
Quantum algorithms (CO 781/CS 867/QIC 823) Winter 2011

ASSIGNMENT 1 due Tuesday 1 February (in class)

Problem 1 (Solovay-Kitaev).

In this problem you will fill in some details in the proof of the Solovay-Kitaev Theorem.

a. Prove the following basic facts about SU(2):

(i) ‖I − ei~a·~σ‖ = 2 sin ‖~a‖2 = ‖~a‖+O(‖~a‖3)
(ii) ‖ei~b·~σ − ei~c·~σ‖ = ‖~b− ~c‖+O(‖~b− ~c‖3)

(iii) [~b · ~σ,~c · ~σ] = 2i(~b× ~c) · ~σ
(iv) ‖Jei~b·~σ, ei~c·~σK− e−[~b·~σ,~c·~σ]‖ = O(‖~b‖‖~c‖(‖~b‖+ ‖~c‖))

Here the big-O notation is with respect to ‖~a‖ → 0 in (i), with respect to ‖~b−~c‖ → 0 in (ii),
and with respect to ‖~b‖, ‖~c‖ → 0 in (iv).

b. Read and understand the proof (in the notes for lecture 1) that if Γ is an ε2-net for Sε, then
JΓ,ΓK is an O(ε3)-net for Sε2 .

c. Describe an explicit recursive procedure that constructs an approximation to a given gate
U ∈ SU(2) with precision ε. What is the asymptotic running time of your procedure? (It
should be O((log 1

ε )
k) for some explicit value of k.)

Problem 2 (Parallelizing the QFT).

Consider the Fourier transform over Z2n ,

FZ2n
:=

1√
2n

∑
x,y∈Z2n

ωxy2n |y〉〈x|.

Here you will show that FZ2n
can be implemented with a circuit of only logarithmic depth, meaning

that it can be implemented very quickly if gates can be performed in parallel.

a. What is the depth of the standard quantum circuit for FZ2n
(both the exact version of size

O(n2) and the approximate version of size O(n log n))?

b. Let |x̃〉 := FZ2n
|x〉 denote a Fourier basis state. Define three operators A,B,C by

A|x, 0〉 = |x, x̃〉
B|x̃, 0〉 = |x̃, x̃〉

C|x̃〉⊗k|0〉 = |x̃〉⊗k|x〉

where k ∈ N is some constant. Show how to produce a quantum circuit for FZ2n
using

quantum circuits for A, B, and C.

c. Modify the standard quantum circuit for FZ2n
to give a quantum circuit for A. Show that an

approximate version of this circuit has depth O(log n).

d. Show that D|x̃, ỹ〉 = |x̃, x̃+ y〉, where the operator D is defined by D|x, y〉 = |x − y, y〉.
Explain how this observation can be used to give a quantum circuit for B of depth O(log n).
(Note that addition of n-bit integers can be performed by a classical circuit of depth O(log n).)
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e. Challenge problem: Give an implementation of C (for any particular constant k) by a circuit
of logarithmic depth. (Hint: k = 3 is possible, but the construction is somewhat involved.)

Problem 3 (Discrete log with χ states).

Let G = 〈g〉 be a cyclic group of order N . For each α ∈ ZN , define the state

|χα〉 :=
1√
N

∑
β∈ZN

ωαβN |g
β〉.

These states turn out to give an alternative method for computing discrete logarithms over G.

a. For any x ∈ G, let Dx denote the “division operator” defined by Dx|α, y〉 = |α, y/xα〉 where
α ∈ ZN and y ∈ G. Explain why Dx can be implemented efficiently by a quantum computer.

b. Show that |α, χβ〉 is an eigenvector of Dx, and compute its eigenvalue.

c. Show that (F †ZN
⊗ I)Dx(FZN

⊗ I)|0, χ1〉 = | logg x, χ
1〉, where

FZN
:=

1√
N

∑
α,β∈ZN

ωαβn |β〉〈α|

denotes the Fourier transform over the additive group ZN .

This shows how to compute logg x, provided we are given a copy of the state |χ1〉.

Note that |χα〉 is simply the Fourier transform of |gα〉 over G. However, even though we know
how to implement FZN

(the Fourier transform over the additive group ZN ), this does not let us
implement the Fourier transform over the multiplicative group G, unless we can compute discrete
logarithms. Nevertheless, it is possible to create |χ1〉 using only simple operations.

d. Show that (FZN
⊗ I)Dg−1(FZN

⊗ I)|0, g0〉 = 1√
N

∑
α∈ZN

|α, χα〉.

e. For any α ∈ ZN , let Dα denote another “division operator,” this one defined by Dα|x, y〉 =
|x, y/xα〉 where x, y ∈ G. Show that Dα|χβ, χγ〉 = |χβ+αγ , χγ〉.

f. Suppose we measure the first register of the state from part d and obtain a value α, leaving
the second register in the state |χα〉. Furthermore, suppose that gcd(α,N) = 1, so that α−1 is
well-defined modulo N . (Note that this happens with probability φ(N)/N = Ω(1/ log logN),
so we don’t have to repeat the procedure from part d many times before obtaining such an
α.) Show how to use the state |χα〉 to prepare |χ1〉. (Hint: Use part e.)

g. Explain why part e also shows that |χ1〉 can be easily copied.

Problem 4 (Properties of the solutions to Pell’s equation).

Consider Pell’s equation, x2 − dy2 = 1, where d ∈ Z is squarefree. Associate the solution x, y ∈ Z
with the real number ξ = x+ y

√
d ∈ Z[

√
d], whose conjugate is defined as ξ̄ := x− y

√
d.

a. Show that the set of solutions to Pell’s equation forms a group, where the group operation
corresponds to multiplication of the associated elements of Z[

√
d], and inversion corresponds

to conjugation.

b. A solution (x, y) of Pell’s equation is called positive if x > 0 and y > 0. Let (x1, y1) be the
positive solution of Pell’s equation for which x1 + y1

√
d is smallest. Show that the set of all

positive solutions is {(x1 + y1
√
d)n : n ∈ N}. (Hint: Suppose there is some solution lying

strictly between (x1+y1
√
d)j and (x1+y1

√
d)j+1 for some j ∈ N, and derive a contradiction.)
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Problem 5 (The hidden parabola problem).

Suppose we are given a black-box function fα,β : F2
p → S, where p is a prime and S is a finite set,

satisfying the promise that

fα,β(x, y) = fα,β(x′, y′) if and only if αx2 + βx− y = αx′2 + βx′ − y′

for some unknown α ∈ F×p and β ∈ Fp. In other words, fα,β is constant on the parabola

Pα,β,γ := {(x, y) ∈ F2
p : y = αx2 + βx+ γ}

for any fixed γ ∈ Fp, and distinct on parabolas corresponding to different values of γ. Given the
ability to query fα,β, the hidden parabola problem asks us to determine the values of α and β.

a. Prove that a classical computer must query fα,β exponentially many times (in log p) to solve
the hidden parabola problem.

b. Show that the quantum query complexity of determining α and β is poly(log p).
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