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Quantum simulation

“... nature isn’t classical, dammit,
and if you want to make a
simulation of nature, you'd better
make it quantum mechanical, and
by golly it’s a wonderful problem,
because it doesn’t look so easy.”

Richard Feynman (1981)
Simulating physics with computers

Quantum simulation problem: Given a
description of the Hamiltonian H, an
evolution time ¢, and an initial state |¢(0)),
produce the final state |¢/(t)) (to within
some error tolerance ¢)

A classical computer cannot even represent
the state efficiently.

A quantum computer cannot produce a
complete description of the state.

But given succinct descriptions of

* the initial state (suitable for a quantum
computer to prepare it efficiently) and

* a final measurement (say, measurements
of the individual qubits in some basis),

a quantum computer can efficiently answer

questions that (apparently) a classical one
cannot.



Computational quantum physics
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nuclear/particle

condensed matter physics/

chemical reactions
(e.g., nitrogen fixation)

physics

properties of materials



Implementing quantum algorithms
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Product formula simulation

L
Suppose we want to simulate f = Z Hy
/=1

Combine individual simulations with the Lie
product formula. E.g., with two terms:
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To ensure error at most ¢, take

r=O(([l1H][t)"/e)

To get a better approximation, use higher-order
formulas.

E.g., second order:
(e—iAt/Zre—iBte—iAt/2r)r __ e—i(A—I—B)t

+ O(t° /1)

Systematic expansions to arbitrary order are
known

Using the 2kth order expansion, the number of
exponentials required for an approximation
with error at most ¢ is at most

s 2 e (L)




Simulating quantum mechanics in real time

No fast-forwarding theorem: Simulating Hamiltonian dynamics for time t requires (2(¢) gates.
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Complexity of kth order product formula simulation is 0(5%151“/%).

Can we give an algorithm with complexity precisely O(t)?

Systems simulate their own dynamics in real time!
Con: Mismatch between continuous-time dynamics and the discrete-time circuit model.



Hamiltonian simulation by quantum walk

Quantum walk corresponding to

Alternately reflect about span{|¢;)};,,

;) = ( Z\/—k\k + | N + >)

and swap the two registers.

If H is sparse, this walk is easy to implement.

Spectral theorem: Each eigenvalue \ of H
corresponds to two eigenvalues +e=*2resin A
of the walk operator (with eigenvectors

closely related to those of H).

Simulation by phase estimation

IA) — |A)|arcsin \) (phase estimation)

— e “M|\)|arcsin A)

— e M) (inverse phase est)

Theorem: O(t/+/¢) steps of this walk suffice
to simulate H for time t with error at most e.



High-precision simulation!?
Can we improve the dependence on ¢!

Many approximate computations can be done with complexity poly(log(1/¢€)):

*computing numerical constants (e.g., )
*boosting a bounded-error subroutine
*Solovay-Kitaev circuit synthesis

*and more...
Lower bound (based on the unbounded-error query complexity of parity): Q(lolgolgo(gl(/le/)e))
o . o . . . . . . o
Quantum walk simulation: O(1/+/¢) Product formulas (2kth order): O(5%%¢2%)

Can we do better?



Hamiltonian simulation by linear combinations of unitaries

Main idea: Directly implement the series

it N (—iHt)"
¢ o Z I-!

k=0
Z —th

Write H = ) ,, apH, with H; unitary.

Then
Z > S ar o Hy, - Ho,
k=0£1,....0)

is a linear combination of unitaries.

LCU Lemma: Given the ability to perform
unitaries V; with unit complexity, one can
perform the operation U = ) . 3;V; with
complexity O()_ |5;]). Furthermore if Uis
(nearly) unitary then this implementation can
be made (nearly) deterministic.

Main ideas:

* Implement U with some amplitude:
0)|) — sin@|0)YU 1)) + cos 6|P)

* Boost the amplitude for success by oblivious
amplitude amplification

log(t/¢) )

log log(t/¢€)

Query complexity: O(t



Tradeoff between t and ¢

Combining known lower bounds on the complexity of simulation as a function of ¢ and € gives

loo L log &
() (t | 10;1go§ ;> vs. upper bound of O (75 10g01g0§ z)

An alternative method for implementing a linear combination of unitary operations, quantum
signal processing, gives an optimal tradeoff.

Main idea: Encode the eigenvalues of H in a two-dimensional subspace; use a carefully-chosen
sequence of single-qubit rotations to manipulate those eigenvalues.

Computing the rotation angles is challenging, but can be done efficiently (classically)
Recent approaches are faster

Quantum signal processing (and more general quantum singular value transformation) gives a
powerful framework for designing other quantum algorithms



Algorithm comparison

Algorithm

Query complexity

t: evolution time
e: allowed error
d: sparsity

Gate complexity

Product formula, | st order
Product formula, (2k)th order
Quantum walk

Fractional-query simulation

Taylor series

Linear combination of g. walk steps

Quantum signal processing
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Toward practical quantum speedup
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Important early goal: demonstrate quantum computational advantage
... but can we find a practical application of near-term devices!

Challenges

* Improve experimental systems
* Improve algorithms and their implementation, making the best use of available hardware

Goal: Produce concrete resource estimates for the simplest possible practical application of
quantum computers



What to simulate!?
Quantum-chemistryd Spin systems!

Heisenberg model on a ringg H = Z(&’j - 041 + hjaf) h; € |—h, k] uniformly random
j=1

This provides a model of self-thermalization and many-body localization.

The transition between thermalized and localized phases (as a function of h) is poorly
understood. Most extensive numerical study: fewer than 25 spins.

Could explore the transition by preparing a simple initial state, evolving, and performing a simple
final measurement. Focus on the cost of simulating dynamics.

For concreteness: h=1, t=n, e=10"° 20<n <100



Resource estimates

CNOT gate count (Clifford+R,)
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Comparison
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Factoring a 1024-bit number [Kutin 06]
*3132 qubits
*5.7%x|0% T gates

*| || qubits
*|.0x|04 T gates

Simulating 50 spins (segmented QSP)
*6/ qubits
*2.4x |07 T gates

Simulating 50 spins (PF6 empirical)
*50 qubits
*|.8x|08 T gates



Lattice Hamiltonians

We've focused on the complexity as a function of ¢ (evolution time) and € (precision).
What about the dependence on system size!

Consider a system of 1 spins with nearest-neighbor interactions on a grid of fixed dimension. To
simulate for constant time, best previous methods (TS, QSP, high-order PF) give:

e total number of gates: O(n?)
e circuit depth (execution time with parallel gates): O(n)

Execution time should not have to be extensive! — =~ siteindex

Recent improvement: simulation with O(n) gates, O(1) depth e

(OPtimaI!) ? ? ? ? ? ? ? ? ? L ..e—.lt.I_IY.Ué I s e ey g

* Lieb-Robinson bound limits the speed of propagation e 1 -

e Simulate small regions with negative-time evolutions to L e
Correcttheboundaries ——



Local error analysis

In fact, product formulas achieve nearly the same complexity!

Main technique: local error analysis provides a convenient integral representation of the error

Example (first order):

t T1
e—the—zAt B e—z(A—I—B)t — /dTl / drs e—Z(A—I—B)(t—Tl)ez(TQ—Tl)B[A, B]e—ZTQBe—’L’TlA
0 0

For an n-site lattice system, letting A =even terms and B =odd terms, we find a simulation
error of O(nt?),so O(n?t?) gates suffice to simulate with constant accuracy (vs. O(n3t2) with

standard analysis).

Generalizations give similar (though more complicated!) expressions for the error in higher-
order product formulas.

Complexity at order p: O((nt)H%) (vs. O(n(nt)H%) with standard analysis)



A theory of Trotter error

Local error analysis can be generalized to give Applications:
tight bounds on the error of product formula

* Tighter rigorous analysis of product
approximations depending on commutators of

formulation simulations (e.g., only off by

the terms. factor of ~5 for 50-qubit Heisenberg model)
Theorem. A pth order product formula * Simpler simulation of pl.ane.-wave e.lectronic
approximates the evolution of H = Z H, sFructure., near!y matching interaction
with additive error O(« tpH) where picture simulation
* Simulation of k-local Hamiltonians with
Z |[Hopons [ [Hops Ho ] better norm scaling than qubitization

-y Yp+1 . . . .
* Faster simulation of power-law interactions

1/ 141/p : : : : .
Therefore O(T'a'/Pt'+1/7) gates suffice to give « Faster hybrid quantum/classical simulation of
a simulation with constant accuracy. clustered Hamiltonians

* Tighter analysis of quantum Monte Carlo
methods


https://ter.ps/trottertalk

Randomized simulation

Another approach to speeding up simulation: introduce classical randomness

Example: e~ H(A+B)t _ (A + AB + BA+ B)t*
e—iAte—iBt _ %(AQ + 2AB + BQ)tZ
e—iBte—iAt _ %(AQ + 2BA + BQ)tZ

Y

%(6—iAt€—iBt 4 e—iBte—iAt) _ e—i(A+B)t 4 O(tS)

Mixing lemma : Error of the average operation is linear in the average
error, quadratic in the error of individual operations.

Randomly permuting terms in a higher-order product formula also improves the approximation
(though not the order of the formula).

It can also be advantageous to sample terms of the Hamiltonian nonuniformly.
Gives faster simulations of strongly time-dependent Hamiltonians.



Outlook

Develop applications of quantum
simulation to physics/chemistry

* Quantum chemistry
e Condensed matter

* Nuclear/particle physics

Improve quantum algorithms for
Hamiltonian simulation

* Tighter error bounds for product formulas (improve
local error analysis; go beyond the triangle inequality)

* Faster simulation methods for structured
Hamiltonians

* More efficient synthesis of the QSP circuit

Explore prospects for near-term
implementations

e Resource estimates under realistic hardware constraints

* Can we perform classically hard simulations without
invoking fault tolerance?

* Noise-tolerant algorithms

Quantum simulation as an algorithmic tool

* Linear algebra in Hilbert space: linear systems,
differential equations, convex optimization, ...

* Find new applications of quantum simulation



