
Instructor: Amol Deshpande
amol@cs.umd.edu

} Motivation: Why study databases ?

} Course Logistics
} History of Databases
} Background: 424 Summary

} Architecture of a Traditional Database System
} Abstractions, Models, and Implementations

} Cross-cutting Issues in Data Management

} No laptop use allowed in the class !!

} There is a *HUGE* amount of data in this world
} Everywhere you see…
} Personal
◦ Emails, data on your computer

} Enterprise
◦ The original primary motivation
◦ Banks, supermarkets, universities, airlines, phone call data etc.

} Scientific
◦ Biological, astronomical

} World wide web
◦ Social networks etc…

http://www.thebigdatainsightgroup.com/site/article/big-data-infographic

Data management systems at the center of most of the new innovative technologies

An incredible amount of ongoing work in building new types of systems

A large fraction of the data still in traditional DBMS systems
Still open and active research areas about improving performance, energy efficiency,
new functionalities, changing hardware spectrum (SSDs) and so on…

Much of the data not stored in traditional database systems today

For a variety of fairly valid reasons
- Stream processing systems (focusing on streaming data)
- Special-purpose data warehousing systems (most start from some RDBMS)
- Batch analysis frameworks (like Hadoop, Pregel, Spark, …)

Typically data stored in distributed file systems
- Key-value stores (like HBase, Cassandra, Redis, …)

Basically persistent distributed hash tables
- Semi-structured/Document data stores (for XML/JSON query processing)
- Graph databases
- Scientific data management
- Machine learning data management

However, many lessons to be learned from database research
We see much reinvention of the wheel and similar mistakes being made as early on

A large fraction of the data still in traditional DBMS systems
A deeper study of traditional RDBMS solutions (compared to 424)
New functionalities/features
Revisit some of the old design decisions (e.g., lay out data column-by-column
instead of row-by-row, fully in-memory processing, etc)

Much of the data not stored in traditional database systems

Basic ideas behind, and why different from RDBMS:
Stream processing systems
Special-purpose data warehousing systems
Batch analysis frameworks (specifically MapReduce)
Key-value stores (focus on the consistency issues)

If time permits:
Semi-structured data stores
Graph databases

} Background + Overview (1 week)

} Data Models, Programming Abstractions (2 weeks)

} Storage Models (2 weeks)

} Query Processing + Optimization (5 weeks)

} Streaming Data Management + Dataflow Systems (2 weeks)

} Miscellaneous Topics (2.5 weeks)
◦ Versioning, Immutability, Security, Privacy

} Intended to prepare you for data management research, broadly
defined
◦ Includes better understanding of data management issues in other fields

} Some specific goals:
◦ You should be able to read, understand, and hopefully critique a data

management paper
◦ Given a new application domain, you should be able to:
� ask the right questions to understand the key data management issues,

and design/suggest appropriate solutions.
� identify flaws (if any) with a proposed design or solution.
� devise and reason about abstraction (independence) layers and their

applicability to the application domain.
◦ You should also have enough familiarity with how big data systems are built

to be able to easily start using any of them, and reason about the observed
performance of a deployed system, if only superficially.

} We will cover:
◦ A blend of classic papers + ongoing research (more focus on

latter)
◦ Reference book:
� Readings in Database Systems, 5th edition. Mike Stonebraker and

Joe Hellerstein, Peter Bailis.
◦ Almost all papers are available online
◦ Book contains some very nice overview chapters though – all

available online at the book website (http://redbook.io)

} Prerequisite: CMSC 424
◦ Class notes off my webpage

} 4-5 Programming Assignments (20%)
◦ Primarily on using different types of systems

} Written homeworks on the paper readings (30%)
◦ 1-2 Papers per class (starting the week after next)
◦ Expected to skim papers before the resp. class, and go deeper for the

assignment
} Scribe notes (5%)
◦ Will circulate a sign-up sheet later today

} Research project + Presentation (30%)
◦ More on that later

} Final (15%)
◦ Basically a slightly longer written assignment

} Gradescope for assignments

} Slack for communication

} See link on the webpage

} TA: Saptarashmi Bandyopadhyay

} ACM SIGMOD (Originally SIGFIDET)
} VLDB (very large databases)
} IEEE ICDE (intl. conf. data engineering)
} EDBT (European database technology)
} PODS, ICDT
◦ Theory focused

} CIDR
◦ Tends to have vision/overview papers
◦ I recommend browsing through 2021/2022 proceedings for

ideas on class projects

} Motivation: Why study databases ?

} Course Logistics
} History of Databases
} Background: 424 Summary

} Architecture of a Traditional Database System
} Abstractions, Models, and Implementations

} Cross-cutting Issues in Data Management

} No laptop use allowed in the class !!

} 1960’: Enterprises start using computers – most
applications had their own data store

} Data base: coined in military information systems to
denote “shared data banks” by multiple apps
◦ Instead of every app having a separate format and silo-ed data,
◦ Define a data format, store it as a “data dictionary”, and allow

general-purpose “data-base management” software to access it

} Birth of “hierarchical” and “network” models
◦ Both allowed “connecting” records of different types explicitly
◦ Network model attempted to very general and flexible (Charlie Bachman

received Turing Award for this work)
◦ Used COBOL language

} IBM designed IMS hierarchical database in 1966 for Apollo
space program
◦ ".. more than 95 percent of the top Fortune 1000 companies use IMS to

process more than 50 billion transactions a day and manage 15 million
gigabytes of critical business data" (from IBM Website on IMS)
◦ Predates “hard disks”

} Both models exposed too much internal state to the users

} Edgar F. “Ted” Codd proposed the relational model
◦ Origins in set theory and logic
◦ Elegant, formal model that provided almost complete “data independence”
◦ High level query language (relational algebra)
◦ Notion of “normal forms” – allowed one to reason about and remove

redundancies

} Led to two influential projects: INGRES (Michael Stonebraker, UC Berkeley);
System R (IBM)

} Also paved way for a 1977 startup called “Software Development
Laboratories”
◦ Didn’t care about IMS/IMDS Compatibility (as IBM had to)
◦ Innovated much faster

} 1976: Peter Chen proposed “Entity-Relationship Model”
◦ Allowed high-level, conceptual modeling; easier for humans to think about
◦ Continues to be widely used for that purpose
◦ No real implementations – easy to convert to “relational” and use an RDBMS
◦ Recent Object-relational Frameworks (like Python Django) very similar

} 1980: Commercialization/wide-spread acceptance
◦ IBM came out with DB2 in 1983
◦ “SEQUEL” became the standard query language (SQL)

� Despite significant objections

} Late 80’s: Object-oriented, object-relational databases
◦ Enrich the expressive power of the relational model
◦ Avoid “relational-object impedance mismatch”
◦ Several other proposals for “semantic” data models

} Late 80’s, early 90’s:
◦ Many database companies, but starting to consolidate
◦ Parallel database begin to emerge
◦ Data mining/OLAP (online analytical processing)
◦ Focus on client tools for application development

� Powerbuilder (Sybase), Oracle Developer, etc.

◦ Client-server model becomes popular
◦ Postgres project at Berkeley gets an open-source fork called PostgreSQL

} Mid/Late 90’s:
◦ Web arrives: Grown of “middleware” that connects Web Applications to

Databases
� Active server pages, Enterprise Java Beans, ColdFusion

◦ OLAP matures and becomes mainstream

} Core “database” research seemed like it was done… !?!

} Early 00’s to mid 00’s
◦ A sudden boom in data warehousing/analytics
◦ Companies like: Aster Data, Greenplum, Vertica, Kickfire, and probably 10 others
◦ Significant consolidation since then
◦ Some key technical considerations:

� Distributed, Shared-nothing architectures
� Columnar data storage (instead of row data storage)
� Focus on read-only analytics – bad write performance

} Late 00’s
◦ “Map-reduce”: framework for large-scale data analysis

� Data-driven tasks that are largely ”not” relational (e.g., building
indexes, text analysis)

� Pioneered by Google, open-source Hadoop system by Yahoo and
others

� An entire ecosystem built around it since then
◦ Key-value stores:

� Frameworks for “scale-first” data management
� Not as concerned by ACID properties
� Simple get/put interfaces needed (i.e., no support for

schemas/complex queries)
◦ Document/graph/... databases:

� motivated by faster app development, conceptual models closer
to the app developers

� Web app developers work with JSON mostly

} Database industry/researchers react to the last decade
} “NewSQL”: scalability without giving up ACID by

rearchitecting/redesigning
� Support for parallel environments from the ground up
� Exploit large memories and SSDs properly
� Hybrid systems that support both transactions and analytics (HTAP)

� Largely not considered a viable idea any more
� Can’t really get to the same performance as specialized systems

Many many more….

} Cloud-hosted “Database-as-a-service” offerings
� Both Data Warehouses (Snowflake, Amazon Redshift), and

OLTP (Amazon Aurora, Microsoft CosmosDB)
� Very big market today

} “Data Lakes” slowly becoming popular
◦ Basically a distributed file system that is shared by everyone
◦ Data processing engines read and write directly from the distributed

storage
◦ Typically use a columnar storage format (e.g., Parquet)
◦ ”Data Lakehouses” try to offer systematic search/management on top

} More specialized systems for specific types of data
◦ Clear short-term benefits in performance and deployment speed
◦ However, quite a few longer-term issues in having silo-ed data

} Graph Databases
◦ Neo4j, Memgraph, TigerGraph, Dgraph, TerminusDB, and many others

} Time-series Databases
◦ TimescaleDB, InfluxDB, Clickhouse, …

} Multi-model DBMSs
◦ Support several different models (e.g., RethinkDB)

} Databases for Machine Learning
◦ e.g., frameworks to support ML on data in databases

} Machine learning for Databases
◦ e.g., improve Query Optimization through use of deep learning

} Too many specialized data management systems at this time

} Leading to much silo-ed data stores that are can’t really talk to each
other well

} Building additional services (e.g., APIs) on top solves immediate
problems, but adds more complexity over the long time

} Makes security, privacy, and governance issues much worse

} Need to figure out how to make things simpler

} Relational-like model + Schemas + Declarative Languages/Frameworks
keep proving to be the winning combination
◦ e.g., Apache Spark started as a map-reduce-like system, but SQL is the primary

interface today

} Motivation: Why study databases ?

} Course Logistics
} History of Databases
} Background: 424 Summary

} Architecture of a Traditional Database System
} Abstractions, Models, and Implementations

} Cross-cutting Issues in Data Management

} No laptop use allowed in the class !!

} Data redundancy and inconsistency
◦ Multiple file formats, duplication of information in different files

} Difficulty in accessing data
◦ Need to write a new program to carry out each new task

} Data isolation — multiple files and formats

} Integrity problems
◦ Integrity constraints (e.g., account balance > 0) become “buried”

in program code rather than being stated explicitly

◦ Hard to add new constraints or change existing ones

} Atomicity of updates
◦ Failures may leave database in an inconsistent state with partial

updates carried out
◦ Example: Transfer of funds from one account to another should

either complete or not happen at all

} Concurrent access by multiple users
◦ Concurrent access needed for performance
◦ Uncontrolled concurrent accesses can lead to inconsistencies
� Example: Two people reading a balance (say 100) and updating it by

withdrawing money (say 50 each) at the same time

} Security problems
◦ Hard to provide user access to some, but not all, data

} Provide a systematic way to answer many of these questions…
} Aim is to allow easy management of high volumes of data
◦ Storing , Updating, Querying, Analyzing ….

} What is a Database ?
◦ A large, integrated collection of (mostly structured) data
◦ Typically models and captures information about a real-world enterprise
� Entities (e.g. courses, students)
� Relationships (e.g. John is taking CMSC 424)

� Usually also contains:
� Knowledge of constraints on the data (e.g. course capacities)
� Business logic (e.g. pre-requisite rules)
� Encoded as part of the data model (preferable) or through external programs

} Massively successful for highly structured or semi-structured data
◦ Why ? Structure in the data (if any) can be exploited for ease of use and efficiency

Account
bname acct_no balance
Downtown

Mianus
Perry
R.H

A-101
A-215
A-102
A-305

500
700
400
350

Tabular/relational data

XML/JSON (semi-structured)

Graph-structured data

} Massively successful for highly structured or semi-structured data
◦ Why ? Structure in the data (if any) can be exploited for ease of use and

efficiency

◦ How ?

◦ Two Key Concepts:
� Data Modeling: Allows reasoning about the data at a high level

� e.g. “emails” have “sender”, “receiver”, “…”
� Once we can describe the data, we can start “querying” it

� Data Abstraction/Independence:
� Layer the system so that the users/applications are insulated from the low-

level details

} Data modeling
◦ Data model: A collection of concepts that describes how data is represented and

accessed
◦ Schema: A description of a specific collection of data, using a given data model

◦ Some examples of data models that we will see
� Relational, Entity-relationship model, XML…
� Object-oriented, object-relational, semantic data model, RDF…

◦ Why so many models ?
� Tension between descriptive power and ease of use/efficiency
� More powerful models à more data can be represented
� More powerful models à harder to use, to query, and less efficient

Logical
Level

Physical
Level

View Level
View 1 View 2 View n…

How data is actually stored ?
e.g. are we using disks ? Which
file system ?

What data is stored ?
describe data properties such as
data semantics, data relationships

What data users and
application programs
see ?

Hiding low-level details from the users of the system

} SQL (sequel): Structured Query Language

} Data definition (DDL)
◦ create table instructor (

ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

} Data manipulation (DML)
◦ Example: Find the name of the instructor with ID 22222

select name
from instructor
where instructor.ID = ‘22222’

} A DBMS is a software system designed to store, manage,
facilitate access to databases

} Provides:
◦ Data Definition Language (DDL)
� For defining and modifying the schemas
◦ Data Manipulation Language (DML)
� For retrieving, modifying, analyzing the data itself
◦ Guarantees about correctness in presence of failures and concurrency, data

semantics etc. (e.g., ACID guarantees)

} Common use patterns
◦ Handling transactions (e.g. ATM Transactions, flight reservations)
◦ Archival (storing historical data)
◦ Analytics (e.g. identifying trends, Data Mining)

} representing information
◦ data modeling

◦ semantic constraints

} languages and systems for querying data
◦ complex queries & query semantics
◦ over massive data sets

} concurrency control for data manipulation
◦ ensuring transactional semantics

} reliable data storage
◦ maintain data semantics even if you pull the plug

◦ fault tolerance

} representing information
◦ data modeling: relational models, E/R models

◦ semantic constraints: integrity constraints, triggers

} languages and systems for querying data
◦ complex queries & query semantics: SQL
◦ over massive data sets: indexes, query processing, optimization

} concurrency control for data manipulation
◦ ensuring transactional semantics: ACID properties

} reliable data storage
◦ maintain data semantics even if you pull the plug: durability

◦ fault tolerance: RAID
Will post a set of slides summarizing the key topics

} We will cover some of the key topics from the
“Architecture” paper, and discuss some of the broader
data management issues

} First 3 programming assignments will be posted right
away (will be due over the next 4-6 weeks)
◦ Generally we are quite flexible about these assignments

} First written assignment will be out soon as well
◦ Focusing on first 2-3 readings

} Motivation: Why study databases ?

} Course Logistics
} History of Databases
} Background: 424 Summary

} Abstractions, Models, and Implementations
} Architecture of a Traditional Database System

} No laptop use allowed in the class !!

} User-facing
◦ Data Model

◦ Query Language and/or Programming Framework

◦ Transactions

◦ Performance Guarantees/Focus

◦ Consistency Guarantees

} Implementation
◦ In-memory and at-rest storage representations

◦ Target Computational Environment

◦ Query processing and optimization

◦ Transactions’ implementation

◦ Support for streaming, versioning, approximations, etc.

These ”define” the
“type” of the database

} A collection of concepts that describes how data is represented and
accessed
◦ Schema: A description of a specific collection of data, using a given data model

} Goal is to capture the properties of the data at the “right level”
◦ Too strict à may not be able to store the data we want
◦ Too loose à may not be able to build a query language on top, or efficiently

optimize

} Examples:
◦ Relational, Entity-relationship model, XML, JSON…
◦ Object-oriented, object-relational, semantic data model, RDF…
◦ Sets of ”objects”, ML models

} Define how to go from input data, to some desired output
◦ Depends to some extent on the data model, but still a lot of flexibility

} Want this to be as ”high-level” or “declarative” as possible
◦ Too high-level à fewer use cases will be covered
◦ Too low-level à harder to use, support or optimize
◦ Lot of work on trying to find the “right” level of abstraction
◦ Interest in formally defining the power of a language, etc.

} Examples:
◦ SQL: Input relations à output relations
◦ Apache Spark RDD or Map-Reduce: Input “set of objects” à output ”set of objects”
◦ BlinkDB: Input relations + approximation guarantees à output relations
◦ Visualization Tools: Input datasets à Plots

} If supporting “streaming” or “versioning” or “approximations”, need to
define what that means

} Support for updating the data in the DMS
◦ Some of the same issues as query language w.r.t. the expressiveness of the language

} Some considerations:
◦ Consistency guarantees around updates (ACID or not)

� Becomes more complicated in the distributed setting, with replication and sharding/partitioning

◦ Batch updates vs one-at-a-time (impact on staleness)
◦ Immutability: guarantees around no-tampering (e.g., blockchains)
◦ Versioning: ability to support multiple branches, and ”time-travel”

} If the language is not expressive enough, have to do more work in the applicationsà impact on
guarantees
◦ e.g., MongoDB (and many other NoSQL stores) didn’t support multi-collection updates for a

long time

} How is data laid out on disks (at rest) and in-memory, and across machines
◦ Significant impact on performance
◦ Depends somewhat on data model, but not fully (“Data Independence”)
◦ May use different representations when loading in memory (serialization/deserialization cost)
◦ Usually we also build “indexes” for efficient search
◦ Transmission over network also a concern

} Some options:
◦ Row-oriented storage for relational model

� Traditional approach: good for updates but bad for queries
◦ Column-oriented storage for relational model

� Really good performance for queries, but updates not easy to handle
◦ Object storage (e.g., with pointers) for object-oriented databases or Graph databases

� Pointers don’t translate from disk to memory easily
◦ Hierarchical storage for JSON/XML
◦ Structured file formats like CSV (row), Parquet (columnar) for Data Lakes

� Less up-front cost of “ingesting” the data, but more complex and less efficient to support
� Harder to put any “structure” or “data model” on top of it

} Thoughts:
◦ Cost of “ingest” must be amortized over many uses – for one-time use of data, prefer to leave in its native format

“Data Independence” à not
”required” to, e.g., use pointers
for graph databases – easy to
convert to row-oriented storage

} Many, many combinations here
◦ Single machine vs parallel (locally) vs geographically distributed
◦ Hardware

� e.g., multi-core vs many-core, large-memory, disks or SSDs, RDMA, cache assumptions, and so on
◦ Use of cloud/virtualization

� Can have a significant impact on performance guarantees
� Also, may put limits on what can be done (e.g., if using “serverless functions”)

} Hard to build a different system for each combination

} Increasing interest in “auto-tuning” through use of ML
◦ Try to ”learn” how to do things for a new environment

} Depends significantly on how “declarative” is the query language/framework

} Most systems support a collection of low-level “operators”
◦ Relational: joins, aggregates, etc.
◦ Apache Spark: map, reduce, joins, group-by, …

} Should choose a good set of operators
◦ Restricts the optimization abilities
◦ e.g., if only support “binary” joins then lose the ability to optimize multi-way joins
◦ In general, a sequence of operations will perform worse than a single equivalent operation

} Need to map from the overall “task” or “query” into those low-level operators
◦ Usually called a “query execution/evaluation plan”
◦ There may potentially be many many ways to do this (depending on how declarative)
◦ Try to choose in a “cost-based” manner

� Need the ability to estimate costs of different plans
� ”Heuristics” often preferred in less mature systems

} Cost measure
◦ Important to decide what resource you are optimizing
◦ Need to focus on the bottlenecks of the environment
◦ Traditionally: CPU, Memory, Disks
◦ Today, network costs play a very important role
◦ Also: optimizing for “total resources” or “wall-clock time” ?

� Especially important in parallel/distributed environments

} May wish to “pre-compute” certain queries to reduce the query execution times
◦ Especially for ”real-time” queries over “streaming” data
◦ Often called “materialized views” in the context of relational databases
◦ Any pre-computed data must be kept up-to-date

} Adaptive query processing
◦ May wish to “change” the query plan during execution based on what we are seeing

SQL ”Query Plan”

Apache Hive ”Query Plan”
(Hive is an SQL layer on top of Hadoop)

Machine Learning Pipeline

Data Preparation and Visualization Pipeline

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Binary
Operation 1

Unary
Operation 1

Binary
Operation 2

Ternary
Operation 1

Unary
Operation 1

Output
Dataset 1

Maybe Tables in an RDBMS, Files in HDFS,
or Images in a key-value store

Maybe Joins, or Aggregates, or Machine
Learning Tasks, or Data Cleaning Tasks,

or…

Maybe Another RDBMS Table, a New File,
or a Machine Learning Model

} Streaming
◦ Usually need to keep a lot of pre-built state to handle high-rate data streams
◦ Each new update à modify the pre-built state, and output results
◦ Hard to do this in a generic way

� A specialized system will likely have much lower response times (e.g., in financial settings)

} Versioning
◦ So far, the focus has primarily been on storage (i.e., how to compactly store the version history over time)
◦ The “retrieval” of old versions considered less important to date

} Immutability
◦ More interest in recent years on this, but still pretty open from a database perspective

} Approximate Query Processing
◦ Usually need additional constructs like “random samples”

} Not intended to cover all data management research, but as a helpful guide to
think about data management systems
◦ Data cleaning, visualizations, security, privacy, …

} Finding the right abstractions is often the key to wide usage

} More complex abstractions may provide short-term wins, but often become
difficult to manage and use over time

} Implementations have become very complex and involved today
◦ Easy to obtain significant benefits focusing on a specific workload and hardware
◦ But hard to get, and/or reason about performance in general settings
◦ Experimental evaluations can’t cover all different scenarios

} Motivation: Why study databases ?

} Course Logistics
} History of Databases
} Background: 424 Summary

} Abstractions, Models, and Implementations
} Architecture of a Traditional Database System

} No laptop use allowed in the class !!

} Paper by: Hellerstein, Stonebraker, Hamilton

} Covers the main components of a typical relational DBMS

} Goals for today:
◦ Discuss an end-to-end system and issues like admission control,

process models, etc.

◦ Won’t go deep into query processing, transactions, etc. – that will
be later

144 Introduction

Fig. 1.1 Main components of a DBMS.

a well-understood point of reference for new extensions and revolutions
in database systems that may arise in the future. As a result, we focus
on relational database systems throughout this paper.

At heart, a typical RDBMS has five main components, as illustrated
in Figure 1.1. As an introduction to each of these components and the
way they fit together, we step through the life of a query in a database
system. This also serves as an overview of the remaining sections of the
paper.

Consider a simple but typical database interaction at an airport, in
which a gate agent clicks on a form to request the passenger list for a
flight. This button click results in a single-query transaction that works
roughly as follows:

1. The personal computer at the airport gate (the “client”) calls
an API that in turn communicates over a network to estab-
lish a connection with the Client Communications Manager
of a DBMS (top of Figure 1.1). In some cases, this connection

144 Introduction

Fig. 1.1 Main components of a DBMS.

a well-understood point of reference for new extensions and revolutions
in database systems that may arise in the future. As a result, we focus
on relational database systems throughout this paper.

At heart, a typical RDBMS has five main components, as illustrated
in Figure 1.1. As an introduction to each of these components and the
way they fit together, we step through the life of a query in a database
system. This also serves as an overview of the remaining sections of the
paper.

Consider a simple but typical database interaction at an airport, in
which a gate agent clicks on a form to request the passenger list for a
flight. This button click results in a single-query transaction that works
roughly as follows:

1. The personal computer at the airport gate (the “client”) calls
an API that in turn communicates over a network to estab-
lish a connection with the Client Communications Manager
of a DBMS (top of Figure 1.1). In some cases, this connection

Clients connect using
standard or proprietary
protocols to submit
“queries”/”transactions”

Web Server

App Server

ODBC/JDBC

Admission Control

Assign a “thread of
computation”

Parse, compile, optimize
the query

Start fetching or
updating the data
- get locks
- create log records if

needed
- etc…

Return data batch-at-a-
time

} Question: How do we handle multiple user requests/queries “concurrently”?

} Lot of variations across Operating Systems
◦ OS Process: Private address space – scheduled by kernel

◦ OS (Kernel) Thread: Multiple threads per process – shared memory

� Support for this relatively recent (late 90’s, early 00’s)

� OS can “see” these threads and does the scheduling

◦ Lightweight threads in user space

� Scheduled by the application

� Need to be very very careful, because OS can’t pre-empt

� e.g., can’t do Synchronous I/O

◦ DBMS Threads

� Similar to general lightweight threads, but special-purpose

} Each query gets its own “process” (e.g., PostgreSQL, IBM D2, Oracle)*
◦ Heavy-weight, but easy to port to other systems

◦ Need support for “shared memory” (for lock tables, etc)

2.1 Uniprocessors and Lightweight Threads 153

2.1.1 Process per DBMS Worker

The process per DBMS worker model (Figure 2.1) was used by early
DBMS implementations and is still used by many commercial systems
today. This model is relatively easy to implement since DBMS work-
ers are mapped directly onto OS processes. The OS scheduler man-
ages the timesharing of DBMS workers and the DBMS programmer
can rely on OS protection facilities to isolate standard bugs like mem-
ory overruns. Moreover, various programming tools like debuggers and
memory checkers are well-suited to this process model. Complicating
this model are the in-memory data structures that are shared across
DBMS connections, including the lock table and buffer pool (discussed
in more detail in Sections 6.3 and 5.3, respectively). These shared data
structures must be explicitly allocated in OS-supported shared memory
accessible across all DBMS processes. This requires OS support (which
is widely available) and some special DBMS coding. In practice, the

Fig. 2.1 Process per DBMS worker model: each DBMS worker is implemented as an OS
process.

* All circa 2007 – may have changed since then.

} A single-multithreaded server
◦ Need support for “asynchronous” I/O (so threads don’t block)

◦ Easy to share state, but also makes it easy for queries to interfere

154 Process Models

required extensive use of shared memory in this model reduces some of
the advantages of address space separation, given that a good fraction
of “interesting” memory is shared across processes.

In terms of scaling to very large numbers of concurrent connections,
process per DBMS worker is not the most attractive process model. The
scaling issues arise because a process has more state than a thread and
consequently consumes more memory. A process switch requires switch-
ing security context, memory manager state, file and network handle
tables, and other process context. This is not needed with a thread
switch. Nonetheless, the process per DBMS worker model remains pop-
ular and is supported by IBM DB2, PostgreSQL, and Oracle.

2.1.2 Thread per DBMS Worker

In the thread per DBMS worker model (Figure 2.2), a single multi-
threaded process hosts all the DBMS worker activity. A dispatcher

Fig. 2.2 Thread per DBMS worker model: each DBMS worker is implemented as an OS
thread.

} Typically DBMS allots a pool of processes or threads, and multiplexes
clients/requests across those

156 Process Models

Fig. 2.3 Process Pool: each DBMS Worker is allocated to one of a pool of OS processes
as work requests arrive from the Client and the process is returned to the pool once the
request is processed.

and all processes are already servicing other requests, the new request
must wait for a process to become available.

Process pool has all of the advantages of process per DBMS worker
but, since a much smaller number of processes are required, is consid-
erably more memory efficient. Process pool is often implemented with
a dynamically resizable process pool where the pool grows potentially
to some maximum number when a large number of concurrent requests
arrive. When the request load is lighter, the process pool can be reduced
to fewer waiting processes. As with thread per DBMS worker, the pro-
cess pool model is also supported by a several current generation DBMS
in use today.

2.1.4 Shared Data and Process Boundaries

All models described above aim to execute concurrent client requests
as independently as possible. Yet, full DBMS worker independence and
isolation is not possible, since they are operating on the same shared

} Buffer Pool
◦ Manages the disk blocks that are currently being used by the different workers

◦ Use some replacement strategy like Least-recently-used

} Log Tail
◦ All updates generate “log” records that need to properly numbered and flushed to disk

} Lock Table
◦ For synchronization across workers in case of conflicts

} Client Communication Buffers
◦ To keep track of what data has already been sent back to clients, and to buffer more

outputs

} Buffer Pool
◦ Manages the disk blocks that are currently being used by the different workers

◦ Use some replacement strategy like Least-recently-used

} Log Tail
◦ All updates generate “log” records that need to properly numbered and flushed to disk

} Lock Table
◦ For synchronization across workers in case of conflicts

} Client Communication Buffers
◦ To keep track of what data has already been sent back to clients, and to buffer more

outputs

} Shared-memory and shared-nothing architectures prevalent today

} Shared-memory: easy to evolve to because of shared data structures

} Shared-nothing: require more coordination
◦ Data must be partitioned across disks, and query processing needs to be aware of that

◦ Single-machine failures need to be handled gracefully

166 Parallel Architecture: Processes and Memory Coordination

Fig. 3.1 Shared-memory architecture.

buying a smaller number of large, very expensive systems is sometimes
viewed to be an acceptable trade-off.1

Multi-core processors support multiple processing cores on a sin-
gle chip and share some infrastructure such as caches and the memory
bus. This makes them quite similar to a shared-memory architecture in
terms of their programming model. Today, nearly all serious database
deployments involve multiple processors, with each processor having
more than one CPU. DBMS architectures need to be able to fully
exploit this potential parallelism. Fortunately, all three of the DBMS
architectures described in Section 2 run well on modern shared-memory
hardware architectures.

The process model for shared-memory machines follows quite
naturally from the uniprocessor approach. In fact, most database
systems evolved from their initial uniprocessor implementations to
shared-memory implementations. On shared-memory machines, the OS
typically supports the transparent assignment of workers (processes or

1 The dominant cost for DBMS customers is typically paying qualified people to adminis-
ter high-end systems. This includes Database Administrators (DBAs) who configure and
maintain the DBMS, and System Administrators who configure and maintain the hard-
ware and operating systems.

3.2 Shared-Nothing 167

threads) across the processors, and the shared data structures continue
to be accessible to all. All three models run well on these systems and
support the execution of multiple, independent SQL requests in paral-
lel. The main challenge is to modify the query execution layers to take
advantage of the ability to parallelize a single query across multiple
CPUs; we defer this to Section 5.

3.2 Shared-Nothing

A shared-nothing parallel system (Figure 3.2) is made up of a cluster
of independent machines that communicate over a high-speed network
interconnect or, increasingly frequently, over commodity networking
components. There is no way for a given system to directly access the
memory or disk of another system.

Shared-nothing systems provide no hardware sharing abstractions,
leaving coordination of the various machines entirely in the hands of the
DBMS. The most common technique employed by DBMSs to support
these clusters is to run their standard process model on each machine,
or node, in the cluster. Each node is capable of accepting client SQL

Fig. 3.2 Shared-nothing architecture.

} Shared-disk (e.g., through use of Storage Area Networks)
◦ Somewhat easier to administer, but requires specialized hardware

◦ Main difference between this and shared-nothing is primarily the retrieval costs

} Non-uniform Memory Access (NUMA)
◦ Seen increasingly today with many-core systems

◦ Any processor can access any other processor’s memory, but the costs vary

170 Parallel Architecture: Processes and Memory Coordination

3.3 Shared-Disk

A shared-disk parallel system (Figure 3.3) is one in which all processors
can access the disks with about the same performance, but are unable
to access each other’s RAM. This architecture is quite common with
two prominent examples being Oracle RAC and DB2 for zSeries SYS-
PLEX. Shared-disk has become more common in recent years with the
increasing popularity of Storage Area Networks (SAN). A SAN allows
one or more logical disks to be mounted by one or more host systems
making it easy to create shared disk configurations.

One potential advantage of shared-disk over shared-nothing systems
is their lower cost of administration. DBAs of shared-disk systems do
not have to consider partitioning tables across machines in order to
achieve parallelism. But very large databases still typically do require
partitioning so, at this scale, the difference becomes less pronounced.
Another compelling feature of the shared-disk architecture is that the
failure of a single DBMS processing node does not affect the other
nodes’ ability to access the entire database. This is in contrast to both
shared-memory systems that fail as a unit, and shared-nothing sys-
tems that lose access to at least some data upon a node failure (unless
some alternative data redundancy scheme is used). However, even with
these advantages, shared-disk systems are still vulnerable to some single

Fig. 3.3 Shared-disk architecture.

Query Parsing and Authorization

Query Rewrite

Query Optimizer

Query Executor

Access Methods

View expansion, subquery
flattening, logical rewrites of

expressions, etc.

Search plan space, selectivity
estimation, top-down vs

bottom-up, parallelism, query
compilation

Iterator model, pipelining vs
materialization, Batch-at-a-

time

} Widely used today for large-scale analytics
} Use specialized index structures (like bitmap indexes)
} Bulk uploads of batches of data
} Materialized Views
} OLAP and Data Cubes
} Specialized optimization techniques
◦ Snowflake schemas are very common
◦ Often use techniques like Bloom Filters or bitmap based operations
◦ Use Columnar Storage today

} Databases need to be able to control:
◦ Where data is physically stored on the storage devices, especially what is sequentially stored (i.e.,

spatial locality)
� To reduce/estimate costs of operations

◦ What is in memory vs not in memory (temporal locality)
� To optimize query execution

◦ How is memory managed
� To avoid double copying of data

◦ In which order data is written out of volatile storage (memory) into non-volatile storage
(disks/SSDs)
� For guaranteeing correctness in presence of failures

} Operating systems often get in the way
◦ Databases often allocate a large file on disk and manage spatial locality themselves (no guarantees

that the file is sequential though)
◦ Use memory mapping to reduce double copying within memory
◦ And many other tricks to get around OS restrictions…

} ACID properties
◦ Atomicity, Isolation, and Durability are database guarantees – Consistency is typically a

programmer guarantee

} Serializability: A notion of “correctness” of concurrent transactions
◦ Standard approaches: Strict 2-phase Locking, Multi-version Concurrency Control, Optimistic

Concurrency Control
◦ A lot of work in the last 15 years – MVCC probably considered the best option today

} Difference between “locking” and “latching”
◦ Latches are more low-level, basically synchronization primitives
◦ Locks are logical and taken on, e.g., relations/tuples/objects, etc.

} Isolation Levels
◦ From the early days, databases supported looser definitions of consistency
◦ Not easy to formalize

} Recovery
◦ Traditionally done through “logging”, i.e., keep a record of all updates and use it for undoing bad

changes, and redoing good changes

} Catalog Manager (more appropriately today: “Metadata” Manager)
◦ Usually stored as special system tables
◦ Pulled into memory at the start for efficiency, into special data structures

} Memory Allocator
◦ Need to be very careful with allocating new chunks of memory
◦ PostgreSQL query processor basically pre-allocates everything and reuses all the memory

} Disk Management Subsystems
◦ Many different storage devices widely used (e.g., RAID)
◦ Need to support a uniform interface on top (through abstractions)
◦ Makes optimization harder

} Replication Services

} Administration, Monitoring, Utilities

} Read the “Architecture” paper, and raise any questions/clarification issues

} Although outdated, this will form the basis on which the rest of the semester
builds up
◦ First written assignment will cover some of these topics as well

} Next two weeks:
◦ Different data models/query languages/programming frameworks
◦ Will ignore the implementation issues in the papers

