = I - i(A+B)t - \frac{1}{2}(A^2 + 2AB + B^2)t^2 + O(t^3)$$

$$e^{-iBt}e^{-iAt} = I - i(A+B)t - \frac{1}{2}(A^2 + 2BA + B^2)t^2 + O(t^3)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\frac{1}{2}(e^{-iAt}e^{-iBt} + e^{-iBt}e^{-iAt}) = e^{-i(A+B)t} + O(t^3)$$
 [Zhang I2]

Mixing lemma [Campbell 17, Hastings 17]: Error of the average operation is linear in the average error, quadratic in the error of individual operations.

Randomly permuting terms in a higher-order product formula also improves the approximation (though not the order of the formula).

[Childs, Ostrander, Su 18]

It can also be advantageous to sample terms of the Hamiltonian nonuniformly. [Campbell 18] Gives faster simulations of strongly time-dependent Hamiltonians. [Berry, Childs, Su, Wang, Wiebe 20]

Outlook

Develop applications of quantum simulation to physics/chemistry

- Quantum chemistry
- Condensed matter
- Nuclear/particle physics

Improve quantum algorithms for Hamiltonian simulation

- Tighter error bounds for product formulas (improve local error analysis; go beyond the triangle inequality)
- Faster simulation methods for structured Hamiltonians
- More efficient synthesis of the QSP circuit

Explore prospects for near-term implementations

- Resource estimates under realistic hardware constraints
- Can we perform classically hard simulations without invoking fault tolerance?
- Noise-tolerant algorithms

Quantum simulation as an algorithmic tool

- Linear algebra in Hilbert space: linear systems, differential equations, convex optimization, ...
- Find new applications of quantum simulation