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LECTURE 14: Discrete-time quantum walk

So far, we have focused mainly on continuous-time quantum walk. We now turn our attention to
discrete-time quantum walk, which provides a convenient framework for quantum search algorithms.

How to quantize a Markov chain Recall that a discrete-time classical random walk on an N-
vertex graph can be represented by an N x N matrix P. The entry Pj; represents the probability
of making a transition to j from k, so that an initial probability distribution p € R becomes Pp
after one step of the walk. To preserve normalization, we must have Z;VZI Pj, = 1; we say that
such a matrix is stochastic.

For any N x N stochastic matrix P (not necessarily symmetric), we can define a corresponding
discrete-time quantum walk, a unitary operation on the Hilbert space CN @ CV. To define this
walk, we introduce the states
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for j =1,..., N. Each such state is normalized since P is stochastic. Now let
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denote the projection onto span{|y;) : j =1,..., N}, and let
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be the operator that swaps the two registers. Then a single step of the quantum walk is defined as
the unitary operator U := S(2II — 1).

Notice that if Pj, = Aji/deg(k) (i.e., if the walk simply chooses an outgoing edge of an
underlying digraph uniformly at random), then this is exactly the coined quantum walk with the
Grover diffusion operator as the coin flip.

If we take two steps of the walk, then the corresponding unitary operator is

[S(2I1 — 1)][S(2II — 1)] = [S(2IT — 1)S][2IT — 1] (5)
= (2811 — 1)(2II — 1), (6)

which can be interpreted as the reflection about span{|t¢;)} followed by the reflection about
span{S|iy;)} (the states where we condition on the second register to do a coin operation on the
first). To understand the behavior of the walk, we will now compute the spectrum of U; but note
that it is also possible to compute the spectrum of a product of reflections more generally.



Spectrum of the quantum walk To understand the behavior of a discrete-time quantum walk,
it will be helpful to compute its spectral decomposition. Let us show the following:

Theorem. Fiz an N x N stochastic matriz P, and let {|\)} denote a complete set of orthonormal
eigenvectors of the N x N matriz D with entries Dj, = \/PjiPy; with eigenvalues {\}. Then
the eigenvalues of the discrete-time quantum walk U = S(2I1 — 1) corresponding to P are £1 and
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Proof. Define an isometry
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mapping states in C" to states in C" ® C", and let |A) := T|\). Notice that
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Applying the walk operator U to |5\> gives

U\ = S(2I — 1)|A) (20)
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and applying U to S|\) gives

US|A) = S(2I1 — 1)S|\) (24)
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We see that the subspace span{|A), S|\)} is invariant under U, so we can find eigenvectors of U
within this subspace.

Now let |) := |A) — uS|)), and let us choose i € C so that |u) is an eigenvector of U. We have

Ulu) = S|A) = p(2A8|X) = A)) (28)
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Thus p will be an eigenvalue of U corresponding to the eigenvector |u) provided (1—2A\u) = p(—p),
ie. p? -2 \p+1=0,so

p=A+iv/1— A2 (30)

Finally, note that for any vector in the orthogonal complement of span{|A)} = span{|y;)} (these
spaces are the same since >, |\)(\| = >, T|\)(A\|TT = TTT =1I), U simply acts as —S, which has
eigenvalues +1. O

Hitting times We can use random walks to formulate a generic search algorithm, and quantizing
this algorithm gives a generic square root speedup. Consider a graph G = (V, E), with some
subset M C V of the vertices designated as marked. We will compare classical and quantum walk
algorithms for deciding whether any vertex in G is marked.

Classically, a straightforward approach to this problem is to take a random walk defined by
some stochastic matrix P, stopping if we encounter a marked vertex. In other words, we modify
the original walk P to give a walk P’ defined as
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Let us assume from now on that the original walk P is symmetric, though the modified walk P’
clearly is not provided M is non-empty. If we order the vertices so that the marked ones come last,

the matrix P’ has the block form
P = <%4 ?) (32)



where Pp; is obtained by deleting the rows and columns of P corresponding to vertices in M.

Suppose we take t steps of the walk. A simple calculation shows
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Now if we start from the uniform distribution over unmarked items (if we start from a marked
item we are done, so we might as well condition on this not happening), then the probability
of not reaching a marked item after ¢ steps is N%sz,k(iM[P]tW}jk < ||Py;ll = |IPallf, where
the inequality follows because the left hand side is the expectation of P in the normalized state
[VAM) = \/W > jem 7). Now if || Ppr[| = 1— A, then the probability of reaching a marked item

after ¢ steps is at least 1 — || Pys[| = 1 — (1 — A)!, which is Q(1) provided t = O(1/A) = (m)

It turns out that we can bound || Py/|| away from 1 knowing only the fraction of marked vertices
and the spectrum of the original walk. Thus we can upper bound the hitting time, the time required
to reach some marked vertex with constant probability.

Lemma. If the second largest eigenvalue of P (in absolute value) is at most 1 — & and |M| < eN,
then || Pr|| < 1 — de/2.

Proof. Let |v) € RN-IM| be the principal eigenvector of Py, and let |w) € RY be the vector
obtained by padding |v) with 0’s for all the marked vertices.

We will decompose |w) in the eigenbasis of P. Since P is symmetric, it is actually doubly
stochastic, and the uniform vector |V) = \/; >_;j 1) corresponds to the eigenvalue 1. All other

eigenvectors |\) have eigenvalues at most 1 — ¢ by assumption. Now
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But by the Cauchy-Schwarz inequality,
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where Ily\ay = > gar 17) (7] Thus [|[Pa[] < V1 —de < 1—de/2 as claimed. O
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Thus we see that the classical hitting time is O(1/de).

Now we turn to the quantum case. Our strategy will be to perform phase estimation with
sufficiently high precision on the operator U, the quantum walk corresponding to P’, with the state
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This state can easily be prepared by starting from the state
1

and measuring whether the first register corresponds to a marked vertex; if it does then we are
done, and if not then we have prepared |1).

The matrix D for the walk P’ is
P 0
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so according to the spectral theorem, the eigenvalues of the resulting walk operator U are +1 and
etiarccos A where \ runs over the eigenvalues of Pyy. If the marked set M is empty, then P’ = P, and
|1) is an eigenvector of U with eigenvalue 1, so phase estimation on U is guaranteed to return a phase
of 0. But if M is non-empty, then the state |¢)) lives entirely within the subspace with eigenvalues
eFiarccos A Thys if we perform phase estimation on U with precision O(min) arccos \), we will see a
phase different from 0. Since arccos A > /1 — A, we see that precision O(y/1 — || Py||) suffices. So
the quantum algorithm can decide whether there is a marked vertex in time O(1/4/1 — ||Pa]|) =
O(1/V/ée).



