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LECTURE 4: Hallgren’s algorithm for solving Pell’s equation

In this and the next lecture, we will explore a final application of the quantum Fourier transform
over abelian groups, namely an algorithm discovered by Hallgren for solving a quadratic diophantine
equation known as Pell’s equation. This algorithm is interesting for at least two reasons. First, it
gives an application of quantum algorithms to a new area of mathematics, algebraic number theory
(and indeed, subsequent work has shown that quantum computers can also efficiently solve other
problems in this area). Second, it extends the solution of the abelian HSP to the case of an infinite
group, namely the real numbers.

There are two main parts to the quantum algorithm for solving Pell’s equation. First, we define
a periodic function whose period encodes the solution to the problem. To define this function,
we must introduce some notions from algebraic number theory. Second, we show how to find the
period of a black-box function defined over the real numbers even when the period is irrational.

Pell’s equation Given a squarefree integer d (i.e., an integer not divisible by any perfect square),
the Diophantine equation

x2 − dy2 = 1 (1)

is known as Pell’s equation. This appellation provides a nice example of Stigler’s Law of Eponomy
in action, as Pell had nothing whatsoever to do with the equation. The misattribution is apparently
due to Euler, who confused Pell with a contemporary, Brouncker, who had actually worked on the
equation. In fact, Pell’s equation was studied in ancient India, where (inefficient) methods for
solving it were developed about a century before Pell. (Indeed, Lenstra suggests that most likely,
Pell was named after the equation.)

The left hand side of Pell’s equation can be factored as

x2 − dy2 = (x + y
√

d)(x− y
√

d). (2)

Note that a solution of the equation (x, y) ∈ Z2 can be encoded uniquely as the real number x+y
√

d:
since

√
d is irrational, x + y

√
d = w + z

√
d if and only if (x, y) = (w, z). (Proof: x−w

z−y =
√

d.) Thus
we can also refer to the number x + y

√
d as a solution of Pell’s equation.

There is clearly no loss of generality in restricting our attention to positive solutions of the
equation, namely those for which x > 0 and y > 0. It is straightforward to show that if x1 + y1

√
d

is a positive solution, then (x1 + y1

√
d)n is also a positive solution for any n ∈ N. In fact, one

can show that all positive solutions are obtained in this way, where x1 + y1

√
d is the fundamental

solution, the smallest positive solution of the equation. Thus, even though Pell’s equation has an
infinite number of solutions, we can in a sense find them all by finding the fundamental solution.

Some examples of fundamental solutions for various values of d are shown in the following table.
Notice that while the size of the fundamental solution generally increases with increasing d, the
behavior is far from monotonic: for example, x1 has 44 decimal digits when d = 6009, but only
11 decimal digits when d = 6013. But it is possible for the solutions to be very large—the size of
x1 + y1

√
d is only upper bounded by 2O(

√
d log d). Thus it is not even possible to write down the

fundamental solution with poly(log d) bits.

1



d x1 y1

2 3 2
3 2 1
5 9 4
...
13 649 180
14 15 4
...
6009 131634010632725315892594469510599473884013975 1698114661157803451688949237883146576681644

≈ 1.3× 1044 ≈ 1.6× 1042

6013 40929908599 527831340
...

To get around this difficulty, we define the regulator of the fundamental solution,

R := ln(x1 + y1

√
d). (3)

Since R = O(
√

d log d), we can write down dRe using O(log d) bits. Now R is an irrational number,
so determining only its integer part may seem unsatisfactory. But in fact, given the integer part of R,
there is a classical algorithm to compute n digits of R in time poly(log d, n). Thus it suffices to give
an algorithm that finds the integer part of R in time poly(log d). The best known classical algorithm
for this problem takes time 2O(

√
log d log log d) assuming the generalized Riemann hypothesis, or time

O(d1/4 poly(log d)) with no such assumptions.

A bit of algebraic number theory As mentioned above, there are two main parts to the
quantum algorithm for Pell’s equation: first, the definition of a periodic function over the reals
whose period encodes the regulator, and second, a solution of the period-finding problem in the
case where the period might be irrational. We will start by showing how to define the periodic
function. To do this, we need to introduce some concepts from algebraic number theory.

Given a squarefree positive integer d, the quadratic number field Q[
√

d] is defined as

Q[
√

d] := {x + y
√

d : x, y ∈ Q}. (4)

You can easily check that this is a field with the usual addition and multiplication operations. We
can also define an operation called conjugation, defined by

x + y
√

d := x− y
√

d. (5)

You can easily check that conjugation of elements of Q[
√

d] has many of the same properties as
complex conjugation, and indeed Q[

√
d] behaves in many respects like C, with

√
d taking the place

of the imaginary unit i =
√
−1. Defining the ring Z[

√
d] ⊂ Q[

√
d] as

Z[
√

d] := {x + y
√

d : x, y ∈ Z}, (6)

we see that solutions of Pell’s equation correspond to ξ ∈ Z[
√

d] satisfying ξξ̄ = 1.

Notice that any solution of Pell’s equation, ξ ∈ Z[
√

d], has the property that its multiplicative
inverse over Q[

√
d], ξ−1 = ξ̄/ξξ̄ = ξ̄, is also an element of Z[

√
d]. In general, an element of a ring

with an inverse that is also an element of the ring is called a unit. In Z, the only units are ±1, but
in other rings it is possible to have more units. It should not be a surprise that the set of units of
Z[
√

d] is closely related to the set of solutions of Pell’s equation. Specifically, we have
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Proposition. ξ = x + y
√

d is a unit in Z[
√

d] if and only if ξξ̄ = x2 − dy2 = ±1.

Proof. We have

ξ−1 =
ξ̄

ξξ̄
=

x− y
√

d

x2 − dy2
. (7)

If x2 − dy2 = ±1, then clearly ξ−1 ∈ Z[
√

d]. Conversely, if ξ−1 ∈ Z[
√

d], then so is

ξ−1ξ−1 =
(x− y

√
d)(x + y

√
d)

(x2 − dy2)2
=

1
x2 − dy2

, (8)

which shows that x2 − dy2 = ±1.

It is not hard to show that the set of all units in Z[k] is given by {±εn
1 : n ∈ Z}, where ε1 is the

fundamental unit, the smallest unit greater than 1. The proof is essentially the same as the proof
that all solutions of Pell’s equation are powers of the fundamental solution.

If we can find ε1, then it is straightforward to find all the solutions of Pell’s equation. If
ε1 = x + y

√
d has x2 − dy2 = +1, then the units are precisely the solutions of Pell’s equation. On

the other hand, if x2 − dy2 = −1, then ε2 := ε21 satisfies ε2ε̄2 = ε21ε̄
2
1 = (−1)2 = 1; in this case the

solutions of Pell’s equation are {±ε2n
1 : n ∈ Z}. Thus our goal is to find ε1. Just as in our discussion

of the solutions to Pell’s equation, ε1 is too large to write down, so instead we will compute the
regulator of the fundamental unit, R := ln ε1.

To define a periodic function that encodes R, we need to introduce the concept of an ideal of
a ring (and more specifically, a principal ideal). For any ring R, we say that I ⊆ R is an ideal if it
is closed under integer linear combinations and under multiplication by arbitrary elements of of R.
For example, 2Z is an ideal of Z.

We say that an ideal is principal if it is generated by a single element of the ring, i.e., if it is
of the form αR for some α ∈ R. In the example above, 2Z is a principal ideal. (Not all ideals are
principal; for example, consider xZ[x, y] + yZ[x, y] ⊆ Z[x, y], an ideal in the ring of polynomials in
x, y with integer coefficients.)

A periodic function for the units of Z[
√

d] Principal ideals are useful because the function
mapping the ring element ξ ∈ Z[

√
d] to the principal ideal ξR is periodic, and its periodicity

corresponds to the units of Z[
√

d]. Specifically, we have

Proposition. ξZ[
√

d] = ζZ[
√

d] if and only if ξ = ζε where ε is a unit in Z[
√

d].

Proof. If ε is a unit, then ξZ[
√

d] = ζεZ[
√

d] = ζZ[
√

d] since εZ[
√

d] = Z[
√

d] by the definition of a
unit. Conversely, suppose that ξZ[

√
d] = ζZ[

√
d]. Since 1 ∈ Z[

√
d], ξ ∈ ξZ[

√
d] = ζZ[

√
d], so there

is some µ ∈ Z[
√

d] satisfying ξ = ζµ. Similarly, ζ ∈ ζZ[
√

d] = ξZ[
√

d], so there is some ν ∈ Z[
√

d]
satisfying ζ = ξν. Thus we have ξ = ζµ = ξνµ. This shows that νµ = 1, so µ and ν are units
(indeed, ν = µ−1).

Thus the function g(ξ) = ξZ[
√

d] is (multiplicatively) periodic with period ε1. In other words,
letting ξ = ez, the function

h(z) = ezZ[
√

d] (9)

is (additively) periodic with period R. However, we cannot simply use this function since it is not
possible to succinctly represent the values it takes.
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To define a more suitable periodic function, Hallgren uses the concept of a reduced ideal, and a
way of measuring the distance between principal ideals. The definition of a reduced ideal is rather
technical, and we will not go into the details. For our purposes, it is sufficient to note that there
are only finitely many reduced principal ideals, and in fact only O(d) of them, so we can represent
a reduced principal ideal using poly(log d) bits.

Hallgren also uses a function that measures the distance of any principal ideal from the unit
ideal, Z[

√
d]. This function is defined as

δ(ξZ[
√

d]) := ln
∣∣∣∣ξξ̄

∣∣∣∣ mod R. (10)

Notice that the unit ideal has distance δ(1Z[
√

d]) = ln |1/1| mod R = 0, as required. Furthermore,
the distance function does not depend on which generator we choose to represent an ideal, since
(by the above proposition) two equivalent ideals have generators that differ by some unit ε, and

δ(εZ[
√

d]) = ln
∣∣∣ε
ε̄

∣∣∣ mod R = ln
∣∣∣ ε

ε−1

∣∣∣ mod R = ln |ε2| mod R = 2 ln |ε| mod R = 0. (11)

With this definition of distance, one can show that the reduced ideals are not too far apart, so that
there is a reduced ideal close to any non-reduced ideal.

The periodic function used in Hallgren’s algorithm, f(z), is defined as the reduced principal
ideal whose distance from the unit ideal is maximal among all reduced principal ideals of distance
at most z (together with the distance from z, to ensure that the function is one-to-one within each
period). In other words, we select the reduced principal ideal “to the left of or at z”.

This function is periodic with period R, and can be computed in time poly(log d). Thus it
remains to show how to perform period finding when the period of the function might be irrational.
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