
Quantum algorithms (CO 781/CS 867/QIC 823) Winter 2013

ASSIGNMENT 2 due Tuesday 5 March (in class)

Problem 1 (Weak Fourier sampling fails for the symmetric group).

Consider the hidden subgroup problem in an arbitrary finite group G.

a. Compute the distributions over Ĝ that are observed when we perform weak Fourier sampling
in two cases: the hidden subgroup is trivial, or the hidden subgroup is {1, π} where π is an
involution. Your answer should be expressed in terms of the characters of G.

b. Show that the total variation distance between these two distributions is upper bounded by√
1
|G|
∑

σ∈Ĝ |χσ(π)|2.

c. Prove that
∑

σ∈Ĝ |χσ(π)|2 = |G|/|conj(π)|, where conj(π) denotes the conjugacy class of G to
which π belongs. (Hint: Use the orthogonality relations for the character table of G.)

d. Let G = Sn, the symmetric group on n items, and find a choice of π for which the total
variation distance is exponentially small in n. This shows that weak Fourier sampling fails to
solve the hidden subgroup problem in Sn.

In fact, there are now considerably stronger results about the power of Fourier sampling for the
HSP in Sn. Strong Fourier sampling fails (measuring in any basis), and indeed, joint measurments
on Ω(n log n) registers are required.

Problem 2 (Nonabelian Fourier sampling for the dihedral group).

In lecture, we attacked the hidden subgroup problem over the dihedral group of order 2N ,

DN := 〈r, s : r2 = sN = rsrs = 1〉,

using the Fourier transform over the cyclic group ZN . In this problem you will show that this is
essentially the same as performing the nonabelian Fourier transform over DN . You will also give a
representation-theoretic interpretation of Kuperberg’s algorithm.

For reference, the irreducible representations of DN are as follows: there are two one-dimensional
irreps, σtriv and σsign, with

σtriv(r) := 1 σtriv(s) := 1

σsign(r) := −1 σsign(s) := 1;

and dN/2e − 1 two-dimensional irreps, σj for j = 1, 2, . . . , dN/2e − 1, with

σj(r) :=

(
0 1
1 0

)
σj(s) :=

(
ωjN 0

0 ω−jN

)
.

(If N is even then there are two additional one-dimensional irreps, but let us assume for simplicity
that N is odd.)

a. Consider the HSP in DN with the hidden subgroup {1, rsα}. Write down the state obtained by
Fourier sampling over DN , assuming you measure a two-dimensional irrep σj . Compare to the
possible states obtained by Fourier sampling over ZN , obtaining some measurement outcome
k ∈ ZN with k 6= 0, and describe a correspondence between the two procedures. (Hint: There
are more possible values of k than values of j, so each value of j must correspond to multiple
values of k.)
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b. Describe a similar correspondence between the one-dimensional irreps of DN and the state
obtained when Fourier sampling over ZN yields the measurement outcome 0.

c. Decompose the representation σj ⊗ σk as a direct sum of irreducible representations of DN .

d. In view of the correspondence established in parts a and b, interpret the combination operation
used in Kuperberg’s algorithm in the light of representation theory.

e. Challenge problem: Give a quantum circuit for FDN
that uses FZN

as a subroutine.

Problem 3 (Product formulas).

Let A and B be finite-dimensional Hermitian matrices, and let ν := max{‖A‖, ‖B‖}.
a. Prove the Lie product formula, which states

lim
m→∞

(e−iAt/me−iBt/m)m = e−i(A+B)t.

b. Show that
‖(e−iAt/me−iBt/m)m − e−i(A+B)t‖ ≤ ε

for some m = O(ν2t2/ε).

c. Let
S2(t) := e−iAt/2e−iBte−iAt/2.

How large should m be (as a function of ν, t, and ε) so that

‖S2(t/m)m − e−i(A+B)t‖ ≤ ε?

d. For integers k > 1, let

S2k(t) := S2k−2(pkt)
2 S2k−2(qkt)S2k−2(pkt)

2.

Find real numbers pk and qk (as functions of k) so that

‖S2k(t)− e−i(A+B)t‖ = O(|νt|2k+1).

e. How large should m be (as a function of ν, t, and ε) so that

‖S2k(t/m)m − e−i(A+B)t‖ ≤ ε?

Express your answer using big-O notation.

Problem 4 (The spectrum of a product of reflections).

In lecture, we defined a discrete-time quantum walk on an n-vertex graph as the product of a
reflection on Cn ⊗ Cn and the same reflection with the two systems interchanged. To analyze the
walk, we computed the spectrum of this product of reflections. In this problem, you will generalize
that calculation to the product of two arbitrary reflections.

Consider two subspaces

A := span{|ψ1〉, . . . , |ψa〉} B := span{|φ1〉, . . . , |φb〉}
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of Cm, where 〈ψj |ψk〉 = δjk and 〈φj |φk〉 = δjk. Let

Π :=

a∑
j=1

|ψj〉〈ψj | Σ :=

b∑
j=1

|φj〉〈φj |

denote projections onto the two subspaces, let R := 2Π− Im and S := 2Σ− Im denote reflections
about the subspaces, and let U := RS denote their product. Finally, let D denote the a× b matrix
with entries Djk = 〈ψj |φk〉. You will show how the spectrum of U can be obtained from the singular
value decomposition of D.

a. Let |α〉 and |β〉 denote left and right singular vectors of D, respectively, with the same
singular value σ. The left singular vector |α〉 ∈ Ca can be mapped to a vector A|α〉 ∈ Cm by
applying the isometry A :=

∑a
j=1 |ψj〉〈j|. Similarly, the right singular vector |β〉 ∈ Cb can be

mapped to a vector B|β〉 ∈ Cm by the isometry B :=
∑b

j=1 |φj〉〈j|. Show that the subspace
span{A|α〉, B|β〉} is invariant under the action of U .

b. Diagonalize the action of U within this subspace to obtain one or two eigenvectors of U .
When do you obtain one, and when do you obtain two?

c. Compute the eigenvalues of U corresponding to these eigenvectors.

d. How many eigenvectors of U are obtained by the procedure outlined above? What are the
remaining eigenvectors of U and their corresponding eigenvalues?

Problem 5 (The triangle problem).

In the triangle problem, you are asked to decide whether an n-vertex graph G contains a triangle
(a complete subgraph on 3 vertices). The graph is specified by a black box that, for any pair of
vertices of G, returns a bit indicating whether those vertices are connected by an edge in G.

a. What is the classical query complexity of the triangle problem?

b. Say that an edge of G is a triangle edge if it is part of a triangle in G. What is the quantum
query complexity of deciding whether a particular edge of G is a triangle edge?

c. Now suppose you know the vertices and edges of some m-vertex subgraph of G. Explain how
you can decide whether this subgraph contains a triangle edge using O(m2/3√n) quantum
queries.

d. Consider a quantum walk algorithm for the triangle problem (or, equivalently, deciding
whether a graph contains a triangle edge). The walk takes place on a graph G whose vertices
correspond to subgraphs of G on m vertices, and whose edges correspond to subgraphs that
differ by changing one vertex. A vertex of G is marked if it contains a triangle edge. How
many queries does this algorithm use to decide whether G contains a triangle? (Hint: Be
sure to account for the queries used to initialize the walk, the queries used to move between
neighboring vertices of G, and the queries used to check whether a given vertex of G is marked.
To get a nontrivial result, you should use the search framework mentioned in class that takes
many steps according to the walk on G with no marked vertices before performing a phase
flip at marked vertices.)

e. Choose a value of m that minimizes the number of queries used by the algorithm. What is
the resulting upper bound on the quantum query complexity of the triangle problem?

f. Challenge problem: Generalize this algorithm to decide whether G contains a k-clique. How
many queries does the algorithm use?
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