
Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013)

Andrew Childs, University of Waterloo

LECTURE 15: The adversary method

We now discuss a second approach to proving quantum query lower bounds, the quantum adversary
method. In fact, we’ll see later that the generalized version of the adversary method we consider
here (allowing negative weights) turns out to be an upper bound on quantum query complexity, up
to constant factors.

Quantum adversaries

Motivation for the quantum adversary method comes from the following construction. Suppose the
oracle is operated by an adversarial party who holds a quantum state determining the oracle string,
which is in some superposition

∑
x∈S ax|x〉 over the possible oracles. To implement each query, the

adversary performs the “super-oracle”

O :=
∑
x∈S
|x〉〈x| ⊗Ox. (1)

An algorithm does not have direct access to the oracle string, and hence can only perform unitary
operations that act as the identity on the adversary’s superposition. After t steps, an algorithm
maps the overall state to

|ψt〉 := (I ⊗ Ut)O . . . (I ⊗ U2)O(I ⊗ U1)O

(∑
x∈S

ax|x〉 ⊗ |ψ〉

)
(2)

=
∑
x∈S

ax|x〉 ⊗ |ψtx〉. (3)

The main idea of the approach is that for the algorithm to learn x, this state must become
very entangled. To measure the entanglement of the pure state |ψt〉, we can consider the reduced
density matrix of the oracle,

ρt :=
∑
x,y∈S

a∗xay〈ψtx|ψty〉 |x〉〈y|. (4)

Initially, the state ρ0 is pure. Our goal is to quantify how mixed it must become (i.e., how entangled
the overall state must be) before we can compute f with error at most ε. To do this we could
consider, for example, the entropy of ρt. However, it turns out that other measures are easier to
deal with.

In particular, we have the following basic fact about the distinguishability of quantum states
(for a proof, see for example section A.9 of KLM):

Fact. Given one of two pure states |ψ〉, |φ〉, we can make a measurement that determines which
state we have with error probability at most ε ∈ [0, 1/2] if and only if |〈ψ|φ〉| ≤ 2

√
ε(1− ε).

Thus it is convenient to consider measures that are linear in the inner products 〈ψtx|ψty〉.

1



The adversary method

To obtain an adversary lower bound, we choose a matrix Γ ∈ R|S|×|S| with rows and columns
indexed by the possible black-box inputs. The entry Γx,y is meant to characterize how hard it is
to distinguish between x and y. We say Γ is an adversary matrix if

1. Γxy = Γyx and

2. if f(x) = f(y) then Γxy = 0.

The second condition reflects that we do not need to distinguish between x and y if f(x) = f(y).

The original adversary method made the additional assumption that Γxy ≥ 0, but it turns out
that this condition is not actually necessary. Sometimes we refer to the negative or generalized
adversary method to distinguish it from the original, positive-weighted method. While it may not
be intuitively obvious what it would mean to give a negative weight to the entry characterizing
distinguishability of two inputs, it turns out that this flexibility can lead to significantly improved
lower bounds for some functions.

Given an adversary matrix Γ, we can define a weight function

W j :=
∑
x,y∈S

Γxya
∗
xay〈ψjx|ψjy〉. (5)

Note that this is a simple function of the entries of ρj . The idea of the lower bound is to show that
W j starts out large, must become small in order to compute f , and cannot change by much if we
make a query.

The initial value of the weight function is

W 0 =
∑
x,y∈S

Γxya
∗
xay〈ψ0

x|ψ0
y〉 (6)

=
∑
x,y∈S

a∗xΓxyay (7)

since |ψ0
x〉 cannot depend on x. To make this as large as possible, we take a to be a principal

eigenvector of Γ, an eigenvector with eigenvalue ±‖Γ‖. Then |W 0| = ‖Γ‖.
The final value of the weight function is easier to bound if we assume a nonnegative adversary

matrix. The final value is constrained by the fact that we must distinguish x from y with error
probability at most ε whenever f(x) 6= f(y). For this to hold after t queries, we need |〈ψtx|ψty〉| ≤
2
√
ε(1− ε) for all pairs x, y ∈ S with f(x) 6= f(y) (by the above Fact). Thus we have

|W t| ≤
∑
x,y∈S

Γxya
∗
xay2

√
ε(1− ε) (8)

= 2
√
ε(1− ε)‖Γ‖. (9)

Here we can include the terms where f(x) = f(y) in the sum since Γxy = 0 for such pairs. We
also used the fact that the principal eigenevector of a nonnegative matrix can be taken to have
nonnegative entries (by the Perron-Frobenius theorem).

A similar bound holds if Γ has negative entries, but we need a different argument. In general,
one can only show that |W t| ≤ (2

√
ε(1− ε) + 2ε)‖Γ‖. But if we assume that f : S → {0, 1} has

Boolean output, then we can prove the same bound as in the non-negative case, and the proof is
simpler than for a general output space. We use the following simple result, stated in terms of the
Frobenius norm ‖X‖F :=

∑
a,b |Xab|2:

2



Proposition. For any X ∈ Cm×n, Y ∈ Cn×n, Z ∈ Cn×m, we have |tr(XY Z)| ≤ ‖X‖F ‖Y ‖‖Z‖F .

Proof. We have

tr(XY Z) =
∑
a,b,c

XabYbcZca (10)

=
∑
a

(xa)†Y za (11)

where (xa)b = X∗ab and (za)c = Zca. Thus

|tr(XY Z)| ≤
∑
a

‖xa‖‖Y za‖ (12)

≤ ‖Y ‖
∑
a

‖xa‖‖za‖ (13)

≤ ‖Y ‖
√∑

a

‖xa‖2
∑
a′

‖za′‖2 (14)

= ‖Y ‖‖X‖F ‖Z‖F (15)

as claimed, where we used the Cauchy-Schwarz inequality in the second and third steps.

To upper bound |W t| for the negative adversary with Boolean output, write W t = tr(ΓV ) where
Vxy := a∗xay〈ψtx|ψty〉δ[f(x) 6= f(y)]. Define

C :=
∑
x∈S

axΠf(x)|ψtx〉〈x| (16)

C̄ :=
∑
x∈S

axΠ1−f(x)|ψtx〉〈x| (17)

with Π0,Π1 denoting the projectors onto the subspaces indicating f(x) = 0, 1, respectively. Then

(C†C̄)xy = a∗xay〈ψtx|Πf(x)Π1−f(y)|ψty〉, (18)

so

(C†C̄ + C̄†C)xy = a∗xay〈ψtx|(Πf(x)Π1−f(y) + Π1−f(x)Πf(y))|ψty〉 (19)

= a∗xay〈ψtx|ψty〉δ[f(x) 6= f(y)], (20)

i.e., V = C†C̄ + C̄†C. Thus we have

W t = tr(Γ(C†C̄ + C̄†C)) (21)

= tr(C̄ΓC†) + tr(CΓC̄†). (22)

By the Proposition, |W t| ≤ 2‖Γ‖‖C‖F ‖C̄‖F . Finally, we upper bound ‖C‖F and ‖C̄‖F . We have

‖C‖2F + ‖C̄‖2F =
∑
x,y∈S

|ax|2(|〈y|Πf(x)|ψtx〉|2 + |〈y|Π1−f(x)|ψtx〉|2) = 1 (23)

‖C̄‖2F =
∑
x∈S
|ax|2‖|Π1−f(x)|ψtx〉‖2 ≤ ε. (24)

3



Therefore ‖C‖F ‖C̄‖F ≤ maxx∈[0,ε]

√
x(1− x) =

√
ε(1− ε) (assuming ε ∈ [0, 1/2]), and we find that

|W t| ≤ 2
√
ε(1− ε)‖Γ‖, as claimed.

It remains to understand how much the weight function can decrease at each step of the algo-
rithm. We have

W j+1 −W j =
∑
x,y∈S

Γxya
∗
xay(〈ψj+1

x |ψj+1
y 〉 − 〈ψjx|ψjy〉). (25)

Consider how the state changes when we make a query. We have |ψj+1
x 〉 = U j+1Ox|ψjx〉. Thus the

elements of the Gram matrix of the states {|ψj+1
x 〉 : x ∈ S} are

〈ψj+1
x |ψj+1

y 〉 = 〈ψjx|O†x(U j+1)†U j+1Oy|ψjy〉 (26)

= 〈ψjx|OxOy|ψjy〉 (27)

since U j+1 is unitary and O†x = Ox. Therefore

W j+1 −W j =
∑
x,y∈S

Γxya
∗
xay〈ψjx|(OxOy − I)|ψjy〉. (28)

Observe that OxOy|i, b〉 = (−1)b(xi⊕yi)|i, b〉. Let P0 = I ⊗ |0〉〈0| denote the projection onto the
b = 0 states, and let Pi denote the projection |i, 1〉〈i, 1|. (As with Ox, the projections Pi implicitly
act as the identity on any ancilla registers, so

∑n
i=0 Pi = I.) Then OxOy = P0 +

∑n
i=1(−1)xi⊕yiPi,

so OxOy − I = −2
∑

i : xi 6=yi Pi. Thus we have

W j+1 −W j = 2
∑
x,y∈S

∑
i : xi 6=yi

Γxya
∗
xay〈ψjx|Pi|ψjy〉. (29)

Now for each i ∈ {1, . . . , n}, let Γi be a matrix with

(Γi)xy :=

{
Γxy if xi 6= yi

0 if xi = yi
(30)

Then we have

W j+1 −W j = 2
∑
x,y∈S

n∑
i=1

(Γi)xya
∗
xay〈ψjx|Pi|ψjy〉 (31)

= 2
n∑
i=1

tr(QiΓiQ
†
i ) (32)

where Qi :=
∑

x axPi|ψ
j
x〉〈x|.

Using the triangle inequality and the above Proposition, we have

|W j+1 −W j | ≤ 2

n∑
i=1

|tr(QiΓiQ†i )| (33)

≤ 2

n∑
i=1

‖Γi‖‖Qi‖2F . (34)

4



Since

n∑
i=1

‖Qi‖2F =
n∑
i=1

∑
x∈S
|ax|2‖Pi|ψjx〉‖2 (35)

≤
∑
x∈S
|ax|2 (36)

= 1, (37)

we have

|W j+1 −W j | ≤ 2 max
i∈{1,...,n}

‖Γi‖. (38)

Combining these three facts gives the adversary lower bound. Since |W 0| = ‖Γ‖, we have

|W t| ≥ ‖Γ‖ − 2t max
i∈{1,...,n}

‖Γi‖. (39)

Thus, to have |W t| ≤ 2
√
ε(1− ε)‖Γ‖, we require

t ≥
1− 2

√
ε(1− ε)
2

Adv(f). (40)

where

Adv(f) := max
Γ

‖Γ‖
maxi∈{1,...,n} ‖Γi‖

(41)

with the maximum taken over all adversary matrices Γ for the function f . (Often the notation
Adv(f) is reserved for the maximization over nonnegative adversary matrices, with the notation
Adv±(f) for the generalized adversary method allowing negative weights.)

Example: Unstructured search

As a simple application of this method, we prove the optimality of Grover’s algorithm. It suffices
to consider the problem of distinguishing between the case of no marked items and the case of a
unique marked item (in an unknown location). Thus, consider the partial function where S consists
of the strings of Hamming weight 0 or 1, and f is the logical or of the input bits. (Equivalently,
we consider the total function or but only consider adversary matrices with zero weight on strings
of Hamming weight more than 1.)

For this problem, adversary matrices have the form

Γ =


0 γ1 · · · γn
γ1 0 · · · 0
...

...
. . .

...
γn 0 · · · 0

 (42)

for some nonnegative coefficients γ1, . . . , γn. Symmetry suggests that we should take γ1 = · · · = γn.
This can be formalized, but for the present purposes we can take this as an ansatz.

5



Setting γ1 = · · · = γn = 1 (since an overall scale factor does not affect the bound), we have

Γ2 =


n 0 · · · 0
0 1 · · · 1
...

...
. . .

...
0 1 · · · 1

 (43)

which has norm ‖Γ2‖ = n, and hence ‖Γ‖ =
√
n. We also have

Γ1 =


0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 (44)

and similarly for the other Γi, so ‖Γi‖ = 1. Thus we find Adv(or) ≥
√
n, and it follows that

Qε(or) ≥ 1−2
√
ε(1−ε)
2

√
n. This shows that Grover’s algorithm is optimal up to a constant factor

(recall that Grover’s algorithm finds a unique marked item with probability 1− o(1) in π
4

√
n+ o(1)

queries).

6


