Problem 1 (Solovay-Kitaev).

In this problem you will fill in some details in the proof of the Solovay-Kitaev Theorem.

- a. Prove the following basic facts about SU(2):
 - (i) $||I e^{i\vec{a}\cdot\vec{\sigma}}|| = 2\sin\frac{||\vec{a}||}{2} = ||\vec{a}|| + O(||\vec{a}||^3)$
 - (ii) $||e^{i\vec{b}\cdot\vec{\sigma}} e^{i\vec{c}\cdot\vec{\sigma}}|| = ||\vec{b} \vec{c}|| + O(||\vec{b} \vec{c}||^3)$
 - (iii) $[\vec{b} \cdot \vec{\sigma}, \vec{c} \cdot \vec{\sigma}] = 2i(\vec{b} \times \vec{c}) \cdot \vec{\sigma}$
 - (iv) $\| [e^{i\vec{b}\cdot\vec{\sigma}}, e^{i\vec{c}\cdot\vec{\sigma}}] e^{-[\vec{b}\cdot\vec{\sigma}, \vec{c}\cdot\vec{\sigma}]} \| = O(\|\vec{b}\| \|\vec{c}\| (\|\vec{b}\| + \|\vec{c}\|))$

Here the big-O notation is with respect to $\|\vec{a}\| \to 0$ in (i), with respect to $\|\vec{b} - \vec{c}\| \to 0$ in (ii), and with respect to $\|\vec{b}\|, \|\vec{c}\| \to 0$ in (iv).

- b. Read and understand the proof (in the notes for lecture 1) that if Γ is an ϵ^2 -net for S_{ϵ} , then $\llbracket \Gamma, \Gamma \rrbracket$ is an $O(\epsilon^3)$ -net for S_{ϵ^2} .
- c. Describe an explicit recursive procedure that constructs an approximation to a given gate $U \in SU(2)$ with precision ϵ . What is the asymptotic running time of your procedure? (It should be $O((\log \frac{1}{\epsilon})^k)$ for some explicit value of k.)

Problem 2 (Parallelizing the QFT).

Consider the Fourier transform over \mathbb{Z}_{2^n} ,

$$F_{\mathbb{Z}_{2^n}} := \frac{1}{\sqrt{2^n}} \sum_{x,y \in \mathbb{Z}_{2^n}} \omega_{2^n}^{xy} |y\rangle \langle x|.$$

Here you will show that $F_{\mathbb{Z}_{2^n}}$ can be implemented with a circuit of only logarithmic depth, meaning that it can be implemented very quickly if gates can be performed in parallel.

- a. What is the depth of the standard quantum circuit for $F_{\mathbb{Z}_{2^n}}$ (both the exact version of size $O(n^2)$ and the approximate version of size $O(n \log n)$)?
- b. Let $|\tilde{x}\rangle := F_{\mathbb{Z}_{2^n}}|x\rangle$ denote a Fourier basis state. Define three operators A, B, C by

$$\begin{aligned} A|x,0\rangle &= |x,\tilde{x}\rangle\\ B|\tilde{x},0\rangle &= |\tilde{x},\tilde{x}\rangle\\ C|\tilde{x}\rangle^{\otimes k}|0\rangle &= |\tilde{x}\rangle^{\otimes k}|x\rangle \end{aligned}$$

where $k \in \mathbb{N}$ is some constant. Show how to produce a quantum circuit for $F_{\mathbb{Z}_{2^n}}$ using quantum circuits for A, B, and C.

- c. Modify the standard quantum circuit for $F_{\mathbb{Z}_{2^n}}$ to give a quantum circuit for A. Show that an approximate version of this circuit has depth $O(\log n)$.
- d. Show that $D|\tilde{x}, \tilde{y}\rangle = |\tilde{x}, \tilde{x} + y\rangle$, where the operator D is defined by $D|x, y\rangle = |x y, y\rangle$. Explain how this observation can be used to give a quantum circuit for B of depth $O(\log n)$. (Note that addition of *n*-bit integers can be performed by a classical circuit of depth $O(\log n)$.)

e. Challenge problem: Give an implementation of C (for any particular constant k) by a circuit of logarithmic depth. (Hint: k = 3 is possible, but the construction is somewhat involved.)

Problem 3 (Discrete log with χ states).

Let $G = \langle g \rangle$ be a cyclic group of order N. For each $\alpha \in \mathbb{Z}_N$, define the state

$$|\chi^{\alpha}\rangle := \frac{1}{\sqrt{N}} \sum_{\beta \in \mathbb{Z}_N} \omega_N^{\alpha\beta} |g^{\beta}\rangle.$$

These states turn out to give an alternative method for computing discrete logarithms over G.

- a. For any $x \in G$, let D_x denote the "division operator" defined by $D_x |\alpha, y\rangle = |\alpha, y/x^{\alpha}\rangle$ where $\alpha \in \mathbb{Z}_N$ and $y \in G$. Explain why D_x can be implemented efficiently by a quantum computer.
- b. Show that $|\alpha, \chi^{\beta}\rangle$ is an eigenvector of D_x , and compute its eigenvalue.
- c. Show that $(F_{\mathbb{Z}_N}^{\dagger} \otimes I) D_x(F_{\mathbb{Z}_N} \otimes I) |0, \chi^1\rangle = |\log_g x, \chi^1\rangle$, where

$$F_{\mathbb{Z}_N} := \frac{1}{\sqrt{N}} \sum_{\alpha, \beta \in \mathbb{Z}_N} \omega_n^{\alpha \beta} |\beta\rangle \langle \alpha|$$

denotes the Fourier transform over the additive group \mathbb{Z}_N .

This shows how to compute $\log_q x$, provided we are given a copy of the state $|\chi^1\rangle$.

Note that $|\chi^{\alpha}\rangle$ is simply the Fourier transform of $|g^{\alpha}\rangle$ over G. However, even though we know how to implement $F_{\mathbb{Z}_N}$ (the Fourier transform over the *additive* group \mathbb{Z}_N), this does not let us implement the Fourier transform over the *multiplicative* group G, unless we can compute discrete logarithms. Nevertheless, it is possible to create $|\chi^1\rangle$ using only simple operations.

- d. Show that $(F_{\mathbb{Z}_N} \otimes I)D_{g^{-1}}(F_{\mathbb{Z}_N} \otimes I)|0, g^0\rangle = \frac{1}{\sqrt{N}} \sum_{\alpha \in \mathbb{Z}_N} |\alpha, \chi^{\alpha}\rangle.$
- e. For any $\alpha \in \mathbb{Z}_N$, let D^{α} denote another "division operator," this one defined by $D^{\alpha}|x,y\rangle = |x,y/x^{\alpha}\rangle$ where $x, y \in G$. Show that $D^{\alpha}|\chi^{\beta}, \chi^{\gamma}\rangle = |\chi^{\beta+\alpha\gamma}, \chi^{\gamma}\rangle$.
- f. Suppose we measure the first register of the state from part d and obtain a value α , leaving the second register in the state $|\chi^{\alpha}\rangle$. Furthermore, suppose that $gcd(\alpha, N) = 1$, so that α^{-1} is well-defined modulo N. (Note that this happens with probability $\phi(N)/N = \Omega(1/\log \log N)$, so we don't have to repeat the procedure from part d many times before obtaining such an α .) Show how to use the state $|\chi^{\alpha}\rangle$ to prepare $|\chi^{1}\rangle$. (Hint: Use part e.)
- g. Explain why part e also shows that $|\chi^1\rangle$ can be easily copied.

Problem 4 (Properties of the solutions to Pell's equation).

Consider Pell's equation, $x^2 - dy^2 = 1$, where $d \in \mathbb{Z}$ is squarefree. Associate the solution $x, y \in \mathbb{Z}$ with the real number $\xi = x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$, whose conjugate is defined as $\overline{\xi} := x - y\sqrt{d}$.

- a. Show that the set of solutions to Pell's equation forms a group, where the group operation corresponds to multiplication of the associated elements of $\mathbb{Z}[\sqrt{d}]$, and inversion corresponds to conjugation.
- b. A solution (x, y) of Pell's equation is called *positive* if x > 0 and y > 0. Let (x_1, y_1) be the positive solution of Pell's equation for which $x_1 + y_1\sqrt{d}$ is smallest. Show that the set of all positive solutions is $\{(x_1 + y_1\sqrt{d})^n : n \in \mathbb{N}\}$. (Hint: Suppose there is some solution lying strictly between $(x_1 + y_1\sqrt{d})^j$ and $(x_1 + y_1\sqrt{d})^{j+1}$ for some $j \in \mathbb{N}$, and derive a contradiction.)

Problem 5 (The hidden parabola problem).

Suppose we are given a black-box function $f_{\alpha,\beta}: \mathbb{F}_p^2 \to S$, where p is a prime and S is a finite set, satisfying the promise that

$$f_{\alpha,\beta}(x,y) = f_{\alpha,\beta}(x',y')$$
 if and only if $\alpha x^2 + \beta x - y = \alpha x'^2 + \beta x' - y'$

for some unknown $\alpha \in \mathbb{F}_p^{\times}$ and $\beta \in \mathbb{F}_p$. In other words, $f_{\alpha,\beta}$ is constant on the parabola

$$P_{\alpha,\beta,\gamma} := \{(x,y) \in \mathbb{F}_p^2 : y = \alpha x^2 + \beta x + \gamma\}$$

for any fixed $\gamma \in \mathbb{F}_p$, and distinct on parabolas corresponding to different values of γ . Given the ability to query $f_{\alpha,\beta}$, the *hidden parabola problem* asks us to determine the values of α and β .

- a. Prove that a classical computer must query $f_{\alpha,\beta}$ exponentially many times (in log p) to solve the hidden parabola problem.
- b. Show that the quantum query complexity of determining α and β is poly $(\log p)$.