
Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2011)

Andrew Childs, University of Waterloo

LECTURE 19: The polynomial method

In this lecture we discuss a second method for establishing lower bounds on quantum query com-
plexity, the polynomial method. This can be more difficult to apply than the adversary method,
but sometimes gives better lower bounds (than the adversary method with positive weights). We
begin by discussing the basic approach and some cases in which its application is relatively easy.

Quantum algorithms and polynomials

The following shows a basic connection between quantum algorithms and polynomials.

Lemma. The acceptance probability of a t-query quantum algorithm for a problem with black-box
input x ∈ {0, 1}n is a polynomial in x1, . . . , xn of degree at most 2t.

Proof. We claim that the amplitude of any basis state is a polynomial of degree at most t, so that
the probability of any basis state (and hence the probability of success) is a polynomial of degree
at most 2t.

The proof is by induction on t. If an algorithm makes no queries to the input, then its success
probability is independent of the input, so it is a constant, a polynomial of degree 0.

For the induction step, a query maps

|i, b〉 7→ (−1)bxi |i, b〉 (1)

= (1− 2bxi)|i, b〉, (2)

so it increases the degree of each amplitude by at most 1.

Consider a Boolean function f : {0, 1}n → {0, 1}. We say a polynomial p ∈ R[x1, . . . , xn]
represents f if p(x) = f(x) for all x ∈ {0, 1}n. Letting deg(f) denote the smallest degree of any
polynomial representing f , we have Q0(f) ≥ deg(f)/2.

To handle bounded-error algorithms, we introduce the concept of approximate degree. We say a
polynomial p ε-represents f if |p(x)−f(x)| ≤ ε for all x ∈ {0, 1}n. Then the ε-approximate degree of

f , denoted d̃egε(f), is the smallest degree of any polynomial that ε-represents f . Clearly, Qε(f) ≥
d̃egε(f)/2. Since bounded-error query complexity does not depend strongly on the particular error

probability ε, we can define, say, d̃eg(f) := d̃eg1/3(f).

Now to lower bound the quantum query complexity of a Boolean function, it suffices to lower
bound its approximate degree.

Symmetrization

While polynomials are well-understood objects, the acceptance probability is a multivariate poly-
nomial, so it can be rather complicated. Since x2 = x for x ∈ {0, 1}, we can restrict our attention
to multilinear polynomials, but it is still somewhat difficult to deal with such polynomials directly.
Fortunately, for many functions it suffices to consider a related univariate polynomial obtained by
symmetrization.

1

For a string x ∈ {0, 1}n, let |x| denote the Hamming weight of x, the number of 1s in x.

Lemma. Given any n-variate multilinear polynomial p, let P (k) := E|x|=k[p(x)]. Then P is a
polynomial with deg(P) ≤ deg(p).

Proof. Since p is multilinear, it can be written as a sum of monomials, i.e., as

p(x) =
∑

S⊆{1,...,n}

cS
∏
i∈S

xi (3)

for some coefficients cS . Then we have

P (k) =
∑

S⊆{1,...,n}

cS E
|x|=k

[∏
i∈S

xi

]
(4)

and it suffices to compute the expectation of each monomial. We find

E
|x|=k

[∏
i∈S

xi

]
= Pr
|x|=k

[∀ i ∈ S, xi = 1] (5)

=

(n−|S|
k−|S|

)(
n
k

) (6)

=
(n− |S|)! k! (n− k)!

(k − |S|)! (n− k)!n!
(7)

=
(n− |S|)!

n!
k(k − 1) · · · (k − |S|+ 1) (8)

which is a polynomial in k of degree |S|. Since cS = 0 whenever |S| > deg(p), we see that
deg(P) ≤ deg(p).

Thus the polynomial method is a particularly natural approach for symmetric functions, func-
tions that only depend on the Hamming weight of the input.

Parity

Let parity : {0, 1}n → {0, 1} denote the symmetric function parity(x) = x1⊕· · ·⊕xn. Recall that
Deutsch’s problem, which is the problem of computing the parity of 2 bits, can be solved exactly
with only one quantum query. Applying this algorithm to a pair of bits at a time and then taking
the parity of the results, we see that Q0(parity) ≤ n/2.

What can we say about lower bounds for computing parity? Symmetrizing parity gives the
function P : {0, 1, . . . , n} → R defined by

P (k)

{
0 if k is even

1 if k is odd.
(9)

Since P changes direction n times, deg(P) ≥ n, so we see that Q0(parity) ≥ n/2. Thus Deutsch’s
algorithm is tight among zero-error algorithms.

2

What about bounded-error algorithms? To understand this we would like to lower bound the
approximate degree of parity. If |p(x)− f(x)| ≤ ε for all x ∈ {0, 1}n, then

|P (k)− F (k)| =
∣∣∣∣ E
|x|=k

(p(x)− f(x))

∣∣∣∣ ≤ ε (10)

for all k ∈ {0, 1, . . . , n}, where P is the symmetrization of p and F is the symmetrization of f .
Thus, a multilinear polynomial p that ε-approximates parity implies a univariate polynomial P
satisfying P (k) ≤ ε for k even and P (k) ≥ 1 − ε for k odd. For any ε < 1/2, this function still

changes direction n times, so in fact we have d̃egε(f) ≥ n, and hence Qε(parity) ≥ n/2.

This shows that the strategy for computing parity using Deutsch’s algorithm is optimal. This is
an example of a problem for which a quantum computer cannot get a significant speedup—here the
speedup is only by factor of 2. In fact, we need at least n/2 queries to succeed with any bounded
error, even with very small advantage (e.g., even if we only want to be correct with probability
1
2 + 10−100). In contrast, while the adversary method can prove an Ω(n) lower bound for parity,
the constant factor that it establishes is error-dependent.

Note that this also shows we need Ω(n) queries to exactly count the number of marked items
in an unstructured search problem, since exactly determining the number of 1s would in particular
determine whether the number of 1s is odd or even.

Unstructured search

Next we will see how the polynomial method can be used to prove the Ω(
√
n) lower bound for

computing the logical or of n bits. Symmetrizing or gives a function F (k) with F (0) = 0 and
F (1) = 1. We also have F (k) = 1 for all k > 1, but we will not actually need to use this.
This function is monotonic, so we cannot use the same simple argument we applied to parity.
Nevertheless, we can prove that d̃eg(or) = Ω(

√
n) using the following basic fact about polynomials,

due to Markov.

Lemma. Let P : R→ R be a polynomial. Then

max
x∈[0,n]

dP (x)

dx
≤ deg(P)2

n

(
max
x∈[0,n]

P (x)− min
x∈[0,n]

P (x)

)
. (11)

In other words, if we let
h := max

x∈[0,n]
P (x)− min

x∈[0,n]
P (x) (12)

denote the “height” of P in the range [0, n], and

d := max
x∈[0,n]

dP (x)

dx
(13)

denote the largest derivative of P in that range, then we have deg(P) ≥
√
nd/h.

Now let P be a polynomial that ε-approximates or. Since P (0) ≤ ε and P (1) ≥ 1− ε, P must
increase by at least 1− 2ε in going from k = 0 to k = 1, so d ≥ 1− 2ε.

We have no particular bound on h, since we have no control over the value of P at non-integer
points; the function could become arbitrarily large or small. However, since P (k) ∈ [0, 1] for
k ∈ {0, 1, . . . , n}, a large value of h implies a large value of d, since P must change fast enough

3

to start from and return to values in the range [0, 1]. In particular, P must change by at least
(h− 1)/2 over a range of k of width at most 1/2, so we have d ≥ h− 1. Therefore,

deg(P) ≥
√
nmax{1− 2ε, h− 1}

h
(14)

= Ω(
√
n). (15)

It follows that Q(or) = Ω(
√
n).

Note that the same argument applies for a function that takes the value 0 whenever |x| = w
and the value 1 whenever |x| = w + 1, for any w; in particular, it applies to any non-constant
symmetric function. (Of course, we can do better for some symmetric functions, such as parity
and also majority, among others.)

4

