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LECTURE 4: The abelian HSP and decomposition of abelian groups

In this lecture, we will see how to solve the hidden subgroup problem in any finite abelian group
of known structure. We will also see how related techniques can be used to deduce the structure
of an abelian group even if it is not initially known.

The abelian HSP

Recall that in the hidden subgroup problem, we are given a function f : G→ S (for a known group
G and a finite set S) satisfying f(x) = f(y) iff x and y are in the same (left) coset of the hidden
subgroup H ≤ G. In this lecture we will use additive notation for the group operation of an abelian
group, so we have f(x) = f(x) iff x − y ∈ H. The strategy for the general abelian HSP closely
follows the algorithm for the discrete log problem, which solves a particular instance of the HSP in
ZN × ZN .

We begin by creating a uniform superposition over the group,

|G〉 :=
1√
|G|

∑
x∈G
|x〉. (1)

Then we compute the function value in another register, giving

1√
|G|

∑
x∈G
|x, f(x)〉. (2)

Discarding the second register then gives a uniform superposition over the elements of some ran-
domly chosen coset x+H := {x+ h : h ∈ H} of H in G,

|x+H〉 =
1√
|H|

∑
h∈H
|x+ h〉. (3)

Such a state is commonly called a coset state. Equivalently, since the coset is unknown and uniformly
random, the state can be described by the density matrix

ρH :=
1

|G|
∑
x∈G
|x+H〉〈x+H|. (4)

Next we apply the QFT over G. Then we obtain the state

|x̂+H〉 := FG|x+H〉 (5)

=
1√

|H| · |G|

∑
y∈Ĝ

∑
h∈H

χy(x+ h)|y〉 (6)

=

√
|H|
|G|

∑
y∈Ĝ

χy(x)χy(H)|y〉 (7)
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where

χy(H) :=
1

|H|
∑
h∈H

χy(h). (8)

Note that applying the QFT was the right thing to do because the state ρH is G-invariant. In
other words, it commutes with the regular representation of G, the unitary matrices U(x) satisfying
U(x)|y〉 = |x+ y〉 for all x, y ∈ G: we have

U(x)ρH =
1

|G|
∑
y∈G
|x+ y +H〉〈y +H| (9)

=
1

|G|
∑
z∈G
|z +H〉〈z − x+H| (10)

= ρHU(−x)† (11)

= ρHU(x). (12)

It follows that ρ̂H := FGρHF
†
G is diagonal (indeed, we verify this explicitly below), so we can

measure without losing any information. We will talk about this phenomenon more when we
discuss nonabelian Fourier sampling.

Note that χy is a character of H if we restrict our attention that that subgroup. If χy(h) = 1
for all h ∈ H, then clearly χy(H) = 1. On the other hand, if there is any h ∈ H with χy(h) 6= 1
(i.e., if the restriction of χy to H is not the trivial character of H), then by the orthogonality of
distinct irreducible characters,

1

|G|
∑
x∈G

χy(x)χy′(x)∗ = δy,y′ (13)

we have χy(H) = 0. Thus we have

|x̂+H〉 =

√
|H|
|G|

∑
y : χy(H)=1

χy(x)|y〉 (14)

or, equivalently, the mixed quantum state

ρ̂H :=
|H|
|G|

∑
y : χy(H)=1

|y〉〈y|. (15)

Next we measure in the computational basis. Then we obtain some character χy that is trivial
on the hidden subgroup H. This information narrows down the possible elements of the hidden
subgroup: we can restrict our attention to those elements g ∈ G satisfying χy(g) = 1. The set of
such elements is called the kernel of χy,

kerχy := {g ∈ G : χy(g) = 1};

it is a subgroup of G. Now our strategy is to repeat the entire sampling procedure many times and
compute the intersection of the kernels of the resulting characters. After only polynomially many
steps, we claim that the resulting subgroup is H with high probability. It clearly cannot be smaller
than H (since the kernel of every sampled irrep contains H), so it suffices to show that each sample
is likely to reduce the size of H by a substantial fraction until H is reached.
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Suppose that at some point in this process, the intersection of the kernels is K ≤ G with K 6= H.
Since K is a subgroup of G with H < K, we have |K| ≥ 2|H| (by Lagrange’s theorem). Because
each character χy of G satisfying χy(H) has probability |H|/|G| of appearing, the probability that
we see some χy for which K ≤ kerχy is

|H|
|G|
|{y ∈ Ĝ : K ≤ kerχy}|. (16)

But the number of such ys is precisely |G|/|K|, since we know that if the subgroup K were hidden,
we would sample such ys uniformly, with probability |K|/|G|. Therefore the probability that we see
a y for which K ≤ kerχy is precisely |H|/|K| ≤ 1/2. Now if we observe a y such that K 6≤ kerχy,
then |K ∩ kerχy| ≤ |K|/2; furthermore, this happens with probability at least 1/2. Thus, if we
repeat the process O(log |G|) times, it is extremely likely that the resulting subgroup is in fact H.

Decomposing abelian groups

To apply the above algorithm, we must understand the structure of the group G; in particular, we
must be able to apply the Fourier transform FG. For some applications, we might not know the
structure of G a priori. But if we assume only that we have a unique encoding of each element
of G, the ability to perform group operations on these elements, and a generating set for G, then
there is an efficient quantum algorithm (due to Mosca) that decomposes the group as

G = 〈γ1〉 ⊕ 〈γ2〉 ⊕ · · · ⊕ 〈γt〉

in terms of generators γ1, γ2, . . . , γt. Here ⊕ denotes an internal direct sum, meaning that the
groups 〈γi〉 intersect only in the identity element; in other words, we have

G ∼= Z|〈γ1〉| × Z|〈γ2〉| × · · · × Z|〈γt〉|.

Given such a decomposition, it is straightforward to implement FG and thereby solve HSPs in G.
We might also use this tool to decompose the structure of the hidden subgroup H output by the
HSP algorithm, e.g., to compute |H|.

First, it is helpful to simplify the problem by reducing to the case of a p-group for some prime
p. For each given generator g of G, we compute its order, the smallest non-negative integer r
such that rg = 0 (where we are using additive notation; in multiplicative notation we would write
gr = 1). Recall that there is an efficient quantum algorithm for order finding. Furthermore, there
is an efficient quantum algorithm for factoring, so suppose we can write r = st for some relatively
prime integers s, t. By Euclid’s algorithm, we can find a, b such that as+ bt = 1, so asg + btg = g.
Therefore, we can replace the generator g by the two generators sg and tg and still have a generating
set. By repeating this procedure, we eventually obtain a generating set in which all the generators
have prime power order.

For a given prime p, let Gp be the group generated by all the generators of G whose order is a
power of p. Then G =

⊕
pGp: every element of G can be written as a sum of elements from the

Gps (since together they include a generating set), and since Gp is a p-group (i.e., the orders of all
its elements are powers of p), Gp ∩ Gp′ = {0}. Thus, it suffices to focus on the generators of Gp
and determine the structure of this p-group. So from now on we assume that the order of G is a
power of p.

Now, given a generating set {g1, . . . , gd} for G, let q (which is some power of p) be the largest
order of any of the generators. We consider a hidden subgroup problem in the group Zdq whose
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solution allows us to determine the structure of G. Define f : Zdq → G by

f(x1, . . . , xd) = x1g1 + · · ·+ xdgd.

Now f(x1, . . . , xd) = f(y1, . . . , yd) if and only if (x1− y1)g1 + · · ·+ (xd− yd)gd = 0, i.e., if and only
if f(x− y) = 0. The elements of G for which f takes the value 0,

K := {x ∈ Zdq : f(x) = 0},

form a subgroup of G called the kernel of f . Using the algorithm for the hidden subgroup problem
in Zdq , we can find generators for K. Suppose this generating set is W = {w1, . . . , wm}, where

wi ∈ Zdq .

The function f is clearly a homomorphism from Zdq to G, and it is also surjective (i.e., onto,

meaning that the image of f is all of G), which implies that Zdq/K ∼= G (this is called the first
isomorphism theorem). Thus, to determine the structure of G, it suffices to determine the structure
of the quotient Zdq/K. In particular, if Zdq/K = 〈u1 +K〉⊕ · · ·⊕ 〈ut +K〉, then G = 〈f(u1)〉⊕ · · ·⊕
〈f(ut)〉. The final ingredient is a polynomial-time classical algorithm that produces such a direct
sum decomposition of a quotient group.

To find such a decomposition, it is helpful to view the problem in terms of linear algebra. With
x ∈ Zdq , we have x+K = K (so that f(x) = 0, and there is no need to include x as a generator) if
and only if x ∈ spanZq

W (recall that W is a generating set for K). We can easily modify this to

allow arbitrary integer vectors x ∈ Zd: then x+K = K if and only if x ∈ spanZ(W ∪{qe1, . . . , qed}),
where ei is the ith standard basis vector. In other words, as x varies over the integer span of the
vectors w1, . . . , wm, qe1, . . . , qed, we obtain redundant vectors.

Now we use a tool from integer linear algebra called the Smith normal form. A square integer
matrix is called unimodular if it has determinant ±1. Given an integer matrix M , its Smith normal
form is a decomposition M = UDV −1, where D = diag(1, . . . , 1, d1, . . . , dt, 0, . . . 0) is an integer
diagonal matrix with its positive diagonal entries satisfying d1 | d2 | . . . | dt. The Smith normal
form can be computed classically in polynomial time.

In the present context, let M be the matrix with columns w1, . . . , wm, qe1, . . . , qed. Let M =
UDV −1 be its Smith normal form, and let u1, . . . , ut be the columns of U corresponding to diagonal
entries of D that are not 0 or 1 (i.e., if the ith diagonal entry of D is not 0 or 1, the ith column of
U is included). We claim that Zdq/K = 〈u1 +K〉 ⊕ · · · ⊕ 〈ut +K〉.

Since U is nonsingular, it is clear that we still have a generating set if we take all the columns
of U . We’re claiming that the columns corresponding to 0 or 1 diagonal entries of D are re-
dundant. Let u be the jth column of U ; we know that u + K = K (i.e., u is redundant)
if u ∈ spanZ cols(M) (where cols(M) denotes the set of columns of M). Since V is unimod-
ular, spanZ cols(M) = spanZ cols(MV ). So u + K = K if u ∈ spanZ cols(MV ), i.e., if ej ∈
spanZ cols(U−1MV ) = spanZ cols(D). If the jth diagonal entry of D is 0 or 1, then clearly this is
true, so u+K = K. This shows that the cosets u1 +K, . . . , ut +K alone indeed generate Zdq/K.

It remains to show that they generate Zdq/K as a direct sum. The above argument shows that
diui +K = K, and this is not true for any smaller value than di, so the order of ui +K is di. Now
suppose

∑
i xiui + K = K. Then

∑
i xiui ∈ spanZ cols(M) = spanZ cols(MV ), or in other words,

x ∈ spanZ cols(U−1MV ) = spanZ cols(D). But this implies that xi is an integer multiple of di,
which shows that 〈u1 +K〉 ⊕ · · · ⊕ 〈ut +K〉 is indeed a direct sum decomposition.
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