
Quantum algorithms (CO 781/CS 867/QIC 823) Winter 2011

ASSIGNMENT 2 due Tuesday 1 March (in class)

Problem 1 (Weak Fourier sampling fails for the symmetric group).

Consider the hidden subgroup problem in an arbitrary finite group G.

a. Compute the distributions over Ĝ that are observed when we perform weak Fourier sampling
in two cases: the hidden subgroup is trivial, or the hidden subgroup is {1, π} where π is an
involution. Your answer should be expressed in terms of the characters of G.

b. Show that the total variation distance between these two distributions is upper bounded by√
1
|G|
∑

σ∈Ĝ |χσ(π)|2.

c. Prove that
∑

σ∈Ĝ |χσ(π)|2 = |G|/|conj(π)|, where conj(π) denotes the conjugacy class of G to
which π belongs. (Hint: Use the orthogonality relations for the character table of G.)

d. Let G = Sn, the symmetric group on n items, and find a choice of π for which the total
variation distance is exponentially small in n. This shows that weak Fourier sampling fails to
solve the hidden subgroup problem in Sn.

In fact, there are now considerably stronger results about the power of Fourier sampling for the
HSP in Sn. Strong Fourier sampling fails (measuring in any basis), and indeed, joint measurments
on Ω(n log n) registers are required.

Problem 2 (Nonabelian Fourier sampling for the dihedral group).

In lecture, we attacked the hidden subgroup problem over the dihedral group of order 2N ,

DN := 〈r, s : r2 = sN = rsrs = 1〉,

using the Fourier transform over the cyclic group ZN . In this problem you will show that this is
essentially the same as performing the nonabelian Fourier transform over DN . You will also give a
representation-theoretic interpretation of Kuperberg’s algorithm.

For reference, the irreducible representations of DN are as follows: there are two one-dimensional
irreps, σtriv and σsign, with

σtriv(r) := 1 σtriv(s) := 1

σsign(r) := −1 σsign(s) := 1;

and dN/2e − 1 two-dimensional irreps, σj for j = 1, 2, . . . , dN/2e − 1, with

σj(r) :=

(
0 1
1 0

)
σj(s) :=

(
ωjN 0

0 ω−jN

)
.

(If N is even then there are two additional one-dimensional irreps, but let us assume for simplicity
that N is odd.)

a. Consider the HSP in DN with the hidden subgroup {1, rsα}. Write down the state obtained by
Fourier sampling over DN , assuming you measure a two-dimensional irrep σj . Compare to the
possible states obtained by Fourier sampling over ZN , obtaining some measurement outcome
k ∈ ZN with k 6= 0, and describe a correspondence between the two procedures. (Hint: There
are more possible values of k than values of j, so each value of j must correspond to multiple
values of k.)
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b. Describe a similar correspondence between the one-dimensional irreps of DN and the state
obtained when Fourier sampling over ZN yields the measurement outcome 0.

c. Decompose the representation σj ⊗ σk as a direct sum of irreducible representations of DN .

d. In view of the correspondence established in parts a and b, interpret the combination operation
used in Kuperberg’s algorithm in the light of representation theory.

e. Challenge problem: Give a quantum circuit for FDN
that uses FZN

as a subroutine.

Problem 3 (The hidden parabola problem revisited).

Recall that in the hidden parabola problem, we are given a black box function fα,β : F2
p → S, where

p is a prime, α ∈ F×p and β ∈ Fp are unknown parameters, and S is a finite set. For fixed α, β, the
function fα,β is promised to be constant on the parabola

Pα,β,γ := {(x, y) ∈ F2
p : y = αx2 + βx+ γ}

for any particular γ ∈ Fp, and distinct on parabolas corresponding to different values of γ. In this
problem, you will find an efficient quantum algorithm to determine α, β by querying fα,β.

a. Write down the mixed quantum state obtained by querying fα,β on a uniform superpositon
over Fp × Fp and then discarding the function value.

b. Show that this state is invariant under additive translations of one of the two registers, and
hence will be block diagonalized by the Fourier transform over Zp on that register. Compute
the resulting Fourier transformed state.

c. Suppose the register on which the Fourier transform was performed is measured, and consider
the resulting post-measurement state. Show that this density matrix is rank one, and write
down the corresponding pure quantum state.

d. Write down the state obtained when the process described in parts a–c is performed twice.
Collect the terms in the phase of this state proportional to the unknown parameters α, β, and
show that these coefficients can be computed in ancilla registers.

e. For any fixed value of the two ancilla registers, compute the state of the other two registers. In
particular, show that it is (proportional to) the uniform superposition over the set of solutions
to a pair of quadratic equations in two variables.

f. Find the solutions of this system of quadratic equations. (You may want to use a computer
algebra program to do the calculation.)

g. Explain how to efficiently erase the values in the registers containing the solution to the
quadratic system.

h. Having implemented the erasure, perform the inverse Fourier transform over Zp × Zp on the
ancilla registers, and show that a measurement of the resulting state gives the outcome α, β
with probability Ω(1).

Problem 4 (Product formulas).

Let A and B be finite-dimensional Hermitian matrices, and let ν := max{‖A‖, ‖B‖}.
a. Prove the Lie product formula, which states

lim
m→∞

(e−iAt/me−iBt/m)m = e−i(A+B)t.
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b. Show that
‖(e−iAt/me−iBt/m)m − e−i(A+B)t‖ ≤ ε

provided m = Ω(ν2t2/ε).

c. Let
S2(t) := e−iAt/2e−iBte−iAt/2.

How large should m be (as a function of ν, t, and ε) so that

‖S2(t/m)m − e−i(A+B)t‖ ≤ ε?

d. For integers k > 1, let

S2k(t) := S2k−2(pkt)
2 S2k−2((1− 4pk)t)S2k−2(pkt)
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where pk := (4− 41/(2k−1))−1 (and S2 is defined in part c). Suzuki showed that

‖S2k(t)− e−i(A+B)t‖ = O(|νt|2k+1).

How large should m be (as a function of ν, t, and ε) so that

‖S2k(t/m)m − e−i(A+B)t‖ ≤ ε?

Express your answer using big-O notation.

Problem 5 (The spectrum of a product of reflections).

In lecture, we defined a discrete-time quantum walk on an n-vertex graph as the product of a
reflection on Cn ⊗ Cn and the same reflection with the two systems interchanged. To analyze the
walk, we computed the spectrum of this product of reflections. In this problem, you will generalize
that calculation to the product of two arbitrary reflections.

Consider two subspaces

A := span{|ψ1〉, . . . , |ψa〉} B := span{|φ1〉, . . . , |φb〉}

of Cm, where 〈ψj |ψk〉 = δjk and 〈φj |φk〉 = δjk. Let

Π :=

a∑
j=1

|ψj〉〈ψj | Σ :=

b∑
j=1

|φj〉〈φj |

denote projections onto the two subspaces, let R := 2Π− Im and S := 2Σ− Im denote reflections
about the subspaces, and let U := RS denote their product. Finally, let D denote the a× b matrix
with entries Djk = 〈ψj |φk〉. You will show how the spectrum of U can be obtained from the singular
value decomposition of D.

a. Let |α〉 and |β〉 denote left and right singular vectors of D, respectively, with the same
singular value σ. The left singular vector |α〉 ∈ Ca can be mapped to a vector A|α〉 ∈ Cm by
applying the isometry A :=

∑a
j=1 |ψj〉〈j|. Similarly, the right singular vector |β〉 ∈ Cb can be

mapped to a vector B|β〉 ∈ Cm by the isometry B :=
∑b

j=1 |φj〉〈j|. Show that the subspace
span{A|α〉, B|β〉} is invariant under the action of U .

b. Diagonalize the action of U within this subspace to obtain one or two eigenvectors of U .
When do you obtain one, and when do you obtain two?

c. Compute the eigenvalues of U corresponding to these eigenvectors.

d. How many eigenvectors of U are obtained by the procedure outlined above? What are the
remaining eigenvectors of U and their corresponding eigenvalues?
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