ASSIGNMENT 2

CO 481/CS 467/PHYS 467 (Winter 2010)

Due in class on Wednesday, February 3.

- 1. The Hadamard gate and qubit rotations
 - (a) [3 points] Suppose that $(n_x, n_y, n_z) \in \mathbb{R}^3$ is a unit vector and $\theta \in \mathbb{R}$. Show that

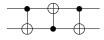
$$e^{-i\frac{\theta}{2}(n_x X + n_y Y + n_z Z)} = \cos\left(\frac{\theta}{2}\right)I - i\sin\left(\frac{\theta}{2}\right)(n_x X + n_y Y + n_z Z)$$

(b) [2 points] Find a unit vector $(n_x, n_y, n_z) \in \mathbb{R}^3$ and numbers $\phi, \theta \in \mathbb{R}$ so that

$$H = e^{i\phi} e^{-i\frac{\theta}{2}(n_x X + n_y Y + n_z Z)},$$

where H denotes the Hadamard gate. What does this mean in terms of the Bloch sphere?

- (c) [3 points] Write the Hadamard gate as a product of rotations about the x and y axes. In particular, find $\alpha, \beta, \gamma, \phi \in \mathbb{R}$ such that $H = e^{i\phi}R_y(\gamma)R_x(\beta)R_y(\alpha)$.
- 2. Circuit identities.
 - (a) [2 points] Show that the following circuit swaps two qubits:



- (b) [1 point] Verify that HXH = Z.
- (c) [3 points] Verify the following circuit identity:

(d) [3 points] Verify the following circuit identity:

$$-H + H$$

Give an interpretation of this identity.

- 3. Teleporting through a Hadamard gate.
 - (a) [1 point] Write the state $(I \otimes H) |\beta_{00}\rangle$ in the computational basis.
 - (b) [3 points] Suppose Alice has a qubit in the state $|\psi\rangle$ and also, Alice and Bob share a copy of the state $(I \otimes H)|\beta_{00}\rangle$. If Alice measures her two qubits in the Bell basis, what are the probabilities of the four possible outcomes, and in each case, what is the post-measurement state for Bob?
 - (c) [2 points] Suppose Alice sends her measurement result to Bob. In each possible case, what operation should Bob perform in order to have the state $H|\psi\rangle$?

- 4. Universality of gate sets. Prove that each of the following gate sets either is or is not universal. You may use the fact that the set $\{CNOT, H, T\}$ is universal.
 - (a) [1 point] $\{H, T\}$
 - (b) [2 points] $\{CNOT, T\}$
 - (c) [2 points] $\{CNOT, H\}$
 - (d) [3 points] {CZ, K, T}, where CZ denotes a controlled-Z gate and $K = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$
 - (e) [challenge problem] $\{CT^2, H\}$, where CT^2 denotes a controlled- T^2 gate
 - (f) [challenge problem] {CNOT, H, T^2 }
- 5. Asymptotic notation. Indicate whether the following statements are true or false.
 - (a) [1 point] $10n^3 + 3n^2 \in O(n^4)$
 - (b) [1 point] $10n^3 + 3n^2 \in \Omega(n^4)$
 - (c) [1 point] $1/n^2 \in O(1/n)$
 - (d) [1 point] $(2^n)^2 \in O(2^n)$
 - (e) [1 point] $(2^n)^2 \in 2^{\Theta(n)}$
- 6. One-out-of-four search. Let $f : \{0,1\}^2 \to \{0,1\}$ be a black-box function taking the value 1 on exactly one input. The goal of the one-out-of-four search problem is to find the unique $(x_1, x_2) \in \{0,1\}^2$ such that $f(x_1, x_2) = 1$.
 - (a) [1 point] Write the truth tables of the four possible functions f.
 - (b) [2 points] How many classical queries are needed to solve one-out-of-four search?
 - (c) [4 points] Suppose f is given as a quantum black box U_f acting as

$$|x_1, x_2, y\rangle \stackrel{U_f}{\mapsto} |x_1, x_2, y \oplus f(x_1, x_2)\rangle.$$

Determine the output of the following quantum circuit for each of the possible black-box functions f:

$ 0\rangle - H$		-
$ 0\rangle$ — H —	U_f	
$ 1\rangle$ — H —		

(d) [2 points] Show that the four possible outputs obtained in the previous part are pairwise orthogonal. What can you conclude about the quantum query complexity of one-out-of-four search?