
High-precision
quantum algorithms

Andrew Childs

What can we do with a quantum computer?
• Factoring

• Many problems with polynomial speedup (combinatorial search,
collision finding, graph properties, Boolean formula evaluation, …)

• Linear systems

• Simulating quantum mechanics

• And more: computing discrete logarithms, decomposing abelian
groups, computing properties of algebraic number fields,
approximating Gauss sums, counting points on algebraic curves,
approximating topological invariants, finding isogenies between
elliptic curves…

Quantum algorithm zoo: math.nist.gov/quantum/zoo/

When can I have one?

Several large experimental groups (Maryland/IonQ, UCSB/Google,
IBM, Delft/Intel, …) have serious efforts underway to consider scaling
up to a larger device—a major engineering challenge!

State of the art: well-characterized qubits with well-controlled
interactions and long coherence times.

Leading candidate systems:

trapped ions superconducting qubits

Why else should you care?
• Studying the power of quantum computers addresses a basic

scientific question: what can be computed efficiently in the real
world?

• To design cryptosystems that are secure against quantum attacks, we
have to understand what kinds of problems quantum computers can
solve.

• Ideas from quantum information provide new tools for thinking
about physics (e.g., the black hole information loss problem) and
computer science (e.g., quantum algorithm for evaluating Boolean
formulas → upper bound on polynomial threshold function degree
→ new subexponential (classical!) algorithms in computational
learning theory)

“… nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)

Why simulate quantum mechanics?

Implementing quantum algorithms
• continuous-time quantum walk (e.g., for formula evaluation)
• adiabatic quantum computation (e.g., for optimization)
• linear/differential equations

Computational chemistry/physics
• chemical reactions (e.g., nitrogen fixation)
• properties of materials

Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

A classical computer cannot even represent the state efficiently

A quantum computer cannot produce a complete description of the
state, but by performing measurements on the state, it can answer
questions that (apparently) a classical computer cannot

i
d

dt
| (t)i = H| (t)i

| (t)i = e�iHt| (0)i

)

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time t, and an initial state , produce
the final state (to within some error tolerance ²)

| (0)i
| (t)i

Local and sparse Hamiltonians

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries per row, d = poly(log N)
(where H is N £ N)

In any given row, the location of the jth nonzero entry and its
value can be computed efficiently (or is given by a black box)

Note: A k-local Hamiltonian with m terms is d-sparse with d = 2k m

Local Hamiltonians [Lloyd 96]

Hjwhere each acts on k = O(1) qubitsH =
Pm

j=1 Hj

High-precision computing
Suppose we want to perform a computation that must be accurate to
within ². What is the cost as a function of ²?

Computing n digits of ¼: O(n poly(log n))

→ precision ² in O(log(1/²) poly(log log(1/²))

Boosting success probability of a randomized algorithm:
Suppose we can solve a decision problem with success probability
bounded away from 1/2 (say, 51%)
To get higher accuracy, repeat many times and take a majority vote
For error ², need O(log(1/²)) repetitions

Quantum circuit synthesis: cost of implementing a one-qubit gate with
precision ² is poly(log(1/²)) [Solovay-Kitaev]

What about quantum simulation?

Product formula simulation

Suppose we want to simulate H =
Pm

i=1 Hi

[Lloyd 96]

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

Combine individual simulations with the Lie product formula:

lim
r!1

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t

To ensure error at most ², take r = O
�
(kHkt)2/✏

�

High-order product formulas

Systematic expansions to arbitrary order are known [Suzuki 92]

To get a better approximation, use higher-order formulas:

..
.

[Berry, Ahokas, Cleve, Sanders 07]

Using the kth order expansion, the number of exponentials required
for an approximation with error at most ² is at most

52km2kHkt
⇣

mkHkt
✏

⌘1/2k

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

�
e�iAt/2re�iBt/re�iAt/2r

�r
= e�i(A+B)t +O(t3/r2)

High-precision simulation
We have recently developed a novel approach that directly
implements the Taylor series of the evolution operator

• Implementing linear combinations of unitary operations
• Oblivious amplitude amplification

New tools:

Dependence on simulation error is poly(log(1/²)), an exponential
improvement over previous work

Algorithms are also simpler, with less overhead

[Berry, Childs, Cleve, Kothari, Somma STOC 14 & PRL 15]

Linear combinations of unitaries

LCU Lemma: Given the ability to perform unitaries Vj with unit
complexity, one can perform the operation with
complexity . Furthermore, if U is (nearly) unitary then this
implementation can be made (nearly) deterministic.

U =
P

j �jVj

O(
P

j |�j |)

Main ideas:

• Boost the amplitude for success by oblivious amplitude amplification

• Using controlled-Vj operations, implement U with some amplitude:

|0i| i 7! sin ✓|0iU | i+ cos ✓|�i

Implementing U with some amplitude

U =
X

j

�jVj (WLOG)�j > 0

|0i

| i

9
=

;
1

s
|0iU | i+

r
1� 1

s2
|�i

h0|�i = 0with

B B†

Vj

j

Ancilla state: B|0i = 1p
s

X

j

p
�j |ji s :=

X

j

�j

Oblivious amplitude amplification

To perform U with amplitude close to 1: use amplitude amplification?

Suppose W implements U with amplitude sin µ:

With this oblivious amplitude amplification, we can perform the ideal
evolution with only about 1/sin µ steps.

Using ideas from [Marriott, Watrous 05], we can show that a -
independent reflection suffices to do effective amplitude amplification.

| i

But the input state is unknown!

We also give a robust version that works even when U is not exactly
unitary.

W |0i| i = sin ✓|0iU | i+ cos ✓|�i

Simulating the Taylor series

e�iHt =
1X

k=0

(�iHt)k

k!

⇡
KX

k=0

(�iHt)k

k!

Taylor series of the dynamics generated by H:

Write where each is unitaryH =
P

` ↵`H` H`

Then e�iHt ⇡
KX

k=0

X

`1,...,lk

(�it)k

k!
↵`1 · · ·↵`k H`1 · · ·H`k

is a linear combination of unitaries

Why poly(log(1/²))?

Higher-order formulas exist, but they only improve the power of ²

Lowest-order product formula:

(e�iA/re�iB/r)r = e�i(A+B) +O(1/r)

so we must take r = O(1/²) to achieve error at most ²

The approximation e�iHt ⇡
KX

k=0

(�iHt)k

k!
has error ² provided

K = O

✓
log(1/✏)

log log(1/✏)

◆

Lower bounds
No-fast-forwarding theorem [BACS 07]: ⌦(t)

New lower bound: ⌦(log(1/✏)
log log(1/✏))

Main idea:
• Query complexity of parity is even for unbounded error.
• The same Hamiltonian as above computes parity with unbounded

error by running for any positive time. Running for constant time
gives the parity with probability £(1/n!).

⌦(n)

Main idea:
• Query complexity of computing the parity of n bits is .
• There is a Hamiltonian that can compute parity by running for

time O(n).

⌦(n)

0 0 1 0 1 1 0

Linear combination of quantum walk steps

Another approach:
• Define a quantum walk related to the Hamiltonian
• Express the evolution operator as a linear combination of walk steps
• Implement this with the LCU Lemma

Query complexity: O
✓
⌧

log(⌧/✏)

log log(⌧/✏)

◆

⌧ := dkHk
max

t

[Berry, Childs, Kothari FOCS 15]

Query complexity of the Taylor series approach is quadratic in d.

Suppose the Hamiltonian is d-sparse.

Tradeoff between t and ²
Combining known lower bounds on the complexity of simulation as a
function of t and ² gives

⌦
⇣
t+

log

1
✏

log log

1
✏

⌘
O
⇣
t

log

t
✏

log log

t
✏

⌘
vs. upper bound of

Very recent work [Low, Chuang 16], using an alternative method for
implementing linear combinations of quantum walk steps, gives an
optimal tradeoff.

Quantum algorithm for linear systems
Consider an linear system .Ax = b

Then we can prepare a quantum state ²-close to
in time [Harrow, Hassidim, Lloyd 09].

|xi / A

�1|bi
poly(logN, 1/✏,)

Possible applications: radar scattering cross sections [Clader, Jacobs,
Sprouse 13], effective resistance [Wang 13], machine learning (?), …

Classical (or quantum!) algorithms need time poly(N) to determine x.

|bi

What if we change the model?
•A is sparse (at most poly(log N) nonzeros in any row or column)

and well-conditioned (condition number ∙)
• We have a black box that specifies the nonzero entries in any given

row or column
• Can efficiently prepare a quantum state

N ⇥N

High-precision quantum linear systems

[Childs, Kothari, Somma 16]

Main idea: Write and use the LCU Lemma.1
A ⇡

P
t cte

�iAt

(or an analogous Chebyshev expansion, using a quantum walk related to A)

-1.0 -0.5 0.5 1.0

-10

-5

5

10

only need a good approximation
[�1,� 1

] [[1 , 1]over

We give an improved quantum algorithm for linear systems with
running time , an exponential improvement.poly(logN, log(1/✏),)

Quantum algorithms for ODEs
Consider a system of differential equations where A is
 . Suppose we can prepare states proportional to x(0) and b
and would like to prepare a state proportional to x(T).

dx
dt = Ax+ b

N ⇥N

Complexity of a quantum algorithm based on linear multistep
methods is poly(1/²) [Berry 14], even using a quantum linear systems
algorithm with complexity poly(log(1/²)).

Linear multistep methods approximate a system of ODEs by a system
of linear equations.

x(t+ ✏) ⇡ x(t) + ✏

�
Ax(t) + b

�

(Note: To have an efficient algorithm, we must avoid regions of
exponential growth or decay, since postselection is computationally
intractable.)

High-precision quantum ODEs
Can we reduce the complexity to poly(log(1/²))?

Directly implementing exp(At) as a linear combination of
unitaries does not seem to work.

[Berry, Childs, Ostrander, Wang 17]

Instead we encode this series into a linear system:
0

BBBBBBBBBBBBBBBB@

I

�A✏ I

�A✏/2 I

�A✏/3 I

�I �I �I �I I

�A✏ I

�A✏/2 I

�A✏/3 I

�I �I �I �I I

�I I

�I I

1

CCCCCCCCCCCCCCCCA

|xi =

0

BBBBBBBBBBBBBBBB@

|xini
✏|bi
0
0
0

✏|bi
0
0
0
0
0

1

CCCCCCCCCCCCCCCCA

With a careful analysis of this approach, we give an algorithm with
complexity poly(log(1/²)).

Open questions
Applications beyond simulating physics

• Algorithms: Scattering cross sections [Clader, Jabobs, Sprouse 13],
effective resistance [Wang 13], machine learning?

• Quantum circuit synthesis: “Repeat-until-success” [Paetznick, Svore
14], [Wiebe, Roetteler 14]

• Complexity theory: PreciseQMA=PSPACE [Fefferman, Lin 16]
• More?

Simulations with small quantum computers

Time-dependent ODEs

Time-precision tradeoff for ODEs

High-precision algorithms for PDEs

