
Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2011)

Andrew Childs, University of Waterloo

LECTURE 18: The adversary method

So far, we have discussed several different kinds of quantum algorithms. In the last few lectures,
we will discuss ways of establishing limitations on the power of quantum algorithms. We begin in
this lecture with a very broadly applicable method called the quantum adversary method.

Quantum query complexity

Many of the algorithms we have covered work in the setting of query complexity, where the input
for a problem is provided by a black box. This setting is convenient since the black box provides
a handle for proving lower bounds: we can often show that many queries are required to compute
some given function of the black-box input. In contrast, it is notoriously difficult to prove lower
bounds on the complexity of computing some function of explicit input data.

We briefly formalize the model of query complexity. Consider the computational task of com-
puting a function f : S → T , where S ⊂ Σn is a set of strings over some input alphabet Σ. If
S = Σn then we say f is total ; otherwise we say it is partial. The input string x ∈ S is provided
to us by a black box that computes xi for any desired i ∈ {1, . . . , n}. A query algorithm begins
from a state that does not depend on the oracle string x. It then alternate between queries to the
black box and other, non-query operations. Our goal is to compute f(x) using as few queries to
the black box as possible.

Of course, the minimum number of queries (which we call the query complexity of f) depends
on the kind of computation we allow. There are at least three natural models:

• D(f) denotes the deterministic query complexity, where the algorithm is classical and must
always work correctly.

• Rε denotes the randomized query complexity with (two-sided) error probability at most ε.
Note that this it does not depend strongly on ε since we can boost the success probability
by repeating the computation several times and take a majority vote. Therefore Rε(f) =
Θ(R1/3(f)) for any constant ε, so sometimes we simply write R(f).

• Qε denotes the quantum query complexity, again with (two-sided) error probability at most
ε. Similarly to the randomized case, Qε(f) = Θ(Q1/3(f)) for any constant ε, so sometimes
we simply write Q(f).

We know that D(or) = n and R(or) = Θ(n). Grover’s algorithm shows that Q(or) = O(
√
n).

In this lecture we will use the adversary method to show that Q(or) = Ω(
√
n), a tight lower bound.

Quantum queries

A quantum query algorithm begins from x-independent state |ψ〉 and applies a sequence of unitary
operations U1, . . . , Ut interspersed with queries Ox, resulting in the state

|ψtx〉 := UtOx . . . U2OxU1Ox|ψ〉. (1)

1

To make this precise, we need to specify the action of the oracle Ox.

For simplicity, we will mostly consider the case where the input is a bit string, i.e., Σ = {0, 1}.
Perhaps the most natural oracle model is the bit flip oracle Ôx, which acts as

Ôx|i, b〉 = |i, b⊕ xi〉 for i ∈ {1, . . . , n}, b ∈ {0, 1}. (2)

This is simply the linear extension of the natural reversible oracle mapping (i, b) 7→ (i, b⊕xi). Note
that the algorithm may involve states in a larger Hilbert space; implicitly, the oracle acts as the
identity on any ancillary registers.

It is often convenient to instead consider the phase oracle, which is obtained by conjugating the
bit-flip oracle by Hadamard gates: by the well-known phase kickback trick, Ox = (I⊗H)Ôx(I⊗H)
satisfies

Ox|i, b〉 = (−1)bxi |i, b〉 for i ∈ {1, . . . , n}, b ∈ {0, 1}. (3)

Note that this is slightly wasteful since Ox|i, 0〉 = |i, 0〉 for all i; we could equivalently consider a
phase oracle O′x defined by O′x|0〉 = |0〉 and O′x|i〉 = (−1)xi |i〉 for all i ∈ {1, . . . , n}. However, it
is essential to include the ability to not query the oracle by giving the oracle some eigenstate of
known eigenvalue, independent of x. If we could only perform the phase flip |i〉 7→ (−1)xi |i〉 for
i ∈ {1, . . . , n}, then we could not tell a string x from its bitwise complement x̄.

These constructions can easily be generalized to the case of a d-ary input alphabet, say Σ = Zd
(identifying input symbols with integers modulo d). Then for b ∈ Σ, we can define an oracle Ôx by

Ôx|i, b〉 = |i, b+ xi〉 for i ∈ {1, . . . , n}, b ∈ Zd. (4)

Taking the Fourier transform of the second register gives a phase oracle Ox = (I⊗F †Zd
)Ôx(I⊗FZd

)
satisfying

Ox|i, b〉 = ωbxid |i, b〉 for i ∈ {1, . . . , n}, b ∈ Zd (5)

where ωd := e2πi/d.

Quantum adversaries

Motivation for the quantum adversary method, as well as its name, comes from the following con-
struction. Suppose the oracle is operated by an adversary who holds a quantum state determining
the oracle string, which is in some superposition

∑
x∈S ax|x〉 over the possible oracles. To implement

each query, the adversary performs the “super-oracle”

O :=
∑
x∈S
|x〉〈x| ⊗Ox. (6)

An algorithm does not have direct access to the oracle string, and hence can only perform unitary
operations that act as the identity on the adversary’s superposition. After t steps, an algorithm
maps the overall state to

|ψt〉 := (I ⊗ Ut)O . . . (I ⊗ U2)O(I ⊗ U1)O

(∑
x∈S

ax|x〉 ⊗ |ψ〉

)
(7)

=
∑
x∈S

ax|x〉 ⊗ |ψtx〉. (8)

2

The main idea of the approach is that for the algorithm to learn x, this state must become
very entangled. To measure the entanglement of the pure state |ψt〉, we can consider the reduced
density matrix of the oracle,

ρt :=
∑
x,y∈S

a∗xay〈ψtx|ψty〉 |x〉〈y|. (9)

Initially, the state ρ0 is pure. Our goal is to quantify how mixed it must become (i.e., how entangled
the overall state must be) before we can compute f with error at most ε. To do this we could
consider, for example, the entropy of ρt. However, it turns out that other measures are easier to
deal with.

In particular, we have the following basic fact about the distinguishability of quantum states
(for a proof, see for example section A.9 of KLM):

Fact. Given one of two pure states |ψ〉, |φ〉, we can make a measurement that determines which
state we have with error probability at most ε if and only if |〈ψ|φ〉| ≤ 2

√
ε(1− ε).

Thus it is convenient to consider measures that are linear in the inner products 〈ψtx|ψty〉.

The adversary method

To obtain an adversary lower bound, we choose a matrix Γ ∈ R|S|×|S|, with rows and columns
indexed by the possible black-box inputs. The entry Γx,y is meant to characterize how hard it is
to distinguish between x and y. We say Γ is an adversary matrix if

1. Γxy = Γyx,

2. Γxy ≥ 0, and

3. if f(x) = f(y) then Γxy = 0.

The third condition is intuitively plausible because if f(x) = f(y), then we do not need to distinguish
between x and y.

Given an adversary matrix Γ, we can define a weight function

W j :=
∑
x,y∈S

Γxya
∗
xay〈ψjx|ψjy〉. (10)

Note that this is a simple function of the entries of ρj . The idea of the lower bound is to show that
W j starts out large, must become small in order to compute f , and cannot change by much if we
make a query.

The initial value of the weight function is

W 0 =
∑
x,y∈S

Γxya
∗
xay〈ψ0

x|ψ0
y〉 (11)

=
∑
x,y∈S

a∗xΓxyay (12)

since |ψ0
x〉 cannot depend on x. To make this as large as possible, we take a to be a principal

eigenvector of Γ. Then W 0 = ‖Γ‖.

3

The final value of the weight function is constrain by the fact that we must distinguish x from
y with error probability at most ε whenever f(x) 6= f(y). To do this after t queries, we need
|〈ψtx|ψty〉| ≤ 2

√
ε(1− ε) for all pairs x, y ∈ S with f(x) 6= f(y). Thus we have

W t ≤
∑
x,y∈S

Γxya
∗
xay2

√
ε(1− ε) (13)

= 2
√
ε(1− ε)‖Γ‖. (14)

Here we can include the terms where f(x) = f(y) in the sum since Γxy = 0 for such pairs.

It remains to understand how much the weight function can decrease at each step of the algo-
rithm. We have

W j+1 −W j =
∑
x,y∈S

Γxya
∗
xay(〈ψj+1

x |ψj+1
y 〉 − 〈ψjx|ψjy〉). (15)

Now consider how the state changes when we make a query. We have |ψj+1
x 〉 = U j+1Ox|ψjx〉. Thus

the elements of the Gram matrix of the states {|ψj+1
x 〉 : x ∈ S} are

〈ψj+1
x |ψj+1

y 〉 = 〈ψjx|O†x(U j+1)†U j+1Oy|ψjy〉 (16)

= 〈ψjx|OxOy|ψjy〉 (17)

since U j+1 is unitary and O†x = Ox. Thus we have

W j+1 −W j =
∑
x,y∈S

Γxya
∗
xay〈ψjx|(OxOy − I)|ψjy〉 (18)

Observe that OxOy|i, b〉 = (−1)b(xi⊕yi)|i, b〉. Let P0 = I ⊗ |0〉〈0| denote the projection onto the
b = 0 states, and let Pi denote the projection |i, 1〉〈i, 1|. (As with Ox, the projections Pi implicitly
act as the identity on any ancilla registers, so

∑n
i=0 Pi = I.) Then OxOy = P0 +

∑n
i=1(−1)xi⊕yiPi,

so OxOy − I = −2
∑n

i : xi 6=yi Pi. Thus we have

|W j+1 −W j | = 2

∣∣∣∣ ∑
x,y∈S

∑
i : xi 6=yi

Γxya
∗
xay〈ψjx|Pi|ψjy〉

∣∣∣∣ (19)

≤ 2
∑
x,y∈S

∑
i : xi 6=yi

Γxy|a∗xay〈ψjx|Pi|ψjy〉| (20)

≤ 2
∑
x,y∈S

∑
i : xi 6=yi

Γxy‖axPi|ψjx〉‖ · ‖ayPi|ψjy〉‖ (21)

where the first inequality uses the triangle inequality and the second uses the Cauchy-Schwarz
inequality.

Now for each i ∈ {1, . . . , n}, let Γi be a matrix with

(Γi)xy =

{
Γxy if xi 6= yi

0 if xi = yi,
(22)

4

and define vectors vi with components (vi)x = ‖axPi|ψjx〉‖. Then we have

|W j+1 −W j | ≤ 2
∑
x,y∈S

n∑
i=1

(vi)x(Γi)xy(vi)y (23)

= 2
n∑
i=1

v†iΓivi (24)

≤ 2
n∑
i=1

‖Γi‖ · ‖vi‖2. (25)

Finally, since

n∑
i=1

‖vi‖2 =

n∑
i=1

∑
x∈S
‖axPi|ψjx〉‖2 (26)

≤
∑
x∈S

a2
x‖|ψjx〉‖2 (27)

=
∑
x∈S

a2
x (28)

= 1, (29)

we have

|W j+1 −W j | ≤ 2 max
i∈{1,...,n}

‖Γi‖. (30)

Since W 0 = ‖Γ‖, we have
W t ≥ ‖Γ‖ − 2t max

i∈{1,...,n}
‖Γi‖. (31)

Thus, to have W t ≤ 2
√
ε(1− ε)‖Γ‖, we require

t ≥
1− 2

√
ε(1− ε)
2

Adv(f). (32)

where

Adv(f) := max
Γ

‖Γ‖
maxi∈{1,...,n} ‖Γi‖

(33)

with the maximum taken over all adversary matrices Γ.

Example: Unstructured search

As a simple application of this method, we prove the optimality of Grover’s algorithm. It is sufficient
to consider the problem of distinguishing between the case of no marked items and the case of a
unique marked item (in an unkown location). Thus, consider the partial function where S consists
of the strings of Hamming weight 0 or 1, and f is the logical or of the input bits. (Equivalently,
we consider the total function or but only consider adversary matrices with zero weight on strings
of Hamming weight more than 1.)

5

For this problem, adversary matrices have the form

Γ =


0 γ1 · · · γn
γ1 0 · · · 0
...

...
. . .

...
γn 0 · · · 0

 (34)

for some nonnegative coefficients γ1, . . . , γn. Symmetry suggests that we should take γ1 = · · · = γn.
This can be formalized, but for the present purposes we can take this as an ansatz.

Setting γ1 = · · · = γn = 1 (since an overall scale factor does not affect the bound), we have

Γ2 =


n 0 · · · 0
0 1 · · · 1
...

...
. . .

...
0 1 · · · 1

 (35)

which has norm ‖Γ2‖ = n, and hence ‖Γ‖ =
√
n. We also have

Γ1 =


0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 (36)

and similarly for the other Γi, so ‖Γi‖ = 1. Thus we find Adv(or) ≥
√
n, and it follows that

Qε(or) ≥ 1−2
√
ε(1−ε)
2 n. This shows that Grover’s algorithm is optimal up to a constant factor

(recall that Grover’s algorithm finds a unique marked item with probability 1− o(1) in π
4

√
n+ o(1)

queries).

Other adversaries

The adversary method described above is a generalization of the method originally formulated by
Ambainis, which considered only a relation between yes and no inputs and did not allow arbitrary
positive weights. More recently, it was realized that one can use negative weights and still obtain
a lower bound, and that sometimes this bound can be dramatically better. In fact, it was shown
by Reichardt that this bound is essentially tight: up to constant factors, the negative adversary
method characterizes quantum query complexity.

6

