
Quantum algorithms (CO 781, Winter 2008)

Prof. Andrew Childs, University of Waterloo

LECTURE 12: Simulating Hamiltonian dynamics

So far, we have described quantum algorithms using the most common model of quantum com-
putation, the quantum circuit model. In this model, an algorithm corresponds to a sequence of
local (one- and two-qubit) unitary gates, and complexity is measured by the total number of gates.
However, we defined a continuous-time quantum walk as the solution of a differential equation, the
Schrödinger equation. Even when the Hamiltonian acts locally on a graph, this will generally give
a unitary operator that acts nontrivially on all the qubits used to represent the vertices. In this
lecture we will see consider simulating such dynamics in the quantum circuit model. This gives us
a way to quantify the complexity of the dynamics generated by a particular Hamiltonian.

Of course, real quantum systems naturally evolve continuously in time according to some Hamil-
tonian, so we could also imagine defining a notion of efficient computation directly in terms of the
Hamiltonian. However, it is often more convenient to work with the circuit model, especially in the
context of query complexity.

Efficient simulation We will say that a Hamiltonian H acting on n qubits can be efficiently
simulated if for any t > 0, ε > 0 there is a quantum circuit U consisting of poly(n, t, 1/ε) gates such
that ‖U − e−iHt‖ < ε. We would like to understand the conditions under which a Hamiltonian can
be efficiently simulated. Our strategy will be to start from simple Hamiltonians that can be easily
simulated, and define ways of combining the known simulations to give more complicated ones.

There are a few cases where a Hamiltonian can obviously simulated efficiently. For example,
this is the case if H only acts nontrivially on a constant number of qubits, simply because any
unitary evolution on a constant number of qubits can be approximated using a constant number
of one- and two-qubit gates.

Note that since we require a simulation for an arbitrary time t (with poly(t) gates), we can
rescale the evolution by any polynomial factor: if H can be efficiently simulated, then so can cH
for any c = poly(n). This holds even if c < 0, since any efficient simulation is expressed in terms of
quantum gates, and can simply be run in reverse.

In addition, we can rotate the basis in which a Hamiltonian is applied using any unitary trans-
formation with an efficient decomposition into basic gates. In other words, if H can be efficiently
simulated and the unitary transformation U can be efficiently implemented, then UHU † can be
efficiently simulated. This follows from the simple identity

e−iUHU
†t = Ue−iHtU †. (1)

Another simple but useful trick for simulating Hamiltonians is the following. Suppose H is
diagonal in the computational basis, and any diagonal element d(a) = 〈a|H|a〉 can be computed
efficiently. Suppose for simplicity that the diagonal element d(a) is expressed as a binary number
with k bits of precision. Then H can be simulated efficiently using the following circuit:

1

|0〉

|0〉

|0〉

ppp

|a〉 s

d

e−2k−1it|1〉〈1|

e−2it|1〉〈1|

e−it|1〉〈1|

ppp

s

d

|0〉

|0〉

|0〉

ppp

e−id(a)t|a〉

For any input computational basis state |a〉, together with a k-qubit ancilla state initialized to |0〉,
this circuit perform the sequence of operations

|a, 0〉 7→ |a, d(a)〉 (2)

7→ e−itd(a)|a, d(a)〉 (3)

7→ e−itd(a)|a, 0〉 (4)

= e−iHt|a〉|0〉. (5)

So by linearity, the circuit procedure simulates H for time t on an arbitrary input.

Note that if we combine this simulation with the previous one, we have a way to simulate any
Hamiltonian that can be efficiently diagonalized, and whose eigenvalues can be efficiently computed.

Adding Hamiltonians Given two or more simulable Hamiltonians, we can produce further
simulable Hamiltonians from them. In particular, if H1 and H2 can be efficiently simulated, then
H1 + H2 can also be efficiently simulated. If the two Hamiltonians commute, then this is trivial,
since e−iH1te−iH2t = e−i(H1+H2)t. However, in the general case where the two Hamiltonians do not
commute, we can still simulate their sum as a consequence of the Lie product formula

e−i(H1+H2)t = lim
m→∞

(
e−iH1t/me−iH2t/m

)m
. (6)

A simulation using a finite number of steps can be achieved by truncating this expression to a finite
number of terms, which introduces some amount of error that must be kept small. In particular, if
we want to have ∥∥∥(e−iH1t/me−iH2t/m

)m
− e−i(H1+H2)t

∥∥∥ ≤ ε, (7)

it suffices to take m = O((νt)2/ε), where ν := max{‖H1‖, ‖H2‖}. (The requirement that H1 and
H2 be efficiently simulable means that ν can be at most poly(n).)

It is somewhat unappealing that to simulate an evolution for time t, we need a number of steps
proportional to t2. Fortunately, the situation can be improved if we use higher-order approximations
of (6). For example, one can show that∥∥∥(e−iH1t/2me−iH2t/me−iH1t/2m

)m
− e−i(H1+H2)t

∥∥∥ ≤ ε (8)

with a smaller value of m. In fact, by using even higher-order approximations, it is possible to
show that H1 + H2 can be simulated for time t with only O(t1+δ), for any fixed δ > 0, no matter
how small.

2

A Hamiltonian that is a sum of polynomially many terms can be efficiently simulated by com-
posing the simulation of two terms, or by directly using an approximation to the identity

e−i(H1+···+Hk)t = lim
m→∞

(
e−iH1t/m · · · e−iHkt/m

)m
. (9)

Another way of combining Hamiltonians comes from commutation: if H1 and H2 can be ef-
ficiently simulated, then i[H1, H2] can be efficiently simulated. This rule is a consequence of the
identity

e[H1,H2]t = lim
m→∞

(
e−iH1

√
t/me−iH2

√
t/meiH1

√
t/meiH2

√
t/m
)m

, (10)

which can again be approximated with a finite number of terms. However, I don’t know of any
situation in which such a simulation is useful.

Sparse Hamiltonians We will say that an N×N Hermitian matrix is sparse (in a fixed basis) if,
in any fixed row, there are only poly(logN) nonzero entries. The simulation techniques described
above allow us to efficiently simulate sparse Hamiltonians. More precisely, suppose that for any a,
we can efficiently determine all of the b’s for which 〈a|H|b〉 is nonzero, as well as the values of the
corresponding matrix elements; then H can be efficiently simulated. In particular, this gives an
efficient simulation of the quantum walk on any graph whose maximum degree is poly(log |V |).

The basic idea of the simulation is to simulate the edges in the graph for each color separately,
and to combine these pieces using (6). The main new technical ingredient in the simulation is a
means of coloring the edges of the graph of nonzero matrix elements of H. A classic result in graph
theory (Vizing’s Theorem) says that a graph of maximum degree d has an edge coloring with at
most d+1 colors (in fact, the edge chromatic number is either d or d+1). If we are willing to accept
a polynomial overhead in the number of colors used, then we can actually find an edge coloring
using only local information about the graph.

Lemma. Suppose we are given an undirected graph G with N vertices and maximum degree d,
and that we can efficiently compute the neighbors of any given vertex. Then there is an efficiently
computable function c(a, b) = c(b, a) taking O(d2 log2N) values such that for all a, c(a, b) = c(a, b′)
implies b = b′. In other words, c(a, b) is a coloring of G.

Proof. Number the vertices of G from 1 through N . For any vertex a, let idx(a, b) denote the index
of vertex b in the list of neighbors of a. Also, let k(a, b) be the smallest k such that a 6= b (mod k).
Note that k(a, b) = k(b, a), and k = O(logN).

For a < b, define the color of the edge ab to be the 4-tuple

c(a, b) :=
(

idx(a, b), idx(b, a), k(a, b), b mod k(a, b)
)
. (11)

For a > b, define c(a, b) := c(b, a).

Now suppose c(a, b) = c(a, b′). There are four possible cases:

1. Suppose a < b and a < b′. Then the first component of c shows that idx(a, b) = idx(a, b′),
which implies b = b′.

2. Suppose a > b and a > b′. Then the second component of c shows that idx(a, b) = idx(a, b′),
which implies b = b′.

3

3. Suppose a < b and a > b′. Then from the third and fourth components of c, k(a, b) = k(a, b′)
and a = b (mod k(a, b)), which is a contradiction.

4. Suppose a > b and a < b′. Then from the third and fourth components of c, k(a, b) = k(a, b′)
and a = b′ (mod k(a, b′)), which is a contradiction.

Each case that does not lead to a contradiction gives rise to a valid coloring, which completes the
proof.

Now the simulation proceeds as follows. Write H as a diagonal matrix plus a matrix with zeros
on the diagonal. We have already shown how to simulate the diagonal part, so we can assume H
has zeros on the diagonal without loss of generality.

Let G be the graph of nonzero matrix elements of H. The vertices of this graph consist of all
the computational basis states, and two vertices have an edge between them if they are connected
by a nonzero matrix element of H. Use the above lemma to color the edges of this graph, and let
vc(a) be the vertex connected to a by an edge of color c (if there is no such vertex, it does not
matter how vc(a) is defined). Also, let

xc(a) := Re 〈a|H|vc(a)〉 (12)
yc(a) := Im 〈a|H|vc(a)〉 (13)

when the vertex a has an incident edge of color c; otherwise, let xc(a) = yc(a) = 0.

Consider the state space |a, b, z〉, where the space on which H acts corresponds to states of the
form |a, 0, 0〉. By assumption, we can efficiently implement unitary operators Vc,Wc defined by

Vc|a, b, z〉 := |a, b⊕ vc(a), z ⊕ xc(a)〉 (14)
Wc|a, b, z〉 := |a, b⊕ vc(a), z ⊕ yc(a)〉, (15)

where ⊕ denotes bitwise addition modulo 2. Furthermore, we can efficiently simulate the Hamilto-
nians S, T where

S|a, b, x〉 := x|b, a, x〉 (16)
T |a, b, y〉 := iy|b, a,−y〉. (17)

since S, T are easily diagonalized (as they only act nontrivially on two-dimensional subspace).
Therefore, we can efficiently simulate the Hamiltonian

H̃ :=
∑
c

(V †c SVc +W †c TWc). (18)

When restricted to the subspace of states of the form |a, 0, 0〉, we claim that H̃ acts as H:

H̃|a, 0, 0〉 =
∑
c

[V †c S|a, vc(a), xc(a)〉+W †c S|a, vc(a), yc(a)〉] (19)

=
∑
c

[xc(a)V †c |vc(a), a, xc(a)〉+ iyc(a)W †c |vc(a), a,−yc(a)〉] (20)

=
∑
c

[xc(a) + iyc(a)]|vc(a), 0, 0〉 (21)

= H|a〉|0, 0〉, (22)

where in the third line we have used the fact that vc(vc(a)) = a when a has an incident edge of
color c, and that xc(a) = yc(a) = 0 otherwise. This shows that H can be efficiently simulated.

4

