CMSC 724: Database Management Systems
Introduction/Background

Instructor: Amol Deshpande

amol@cs.umd.edu

Outline

v

Motivation: Why study databases ?

v

Course Logistics

v

History of Databases

v

Background: 424 Summary

v

Architecture of a Traditional Database System

v

Abstractions, Models, and Implementations

v

Cross-cutting Issues in Data Management

No laptop use allowed in the class !!

m

v

Why Study Databases?

There is a *HUGE* amount of data in this world

Everywhere you see...

v Vv

Personal
° Emails, data on your computer
Enterprise

° The original primary motivation
° Banks, supermarkets, universities, airlines, phone call data etc.

v

v

Scientific
> Biological, astronomical

World wide web

o Social networks etc...

m

v

v

MINU i

of the

IDAY

http://www.thebigdatainsightgroup.com/site/article/big-data-infographic

It's estimated that

2.5 QUINTILLION BYTES
[2.3 TRILLION GIGABYTES]
of data are created each day

40 ZETTABYTES
[43 TRILLION GIGABYTES |

of data will be created by
2020, an increase of 300
times from 2005

The
FOURV’s
of Big
Data

From traffic patterns and music downloads to web
history and medical records, data is recorded,
stored, and analyzed to enable the technology
and services that the world relies on every day.
But what exactly is big data, and how can these
massive amounts of data be used?

6 BILLION
PEOPLE

have cell
phones

Most companies in the
U.S. have at least

100 TERABYTES

[100,000 GIGABYTES]
of data stored

WORLD POPULATION: 7 BILLION As a leader in the sector, IBM data scientists
break big data into four dimensions: Volume,

Velocity, Variety and Veracity

Modern cars have close to

100 SENSORS

that monitor items such as
fuel level and tire pressure

The New York Stock Exchange
captures

1TB OF TRADE @ (

INFORMATION (@

during each trading session

Depending on the industry and organization, big
data encompasses information from multiple
internal and external sources such as transactions,
social media, enterprise content, sensors and
mobile devices. Companies can leverage data to
adapt their products and services to better meet
customer needs, optimize operations and
infrastructure, and find new sources of revenue.

Velocity

ANALYSIS OF
STREAMING DATA

By 2015

4.4 MILLION IT JOBS

will be created globally to support big data,
with 1.9 million in the United States

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

YYyYYyYyYyyYyyYyyYyyYyvyYy
R Y TTTIITIT

As of 2011, the global size of
data in healthcare was
estimated to be

By 2014, it's anticipated
there will be

420 MILLION
150 EXABYTES WEARABLE, WIRELESS
[161 BILLION GIGABYTES] HEALTH MONITORS

©
3

4 BILLION+
HOURS OF VIDEO

are watched on
YouTube each month

You

MO
m

‘

f-r/”

30 BILLION
PIECES OF CONTENT

are shared on Facebook

every month
Qo

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

Poor data quality costs the US
economy around

don't trust the information
they use to make decisions

Veracity

UNCERTAINTY
OF DATA

in one survey were unsure of
how much of their data was
inaccurate

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

Data Management Systems

Data management systems at the center of most of the new innovative technologies

An incredible amount of ongoing work in building new types of systems

MACHINE LEARNING, ARTIFICIAL INTELLIGENCE, AND DATA (MAD) LANDSCAPE 2021

INFRASTRUCTURE ANALYTICS MACHINE LEARNING & ARTIFICIAL INTELLIGENCE APPLICATIONS - ENTERPRISE
STORAGE HADOOP —————— DATALAKES —— DATA STREAMING DATASCIENCE DATA SCIENCE MLPLATFORMS SALES MARKETING =] MARKETING - B2C ¢ HUMAN CAPITAL
. B | waREHOUSES IN-MEMORY NOTEBOOKS PLATFORMS . 828 . Bt
W /A | covomea G | @databricks | - [} looker g oz | sitobleoy i) Fonern @databricks < DataRobot et »e : ‘ s ACTIONG i O -
3 ‘ o = Son educateni ¥ @hlader col . 2 fop e - e MDA zendesk @i @ik P
o | B oananm T trovgnisoot = il o O @ | O QP H00 Koo s | S - i o gpendo Ou
O nmesronice Gwossti ot | @ dremio L] @ = - " by 2 ° . ° omn mya gem
| svm Jcoasaces G . - Yoo T ™ o 2 " . 4 &%
Pl aws & st [" B arscace ama | @ Foen B " D Oeoprote 9538 ° Sasacusa TILLZ g r a | 2 hrosierl Qe | P [en—
. consmry b ifl =3 | e ey ~ s wn |Pesss voms S e g o o) y Fin b ocetatl el e soanlll s >t Wi gowecors mvoca” b | Geses tala® ioee ByWOX CRESTA Qpeowy!. Sy
Roma VAST Qouia om e sy ""“"“ e | | % » = v T SO . srigma = toeusavo ks v | @esmmen v S0 yelowol moengage | o
. ——— S " - Ppreset Gar Qe e et | Baotlota datmo Fe—
¥ . ame ¥ LEGAL ————— REGIECH& — FINANCE AUTOMATION & RPA SECURITY
RDBMS —— NoSQL DATAB, EAL TIM - GRAPHDBs ~ DATA ANALYST PLATFORMS s —f MODEL BUILDING FEATURE STORE DEPLOY- MODEL ——{ | RAVEL COMPLIANCE | Amsgtes UiPstn C ommin | Craeum @uinin s Sadna N [we
DATABASES ‘ : &LABELLUING MENTRPRO- | MONTORING | | commamer Okica | @ogo T
Q... @ ten. | T Osingiestore | W10 Amasmatosine | | oot pentoho alteryx Thoughtspot amsenmsctmcas iy | | WeightsiBises [195700 Buamesms | DUCTION S0BSERVA - " < s (oo | FTR o mathed fecisl BoawOr Sy
cracie 5 piot))
- & ‘. % @ o ‘ - ™M Datameer work sopsn o e | OCoogecon | Tl - 9 o rhkgEcn AnoMALL $erada . .
- Bica ORACLE @ mongo MODE 2 :
P " © e [rockser] | ORacLe <Grenor) onod®t -outier e dotobricks Arthus PARTNERSHIPS " Yo -
‘. NE ' | e Jieia Zomm B 5
o ¥MarkLogc (@ Couchbase pice vour ik A v ENDOR o) Fomertl ATTIVIO | narrative @ PR e Ll Gronres i ° o
2 ” aots | @ reast DUENN truera + sum Wosrn - & Ccoveaz smn
— o — > . S ey quavs umen | gracet macneyeds S seLoon wcoma | @ ren " oot @rein APritioge
fasces] s Ll Jeaten Oty —— scheye P
™ £ Aty envra o A
- i i Rgcse @ wastateon s obvieusly.al ¥ Airtable ol
@ AmngalB o eaaTe.10 Lt leag R insca L aua .o A P wHYLABS APPLICATIONS - INDUSTRY
MPPDBs — ETL(ELT/ ——————— REVERSEETL — DATAINTEGRATION ——————— DATAGOVERNANCE —{ | DATACATALOG METRICS L0GANALYTICS ——————— | COMPUTERVISION SPEECH SYNTHETIC MEDIA ADVERTISING EDUCATION - REALESTATE - GOVT & COMMERCE FINANCE - LENDING INSURANCE ———
DATA TRANSFORM, &ACCESS ANDDISCOVERY | STORE N 3 ° ©sio 0= . | o INTELLIGENCE STTCH X Hinstacort
RADATA Census | =7 - tomates 5 ot e i O : | Qe g || B ReoFIN RoOT
bt talend alteryx " @ saman || B metaphor | @ con splunl) = xandr Medahath | & bl - affirm) Muoosso | ROO
VERTIOA | e Bistiecn paricon | oo [@mason Jreanm eoploge 1 eosme | |atlan @ @sumoog on G e . | pee Bl zesTe
Trace v Synthesia = deseript critgo) o mocamer oy Puwons wemseane | sun
mmes | Sk @i _Zaouparco ~ -1 & datawoid ol o 1303, @ Tauee | @ PRIMER sknewron | Orchard
® < 5 RS Pravie SN, salerwings® bGAG Brotoco @ g anowe Ol AUpstart 100Credit A acw
@con | wne o ~ Pyt Epe— Caemo @ " stenma ¥ Supergrain b — et Svebent EER i n @eclara il FINANCE - INVESTING 5 =
- ’ artemzy ZALSNI | t oKERA o o ©rodna . Dreosapience s | i @ [P—— v s
oo | & o8 o Gaewe | O = g i) [+] SELECT STAR « transform) 2 e O 2G| o somani UL PRIyt albert guny e i Facaote - panice | YASDI KENSHC | @ i sorm
Exasol | Dweiono @newe wAtey Infor moweow Statfie | (o fsecoss ccastor | EQL Sesinvi o Lo O @ 1V VOCAD Cpir & trosonsn 1 waomy P © = | 2 G
PRIVACY & - DATA OBSERVABILITY ——— MGMT/ MONITORING — SERVER- - CLUSTERSVCS ~— QUERY HORIZONTAL Al - ==y GPU DBS & CLOUD Al HEALTHCARE LIFE SCIENCES TRANSPORTATION AGRICULTURE INDUSTRIAL OTHER —{
SECURITY LESS 3 ENGINE St G 5 o i
oo | 150 B Onec T2 gtk - | | os oL e, - SOpendI O Google TPU QIFM (1) PSR N Os P—— B B s
- * " remio % soom > umrake @ . Ste
PRIVAGERA | woa G ot O ATPOYNAMICS @bk Gevuae Qumems 0 2 g @ © Poperspace oo [GRATHCORE Wecoin Mot o Tempus - - =
i il A algolia coveo siEa Voyager... W vicorious e A e i ey onnnmn] £ s
o solanungs® #wem ocrifio 30 surburs = | il » e | o e | @ e Avers | G ccaamr °
e & Nments o ’ ; G s
o Bpvewers | DATA QUALITY B Dk s shany | 2 Lucidworks @ swiftype ATTIV/O Pt S viorichiiy N it FIRERI [SSE = 272 | omimmm | 00
3 anyecaie S oty wo | * K Smoodt | e TARANIS &
soflow &, | wlend sooa. Geone zenss 2 i oy CDED ©) Affectiva i e Qe ez |
P " — nuclio | paer - ol alphasense omNi:us 2 rowe MYTHIC Movdus™e @ e o : K I i
) [——— PR I unare o il ,
s » oo n ; : [— SIS % = - P
S ian PR . R - - VARADA | 1A L QUICKWIT CHAOSSEARC: 4pazay &F T | en s T Bt B Ao © | ® Gos Ovo P semios | %
OPEN SOURCE
FRAMEWORKS FORMAT QUERY / DATA FLOW DATA DATABASES ORCHESTRATION RA DATAOPS STREAMING & STATTOOLS & MLOPS & INFRA: Al / MACHINE LEARNING / DEEP LEARNING SEARCH LOGGING & MONITORING VISUALIZATION ——————— COLLABORATION 4 SECURITY ——
Gimpew ook’ Tt 40+ et el B PO P 3 L [P &55":"‘6 . :;"“”"“5 e [P O P B & tomomens @, owev JE0 @@, Bkerss BERT fisom Caffe b R L i
e e & o e N - om a4 sty veu
@rik v T2l Otibemtm | s e @ Ghpe | sl |0 e o o g Bt M Goewt Qrweises theano (RN 0w oM s K = o
Qo @ o ., Wwoge. | #%c08 [T Gh @~ @ -dok Iwmaow @ - - © nine DL somom — [o L= Bl - o R -
Wt R HELX s | B O | G | i i o g oufo s | WO Lo | e o s | W @ | e v | e e G o ke Wi’ &: bokeh 2 L
DATA SOURCES & APIs DATA RESOURCES
DATA MARKETPLACES FINANCIAL & ECONOMIC DATA AIR/ SPACE / SEA PEOPLE / ENTITIES LOCATION INTELLIGENCE DATA SERVICES INCUBATORS & SCHOOLS RESEARCH
& DISCOVERY Bloombarg rucusosruiss | Dow sowes Quand: D Efmei O oo ADBETICS Qplre # = | Z T FOURSQUARE (D) mapbox ® IMAGENET Lol Oosauesc @ sou|venlkenion | @ sz ©GINBALASMIY ©DstaCamp @ oOpenaT Google Research facebook r
& & 7 setn Brseanen 4 5 N o
z T T— % ARadar <\ Mopltory EENN EEEEE CRUX O TR ™ o Frore v | ovw v, G e
xgnite EXENE carnest pre Mtk o
= s cexotane O S Smweom | Demst melissa Yegs Ve comscore S @ Ai2 antHroPvc Salk

Version 3.0 - November 2021 © Matt Turck (@mattturck), John Wu (@john_d_wu) & FirstMark (@firstmarkcap) mattturck.com/data2021 FIRSTMARK

INFRASIRULIURE

STORAGE — HADOOP — DATALAKES DATA =1 STREAMING/
WAREHOUSES IN-MEMORY
Azul <5 - o
Mg /4 Lo, | clouozra @me | #databricks . |
s . amazon s vw - A sdatabricks
B @ o 282 5 =
X Cloud Plattorm
o wasebi | =) ?/ X . <) =
R | e menomranc PivoLal dremio O “stim i cioaseaces GridGain/ia
A\ ALLUXIC panasas
A aws Lke i
jethro ZI™Cloud Platform ~~—" Formation =i rmEsOLY 12 hazelcast kx N Materialize
& nmble COHE=ITY Y
‘\{OM VAST (©oateRa :. "”‘“’-I arm Power Systems Pivotal Infoworks Shadiog - e
O cwsio IBM InfoSphere Dole - Kyligence Vt‘iowalc\:-; ...Q,... Z ESTUARY
RDBMS —— NoSQL DATABASES NewSQL DATABASES ————— REALTIME — GRAPH DBs
. N DATABASES
@ Cloud Bigtable gynn.amﬂn 2 3’2.:.”.3'.'.“»; W . nuo OSInqleStore .HGOAJ St
ORACLE . e i n
T ase s i o o Pivotal impl H B
& s & Q“MB ORACLE .mongo, MoriaDB o vota e pPly :
3 3 server Clustrix O influxcotc § Cockroach Labs [ROCKSET] ORACLE Orlentos
[+ S SMnzkiogk Q Couchbase omTASTAXY: splice vouToe Il ClickHouse 93‘ 4 InfiniteGraph
- s /» STARTHE v
= | e sovun [B Wen e |7 A
] £ Altinity s
S town @) ArangoDB = CRATE.IO WP ringCAP @ yugabyteos JpRil o .
MPPDBs —y ETL/ELT/ —————————7 REVERSEETL —y DATA INTEGRATION ———————— DATA GOVERNANCE —
DATA TRANSFORMATION & ACCESS
TERADATA Census BT vataservices 4 Sogment €@ Informatica
“ dbt talend alteryx € informatics @SailPoint
hightouch 5 ' n
VER ¥ evewan ERStitch s maATILLION g @ MuleSoft “';'TEAL'UM s cpl.ogk: T Alaion
18M Da 2 .
e | il Qe e | SR Pravio M, | EU B
@ction | @ Buic;- ™Raata | 8 ruddersiack @oros NIRRT
o . o ATTUNITY ZAL®N| import.io OKERA Yasring,,
onitio Bsremses uhi Hotam MDAy | O Pvbestsohoe o at:an
Exasol | MMeltano @me miRivery Arovtouic | infoworks - mowmaw Sfiatfle | (g
PRIVACY & —7 DATA OBSERVABILITY —— MGMT/MONITORING ——— SERVER- -7 CLUSTER SVCS
SECURITY LESS
; 5 Y AmazoniC
& VERY GOOD SECURITY ? datakin | R ‘ Cloudwatch € New Relic DEA%‘ splunk - & > b - IEM
A sie . [
PRIVAGERA MANTA 5 Collibra F data () APPDYNAMICS ¢ rubrik grdynatrace D amazonixs e e
Cyral ape Privacy %7 Databand : acceldata 15 Matapiane
b solarwinds# M O actifio —— Ciger
— ’
tegmey Epvemscnd | DATAQUALITY ——] Cribl {Omoogsot @chronospnere | @ | @ s
D e . . = (%
skyflow oy talend SODA. ¢ Bigeye O e O s zendss e N o
al kej G CYCLE
A Privacy Dynamics 7 SUPERCOMDUCTIVE 3% Collibra dSciencelogic I — veeam
O R e mer 0 o fmaess
O Ketch Ancivalo Jpreckaly. Wi 15 Grafana | b OpsRamp ':gmﬁvfmﬂ = e s

Data Management

A large fraction of the data still in traditional DBMS systems

Still open and active research areas about improving performance, energy efficiency,
new functionalities, changing hardware spectrum (SSDs) and so on...

Much of the data not stored in traditional database systems today

For a variety of fairly valid reasons
- Stream processing systems (focusing on streaming data)
- Special-purpose data warehousing systems (most start from some RDBMS)

- Batch analysis frameworks (like Hadoop, Pregel, Spark, ...)
Typically data stored in distributed file systems

- Key-value stores (like HBase, Cassandra, Redis, ...)
Basically persistent distributed hash tables
- Semi-structured/Document data stores (for XML/JSON query processing)
- Graph databases
- Scientific data management
- Machine learning data management

However, many lessons to be learned from database research
We see much reinvention of the wheel and similar mistakes being made as early on

What we will cover

A large fraction of the data still in traditional DBMS systems
A deeper study of traditional RDBMS solutions (compared to 424)
New functionalities/features

Revisit some of the old design decisions (e.g., lay out data column-by-column
instead of row-by-row, fully in-memory processing, etc)

Much of the data not stored in traditional database systems

Basic ideas behind, and why different from RDBMS:
Stream processing systems
Special-purpose data warehousing systems
Batch analysis frameworks (specifically MapReduce)
Key-value stores (focus on the consistency issues)

If time permits:
Semi-structured data stores
Graph databases

Course Structure

» Background + Overview (1 week)

» Data Models, Programming Abstractions (2 weeks)

» Storage Models (2 weeks)

» Query Processing + Optimization (5 weeks)

» Streaming Data Management + Dataflow Systems (2 weeks)

» Miscellaneous Topics (2.5 weeks)
Versioning, Immutability, Security, Privacy

Learning Goals

» Intended to prepare you for data management research, broadly
defined

> Includes better understanding of data management issues in other fields

» Some specific goals:

> You should be able to read, understand, and hopefully critique a data
management paper

° @Given a new application domain, you should be able to:

- ask the right questions to understand the key data management issues,
and design/suggest appropriate solutions.

- identify flaws (if any) with a proposed design or solution.

- devise and reason about abstraction (independence) layers and their
applicability to the application domain.

> You should also have enough familiarity with how big data systems are built
to be able to easily start using any of them, and reason about the observed
performance of a deployed system, if only superficially.

Course Overview

» We will cover:

> A blend of classic papers + ongoing research (more focus on
latter)
o Reference book:

- Readings in Database Systems, 5th edition. Mike Stonebraker and
Joe Hellerstein, Peter Bailis.

> Almost all papers are available online

> Book contains some very nice overview chapters though — all
available online at the book website (http://redbook.io)

» Prerequisite: CMSC 424

> Class notes off my webpage

\\\\\\\\L

Course Overview: Grading

v

4-5 Programming Assignments (20%)
° Primarily on using different types of systems

v

Written homeworks on the paper readings (30%)
o 1-2 Papers per class (starting the week after next)

> Expected to skim papers before the resp. class, and go deeper for the
assignment

Scribe notes (5%)
o Will circulate a sign-up sheet later today

v

v

Research project + Presentation (30%)

° More on that later

Final (15%)

o Basically a slightly longer written assignment

m

v

Course Overview: More Logistics

» Gradescope for assignments
» Slack for communication
» See link on the webpage

» TA: Saptarashmi Bandyopadhyay

&

Databases: Major Conferences

» ACM SIGMOD (Originally SIGFIDET)

» VLDB (very large databases)

» IEEE ICDE (intl. conf. data engineering)
» EDBT (European database technology)
» PODS, ICDT

> Theory focused
» CIDR

> Tends to have vision/overview papers

> | recommend browsing through 2021/2022 proceedings for
ideas on class projects

Outline

v

Motivation: Why study databases ?

v

Course Logistics

v

History of Databases

v

Background: 424 Summary

v

Architecture of a Traditional Database System

v

Abstractions, Models, and Implementations

v

Cross-cutting Issues in Data Management

No laptop use allowed in the class !!

m

v

Databases: A Brief History

» 1960’: Enterprises start using computers — most
applications had their own data store

» Data base: coined in military information systems to
denote “shared data banks” by multiple apps

° Instead of every app having a separate format and silo-ed data,
> Define a data format, store it as a “data dictionary”, and allow
general-purpose “data-base management” software to access it

\\\\\\\\L

Databases: 1960’s

» Birth of “hierarchical” and “network” models

> Both allowed “connecting” records of different types explicitly

> Network model attempted to very general and flexible (Charlie Bachman
received Turing Award for this work)

> Used COBOL language

» IBM designed IMS hierarchical database in 1966 for Apollo
space program

o ".. more than 95 percent of the top Fortune 1000 companies use IMS to
process more than 50 billion transactions a day and manage 15 million
gigabytes of critical business data" (from IBM Website on IMS)

> Predates “hard disks”

» Both models exposed too much internal state to the users

Databases: 1970’s

» Edgar F. “Ted” Codd proposed the relational model
o QOrigins in set theory and logic
o Elegant, formal model that provided almost complete “data independence”
> High level query language (relational algebra)

o Notion of “normal forms” — allowed one to reason about and remove
redundancies

» Led to two influential projects: INGRES (Michael Stonebraker, UC Berkeley);
System R (IBM)

» Also paved way for a 1977 startup called “Software Development
Laboratories”

> Didn’t care about IMS/IMDS Compatibility (as IBM had to)
° Innovated much faster

Databases: 1970’s-1990’s

» 1976: Peter Chen proposed “Entity-Relationship Model”
Allowed high-level, conceptual modeling; easier for humans to think about
Continues to be widely used for that purpose

No real implementations — easy to convert to “relational” and use an RDBMS
Recent Object-relational Frameworks (like Python Django) very similar

(¢]

(¢]

(¢]

(¢]

» 1980: Commercialization/wide-spread acceptance
° IBM came out with DB2 in 1983

o “SEQUEL” became the standard query language (SQL)
Despite significant objections

» Late 80’s: Object-oriented, object-relational databases

> Enrich the expressive power of the relational model
> Avoid “relational-object impedance mismatch”

o Several other proposals for “semantic” data models

\\\\\\\\L

Databases: 1970’s-1990’s

» Late 80’s, early 90’s:

° Many database companies, but starting to consolidate
o Parallel database begin to emerge

> Data mining/OLAP (online analytical processing)

> Focus on client tools for application development

Powerbuilder (Sybase), Oracle Developer, etc.
o Client-server model becomes popular
Postgres project at Berkeley gets an open-source fork called PostgreSQL

(¢]

» Mid/Late 90’s:

> Web arrives: Grown of “middleware” that connects Web Applications to
Databases

 Active server pages, Enterprise Java Beans, ColdFusion
° OLAP matures and becomes mainstream

Core “database” research seemed like it was done... 1?!

Databases: 00’s

» Early 00’s to mid 00’s

> A sudden boom in data warehousing/analytics

o Companies like: Aster Data, Greenplum, Vertica, Kickfire, and probably 10 others
o Significant consolidation since then
° Some key technical considerations:

- Distributed, Shared-nothing architectures

* Columnar data storage (instead of row data storage)

* Focus on read-only analytics — bad write performance

N) NETEZZA PARACCEI. aster dato

—— more data. big insights. ——

Greenplum

VERTICA /;IN/D
monet
m

Databases: 00’s

» Late 00’s , '
B = (A3 3d

> “Map-reduce”: framework for large-scale data analysis [ED =T

+ Data-driven tasks that are largely “not” relational (e.g., building
indexes, text analysis)

* Pioneered by Google, open-source Hadoop system by Yahoo and
others
* An entire ecosystem built around it since then
o Key-value stores:
* Frameworks for “scale-first” data management
R PRCHE
* Not as concerned by ACID properties HBASE gimazon o ‘/7’7;7(2%%
+ Simple get/put interfaces needed (i.e., no support for
schemas/complex queries)

cassandra

> Document/graph/... databases:

* motivated by faster app development, conceptual models closer
to the app developers

* Web app developers work with JSON mostly . mongo

Databases: 10’s

» Database industry/researchers react to the last decade
» “NewSQL”: scalability without giving up ACID by
rearchitecting/redesigning
* Support for parallel environments from the ground up
* Exploit large memories and SSDs properly
* Hybrid systems that support both transactions and analytics (HTAP)

* Largely not considered a viable idea any more
* Can’t really get to the same performance as specialized systems

M MEMSQL SABd I5)-Store
VOLTDB Spanner Q splice
CoEkrboach RACHINE
aps

M

Many many more....

Databases: 10’s

» Cloud-hosted “Database-as-a-service” offerings

* Both Data Warehouses (Snowflake, Amazon Redshift), and
OLTP (Amazon Aurora, Microsoft CosmosDB)

* Very big market today

=f i
. amazon Z“"f snow flake

REDSHIFT

Snowflake On The Path To $10B In Product Revenue

Aug. 30, 2021 6:12 PM ET Snowflake Inc. (SNOW) 9 Comments 7 Likes

m

Databases: 10’s

» “Data Lakes” slowly becoming popular

o Basically a distributed file system that is shared by everyone

o Data processing engines read and write directly from the distributed
storage

> Typically use a columnar storage format (e.g., Parquet)

> "Data Lakehouses” try to offer systematic search/management on top

APACHE
DRILL @

Google BigQuery

thCIbriCkS Azure Data lake

CLOUDZ=RA

Databases: 10’s

A 4

More specialized systems for specific types of data

o Clear short-term benefits in performance and deployment speed
° However, quite a few longer-term issues in having silo-ed data

Graph Databases
> Neodj, Memgraph, TigerGraph, Dgraph, TerminusDB, and many others

Time-series Databases
o TimescaleDB, InfluxDB, Clickhouse, ...

Multi-model DBMSs
o Support several different models (e.g., RethinkDB)

Databases for Machine Learning
o e.g., frameworks to support ML on data in databases

Machine learning for Databases
° e.g., improve Query Optimization through use of deep learning

\\\\\\\\K

A 4

A 4

A 4

A 4

A 4

Databases: Thoughts

» Too many specialized data management systems at this time

» Leading to much silo-ed data stores that are can’t really talk to each
other well

» Building additional services (e.g., APIs) on top solves immediate
problems, but adds more complexity over the long time

» Makes security, privacy, and governance issues much worse
» Need to figure out how to make things simpler
» Relational-like model + Schemas + Declarative Languages/Frameworks

keep proving to be the winning combination
o e.g., Apache Spark started as a map-reduce-like system, but SQL is the primary

Outline

v

Motivation: Why study databases ?

v

Course Logistics

v

History of Databases

v

Background: 424 Summary

v

Architecture of a Traditional Database System

v

Abstractions, Models, and Implementations

v

Cross-cutting Issues in Data Management

No laptop use allowed in the class !!

4

Why not use file systems to store data?

» Data redundancy and inconsistency

o Multiple file formats, duplication of information in different files
» Difficulty in accessing data

> Need to write a new program to carry out each new task
» Data isolation — multiple files and formats

» Integrity problems

° Integrity constraints (e.g., account balance > 0) become “buried”
in program code rather than being stated explicitly

° Hard to add new constraints or change existing ones

\\\\\\\\L

Why not use file systems to store data?

» Atomicity of updates

° Failures may leave database in an inconsistent state with partial
updates carried out

o Example: Transfer of funds from one account to another should
either complete or not happen at all

» Concurrent access by multiple users
o Concurrent access needed for performance
o Uncontrolled concurrent accesses can lead to inconsistencies

* Example: Two people reading a balance (say 100) and updating it by
withdrawing money (say 50 each) at the same time

» Security problems

° Hard to provide user access to some, but not all, data

DBMSs to the Rescue

» Provide a systematic way to answer many of these questions...
» Aim is to allow easy management of high volumes of data
o Storing , Updating, Querying, Analyzing

» What is a Database ?
> Alarge, integrated collection of (mostly structured) data

o Typically models and captures information about a real-world enterprise
* Entities (e.g. courses, students)
* Relationships (e.g. John is taking CMSC 424)

* Usually also contains:
* Knowledge of constraints on the data (e.g. course capacities)
* Business logic (e.g. pre-requisite rules)
* Encoded as part of the data model (preferable) or through external programs

DBMSs to the Rescue

» Massively successful for highly structured or semi-structured data

o Why ? Structure in the data (if any) can be exploited for ease of use and efficiency

Account
bname acct_no | balance
Downtown A-101 500
Mianus A-215 700
Perry A-102 400
R.H A-305 350

Tabular/relational data

<Symbol>List</Symbol>
<Function:
<Symbol>List</Symbol>
<Symbol>auvutomatic< /Symbol>
XML/JSON (semi-structured) L b
<Function:
<Symbol>List</Symbol>
<Symbol>automatic< /Symbols>
<Number:>6. < /Number:>
</Function:
</Function>
</Option>
</0ptions:
</Notebook>

Graph-structured data

«|» i

DBMSs to the Rescue

» Massively successful for highly structured or semi-structured data

o Why ? Structure in the data (if any) can be exploited for ease of use and
efficiency

° How ?

> Two Key Concepts:

- Data Modeling: Allows reasoning about the data at a high level
+ e.g. “emails” have “sender”, “receiver”, “...”

)) ses

* Once we can describe the data, we can start “querying” it
- Data Abstraction/Independence:

+ Layer the system so that the users/applications are insulated from the low-
level details

m

DBMSs to the Rescue: Data Modeling

» Data modeling

(o)

Data model: A collection of concepts that describes how data is represented and
accessed

Schema: A description of a specific collection of data, using a given data model

(o)

(o)

Some examples of data models that we will see
* Relational, Entity-relationship model, XML...
* Object-oriented, object-relational, semantic data model, RDF...

(o)

Why so many models ?

+ Tension between descriptive power and ease of use/efficiency
* More powerful models = more data can be represented
* More powerful models = harder to use, to query, and less efficient

m

Data Abstraction/Independence

Hiding low-level details from the users of the system

What data users and

application programs View Level
see ? View 1 View 2 View n
What data is stored ? Logical

describe data properties such as Level

data semantics, data relationships |

How data is actually stored ? Physical
e.g. are we using disks ? Which Level
file system ?

Relational DBMS: SQL

» SQL (sequel): Structured Query Language

» Data definition (DDL)
o create table instructor (

ID char(5),

name varchar(20),
dept _name varchar(20),
salary numeric(8,2))

» Data manipulation (DML)

> Example: Find the name of the instructor with ID 22222
select name

from instructor

where instructor.ID = 22222’

What about a Database System ?

» A DBMS is a software system designed to store, manage,
facilitate access to databases

» Provides:
> Data Definition Language (DDL)

* For defining and modifying the schemas
> Data Manipulation Language (DML)

* For retrieving, modifying, analyzing the data itself

° @uarantees about correctness in presence of failures and concurrency, data
semantics etc. (e.g., ACID guarantees)

» Common use patterns

> Handling transactions (e.g. ATM Transactions, flight reservations)
> Archival (storing historical data)

> Analytics (e.g. identifying trends, Data Mining)
\\\\\\M

Basic topics covered in 424

» representing information
> data modeling
° semantic constraints
» languages and systems for querying data

o complex queries & query semantics

° over massive data sets
» concurrency control for data manipulation
° ensuring transactional semantics

» reliable data storage

° maintain data semantics even if you pull the plug

> fault tolerance

Basic topics covered in 424

» representing information
> data modeling: relational models, E/R models
° semantic constraints: integrity constraints, triggers
» languages and systems for querying data
o complex queries & query semantics: SQL
° over massive data sets: indexes, query processing, optimization
» concurrency control for data manipulation
> ensuring transactional semantics: ACID properties
» reliable data storage

° maintain data semantics even if you pull the plug: durability

> fault tolerance: RAID
M Will post a set of slides summarizing the key topics

Next class...

» We will cover some of the key topics from the

“Architecture” paper, and discuss some of the broader
data management issues

» First 3 programming assignments will be posted right
away (will be due over the next 4-6 weeks)

o Generally we are quite flexible about these assignments

» First written assignment will be out soon as well

> Focusing on first 2-3 readings

Outline

» Motivation: Why study databases ?

» Course Logistics

» History of Databases

» Background: 424 Summary

» Abstractions, Models, and Implementations

» Architecture of a Traditional Database System

» No laptop use allowed in the class !!

m

Design Dimensions for a DMS

» User-facing
Data Model

(o)

(o)

Query Language and/or Programming Framework These "define” the
“type” of the database

(o)

Transactions

(o)

Performance Guarantees/Focus

(o)

Consistency Guarantees

» Implementation

° In-memory and at-rest storage representations

(o)

Target Computational Environment

(o)

Query processing and optimization

(o)

Transactions’ implementation

(0]

Support for streaming, versioning, approximations, etc.

Data Models

» A collection of concepts that describes how data is represented and
accessed

° Schema: A description of a specific collection of data, using a given data model

» Goal is to capture the properties of the data at the “right level”
> Too strict 2 may not be able to store the data we want

> Too loose = may not be able to build a query language on top, or efficiently
optimize

» Examples:
o Relational, Entity-relationship model, XML, JSON...

> Object-oriented, object-relational, semantic data model, RDF...
o Sets of “objects”, ML models

Query Languages/Frameworks

» Define how to go from input data, to some desired output
> Depends to some extent on the data model, but still a lot of flexibility

» Want this to be as “high-level” or “declarative” as possible
> Too high-level - fewer use cases will be covered
> Too low-level = harder to use, support or optimize
> Lot of work on trying to find the “right” level of abstraction
> Interest in formally defining the power of a language, etc.

» Examples:

> SQL: Input relations = output relations

> Apache Spark RDD or Map-Reduce: Input “set of objects” = output “set of objects”
> BlinkDB: Input relations + approximation guarantees = output relations

> Visualization Tools: Input datasets = Plots

» If supporting “streaming” or “versioning” or “approximations”, need to
define what that means

Transactions/Updates (User-facing)

» Support for updating the data in the DMS

> Some of the same issues as query language w.r.t. the expressiveness of the language

» Some considerations:
> Consistency guarantees around updates (ACID or not)

Becomes more complicated in the distributed setting, with replication and sharding/partitioning
> Batch updates vs one-at-a-time (impact on staleness)
> Immutability: guarantees around no-tampering (e.g., blockchains)
> Versioning: ability to support multiple branches, and “time-travel”

» If the language is not expressive enough, have to do more work in the applications = impact on
guarantees
° e.g., MongoDB (and many other NoSQL stores) didn’t support multi-collection updates for a
long time

\\\M

In-memory and at-rest storage representations

» How is data laid out on disks (at rest) and in-memory, and across machines
> Significant impact on performance
> Depends somewhat on data model, but not fully (“Data Independence”)
o May use different representations when loading in memory (serialization/deserialization cost)
o Usually we also build “indexes” for efficient search
o Transmission over network also a concern

» Some options:

> Row-oriented storage for relational model “Data Independence” > not
"required” to, e.g., use pointers
for graph databases — easy to
convert to row-oriented storage

* Traditional approach: good for updates but bad for queries
o Column-oriented storage for relational model
* Really good performance for queries, but updates not easy to handle
° Object storage (e.g., with pointers) for object-oriented databases or Graph databases
* Pointers don’t translate from disk to memory easily
o Hierarchical storage for JSON/XML
o Structured file formats like CSV (row), Parquet (columnar) for Data Lakes
* Less up-front cost of “ingesting” the data, but more complex and less efficient to support
* Harder to put any “structure” or “data model” on top of it

» Thoughts:

o Cost of “ingest” must be amortized over many uses — for one-time use of data, prefer to leave in its native format

M

Target Computational Environment

» Many, many combinations here

> Single machine vs parallel (locally) vs geographically distributed
° Hardware

e.g., multi-core vs many-core, large-memory, disks or SSDs, RDMA, cache assumptions, and so on
> Use of cloud/virtualization

Can have a significant impact on performance guarantees

Also, may put limits on what can be done (e.g., if using “serverless functions”)

» Hard to build a different system for each combination

» Increasing interest in “auto-tuning” through use of ML
> Try to ”learn” how to do things for a new environment

Query Processing and Optimization

» Depends significantly on how “declarative” is the query language/framework

» Most systems support a collection of low-level “operators”
> Relational: joins, aggregates, etc.
o Apache Spark: map, reduce, joins, group-by, ...

» Should choose a good set of operators
> Restricts the optimization abilities

o

e.g., if only support “binary” joins then lose the ability to optimize multi-way joins
In general, a sequence of operations will perform worse than a single equivalent operation

o

» Need to map from the overall “task” or “query” into those low-level operators
o Usually called a “query execution/evaluation plan”

> There may potentially be many many ways to do this (depending on how declarative)
> Try to choose in a “cost-based” manner
Need the ability to estimate costs of different plans

"Heuristics” often preferred in less mature systems

Query Processing and Optimization

» Cost measure

° Important to decide what resource you are optimizing

> Need to focus on the bottlenecks of the environment

o Traditionally: CPU, Memory, Disks

> Today, network costs play a very important role

> Also: optimizing for “total resources” or “wall-clock time” ?
Especially important in parallel/distributed environments

» May wish to “pre-compute” certain queries to reduce the query execution times
o Especially for “real-time” queries over “streaming” data
o Often called “materialized views” in the context of relational databases
o Any pre-computed data must be kept up-to-date

» Adaptive query processing
> May wish to “change” the query plan during execution based on what we are seeing

Query Plans vs...

(sort to remove duplicates)
name, title

II

P<| (merge join)

/ so‘rt,D

sort,, X @Oin)
’ I1

Gdept_name = Music
(use index 1)

course_id, title

instructor teaches course

SQL "Query Plan”

Apache Hive "Query Plan”
(Hive is an SQL layer on top of Hadoop)

;

vs ... Data Transformation Pipelines

hub removal
relabeling
withholding data

raw RDF pre-

processing

fixed depth
fixed # of nodes

instance
extraction

tensor factorization

subgraphs

WL kernel
IST kernel
—————

learning

Weisfeiler-Lehman

feature-

subgraphs feature vectors

extraction

graph-based
-
)
learning
feature-based

~—
classification
regression
clustering

Machine Learning Pipeline

Data Preparation and Visualization Pipeline

Interactive Visualization ———>

Data Preparation

S Fixations inside Visualization S s
Fixation Data o Dita Visualization
v) y) v 4 L
: Filtering/ %
Matchin, .
g Clustering Rendering Interaction
A)
AOI s
—{ Setting of Parameters l—
Information g

: Eye Tracking Data E Computer E User

Many similarities across systems...

Maybe Tables in an RDBMS, Files in HDFS,

or Images in a key-value store

Maybe Joins, or Aggregates, or Machine
Learning Tasks, or Data Cleaning Tasks,
or...

DEI:
\ Binary
/

Operation 1

Dataset 2

Dataset 3
Binary Ternary

Operation 2 / Operation 1

Dataset 4

Unary

Dataset 5 Operation 1

Unary
Operation 1
\ Output

Dataset 1
Maybe Another RDBMS Table, a New File,

or a Machine Learning Model

Support for Streaming, Versioning,
Approximations, etc...

» Streaming
o Usually need to keep a lot of pre-built state to handle high-rate data streams
> Each new update = modify the pre-built state, and output results

° Hard to do this in a generic way
A specialized system will likely have much lower response times (e.g., in financial settings)

» Versioning
o So far, the focus has primarily been on storage (i.e., how to compactly store the version history over time)

o The “retrieval” of old versions considered less important to date

» Immutability
o More interest in recent years on this, but still pretty open from a database perspective

» Approximate Query Processing
o Usually need additional constructs like “random samples”

Recap

» Not intended to cover all data management research, but as a helpful guide to
think about data management systems
> Data cleaning, visualizations, security, privacy, ...

» Finding the right abstractions is often the key to wide usage

» More complex abstractions may provide short-term wins, but often become
difficult to manage and use over time

» Implementations have become very complex and involved today
> Easy to obtain significant benefits focusing on a specific workload and hardware
> But hard to get, and/or reason about performance in general settings
> Experimental evaluations can’t cover all different scenarios

N§§NIII-._‘

Outline

» Motivation: Why study databases ?

» Course Logistics

» History of Databases

» Background: 424 Summary

» Abstractions, Models, and Implementations

» Architecture of a Traditional Database System

» No laptop use allowed in the class !!

m

Architecture of a Traditional DBMS

» Paper by: Hellerstein, Stonebraker, Hamilton
» Covers the main components of a typical relational DBMS

» Goals for today:

> Discuss an end-to-end system and issues like admission control,
process models, etc.

> Won’t go deep into query processing, transactions, etc. — that will
be later

m

Main Components

Local Client
Protocols

Remote Client
Protocols

Catalog

Manager

Admission Client Communications Manager

Control

Memory
Query Parsing and Authorization Manager

Query Rewrite

Administration,
DDL and Utility Monitoring &
Processing Utilities

Query Optimizer

Dispatch

and Plan Executor
Scheduling

Replication and
Loading
Services

Relational Query Processor (Section 4)

Access Methods Buffer Manager

Batch Utilities

Process Lock Manager Log Manager Shared
Manager Components and
(Section 2) Utilities (Section 7)

Transactional Storage Manager (Sections 5 & 6)

Clients connect using

Life Of a Query standard or proprietary

protocols to submit

“queries”/"transactions”

Web Server

Admission Control

Assign a “thread of
computation”

Local Client Remote Client . ..
Protocols Brotocols Catalog Parse, compile, optimize
anager the query

App Server

Y —

browser

ODBC/JDBC

Admission Client Communications Manager
Control

Memory
Query Parsing and Authorization Manager

Start fetching or
Administration, updating the data

Query Optimizer DDL and Utility Monitoring & get locks
Dispatch Processing b create log records if

and . Plan Executor heeded
Scheduling ; Replication and
Relational Query Processor (Section 4) Loading etc...

Query Rewrite

Services

Access Methods Buffer Manager

Batch Utilities

Return data batch-at-a-

Process Lock Manager Log Manager Shared time
Manager Components and

(Section 2) Utilities (Section 7)

Transactional Storage Manager (Sections 5 & 6)

Process Models

» Question: How do we handle multiple user requests/queries “concurrently”?

» Lot of variations across Operating Systems
° OS Process: Private address space — scheduled by kernel
o OS (Kernel) Thread: Multiple threads per process — shared memory
+ Support for this relatively recent (late 90’s, early 00’s)

* OS can “see” these threads and does the scheduling

o Lightweight threads in user space
* Scheduled by the application
* Need to be very very careful, because OS can’t pre-empt
* e.g., can’t do Synchronous I/O

> DBMS Threads

« Similar to general lightweight threads, but special-purpose

Process per DBMS Worker

» Each query gets its own “process” (e.g., PostgreSQL, IBM D2, Oracle)*
> Heavy-weight, but easy to port to other systems

> Need support for “shared memory” (for lock tables, etc)

Connected Dispatcher

lients : Process
|
a \

-

Execution

Processes
A
.

Fig. 2.1 Process per DBMS worker model: each DBMS worker is implemented as an OS
process.

* All circa 2007 — may have changed since then.

Thread per DBMS Worker

» A single-multithreaded server
> Need support for “asynchronous” 1/0 (so threads don’t block)

> Easy to share state, but also makes it easy for queries to interfere

Multithreaded

Fig. 2.2 Thread per DBMS worker model: each DBMS worker is implemented as an OS

thread.

Process (or Thread) Pools

» Typically DBMS allots a pool of processes or threads, and multiplexes
clients/requests across those

Connections Multiplexed
Over Process Pool

Fig. 2.3 Process Pool: each DBMS Worker is allocated to one of a pool of OS processes
as work requests arrive from the Client and the process is returned to the pool once the
request is processed.

Shared Data Structures

» Buffer Pool

° Manages the disk blocks that are currently being used by the different workers

o Use some replacement strategy like Least-recently-used
» Log Tail

o All updates generate “log” records that need to properly numbered and flushed to disk
» Lock Table

o For synchronization across workers in case of conflicts
» Client Communication Buffers

> To keep track of what data has already been sent back to clients, and to buffer more
outputs

Shared Data Structures

» Buffer Pool

o Manages the disk blocks that are currently being used by the different workers

o Use some replacement strategy like Least-recently-used
» Log Tail

o All updates generate “log” records that need to properly numbered and flushed to disk
» Lock Table

o For synchronization across workers in case of conflicts
» Client Communication Buffers

> To keep track of what data has already been sent back to clients, and to buffer more
outputs

Parallel Architectures

» Shared-memory and shared-nothing architectures prevalent today
» Shared-memory: easy to evolve to because of shared data structures

» Shared-nothing: require more coordination
> Data must be partitioned across disks, and query processing needs to be aware of that

> Single-machine failures need to be handled gracefully

Fig. 3.1 Shared-memory architecture. Fig. 3.2 Shared-nothing architecture.

Parallel Architectures

» Shared-disk (e.g., through use of Storage Area Networks)

> Somewhat easier to administer, but requires specialized hardware

> Main difference between this and shared-nothing is primarily the retrieval costs
» Non-uniform Memory Access (NUMA)

> Seen increasingly today with many-core systems

° Any processor can access any other processor’s memory, but the costs vary

Fig. 3.3 Shared-disk architecture.

Relational Query Processor

View expansion, subquery

[Query Parsing and Authorization] flattening, logical rewrites of
expressions, etc.

[Query Rewrite] Search plan space, selectivity
estimation, top-down vs

bottom-up, parallelism, query

/ compilation
[Query Optimizer]

Iterator model, pipelining vs
materialization, Batch-at-a-

[Query Executor] time

Access Methods]

Data Warehouses

» Bulk uploads of batches of data

» Materialized Views

» OLAP and Data Cubes

» Specialized optimization techniques

> Snowflake schemas are very common

Widely used today for large-scale analytics
Use specialized index structures (like bitmap indexes)

o Often use techniques like Bloom Filters or bitmap based operations

o Use Columnar Storage today

Orde Category
Or duN' ProdNo C, %Or)N'
- rderNo ProdName i :‘dltb()l') ame
OrderDate : i CategoryDescr
FaSs ProdDescr 2
i ~ Category
Customer OrderNo UnitPrice
CustomerNo Sf__p___‘ulcs ersonll) QOH
: . CustomerNo
CustomerName DateKev Key
CustomerAddress ﬁ-& Date Month ~ Year
. ityName o '
iy ProdNo <«—{DateKey| _ [Month <—|:
S Date Year
Salesperson (I)ul“l];“ Month :
otalPrice
SalespesonName / = “‘-V State
City CityName
Quota | State

Figure 4. A Snowflake Schema.

Monitoring & Admnistration

Metadata
Repository

Exlcmn;

sources

Extract
Transform
Load

Refresh

Operational

=

Data sources

QOO
=283

Data Marts Tools

Figure 1. Data Warehousing Architecture

Storage Management

» Databases need to be able to control:

o Where data is physically stored on the storage devices, especially what is sequentially stored (i.e.,
spatial locality)

To reduce/estimate costs of operations

° What is in memory vs not in memory (temporal locality)
To optimize query execution

° How is memory managed
To avoid double copying of data

> In which order data is written out of volatile storage (memory) into non-volatile storage
(disks/SSDs)

For guaranteeing correctness in presence of failures

» Operating systems often get in the way

o Databases often allocate a large file on disk and manage spatial locality themselves (no guarantees
that the file is sequential though)

> Use memory mapping to reduce double copying within memory
> And many other tricks to get around OS restrictions...

Transactions

» ACID properties
> Atomicity, Isolation, and Durability are database guarantees — Consistency is typically a
programmer guarantee
» Serializability: A notion of “correctness” of concurrent transactions
o Standard approaches: Strict 2-phase Locking, Multi-version Concurrency Control, Optimistic
Concurrency Control
> A lot of work in the last 15 years — MVCC probably considered the best option today
» Difference between “locking” and “latching”
> Latches are more low-level, basically synchronization primitives
> Locks are logical and taken on, e.g., relations/tuples/objects, etc.
» Isolation Levels
> From the early days, databases supported looser definitions of consistency
> Not easy to formalize
» Recovery

> Traditionally done through “logging”, i.e., keep a record of all updates and use it for undoing bad
changes, and redoing good changes

\\\\\\\\L

Shared Components

» Catalog Manager (more appropriately today: “Metadata” Manager)

o Usually stored as special system tables
> Pulled into memory at the start for efficiency, into special data structures

» Memory Allocator

> Need to be very careful with allocating new chunks of memory
> PostgreSQL query processor basically pre-allocates everything and reuses all the memory

» Disk Management Subsystems
o Many different storage devices widely used (e.g., RAID)
> Need to support a uniform interface on top (through abstractions)
> Makes optimization harder

» Replication Services

» Administration, Monitoring, Utilities

Recap, and Next Steps

» Read the “Architecture” paper, and raise any questions/clarification issues

» Although outdated, this will form the basis on which the rest of the semester
builds up

° First written assignment will cover some of these topics as well

» Next two weeks:

> Different data models/query languages/programming frameworks
o Will ignore the implementation issues in the papers

