
Quantum algorithms (CO 781, Winter 2008)

Prof. Andrew Childs, University of Waterloo

LECTURE 13: Exponential algorithmic speedup by quantum walk

We have seen that the behavior of a quantum walk can be dramatically different from that of its
classical counterpart. In this lecture we will see an even stronger example of the power of quantum
walk: a query complexity problem that can be solved exponentially faster by a quantum walk than
by any classical algorithm.

The glued trees graph Consider a graph obtained by starting from two balanced binary trees
of height n, and joining them by a cycle of length 2 · 2n that alternates between the leaves of the
two trees. For example, such a graph for n = 4 could look like the following:

�������� ����

Suppose we take a random walk on the graph starting from the root of the left tree. It is not
hard to see that such a walk rapidly gets lost in the middle of the graph, and never has a substantial
probability of reaching the opposite root. In fact, by specifying the graph in such a way that it
can only be explored locally, we can ensure that no classical procedure starting from the left root
can efficiently reach the right root. However, a quantum walk starting from the left root produces
a state with a large (lower bounded by 1/ poly(n)) overlap on the right root in a short (upper
bounded by poly(n)) amount of time.

Black box graph traversal To establish a provable separation between classical and quantum
strategies, we will formulate the graph traversal problem in terms of query complexity.

Let G = (V,E) be a graph with N vertices. To represent G by a black box, let m be such that
2m ≥ N , and let k be at least as large as the maximum degree of G. For each vertex a ∈ V , assign
a distinct m-bit string (called the name of a), not assigning 11 . . . 1 as the name of any vertex. For
each b ∈ V with (a, b) ∈ E, assign a unique label from {1, 2, . . . , k} to the ordered pair (a, b). For
a ∈ {0, 1}m (identifying the vertex with its name) and c ∈ {1, 2, . . . , k}, define vc(a) as the name
of the vertex reached by following the outgoing edge of a labeled by c, if such an edge exists. If
there is no vertex of G named a or no outgoing edge from a labeled c, then let vc(a) = 11 . . . 1. The
black box for G takes a ∈ {0, 1}m and c ∈ {1, 2, . . . , k} as input and returns vc(a).

The black box graph traversal problem is as follows. Let G be a graph and let entrance and
exit be two vertices of G. Given a black box for G as described above, with the additional promise

1

that the name of the entrance is 00 . . . 0, the goal is to output the name of the exit. We say an
algorithm for this problem is efficient if its running time is polynomial in m.

Of course, a random walk is not necessarily the best classical strategy for this problem. For
example, there is an efficient classical algorithm for traversing the n-dimensional hypercube (exer-
cise: what is it?) even though a random walk will not work. However, we will see that no classical
algorithm can efficiently traverse the glued trees, whereas a quantum walk can.

Quantum walk algorithm to traverse the glued trees graph Given a black box for a
graph G as specified above, we can efficiently compute a list of neighbors of any desired vertex,
provided k = poly(m) (i.e., provided the maximum degree of the graph is not too large). Thus
it is straightforward to simulate the dynamics of the continuous-time quantum walk on any such
G, and in particular, on the glued trees graph (which has maximum degree 3). Our strategy for
solving the traversal problem is simply to run the quantum walk and show that the resulting state
has a substantial overlap on the exit for some t = poly(n).

Let G be the glued trees graph. The dynamics of the quantum walk on this graph are dra-
matically simplified because of symmetry. Consider the basis of states |col j〉 that are uniform
superpositions over the vertices at distance j from the entrance, i.e.,

|col j〉 :=
1√
Nj

∑
δ(a,entrance)=j

|a〉 (1)

where

Nj :=

{
2j 0 ≤ j ≤ n
22n+1−j n+ 1 ≤ j ≤ 2n+ 1

(2)

is the number of vertices at distance j from the entrance, and where δ(a, b) denotes the length
of the shortest path in G from a to b. It is straightforward to see that the subspace span{|col j〉 :
0 ≤ j ≤ 2n + 1} is invariant under the action of the adjacency matrix A of G. At the entrance
and exit, we have

A|col 0〉 =
√

2|col 1〉 (3)

A|col 2n+ 1〉 =
√

2|col 2n〉. (4)

For any 0 < j < n, we have

A|col j〉 =
1√
Nj

∑
δ(a,entrance)=j

A|a〉 (5)

=
1√
Nj

2
∑

δ(a,entrance)=j−1

|a〉+
∑

δ(a,entrance)=j+1

|a〉

 (6)

=
1√
Nj

(2
√
Nj−1|col j − 1〉+

√
Nj+1|col j + 1〉) (7)

=
√

2(|col j − 1〉+ |col j + 1〉). (8)

Similarly, for any n+ 1 < j < 2n+ 1, we have

A|col j〉 =
1√
Nj

(
√
Nj−1|col j − 1〉+ 2

√
Nj+1|col j + 1〉) (9)

=
√

2(|col j − 1〉+ |col j + 1〉). (10)

2

The only difference occurs at the middle of the graph, where we have

A|coln〉 =
1√
Nn

(2
√
Nn−1|coln− 1〉+ 2

√
Nn+1|coln+ 1〉) (11)

=
√

2|coln− 1〉+ 2|coln+ 1〉 (12)

and similarly

A|coln+ 1〉 =
1√
Nn+1

(2
√
Nn|coln〉+ 2

√
Nn+2|coln+ 2〉) (13)

= 2|coln〉+
√

2|coln+ 2〉. (14)

In summary, the matrix elements of A between basis states for this invariant subspace can be
depicted as follows:

r r r p p p r r r r p p p r r r√
2

√
2

√
2 2

√
2

√
2

√
2

entrance exit
col 0 col 1 col 2 coln−1 coln coln+1 coln+2 col 2n−1 col 2n col 2n+1

By identifying the subspace of states |col j〉, we have found that the quantum walk on the glued
trees graph starting from the entrance is effectively the same as a quantum walk on a weighted
line of 2n+2 vertices, with all edge weights the same except for the middle one. Given our example
of the quantum walk on the infinite line, we can expect this walk to reach the exit with amplitude
1/poly(n) in time linear in n. To prove that the walk indeed reaches the exit in polynomial time,
we will use the notion of the mixing time of a quantum walk.

Classical and quantum mixing Informally, the mixing time of a random walk is the amount
of time it takes to come close to a stationary distribution. Recall that the continuous-time random
walk on a graph G = (V,E) with Laplacian L is defined as the solution of the differential equation
dp(t)
dt = Lp(t), where p(t) ∈ R|V | denotes a vector of probabilities for the walk to be at each vertex at

time t. The uniform distribution over the vertices, u := (1, 1, . . . , 1)/|V |, is an eigenvector of L with
eigenvalue 0. Indeed, if G is connected, then this is the unique eigenvector with this eigenvalue.
Letting vλ denote a normalized eigenvector of L with eigenvalue λ (so that L =

∑
λ 6=0 λvλv

T
λ), we

have

p(t) = eLtp(0) (15)

=

|V |uuT +
∑
λ6=0

eλtvλv
T
λ

 p(0) (16)

= 〈|V |u, p(0)〉u+
∑
λ 6=0

eλt〈vλ, p(0)〉vλ (17)

= u+
∑
λ 6=0

eλt〈vλ, p(0)〉vλ (18)

(where in exponentiating L we have used the fact that
√
|V |u is a normalized eigenvector of L,

so that |V |uuT is the projector onto the corresponding subspace). The Laplacian is a negative
semidefinite operator, so the contributions eλt for λ 6= 0 decrease exponentially in time; thus the
walk asymptotically approaches the uniform distribution. The deviation from uniform will be small
when t is large compared to the inverse of the largest (i.e., least negative) nonzero eigenvalue of L.

3

Since a quantum walk is a unitary process, we should not expect it to approach a limiting
quantum state, no matter how long we wait. Nevertheless, it is possible to define a notion of the
limiting distribution of a quantum walk as follows. Suppose we pick a time t uniformly at random
between 0 and T , run the quantum walk starting at a ∈ V for a total time t, and then measure in
the vertex basis. The resulting distribution is

pa→b(T) =
1
T

∫ T

0
|〈b|e−iHt|a〉|2dt (19)

=
∑
λ,λ′

〈b|λ〉〈λ|a〉〈a|λ′〉〈λ′|v〉 1
T

∫ T

0
e−i(λ−λ

′)tdt (20)

=
∑
λ

|〈a|λ〉〈b|λ〉|2 +
∑
λ 6=λ′

〈b|λ〉〈λ|a〉〈a|λ′〉〈λ′|b〉1− e
−i(λ−λ′)T

i(λ− λ′)T
(21)

where we have considered a quantum walk generated by an unspecified Hamiltonian H (it could
be the Laplacian or the adjacency matrix, or some other operator as desired), and where we have
assumed for simplicity that the spectrum of H =

∑
λ λ|λ〉〈λ| is nondegenerate. We see that the

distribution pa→b(T) tends toward a limiting distribution

pa→b(∞) :=
∑
λ

|〈a|λ〉〈b|λ〉|2. (22)

The timescale for approaching this distribution is again governed by the spectrum of H, but now
we see that T must be large compared to the inverse of the smallest gap between any pair of distinct
eigenvalues, not just the smallest gap between a particular pair of eigenvalues as in the classical
case.

Let’s apply this notion of quantum mixing to the quantum walk on the glued trees. It will
be simplest to consider the walk generated by the adjacency matrix A. Since the subspace of
states |col j〉 has dimension only 2n+ 1, it should not be surprising that the limiting probability of
traversing from entrance to exit is bigger than 1/ poly(n). To see this, notice that A commutes
with the reflection operator R defined as R|col j〉 = |col 2n + 1 − j〉, so these two operators can
be simultaneously diagonalized. Now R2 = 1, so it has eigenvalues ±1, which shows that we can
choose the eigenstates |λ〉 of A to satisfy 〈entrance|λ〉 = ±〈exit|λ〉. Therefore,

pentrance→exit(∞) =
∑
λ

|〈entrance|λ〉〈exit|λ〉|2 (23)

=
∑
λ

|〈entrance|λ〉|4 (24)

≥ 1
2n+ 2

(∑
λ

|〈entrance|λ〉|2
)2

(25)

=
1

2n+ 2
(26)

where the lower bound follows by the Cauchy-Schwarz inequality. Thus it will suffice to show that
the mixing time of the quantum walk is poly(n).

To see how long we must wait before the probability of reaching the exit is close to its limiting

4

value, we can calculate

|pentrance→exit(∞)− pentrance→exit(T)|

=

∣∣∣∣∣∣
∑
λ 6=λ′

〈exit|λ〉〈λ|entrance〉〈entrance|λ′〉〈λ′|exit〉1− e
−i(λ−λ′)T

i(λ− λ′)T

∣∣∣∣∣∣ (27)

≤ 2
∆T

∑
λ,λ′

|〈exit|λ〉〈λ|entrance〉〈entrance|λ′〉〈λ′|exit〉| (28)

=
2

∆T

∑
λ,λ′

|〈entrance|λ〉|2|〈entrance|λ′〉|2 (29)

=
2

∆T
, (30)

where ∆ denotes the smallest gap between any pair of distinct eigenvalues of A. All that remains
is to lower bound ∆.

To understand the spectrum of A, recall that an infinite line has eigenstates of the form eipj .
For any value of p, the state |λ〉 with amplitudes 〈col j|λ〉 = eipj satisfies 〈col j|A|λ〉 = λ〈col j|λ〉,
where the eigenvalue is λ = 2

√
2 cos p, for all values of j except 0, n, n + 1, 2n + 1. We can satisfy

the eigenvalue condition for j = 0, 2n + 1 by taking linear combinations of e±ipj that vanish for
j = −1 and j = 2n+ 2, namely

〈col j|λ〉 =

{
sin(p(j + 1)) 0 ≤ j ≤ n
± sin(p(2n+ 2− j)) n+ 1 ≤ j ≤ 2n+ 1.

(31)

Finally, we can enforce the eigenvalue condition at j = n (which automatically enforces it at
j = n+ 1 by symmetry), which will restrict the values of p to a finite set. We have

√
2 sin(pn)± 2 sin(p(n+ 1)) = 2

√
2 cos(p) sin(p(n+ 1)), (32)

which can be simplified to
sin(p(n+ 2))
sin(p(n+ 1))

= ±
√

2. (33)

The left hand side of this equation decreases monotonically, with poles at integer multiples of
π/(n+ 1). For example, with n = 4, we have the following:

�

�

� �

�

��

�

��

�

��

�
�

�
�

�
�
�

5

With a bit of analysis (see quant-ph/0209131 for details), one can show that the solutions of
this equation give 2n values of p, each of which is separated from the integer multiples of π/(n+ 1)
by Ω(1/n2). The spacings between the corresponding eigenvalues of A, λ = 2

√
2 cos p, are Ω(1/n3).

The remaining two eigenvalues of A can be obtained by considering solutions with p imaginary, and
it is easy to show that they are separated from the rest of the spectrum by a constant amount. By
taking (say) T = 5n/∆ = O(n4), we can ensure that the probability to reach the exit is Ω(1/n).
Thus there is an efficient quantum algorithm to traverse the glued trees graph.

Classical lower bound It remains to show that this problem is difficult for a classical computer.
A formal proof of this fact can be given using a sequence of reductions to problems that are
essentially no easier than the original one, but that restrict the nature of the allowed algorithms.
Here we will simply sketch the main ideas.

First, note that if we name the vertices at random using strings of about, say, 2 log |V | bits,
then there will be exponentially many more possible names than there are actual vertices. Since
the probability that a randomly guessed name corresponds to a vertex of the graph is exponentially
small, we can essentially restrict our attention to algorithms that query a connected set of vertices,
starting from the entrance (the only vertex whose name is known initially).

Next, suppose we consider the algorithm to succeed not only if it reaches the exit, but also if
it manages to find a cycle in the graph. This only makes it easier for the algorithm to succeed, but
not significantly so, since it turns out to be hard even to find a cycle.

Now we can restrict our attention to the steps the algorithm takes before it finds a cycle. Notice
that for such steps, the names supplied by the black box provide no information whatsoever about
the structure of the graph: they could just as well be simulated by a sequence of random responses.
Therefore, we can think of an algorithm as simply producing a rooted binary tree and embedding
it into the glued trees graph at random. To show that the algorithm fails, it suffices to show that
under such a random embedding, the probability of any rooted binary tree giving rise to a cycle
or reaching the exit is small. By a fairly straightforward probabilistic argument, one can show
that even for exponentially large trees (say, having at most 2n/6 vertiecs), the probability of the
embedded tree giving rise to a cycle or reaching the exit is exponentially small. Thus any classical
algorithm for solving the black box glued trees traversal problem must make exponentially many
queries to succeed with more than exponentially small probability.

6

