
Instructor: Amol Deshpande
amol@cs.umd.edu

} Released on GitHub three programming assignments
◦ PostgreSQL, MongoDB, and Spark

◦ Spread out over the next month or so

◦ Goal to get to a common base for all of you

◦ Will post slides to help with those

} First homework to be released by tomorrow
◦ Will focus on the readings for first two weeks

} Readings for this and next week
◦ For 4 of the papers, just first couple of sections

} Data Models: Then, and now
◦ History of Data Models (“what comes around…”)

◦ A data model for Key-value Stores (“a co-relational model..”)

} Languages
◦ Overview

◦ Datalog (“a survey of research…” and “declarative networking…”)

} Map-reduce and Spark
◦ Original MR Abstraction (”mapreduce:” …”)

◦ Spark (“resilient distributed datasets…”)

} SystemML: An abstraction for ML

} GraphX: An abstraction for Graphs

} Data Models: Then, and now
◦ History of Data Models (“what comes around…”)

◦ A data model for Key-value Stores (“a co-relational model..”)

} Languages
◦ Overview

◦ Datalog (“a survey of research…” and “declarative networking…”)

} Map-reduce and Spark
◦ Original MR Abstraction (”mapreduce:” …”)

◦ Spark (“resilient distributed datasets…”)

} SystemML: An abstraction for ML

} GraphX: An abstraction for Graphs

} Goal is to choose a good data model for the data
◦ Needs to be sufficient expressive – should capture real-world data

◦ Easy to use for users – support physical and logical data independence

◦ Lends to good performance

} Many similarities across models
◦ Much convergence in the last two decades

} Keep in mind orthogonal issues of schema maintenance and evolution, and
data integration/reconciliation
◦ Possibly a much bigger headache in practice

} No doubt relational is the best low-level model, but should it continue to be
the high-level model as well?

} Examples of Physical Data Dependence (from Ted Codd, 1970)
◦ Ordering dependence: How records are sorted hard-coded into the apps

◦ Indexing dependence: What indexes are present on the data hard-coded in the apps

◦ Access Path dependence: Dependence on the hierarchy or the network model chosen

} Logical data independence
◦ Ability to make changes to the schema, e.g., add a new attribute, combine two tables, etc.,

without affecting external applications or APIs

◦ Can be achieved through use of “views” in RDBMSs

} In general: we want the application programs to not hard-code any of those
decisions so those can be changed easily

Object-oriented: late 1980’s and early 1990’s
Object-relational: late 1980’s and early 1990’s
Semi-structured (XML): late 1990’s to the present

In each case, we discuss the data model and associated query language, using a neutral
notation. Hence, we will spare the reader the idiosyncratic details of the various
proposals. We will also attempt to use a uniform collection of terms, again in an attempt
to limit the confusion that might otherwise occur.

Throughout much of the paper, we will use the standard example of suppliers and parts,
from [CODD70], which we write for now in relational form in Figure 1.

Supplier (sno, sname, scity, sstate)
Part (pno, pname, psize, pcolor)
Supply (sno, pno, qty, price)

A Relational Schema
Figure 1

Here we have Supplier information, Part information and the Supply relationship to
indicate the terms under which a supplier can supply a part.

Figure 2 shows a few instances of sample data.

Suppplier Part

16 General Supply Boston Ma 27 Power saw 7 silver
24 Special Supply Detroit Mi 42 bolts 12 gray

Supply

16 27 100 $20.00
16 42 1000 $.10
24 42 5000 $.08

Some Sample Data
Figure 2

II IMS Era

IMS was released around 1968, and initially had a hierarchical data model. It understood
the notion of a record type, which is a collection of named fields with their associated
data types. Each instance of a record type is forced to obey the data description
indicated in the definition of the record type. Furthermore, some subset of the named
fields must uniquely specify a record instance, i.e. they are required to be a key. Lastly,
the record types must be arranged in a tree, such that each record type (other than the

Object-oriented: late 1980’s and early 1990’s
Object-relational: late 1980’s and early 1990’s
Semi-structured (XML): late 1990’s to the present

In each case, we discuss the data model and associated query language, using a neutral
notation. Hence, we will spare the reader the idiosyncratic details of the various
proposals. We will also attempt to use a uniform collection of terms, again in an attempt
to limit the confusion that might otherwise occur.

Throughout much of the paper, we will use the standard example of suppliers and parts,
from [CODD70], which we write for now in relational form in Figure 1.

Supplier (sno, sname, scity, sstate)
Part (pno, pname, psize, pcolor)
Supply (sno, pno, qty, price)

A Relational Schema
Figure 1

Here we have Supplier information, Part information and the Supply relationship to
indicate the terms under which a supplier can supply a part.

Figure 2 shows a few instances of sample data.

Suppplier Part

16 General Supply Boston Ma 27 Power saw 7 silver
24 Special Supply Detroit Mi 42 bolts 12 gray

Supply

16 27 100 $20.00
16 42 1000 $.10
24 42 5000 $.08

Some Sample Data
Figure 2

II IMS Era

IMS was released around 1968, and initially had a hierarchical data model. It understood
the notion of a record type, which is a collection of named fields with their associated
data types. Each instance of a record type is forced to obey the data description
indicated in the definition of the record type. Furthermore, some subset of the named
fields must uniquely specify a record instance, i.e. they are required to be a key. Lastly,
the record types must be arranged in a tree, such that each record type (other than the

} Main constructs: “record type” (schema), “instance” (must obey schema), “keys” (to
uniquely identify records)

} Record types must be arranged in a hierarchy
◦ Record instances stored using the same hierarchy

◦ Records with the same parent stored as a linked list

root) has a unique parent record type. An IMS data base is a collection of instances of
record types, such that each instance, other than root instances, has a single parent of the
correct record type.

This requirement of tree-structured data presents a challenge for our sample data, because
we are forced to structure it in one of the two ways indicated in Figure 3. For the first of
the two schemas, we also indicate our sample data in Figure 4.

Two Hierarchical Organizations
Figure 3

Some Example Data
Figure 4

Supplier (sno,
sname, scity,
sstate)

Part (pno, pname,
psize, pcolor, qty,
price)

Part (pno,
pname, psize,
pcolor)

Supplier (sno,
sname, scity,
sstate, qty, price)

16
General Supply
Boston, Ma

24
Special Supply
Detroit, Mi

27, Power saw
7, silver,
100, $20.00

42, Bolts
12, gray
1000, $.10

42, Bolts
12, gray
5000, $.08

root) has a unique parent record type. An IMS data base is a collection of instances of
record types, such that each instance, other than root instances, has a single parent of the
correct record type.

This requirement of tree-structured data presents a challenge for our sample data, because
we are forced to structure it in one of the two ways indicated in Figure 3. For the first of
the two schemas, we also indicate our sample data in Figure 4.

Two Hierarchical Organizations
Figure 3

Some Example Data
Figure 4

Supplier (sno,
sname, scity,
sstate)

Part (pno, pname,
psize, pcolor, qty,
price)

Part (pno,
pname, psize,
pcolor)

Supplier (sno,
sname, scity,
sstate, qty, price)

16
General Supply
Boston, Ma

24
Special Supply
Detroit, Mi

27, Power saw
7, silver,
100, $20.00

42, Bolts
12, gray
1000, $.10

42, Bolts
12, gray
5000, $.08

Repeated information

for the first hierarchy

Can’t store a part not supplied by anybody

} ”Record-at-a-time” query language
◦ Programmer had to keep track of the “currency” indicators in their program – leads to complex edge cases

} Multiple storage options (e.g., sequential, using a B+-Tree, using Hashing)

} Supported some “physical data independence”
◦ DL/1 language was written against the logical hierarchy to some extent

◦ But use of hashing vs indexing still important (e.g., can’t use “get-next” on hashing storage)

} Several hacks added later to support non-tree structured data
◦ Adds much more complexity

These representations share two common undesirable properties:

1) Information is repeated. In the first schema, Part information is repeated for
each Supplier who supplies the part. In the second schema, Supplier information
is repeated for each part he supplies. Repeated information is undesirable,
because it offers the possibility for inconsistent data. For example, a repeated
data element could be changed in some, but not all, of the places it appears,
leading to an inconsistent data base.

2) Existence depends on parents. In the first schema it is impossible for there to be
a part that is not currently supplied by anybody. In the second schema, it is
impossible to have a supplier which does not currently supply anything. There is
no support for these “corner cases” in a strict hierarchy.

IMS chose a hierarchical data base because it facilitates a simple data manipulation
language, DL/1. Every record in an IMS data base has a hierarchical sequence key

(HSK). Basically, an HSK is derived by concatenating the keys of ancestor records, and
then adding the key of the current record. HSK defines a natural order of all records in
an IMS data base, basically depth-first, left-to-right. DL/1 intimately used HSK order for
the semantics of commands. For example, the “get next” command returns the next
record in HSK order. Another use of HSK order is the “get next within parent”
command, which explores the subtree underneath a given record in HSK order.

Using the first schema, one can find all the red parts supplied by Supplier 16 as:

Get unique Supplier (sno = 16)
Until no-more {

Get next within parent (color = red)
}

The first command finds Supplier 16. Then we iterate through the subtree underneath
this record in HSK order, looking for red parts. When the subtree is exhausted, an error
is returned.

Notice that DL/1 is a “record-at-a-time” language, whereby the programmer constructs an
algorithm for solving his query, and then IMS executes this algorithm. Often there are
multiple ways to solve a query. Here is another way to solve the above specification:

Until no-more {
Get next Part (color = red)

}

These representations share two common undesirable properties:

1) Information is repeated. In the first schema, Part information is repeated for
each Supplier who supplies the part. In the second schema, Supplier information
is repeated for each part he supplies. Repeated information is undesirable,
because it offers the possibility for inconsistent data. For example, a repeated
data element could be changed in some, but not all, of the places it appears,
leading to an inconsistent data base.

2) Existence depends on parents. In the first schema it is impossible for there to be
a part that is not currently supplied by anybody. In the second schema, it is
impossible to have a supplier which does not currently supply anything. There is
no support for these “corner cases” in a strict hierarchy.

IMS chose a hierarchical data base because it facilitates a simple data manipulation
language, DL/1. Every record in an IMS data base has a hierarchical sequence key

(HSK). Basically, an HSK is derived by concatenating the keys of ancestor records, and
then adding the key of the current record. HSK defines a natural order of all records in
an IMS data base, basically depth-first, left-to-right. DL/1 intimately used HSK order for
the semantics of commands. For example, the “get next” command returns the next
record in HSK order. Another use of HSK order is the “get next within parent”
command, which explores the subtree underneath a given record in HSK order.

Using the first schema, one can find all the red parts supplied by Supplier 16 as:

Get unique Supplier (sno = 16)
Until no-more {

Get next within parent (color = red)
}

The first command finds Supplier 16. Then we iterate through the subtree underneath
this record in HSK order, looking for red parts. When the subtree is exhausted, an error
is returned.

Notice that DL/1 is a “record-at-a-time” language, whereby the programmer constructs an
algorithm for solving his query, and then IMS executes this algorithm. Often there are
multiple ways to solve a query. Here is another way to solve the above specification:

Until no-more {
Get next Part (color = red)

}

} Some Lessons
◦ Physical and logical data independence are highly desired
◦ Tree-structured data models restrictive – not general enough, and hard to modify
◦ Manual query optimization unlikely to work over long term

} We see the same issues with JSON and XML databases of today
◦ No logical data independence – the hierarchies get hard-coded into queries
◦ Significant physical data independence today though

{“id”: “16”,
“Name”: “General Supply”,
“Location”: “Boston, MA”,
“supplies”: [

{“id”: “27”, “Name”: “Power Saw”, “Qty”: 7, “Color”: “gray”},
{………}

]},
{“id”: “24”,
“Name”: “Special Supply”,
“Location”: “Detroit, MI”,
“supplies”: [

{“id”: “27”, “Name”: “Power Saw”, “Qty”: 10, “Color”: “gray”},
{………}

]}

Collection “Suppliers”:
{“id”: “16”,
“Name”: “General Supply”,
“Location”: “Boston, MA”,
“supplies”: [

{“id”: “27”, “Qty”: 7},
{………}

]},

Collection “Parts”:
{“id”: “27”,
“Name”: “Power Saw”,
“Color”: “silver”

}

VS

} Directed Graph Data Model, with a “record-at-a-time” data manipulation language
} Fewer restrictions than the IMS model
} But much more complex for the programmer (“programmer as a navigator”)
} Limited physical or logical data independence
} Harder to do bulk-loading of data

The complexity of these logical data bases will be presently seen to be pivotal in
determining how IBM decided to support relational data bases a decade later.

We will summarize the lessons learned so far, and then turn to the CODASYL proposal.

Lesson 1: Physical and logical data independence are highly desirable

Lesson 2: Tree structured data models are very restrictive

Lesson 3: It is a challenge to provide sophisticated logical reorganizations of tree
structured data

Lesson 4: A record-at-a-time user interface forces the programmer to do manual query
optimization, and this is often hard.

III CODASYL Era

In 1969 the CODASYL (Committee on Data Systems Languages) committee released
their first report [CODA69], and then followed in 1971 [CODA71] and 1973 [CODA73]
with language specifications. CODASYL was an ad-hoc committee that championed a
directed graph data model along with a record-at-a-time data manipulation language.

Supplies Supplied_by

A CODASYL Directed Graph
Figure 7

This model organized a collection of record types, each with keys, into a directed graph,
rather than a tree. Hence, a given record instance can have multiple parents, rather than a

Supplier (sno,
sname, scity,
sstate)

Supply(qty, price)

Part (pno,
pname, psize,
pcolor)

single one, as in IMS. As a result, our Supplier-Parts-Supply example could be
represented by the CODASYL schema of Figure 7.

Here, we notice three record types arranged in a directed graph, connected by two named
arcs, called Supplies and Supplied_by. A named arc is called a set type in CODASYL,
though it does not technically describe a set at all. Rather it indicates that for each record
instance of the owner record type (the tail of the arrow) there is a relationship with zero
or more record instances of the child record type (the head of the arrow). As such, it is a
1-to-n relationship between owner record instances and child record instances. For each
parent record, there is a set instance (or set for short) of the set type. In the set are the
parent record and all the member records that relate to the parent.

Figure 8 shows some example data with set instances represented by linked lists.

Some Example Data
Figure 8

A CODASYL directed graph is a collection of named record types and named set types
that form a connected directed graph. A CODASYL data base is a collection of record
instances and set instances that obey this direct graph-structured description.

Notice that Figure 7 does not have the existence dependencies present in a hierarchical
data model. For example, it is ok to have a part that is not supplied by anybody. This
will merely be an empty instance of a Supplied_by set. Hence, the move to a directed
graph data model solves many of the restrictions of a hierarchy. However, there are still

16,General Supply
Boston, Ma

24, Special Supply
Detroit, Mi

27, Power saw
7, silver

42, Bolts
12 gray

100
$20.00

1000
$.10

5000
$.08

Databases: A Brief History What goes around comes around

Data Models: Network/CODASYL16 Appendix A Network Model

 Perryridge Horseneck 1700000

 Downtown Brooklyn 9000000

 Round Hill Horseneck 8000000

 Round Hill Horseneck 8000000

A-102 400

A-101 500

A-201 900

A-305 350

A-305 350

A-402 1000

A-408 1123

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Turner Putnam Stamford

 Turner Putnam Stamford

customer template

account template

branch template

customer

account

branch

depositor

account_branch

run unit

currency
pointers

Figure A.20 Program work area.

• get, which copies the record to which the current of run-unit points from the
database to the appropriate program work area template

Let us illustrate the general effect that the find and get statements have on the pro-
gram work area. Consider the sample database of Figure A.16. Suppose that the cur-
rent state of the program work area of a particular application program is as shown
in Figure A.20. Further suppose that a find command is issued to locate the customer
record belonging to Johnson. This command causes the following changes to occur
in the state of the program work area:

• The current of record type customer now points to the record of Johnson.

• The current of set type depositor now points to the record of Johnson.

18 Appendix A Network Model

customer.customer city := ”Harrison”;
find any customer using customer city;
while DB-status = 0 do

begin
get customer;
print (customer.customer name);
find duplicate customer using customer city;

end;

We have enclosed part of the query in a while loop, because we do not know in
advance how many such customers exist. We exit from the loop when DB-status �= 0.
This action indicates that the most recent find duplicate operation failed, implying
that we have exhausted all customers residing in Harrison.

A.4.4 Access of Records within a Set
The previous find commands located any database record of type <record type>. In
this subsection, we concentrate on find commands that locate records in a particular
DBTG set. The set in question is the one that is pointed to by the <set-type> currency
pointer. There are three different types of commands. The basic find command is

find first <record type> within <set-type>

which locates the first member record of type <record type> belonging to the cur-
rent occurrence of <set-type>. The various ways in which a set can be ordered are
discussed in Section A.6.6.

To step through the other members of type <record type> belonging to the set
occurrence, we repeatedly execute the following command:

find next <record type> within <set-type>

The find first and find next commands need to specify the record type since a DBTG
set can have members of different record types.

As an illustration of how these commands execute, let us construct the DBTG query
that prints the total balance of all accounts belonging to Hayes.

sum := 0;
customer.customer name := ”Hayes”;
find any customer using customer name;
find first account within depositor;
while DB-status = 0 do

begin
get account;
sum := sum + account.balance;
find next account within depositor;

end
print (sum);

Amol Deshpande CMSC724: Data Models

} Very similar to today’s graph data model proposals (e.g., “property graph”)

} But those show significantly more physical and logical data independence
◦ Depending on the actual implementation

◦ Need to enforce schemas (many graph databases today don’t)

} Many of the identified limitations of CODASYL really about the language and
some implementation choices

} Also bears much similarity with Entity-Relational Model (at the conceptual
level)
◦ E/R Model never really had an implementation or a language

} Proposed by Ted Codd in 1969/1970
◦ “IMS programmers were spending large amount of time doing maintenance on IMS applications when logical or physical

changes occurred”

} Proposal:
◦ Store data in a simple data structure (tables)

◦ Access it through a high-level set-at-a-time DML (relational algebra à SQL)

◦ No need to mandate any physical storage design (each system can do its own, and change easily as needed)

} Can easily represent 3-entity relationships (difficult for network model)

} No existence dependencies that plagued hierarchical model

} Cons:
◦ Transitive closure

◦ (initially) performance

◦ (initially) too complex and mathematical languages

} Many debates in 1970’s
} Relational Model Advocates
◦ Nothing as complex as CODASYL can possibly be a good idea

◦ CODASYL does not provide acceptable data independence

◦ Record-at-a-time programming is too hard to optimize

◦ CODASYL and IMS are not flexible enough to easily represent common situations (such as marriage
ceremonies)

} CODASYL Advocates
◦ COBOL programmers cannot possibly understand the new-fangled relational languages

◦ It is impossible to implement the relational model efficiently

◦ CODASYL can represent tables, so what’s the big deal?

} Both camps changed positions to move towards each other
◦ Relational systems got user-friendly languages (SQL, QUEL), and efficient implementation

} (According to Authors) Effectively settled by mini-computer revolution, and by IBM
who announced new relational products
◦ And by non-portability of CODASYL engines

} Don Chamberlin of IBM was an early CODASYL advocate (later co-invented
SQL)

“He (Codd) gave a seminar and a lot of us went to listen to him. This was as I say a
revelation for me because Codd had a bunch of queries that were fairly complicated
queries and since I’d been studying CODASYL, I could imagine how those queries would
have been represented in CODASYL by programs that were five pages long that would
navigate through this labyrinth of pointers and stuff. Codd would sort of write them
down as one-liners. These would be queries like, "Find the employees who earn more
than their managers." [laughter] He just whacked them out and you could sort of read
them, and they weren’t complicated at all, and I said, "Wow." This was kind of a
conversion experience for me, that I understood what the relational thing was about
after that.”

} Explicitly represent entities and relationships, and connections between them
◦ Much easier for conceptual development of a schema

} No real uptake as the physical data model used by a database back then
◦ Lot of similarities to CODASYL

◦ Easy to map to relational

} Widely used today for initial schema design
◦ Normal forms are too difficult to work with

◦ Don’t address the question of how to get started

between the entities Part and Supplier. Relationships could be 1-to-1, 1-to-n, n-to-1 or
m-to-n, depending on how the entities participate in the relationship. In our example,
Suppliers can supply multiple parts, and parts can be supplied by multiple suppliers.
Hence, the Supply relationship is m-to-n. Relationships can also have attributes that
describe the relationship. In our example, qty and price are attributes of the relationship
Supply.

A popular representation for E-R models was a “boxes and arrows” notation as shown in
Figure 11. The E-R model never gained acceptance as the underlying data model that is
implemented by a DBMS. Perhaps the reason was that in the early days there was no
query language proposed for it. Perhaps it was simply overwhelmed by the interest in the
relational model in the 1970’s. Perhaps it looked too much like a “cleaned up” version of
the CODASYL model. Whatever the reason, the E-R model languished in the 1970’s.

Supply
 qty, price

An E-R Diagram
 Figure 11

There is one area where the E-R model has been wildly successful, namely in data base
(schema) design. The standard wisdom from the relational advocates was to perform data
base design by constructing an initial collection of tables. Then, one applied
normalization theory to this initial design. Throughout the decade of the 1970’s there
were a collection of normal forms proposed, including second normal form (2NF)
[CODD71b], third normal form [CODD71b], Boyce-Codd normal form (BCNF)
[CODD72b], fourth normal form (4NF) [FAGI77a], and project-join normal form
[FAGI77b].

There were two problems with normalization theory when applied to real world data base
design problems. First, real DBAs immediately asked “How do I get an initial set of
tables?” Normalization theory had no answer to this important question. Second, and
perhaps more serious, normalization theory was based on the concept of functional
dependencies, and real world DBAs could not understand this construct. Hence, data base
design using normalization was “dead in the water”.

In contrast, the E-R model became very popular as a data base design tool. Chen’s
papers contained a methodology for constructing an initial E-R diagram. In addition, it
was straightforward to convert an E-R diagram into a collection of tables in third normal

 Part
Pno, pname, psize,
pcolor.

 Supplier
Sno, sname, scity,
sstate

} Many similarities to Object-relational Mapping Frameworks (like ruby-on-rails, python Django,
etc).
◦ Those frameworks explicitly model ”object types” and “relationships” between them

◦ Very widely used by application programmers today

◦ Typically mapped to a RDBMS at the backend (not always a faithful mapping)

◦ Also similar to “property graphs” (assuming schemas are enforced)

} In my opinion: E/R model should be resurrected as the primary model for RDBMS
◦ Maintenance of relational model is too hard

◦ Changes made over time lead to un-normalized schemas with many issues

◦ See “Database Decay” by Stonebraker et al.

} Many new proposals focusing on specific applications that were not a good fit for relational
◦ CAD, Text Management, Time, Graphics, etc.

} GEM [Zaniolo 83]
◦ Set-valued attributes (e.g., available colors in “parts”)

◦ Cascaded dot notation (e.g., how you do in ORMs)

◦ Inheritance hierarchies

} Main cons:
◦ No real improvements over the relational model, either functionality or performance

◦ Some of the key constructs could be easily added to relational model (e.g., new data types, arrays)

form [WONG79]. Hence, a DBA tool could perform this conversion automatically. As
such, a DBA could construct an E-R model of his data, typically using a boxes and
arrows drawing tool, and then be assured that he would automatically get a good
relational schema. Essentially all data base design tools, such as Silverrun from Magna
Solutions, ERwin from Computer Associates, and ER/Studio from Embarcadero work in
this fashion.

Lesson 11: Functional dependencies are too difficult for mere mortals to understand.
Another reason for KISS (Keep It Simple Stupid).

VI R++ Era

Beginning in the early 1980’s a (sizeable) collection of papers appeared which can be
described by the following template:

Consider an application, call it X
Try to implement X on a relational DBMS
Show why the queries are difficult or why poor performance is observed
Add a new “feature” to the relational model to correct the problem

Many X’s were investigated including mechanical CAD [KATZ86], VLSI CAD
[BATO85], text management [STON83], time [SNOD85] and computer graphics
[SPON84]. This collection of papers formed “the R++ era”, as they all proposed
additions to the relational model. In our opinion, probably the best of the lot was Gem
[ZANI83]. Zaniolo proposed adding the following constructs to the relational model,
together with corresponding query language extensions:

1) set-valued attributes. In a Parts table, it is often the case that there is an attribute,
such as available_colors, which can take on a set of values. It would be nice to add a data
type to the relational model to deal with sets of values.

2) aggregation (tuple-reference as a data type). In the Supply relation noted above,
there are two foreign keys, sno and pno, that effectively point to tuples in other tables. It
is arguably cleaner to have the Supply table have the following structure:

Supply (PT, SR, qty, price)

Here the data type of PT is “tuple in the Part table” and the data type of SR is “tuple in
the Supplier table”. Of course, the expected implementation of these data types is via
some sort of pointer. With these constructs however, we can find the suppliers who
supply red parts as:

Select Supply.SR.sno
From Supply
Where Supply.PT.pcolor = “red”

} Designed to handle the “impedance mismatch”
◦ How data is represented in memory (typically as objects) vs how it is stored (in a normalized relational schema)

} Essentially became “persistent” programming languages
◦ Interesting technical challenge: “pointer swizzling”

} Weak support for transactions, queries, etc.
◦ Largely single-user systems

◦ DBMS must run in the same address space as the application

} Several reasons didn’t succeed
◦ No major additional functionality for most applications (i.e., a niche market)

◦ No standards

◦ Too tied to a single programming language

} Bear many similarities to Graph Databases
◦ OrientDB, one of the major graph databases, basically an Object Store

} Motivated by need to represent more complex data types
◦ e.g., locations, rectangles, complex numbers etc.

} Possible to do in relational to some extent, but very painful and error-prone

} Instead, have:
◦ User-defined types

◦ User-defined operators (that change the meaning of “+”)

◦ User-defined functions to work on those types (e.g., to find if a Point lies in a Rectangle)

◦ User-defined “indexes” (for efficient searching): B+-trees don’t work well on spatial data

} Postgres (research project at Berkeley, led by Stonebraker) the first real implementation

} UDFs a major benefit
◦ By putting code in the databases, avoided many round-trips to the database from the client

Lesson 14: Persistent languages will go nowhere without the support of the programming
language community.

IX The Object-Relational Era

The Object-Relational (OR) era was motivated by a very simple problem. In the early
days of INGRES, the team had been interested in geographic information systems (GIS)
and had suggested mechanisms for their support [GO75]. Around 1982, the following
simple GIS issue was haunting the INGRES research team. Suppose one wants to store
geographic positions in a data base. For example, one might want to store the location of
a collection of intersections as:

Intersections (I-id, long, lat, other-data)

Here, we require storing geographic points (long, lat) in a data base. Then, if we want to
find all the intersections within a bounding rectangle, (X0, Y0, X1, Y1), then the SQL
query is:

Select I-id
From Intersections
Where X0 < long < X1 and Y0 < lat < Y1

Unfortunately, this is a two dimensional search, and the B-trees in INGRES are a one-
dimensional access method. One-dimensional access methods do not do two-
dimensional searches efficiently, so there is no way in a relational system for this query
to run fast.

More troubling was the “notify parcel owners” problem. Whenever there is request for a
variance to the zoning laws for a parcel of land in California, there must be a public
hearing, and all property owners within a certain distance must be notified.

Suppose one assumes that all parcels are rectangles, and they are stored in the following
table.

Parcel (P-id, Xmin, Xmax, Ymin, Ymax)

Then, one must enlarge the parcel in question by the correct number of feet, creating a
“super rectangle” with co-ordinates X0, X1, Y0, Y1. All property owners whose parcels
intersect this super rectangle must be notified, and the most efficient query to do this task
is:

Select P-id
From Parcel
Where Xmax > X0 and Ymax > Y0 and Xmin < X1 and Ymax < Y1

Where point !! “X0, X1, Y0, Y1”

and

Select P-id
From Parcel
Where P-box ## “X0, X1, Y0, Y1”

To support the definition of user-defined operators, one must be able to specify a user-
defined function (UDF), which can process the operator. Hence, for the above examples,
we require functions

Point-in-rect (point, box)

and

Box-int-box (box, box)

which return Booleans. These functions must be called whenever the corresponding
operator must be evaluated, passing the two arguments in the call, and then acting
appropriately on the result.

To address the GIS market one needs a multi-dimensional indexing system, such as Quad
trees [SAME84] or R-trees [GUTM84]. In summary, a high performance GIS DBMS
can be constructed with appropriate user-defined data types, user-defined operators, user-
defined functions, and user-defined access methods.

The main contribution of Postgres was to figure out the engine mechanisms required to
support this kind of extensibility. In effect, previous relational engines had hard coded
support for a specific set of data types, operators and access methods. All this hard-
coded logic must be ripped out and replaced with a much more flexible architecture.
Many of the details of the Postgres scheme are covered in [STON90].

There is another interpretation to UDFs which we now present. In the mid 1980’s Sybase
pioneered the inclusion of stored procedures in a DBMS. The basic idea was to offer
high performance on TPC-B, which consisted of the following commands that simulate
cashing a check:

Begin transaction

Update account set balance = balance – X
Where account_number = Y

Update Teller set cash_drawer = cash_drawer – X
Where Teller_number = Z

VS

} Context: XML very popular in the industry and academia circa 2000
◦ When this article was first written

} Flexible schemas (“schema later” or “schema-on-read”)
◦ Don’t require a schema in advance – instead impose it when reading, or make it part of the data itself (self-describing)

◦ Relational databases will reject any data that doesn’t conform to the schema

◦ Easy to state, but hard to use due to semantic heterogeneity and other issues

◦ Need a well-defined understanding of what the fields mean to use it properly (i.e., need a schema)

} These databases also support easy schema evolution, which is a major benefit especially in
early application development

which we continue to call “schema later”. We now discuss these two interpretations in
turn.

10.1.1 Schema Later

In this interpretation the schema does not need to be specified in advance. It can be
specified later, or even not at all. In a “schema later” system, data instances must be self-
describing, because there is not necessarily a schema to give meaning to incoming
records. Without a self-describing format, a record is merely “a bucket of bits”.

To make a record self-describing, one must tag each attribute with metadata that defines
the meaning of the attribute. Here are a couple of examples of such records, using an
artificial tagging system:

Person:
Name: Joe Jones
Wages: 14.75
Employer: My_accounting
Hobbies: skiing, bicycling
Works for: ref (Fred Smith)
Favorite joke: Why did the chicken cross the road? To get to the other side
Office number: 247
Major skill: accountant

End Person

Person:
Name: Smith, Vanessa
Wages: 2000
Favorite coffee: Arabian
Pastimes: sewing, swimming
Works_for: Between jobs
Favorite restaurant: Panera
Number of children: 3

End Person:

As can be seen, these two records each describe a person. Moreover, each attribute has
one of three characteristics:

1) it appears in only one of the two records, and there is no attribute in the other
record with the same meaning.

2) it appears in only one of the two records, but there is an attribute in the other
record with the same meaning (e.g. pastimes and hobbies).

3) it appears in both records, but the format or meaning is different (e.g. Works_for,
Wages)

which we continue to call “schema later”. We now discuss these two interpretations in
turn.

10.1.1 Schema Later

In this interpretation the schema does not need to be specified in advance. It can be
specified later, or even not at all. In a “schema later” system, data instances must be self-
describing, because there is not necessarily a schema to give meaning to incoming
records. Without a self-describing format, a record is merely “a bucket of bits”.

To make a record self-describing, one must tag each attribute with metadata that defines
the meaning of the attribute. Here are a couple of examples of such records, using an
artificial tagging system:

Person:
Name: Joe Jones
Wages: 14.75
Employer: My_accounting
Hobbies: skiing, bicycling
Works for: ref (Fred Smith)
Favorite joke: Why did the chicken cross the road? To get to the other side
Office number: 247
Major skill: accountant

End Person

Person:
Name: Smith, Vanessa
Wages: 2000
Favorite coffee: Arabian
Pastimes: sewing, swimming
Works_for: Between jobs
Favorite restaurant: Panera
Number of children: 3

End Person:

As can be seen, these two records each describe a person. Moreover, each attribute has
one of three characteristics:

1) it appears in only one of the two records, and there is no attribute in the other
record with the same meaning.

2) it appears in only one of the two records, but there is an attribute in the other
record with the same meaning (e.g. pastimes and hobbies).

3) it appears in both records, but the format or meaning is different (e.g. Works_for,
Wages)

} Context: XML very popular in the industry and academia circa 2000
◦ When this article was first written

} Main constructs in XML (and JSON today, mostly)
◦ ”Self-describing” (the attribute names part of the data)

◦ Hierarchical format

◦ Can have links to other records (like CODASYL)

◦ Set-valued attributes (leads to more complex language)

} XML popular early on as a “on-the-wire format” (as is JSON today)
◦ Text-based, so can go through firewalls

◦ Not proprietary

◦ JSON widely used for APIs today

◦ Other formats like Parquet are more common for large volumes of data

} From redbook.io: http://www.redbook.io/ch1-background.html

} XML didn’t really take over
◦ Too complex, especially query languages (XQuery)

◦ Inefficient implementations (e.g., for indexes)

◦ No compelling use cases

} JSON more popular and very similar
◦ Good for sparse data – can be handled by adding a JSON data type to the database

◦ Schema on read – basically just a ”project” on fewer attributes of interest

◦ Doesn’t really solve semantic heterogeneity problems

http://www.redbook.io/ch1-background.html

} Quite a few different data models, but map closely to one of the standard ones
} Document Data Model: JSON, XML, etc.
} Key-Value: Simple interface
◦ put(key, value), get(key)

◦ Lot of logic in what “value” is and how it is manipulated

◦ e.g., value may be JSON, time-series, etc.

} Graph Data Models:
◦ A few different ones: Property Graph, RDF, …

} Column families (e.g., Cassandra)
◦ Puts a little more structure on key-value

◦ “values” themselves are stored as columns of information

} Array Data Models
◦ Proposed for scientific data management

◦ Key abstraction: an array or a matrix

◦ Key operations: Slicing, Subsetting, Filtering, etc.

Databases: A Brief History What goes around comes around

Data Models

RDF: Resource Description Framework

Amol Deshpande CMSC724: Data Models

Databases: A Brief History What goes around comes around

Data Models

Graph Data Models
Increasing interest in graph databases
Property Graph Model (used by many open source tools)

Throwback to Network??
Applications on top are quite different though

Amol Deshpande CMSC724: Data Models

Figure 1: Simple Two Dimensional SciDB Array.

Unlike the relational model where the concept of implicit
ordering is anathema to the model’s set-theoretic under-
pinnings, or SQL DBMS systems where ordering information
must be explicitly defined as part of the schema and stored
in the database, an array data model, with implicit ordering,
and notions of ‘adjacency’ or ’neighborhood’, is more desir-
able in scientific domains. ’Order’ in scientific sensor data is
not a question of representation: it is fundamental to the se-
mantics of the problem domain. Furthermore, to cope with
the complexity of the data processing, scientific users require
a much more flexible (ie. extensible) data management plat-
form than those currently available. These factors suggest
that a different kind of DBMS is called for.

However, in contrast to tools like the statistical software
packages mentioned earlier, the SciDB architecture draws
heavily on the scalability lessons learnt by commercial DBMS
vendors. SciDB is first and foremost a system for the stor-
age, processing and analysis of data. Our system will rely
on other software to handle user-interface, data visualization
and so forth.

3. FEATURES AND FUNCTIONALITY
In this section we review the features of the SciDB data

model. As we mentioned earlier, SciDB adopts an array
data model. The properties of this model reflect common
scientific use-cases. SciDB database are organized as collec-
tions of n-dimensional arrays. Cells in a SciDB array each
contain a tuple of values, and individual values in a tuple
are associated with a distinguishing attribute name.

3.1 Data Definition
To create an array in SciDB, the user would issue the

following command:

CREATE ARRAY Example
(A::INTEGER, B::FLOAT) [I=0:4, J=0:4];

Figure 1 illustrates what what such an array might look
like. SciDB arrays may be sparse. A nominally rectilinear
array can have jagged edges, and can even have islands of
’empty’ cells surrounded by cells containing actual values.
In Figure 2, the cells at [4,1], [2,2], [4,3] and [0,4] are all
shown as being empty.

Drawing on several of our scientific use cases SciDB dis-
tinguishes between two classes of ‘missing’ information con-
flated in SQL’s handling of NULL values. Empty cells of
the kind blacked out in Figure 2 are simply ignored for the
purpose of any data manipulation operations. Yet scientific

Figure 2: Sparse Array with Jagged Edges and Holes

applications often employ some mechanism for handling val-
ues which are ‘out of bound’ codes, and are treated differ-
ently depending on the operation being undertaken. For ex-
ample, in remote sensing applications, ‘clouds’ are encoded
differently than ‘pixel missing due to camera malfunction’.
However, neither of these case mean the pixel ’empty’. An
’empty’ cell might occur when several images are stitched
together but there are gaps between them.

Values in SciDB attributes can be of any of the expected
numerical or (currently) fixed length string data types. From
our work with the science community it is clear that these
types aren’t sufficient to cater to every requirement. For
example, a scientific measurement is often accompanied by
error bars, or even expressed as a probability distribution
function. For these reasons SciDB will support an extensible
type system similar to Postgres’ user-defined types [8] (see
below).Further, the SciDB data model is nested ; a cell in a
SciDB array can itself contain another SciDB array.

3.2 Data Manipulation
Users employ a declarative query language when work-

ing with data in a SciDB database . Underlying our query
language is a small collection of algebraic primitives which
operate on arrays. These primitives can generally be charac-
terized based on whether or not the operations manipulates
an array in terms of it’s structure–the array’s rank, and di-
mension indices–or by addressing the array’s contents–the
data values in attributes in cells. Some do both.

A complete, formal description of the operators in our
data model is beyond the scope of this paper. Instead, we
provide examples that illustrate several operators and show
how they are combined. Three of our structural operators
appear below. Figure 3 illustrates the output each of these
operations produces.

Slice (Example, I = 2);

Slice() projects an array along a particular index value in
single dimension. In this case the Slice() operator will ex-
tract from the Example array a single column, corresponding
to cells where the column index value is 2.

Subsample (
Example,
I BETWEEN 1 AND 3 AND J BETWEEN 2 AND 4);

Subsample() is a generalization of Slice(). Instead of a sin-
gle ‘slice’ through the array Subsample() extracts a region
of the array, where the region is specified by a conjunctive
predicate over the dimension indices.

964

} Data Models: Then, and now
◦ History of Data Models (“what comes around…”)

◦ A data model for Key-value Stores (“a co-relational model..”)

} Languages
◦ Overview

◦ Datalog (“a survey of research…” and “declarative networking…”)

} Map-reduce and Spark
◦ Original MR Abstraction (”mapreduce:” …”)

◦ Spark (“resilient distributed datasets…”)

} SystemML: An abstraction for ML

} GraphX: An abstraction for Graphs

} Goal to unify Relational and NoSQL (specifically, key-value) model under a
single umbrella

} View “key-value” data model as an “object graph”
◦ Bit of a stretch IMO

} Referential Integrity requires a “closed-world” assumption
◦ Simplifies implementation and allows query optimization

◦ But makes it harder to distribute and scale-out data (harder to ensure referential integrity in that case)

} Non-compositional
◦ SQL does not have expressions that denote tables or rows directly

◦ Cannot create complex values from simpler values

◦ No recursion

◦ Semantics of NULL a big mess

} Impedance mismatch
◦ O/R mappers can be seen as a way to fix this

} But perhaps not so different from each other?
◦ In object graph: identities are “intensional”, i.e., not explicitly represented as keys, whereas

they “extensional” in relational model

◦ The arrows are reversed

◦ Monads and Monad Comprehensions could unify the query languages as well

} Somewhat simplistic view of a NoSQL data model as an “object graph”
◦ Even for key-value stores, a bit of stretch

} Similarities between SQL group-by aggregates, and Map-Reduce are well-known
◦ Spark uses the same terminology as SQL in most places

} New insights here not fully clear
◦ Use of Monads and Monad Comprehension interesting, but not sufficiently developed

} Doesn’t cover other popular data models and query languages
◦ like MongoDB Query Language, or Graph Query Languages

} Many NoSQL databases have adopted an SQL-like language
◦ Some with explicit SQL keywords (e.g., Cassandra QL, CouchDB)

◦ Others using somewhat different keywords (e.g., MongoDB Query Language)

} Data Models: Then, and now
◦ History of Data Models (“what comes around…”)

◦ A data model for Key-value Stores (“a co-relational model..”)

} Languages
◦ Overview

◦ Datalog (“a survey of research…” and “declarative networking…”)

} Map-reduce and Spark
◦ Original MR Abstraction (”mapreduce:” …”)

◦ Spark (“resilient distributed datasets…”)

} SystemML: An abstraction for ML

} GraphX: An abstraction for Graphs

} Procedural/imperative query languages
◦ Support a set of data-oriented operations

◦ Usually need to specify the sequence of steps to be taken to get to the output

◦ Often map one-to-one with the physical operators that are implemented

� Large gap between those two è more opportunities to optimize

} Declarative query languages
◦ Specify the desired outcome, typically as a function over the inputs

} A different issue that how ”high-level” or abstract the language is

} Most languages today are somewhere in-between
◦ SQL is more declarative than procedural

DBTG: CODASYL Language

} DL/1 or DBTG were procedural in nature

} Not easy to write complex data processing operations

} Original set of operators (select, project, join, union/intersection) proposed
by Ted Codd in 1970
◦ His “join” operation was somewhat different, but “natural join” same as today

◦ Also procedural, but high-level and easy to use

} Six Basic Operations operating on Relations (see 424 slides for more)
◦ Select (σ): Unary – select a subset of rows

◦ Project (π): Unary – select a subset of columns

◦ Set Union and Set Difference: Binary

◦ Cartesian Product (×): Binary

◦ Rename (r): Need to be able to do self-joins

} Input: Table, Output: Table
} Select only those rows that match the condition
} SQL: “where”
} May be called “match” or “find” or ”filter”

Relation r A B C D

⍺

⍺

β

β

⍺

β

β

β

1

5

12

23

7

7

3

10

σ
A=B ∧ D > 5

(r) A B C D

⍺

β

⍺

β

1

23

7

10

} Input: Table, Output: Table
} Select only those columns that match the condition
} SQL: “select”

Relation r π
A,D

(r) A D

⍺

⍺

β

β

7

7

3

10

A D

⍺

β

β

7

3

10

A B C D

⍺

⍺

β

β

⍺

β

β

β

1

5

12

23

7

7

3

10

} Input: Rows of Objects, Output: Rows of Objects
◦ i.e., don’t care about what’s in a row

} For each row, apply a function
} SQL: “select” can handle this (with UDFs)

Table t
o1

o2

o3

o4

t.map(f)
f(o1)

f(o2)

f(o3)

f(o4)

} Has other names (e.g., unwind)
} Input: Rows of Objects, Output: Rows of Objects
} For each row, apply a function that may generate >= 0 rows
} SQL: No easy way to do this

Table t
o1

o2

o3

o4

t.map(f)

f(o1) = [o1’, o2’, o3’]

f(o2) = []

f(o3) = [o4’]

f(o4) = [o5’

o1’

o2’

o3’

o4’

o5’

} Input: Collection of (k, v) pairs, Output: Collection of (k, [v]) pairs
◦ k = key, v = value

} Group the input rows by the “key”
} Relational Algebra: No support (can’t have sets as values)
} SQL: Most implementations support it
◦ e.g., postgresql has array aggregates or string aggregates

} Other Names: “nest”

Table t
k1 o1

k1 o2

k2 o3

k3 o4

t.groupByKey()
k1 [o1, o2]

k2 [o3]

k3 [o4]

} Input: Collection of (k, v) pairs, Output: Collection of (k, [v]) pairs
} Also called “reduceByKey” or “aggregateByKey”
} Group values by key, and apply a provided “function” to get a single value
} SQL has a predefined set of functions (SUM, COUNT, MAX, …)

Table t
k1 o1

k1 o2

k2 o3

k3 o4

t.reduceByKey(f)
k1 f(o1, o2)

k2 f(o3)

k3 f(o4)

} PostgreSQL (and other systems) support user-defined aggregate functions
◦ init(): what’s the initial state (e.g., for AVG: (count = 0, sum = 0))
◦ update(): modify state given a new value (e.g., for AVG: (count + 1, sum + newval))
◦ final(): generate the final aggregate (e.g., for AVG: sum/count)
◦ The update operation must be insensitive to the order in which the values are processed
◦ i.e., output should be the same if it sees: v1, v2, v3, versus if it sees: v3, v2, v1 in that order
◦ Must process tuples sequentially

} Another way to do it
◦ Provide a binary function that is commutative and distributive
◦ Shouldn’t matter in which order the objects are processed
◦ More ”parallelizable”
◦ Can generate a (sum, count) pair, but for “average” need another “map”

s = init()
s = update(s, v1)
s = update(s, v2)
…
result = final(s)

Any of these are fine
result = f(f(f(v1, v2), f(v3, v4)), v5)
result = f(f(f(v1, f(v2, v3)), v4)), v5)
result = f(f(f(f(f(v1, v2), v3), v4), v5)
result = f(f(v1, f(v2, v3)), f(v4, v5))

} Opposite of “nest” (group by)
} Similar to “flatMap” and “unwind” (in MongoDB)
◦ But defined for relational algebra (extended to handle sets as values)

} Useful abstraction to deal with non-1NF data (e.g., JSON which supports
arrays)

Table t
k1 o1

k1 o2

k2 o3

k3 o4

k1 [o1, o2]

k2 [o3]

k3 [o4]

unnest

 SUBJECT DEGREE
 SUBJECT′

 Composition
 Maths Science
 Physics

 Composition
 Statistics Economics
 Maths

 Composition
 Maths Science
 Chemistry

 Composition
 History Arts
 Latin
 Ancient Greek

Figure 4. The nested relation EXAMS

SUBJECT′ DEGREE
Composition Science

Maths Science
Physics Science

Composition Economics
Statistics Economics

Maths Economics
Composition Science

Maths Science
Chemistry Science

Composition Classics
History Classics
Latin Classics

Ancient Greek Classics

Figure 5. UNNEST(SUBJECT(SUJBECT')EXAMS)

The above definitions express necessary and sufficient conditions for the discrimination between Decomposable and
Non-Decomposable attributes.

3 UNNESTING AND NESTING IN NESTED RELATIONS

Fischer and Thomas (1983), Jaeschke and Schek (1982), Schek and Scholl (1986), and Thomas and Fischer (1986)
mention that unnesting a nested relation R and then nesting it on the same attribute does not always give the original
relation R. In Fischer and Thomas (1983) the following example (Figure 6) is given as a counterexample to show that
the equality NESTB=(B′)(UNNESTB(R)) = R does not necessarily hold at all times. Jaeschke and Schek (1982) prove that
this equality does not hold when a nested relation is not “nested completely” along the nested attribute. In other words,
when a nested attribute is also a key attribute, the nest operation is not the inverse of the unnest operation. In Figure 6,
relation R is not “nested completely” along attribute B because the two nested tuples of relation R, having the same data
value in the atomic attribute A, should form one nested tuple. To overcome this problem, several researchers (Abiteboul
& Bidoit, 1983; Deshpande & Larson, 1991; Roth, Korth & Silberschatz, 1988) have suggested that nested relations
should be in Partitioned Normal Form (PNF) that means that all or a subset of the flat attributes of the relation should
form a key for the relation, and recursively, each nested attribute of a relation is also in Partitioned Normal Form.
However, this is an undesirable restriction that is difficult to apply universally because occasionally it might be
preferable to have nested attributes as key attributes in a relation (Garani, 2003).

Data Science Journal, Volume 7, 5 May 2008

61

 SUBJECT DEGREE
 SUBJECT′

 Composition
 Maths Science
 Physics

 Composition
 Statistics Economics
 Maths

 Composition
 Maths Science
 Chemistry

 Composition
 History Arts
 Latin
 Ancient Greek

Figure 4. The nested relation EXAMS

SUBJECT′ DEGREE
Composition Science

Maths Science
Physics Science

Composition Economics
Statistics Economics

Maths Economics
Composition Science

Maths Science
Chemistry Science

Composition Classics
History Classics
Latin Classics

Ancient Greek Classics

Figure 5. UNNEST(SUBJECT(SUJBECT')EXAMS)

The above definitions express necessary and sufficient conditions for the discrimination between Decomposable and
Non-Decomposable attributes.

3 UNNESTING AND NESTING IN NESTED RELATIONS

Fischer and Thomas (1983), Jaeschke and Schek (1982), Schek and Scholl (1986), and Thomas and Fischer (1986)
mention that unnesting a nested relation R and then nesting it on the same attribute does not always give the original
relation R. In Fischer and Thomas (1983) the following example (Figure 6) is given as a counterexample to show that
the equality NESTB=(B′)(UNNESTB(R)) = R does not necessarily hold at all times. Jaeschke and Schek (1982) prove that
this equality does not hold when a nested relation is not “nested completely” along the nested attribute. In other words,
when a nested attribute is also a key attribute, the nest operation is not the inverse of the unnest operation. In Figure 6,
relation R is not “nested completely” along attribute B because the two nested tuples of relation R, having the same data
value in the atomic attribute A, should form one nested tuple. To overcome this problem, several researchers (Abiteboul
& Bidoit, 1983; Deshpande & Larson, 1991; Roth, Korth & Silberschatz, 1988) have suggested that nested relations
should be in Partitioned Normal Form (PNF) that means that all or a subset of the flat attributes of the relation should
form a key for the relation, and recursively, each nested attribute of a relation is also in Partitioned Normal Form.
However, this is an undesirable restriction that is difficult to apply universally because occasionally it might be
preferable to have nested attributes as key attributes in a relation (Garani, 2003).

Data Science Journal, Volume 7, 5 May 2008

61

 SUBJECT DEGREE
 SUBJECT′

 Composition
 Maths Science
 Physics

 Composition
 Statistics Economics
 Maths

 Composition
 Maths Science
 Chemistry

 Composition
 History Arts
 Latin
 Ancient Greek

Figure 4. The nested relation EXAMS

SUBJECT′ DEGREE
Composition Science

Maths Science
Physics Science

Composition Economics
Statistics Economics

Maths Economics
Composition Science

Maths Science
Chemistry Science

Composition Classics
History Classics
Latin Classics

Ancient Greek Classics

Figure 5. UNNEST(SUBJECT(SUJBECT')EXAMS)

The above definitions express necessary and sufficient conditions for the discrimination between Decomposable and
Non-Decomposable attributes.

3 UNNESTING AND NESTING IN NESTED RELATIONS

Fischer and Thomas (1983), Jaeschke and Schek (1982), Schek and Scholl (1986), and Thomas and Fischer (1986)
mention that unnesting a nested relation R and then nesting it on the same attribute does not always give the original
relation R. In Fischer and Thomas (1983) the following example (Figure 6) is given as a counterexample to show that
the equality NESTB=(B′)(UNNESTB(R)) = R does not necessarily hold at all times. Jaeschke and Schek (1982) prove that
this equality does not hold when a nested relation is not “nested completely” along the nested attribute. In other words,
when a nested attribute is also a key attribute, the nest operation is not the inverse of the unnest operation. In Figure 6,
relation R is not “nested completely” along attribute B because the two nested tuples of relation R, having the same data
value in the atomic attribute A, should form one nested tuple. To overcome this problem, several researchers (Abiteboul
& Bidoit, 1983; Deshpande & Larson, 1991; Roth, Korth & Silberschatz, 1988) have suggested that nested relations
should be in Partitioned Normal Form (PNF) that means that all or a subset of the flat attributes of the relation should
form a key for the relation, and recursively, each nested attribute of a relation is also in Partitioned Normal Form.
However, this is an undesirable restriction that is difficult to apply universally because occasionally it might be
preferable to have nested attributes as key attributes in a relation (Garani, 2003).

Data Science Journal, Volume 7, 5 May 2008

61

From: Nest and Unnest operations in nested relations
Georgia Garani

Data Science Journal, May 2008

} Input: Two collections, Output: One collection
} SQL support: union/except/intersection
◦ Requires collections (tables) to have the same schema
◦ Removes duplicates by default (most SQL operations don’t remove duplicates)
◦ Can use “union all” etc., to preserve duplicates

Relation r, s A B

⍺

⍺

β

1

2

1

A B

⍺

β

2

3

r
s

r ⋃ s: A B

⍺

⍺

β

β

1

2

1

3

A B

⍺

β

1

1

r – s:

} Input: Two tables, Output: One table
} Note: a “set” product will result in nested output
◦ First row would be: ((alpha, 1), (alpha, 10, a))
◦ Relation algebra flattens it

Relation r, s r × s:A B

⍺

β

1

2

C D

⍺

β

β

γ

10

10

20

10

E

a

a

b

b

r

s

A B

⍺
⍺
⍺
⍺
β
β
β
β

1
1
1
1
2
2
2
2

C D

⍺
β
β
γ
⍺
β
β
γ

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

} Input: Two tables, Output: One table
} Cartesian product followed by a “select”/“map”
} Many variations of joins used in database literature
◦ Note: semi-join and anti-join are technically “select” operations on “r”, not a ”join” operation

Tables: r(A, B), s(B, C)

name Symbol SQL Equivalent RA expression

cross product × select * from r, s; r × s

natural join ⋈ natural join πr.A, r.B, s.Csr.B = s.B(r x s)

theta join ⋈θ from .. where θ; sθ(r x s)

equi-join ⋈θ (theta must be equality)

left outer join r ⟕ s left outer join (with “on”) (see previous slide)

full outer join r ⟗ s full outer join (with “on”) -

(left) semijoin r ⋉ s none πr.A, r.B(r ⋈ s)

(left) antijoin r ⊲ s none r - πr.A, r.B(r ⋈ s)

} Another way to look at a left outer join
} Input: Table, Output: Table
} Augment the input table with data from another table
} Supported by “Excel”, MongoDB, etc.

Table R A B C
a1 b1 c1
a2 b2 c2
a3 b1 c1

C D E
c1 d1 e1
c2 d2 e1
c3 d2 e3

Lookup in S using “C”

Table S

A B C D E
a1 b1 c1 d1 e1
a2 b2 c2 d2 e1
a3 b1 c1 d1 e1

C must be a “key” for S,
o/w not well-defined

} Flip rows and columns
} No SQL equivalent, although supported by many systems (e.g., CROSSTAB in

PostgreSQL)
} Usually used in conjunction with aggregates (so that the number of rows is

small)

Table R A B C
a1 b1 c1
a2 b2 c2
a3 b1 c1

a1 a2 a3
b1 b2 b1
c1 c2 c1

pivot

} Sorting and ordering

} Ranking (sparse vs dense rank)

} Distinct (duplicate elimination)

} Sample: generate a random sample

} Data Cubes
◦ Allows aggregating on multiple attributes simultaneously

} Many data management systems view data as collection/multiset of tuples
or objects or (key, value) pairs

} A common set of operations supported by most
◦ Some Unary, Some Binary (or more generally, n-ary)

} Language constructs often map one-to-one to physical operators, but not
always
◦ e.g., SQL JOIN is a n-ary operator, that maps to a sequence of binary JOINs

◦ Recent work on trying to do n-ary joins directly (asymptotically better in some cases)

} More declarative a language è More opportunities to optimize
◦ e.g., Pandas (Python Library), MongoDB, Apache Spark RDD interface, etc, not declarative

even though pretty high-level

◦ However, physical operators themselves can be heavily optimized, especially in parallel
settings

} Originally SEQUEL: A Structured English Query Language (1974), developed
at IBM for System R

} Commercial implementations in Oracle and DB2 in late 70’s, early 80’s

} Standardization by ANSI and ISO started in 1996

} Very similar to Relational Algebra in the basic operators it supports
◦ Except for GROUP BYs and AGGREGATEs (among basic constructs), and some Set Operations

(e.g., NOT IN, ALL)

} Modern implementations support many additional constructs
◦ Window and Partitioning Functions

◦ Recursion

◦ Triggers

} Skim through 424 Slides

} From: “ A critique of SQL”, Date, 1984

} e.g., can’t use a table name as a table expression

} In general, a lot of inconsistencies in what can be used where

} Aggregates don’t have a natural formalism

} Some of those criticisms fixed since then, but many are fundamental to the
language

" N a t u r a l " f o r m u l a t i o n (p r o j e c t i o n o f a u n i o n) :

SELECT EMP# FROM (NYC UNION SFO)

SQL f o r m u l a t i o n (u n i o n o f two p r o j e c t i o n s) :

SELECT EMP# FROM NYC
UNION
SELECT EMP# FROM SFO

We remark in passing that allowing both formulations of the
query would enable different users to perceive and express the
same problem in different ways (ideally~ of course~ both
formulations would translate to the same internal
representation~ for otherwise the choice between the two would
no longer be arbitrary).

The foregoing example tacitly makes use of the fact that a
simple table-reference (i.e.~ a table-name) QYgh~ to be just a
special case of a general table-expression. Thus we wrote

NYC UNION SFO

instead of

SELECT ~ FROM NYC UNION SELECT i FROM SFO

which current SQL would require. It would be highly desirable
for SQL to allow the expression "SELECT ~ FROM T" to be
replaced by simply "T" wherever it appears~ in the style of
more conventional languages. In other words~ SELECT should be
regarded as a statement whose function is to retrieve a table
(represented by a table-expression). Table-expressions per se
-- in particular~ nested table-expressions -- should not
require the "SELECT ~ FROM". Among other things this change
would improve the usability of the EXISTS builtin function
(see later). It would also be clear that INTO and ORDER BY are
clauses of the SELECT ~ t ~ n ~ and not part of a table- (or
column-) expression; the question of whether they can appear
in a nested expression would then simply not arise, thus
avoiding the need for a rule that looks arbitrary but is in
fact not.

A nested table-expression is permitted -- in fact required
-- in current SQL as the argument to EXISTS (but strangely
enough not as the argument to the other builtin functions;
this point is discussed in the next section). Nested column-
~E~C~iQQ~ ("subqueries") are (a) ~gu~red with the "ANY" and
"ALL" operators (includes the IN operator~ which is just a
different spelling for =ANY); and (b) Q~mitted with scalar
comparison operators (<~ >~ =~ etc.)~ if and only if the
column-expression yields a column having at most one row.
Moreover, the nested expression is allowed to include GROUP BY
and HAVING in case (a) but not in case (b). More
arbitrariness.

sql critique
IS

" N a t u r a l " f o r m u l a t i o n (p r o j e c t i o n o f a u n i o n) :

SELECT EMP# FROM (NYC UNION SFO)

SQL f o r m u l a t i o n (u n i o n o f two p r o j e c t i o n s) :

SELECT EMP# FROM NYC
UNION
SELECT EMP# FROM SFO

We remark in passing that allowing both formulations of the
query would enable different users to perceive and express the
same problem in different ways (ideally~ of course~ both
formulations would translate to the same internal
representation~ for otherwise the choice between the two would
no longer be arbitrary).

The foregoing example tacitly makes use of the fact that a
simple table-reference (i.e.~ a table-name) QYgh~ to be just a
special case of a general table-expression. Thus we wrote

NYC UNION SFO

instead of

SELECT ~ FROM NYC UNION SELECT i FROM SFO

which current SQL would require. It would be highly desirable
for SQL to allow the expression "SELECT ~ FROM T" to be
replaced by simply "T" wherever it appears~ in the style of
more conventional languages. In other words~ SELECT should be
regarded as a statement whose function is to retrieve a table
(represented by a table-expression). Table-expressions per se
-- in particular~ nested table-expressions -- should not
require the "SELECT ~ FROM". Among other things this change
would improve the usability of the EXISTS builtin function
(see later). It would also be clear that INTO and ORDER BY are
clauses of the SELECT ~ t ~ n ~ and not part of a table- (or
column-) expression; the question of whether they can appear
in a nested expression would then simply not arise, thus
avoiding the need for a rule that looks arbitrary but is in
fact not.

A nested table-expression is permitted -- in fact required
-- in current SQL as the argument to EXISTS (but strangely
enough not as the argument to the other builtin functions;
this point is discussed in the next section). Nested column-
~E~C~iQQ~ ("subqueries") are (a) ~gu~red with the "ANY" and
"ALL" operators (includes the IN operator~ which is just a
different spelling for =ANY); and (b) Q~mitted with scalar
comparison operators (<~ >~ =~ etc.)~ if and only if the
column-expression yields a column having at most one row.
Moreover, the nested expression is allowed to include GROUP BY
and HAVING in case (a) but not in case (b). More
arbitrariness.

sql critique
IS

vs

} Recognized fairly early on: ”Some High Level Language Constructs for Data
of Type Relation”; Schmidt, 1976

} Proposed an extension to Pascal/R to include a Relation as a basic data type

Some High Level Language Constructs for Data of Type Relation 257

5. GENERALIZING THE RELATION CONSTRUCTOR

With the concepts developed so far the value of a relation variable can be altered
by deleting, inserting, or modifying tuples and by assigning a relation-valued ex-
pression. These expressions are, however, up to now limited to single relation vari-
ables and to the elementary relation constructor introduced in Section 2.2. The
elementary constructor is only capable of making a 1-tuple relation [CC] from a
record variable Z. This restriction has ‘led, in all the examples handled so far, to
the construction of new relations according to the following schema: tuple-wise
access to the source relation, sequential processing of these tuples as records, and
tuple-wise construction of the result relation. On the other hand, in the quanti-
fiers and the logical expressions we already have the necessary prerequisites for a
generalization of the relation constructor along the lines

[z in X: P(z, r, s, . ..)I

where z is the free variable which describes the result tuple, X is a range relation
which holds the possible value tuples for 2, and P is some logical expression which
depends on the free variable, and possibly on further bound variables r, s, etc.,
and on constants.

5.1 Construction of Subrelations

A first step in generalizing the relation constructor leads to the definition

(general relation constructor) ::= [each (control record variable)
in (range relation variable):

(logical ezpression)]

The implicitly declared control variable is again of the same record type as that of
the range relation. The logical expression has the usual logical and relational
ope&ors, and it may also contain quantifiers. As operands, the logical expression
may contain components of the free control variable of the constructor and pos-
sibly of the bound variables of predicates, as well as program variables and con-
stants.

With the aid of the general relation constructor, the solutions of the previous
examples may be further simplified:

Solutions 3.3, 4.4, 5.3, 6.2.

--

type erectype = record enr, estatus:integer; ename:string end;
ereltype = relation (enr) of erectype;
trectype = record tenr, tcnr, ttime:integer;

Hay, troom:string end;
treltype = relation (tenr, tcnr, &lay) of trectype;
crectype = record cnr, clevel:integer; cname:string end;
creltype = relation (cnr) of crectype;

var employees, result3, result4, result5, result6:ereltype;
timetable: treltype;

ACM Tramactions on Database Systems, Vol. 2, NO. 3, September 1977.

258 l Joachim W. Schmidt

courses:creltype;
begin .

.

result3 := [each erec in employees:erec.estatus = 21;
result4 := [each erec in employees:some tree in timetable ((erec.enr = trec.tenr) and

(trecdday = ‘friduy’))] ;
result5 := [each erec in employees:all tree in timetable (erecenr # trec.tenr)];
result6 := [each erec in employees:all tree in timetable ((erec.enr # trec.tenr) or

some wee in courses ((tree&w = wec.cnr) and (crec.cleveZ = l)))]
end.

In the proposed form the relation constructor can only create subrelations from
one relation variable. The general case of the construct,ion of relations with the
aid of several free variables and arbitrary result tuples made up of their components
will be treated in the next section.

5.2 The General Relation Constructor

In its most general form a relation constructor can be defined using several free
variables. Its value is a relation defined by tuples whose components come from
components of the free variables of the constructor, and maybe program variables
and constants :

(general relation constructor) : : = [each ((target component list})
for (control record variable list)
in (range Telation variable list):

(logical expression)]
(target component list) ::= (target component) 1 (target component); (target component list)
(target component) ::= (control record component variable) 1 (variable) 1 (constant) 1 empty

The correspondence between the control variables and the range variables is
implied by their position in the respective lists. The previously defined relation
constructor of Section’5.1 is a special case of this more general constructor.

A fourth relation will be introduced for the last example; this relation contains
the publications of the employees, described by the title, the year of publication,
and, to identify the associated employee, an employee number.

Example 7. For those employees who give lectures, find the names and the
title and year of their publications.

Solution 7.1.

type erectype = record enr, estatus:integer; ename:string end;
ereltype = relation (em) of erectype;
prectype = record ptitle:string; pyear, penr:integer end;
preltype = relation (ptitle, pew) of prectype;
trectype = record tenr, tcnr, ttime:integer;

tday, troom:string end;
treltype = relation (tenr, tcnr, t&y) of trectype;

var employees: ereltype;
papers:preltype;

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

} Also led to the work on Object-oriented Databases, and (later) Object-
Relational Mapping (ORM) frameworks

} Language INtegrated Query (LINQ) Framework
◦ A declarative component of the .NET OOPLs (C#, Visual Basic, F#)

◦ Allows querying and manipulating collections of objects using SQL-style syntax

From the DryadLINQ Paper, a
distributed implementation of LINQ

Very similar to Apache Spark

} Also led to the work on Object-oriented Databases, and (later) Object-
Relational Mapping (ORM) frameworks

} Language INtegrated Query (LINQ) Framework
◦ A declarative component of the .NET OOPLs (C#, Visual Basic, F#)

◦ Allows querying and manipulating collections of objects using SQL-style syntax

} Today, many programming languages have support for list comprehensions,
dictionaries, and features like that
◦ With libraries to make it easy to load and store data

◦ For example, Pandas for Python, Libraries to read/write Parquet/Avro files, etc.

} Input = collections, output = collections
◦ Very similar to Spark

} Three main types of queries in the query language
◦ Retrieval: Restricted SELECT-WHERE-ORDER BY-LIMIT type queries
◦ Aggregation: A bit of a misnomer; a general pipeline of operators

� Can capture Retrieval as a special case
� But worth understanding Retrieval queries first…
◦ Updates

} All queries are invoked as
◦ db.collection.operation1(…).operation2(…)…

� collection: name of collection
◦ Unlike SQL which lists many tables in a FROM clause, MQL is centered

around manipulating a single collection (like Spark)

Syntax somewhat different when called
from within Python3 (using pymongo)

} Composed of a linear pipeline
of stages

} Each stage corresponds to one
of:
◦ match
◦ project
◦ sort/limit
◦ group
◦ unwind
◦ lookup
◦ … lots more!!

} Each stage manipulates the
existing collection in some way

matc
h

matc
h

gro
up

loo
ku

p
pro

jec
t

• Syntax:
db.collection.aggregate ([
{ $stage1Op: { } },
{ $stage2Op: { } },
…

{ $stageNOp: { } }
])

Find states with population > 15M, sort by decending order
db.zips.aggregate([
{ $group: { _id: "$state", totalPop: { $sum: "$pop" } } },
{ $match: { totalPop: { $gte: 15000000 } } },
{ $sort : { totalPop : -1 } }
])

{ "_id" : "CA", "totalPop" : 29754890 }
{ "_id" : "NY", "totalPop" : 17990402 }
{ "_id" : "TX", "totalPop" : 16984601 }
…

Q: what would the SQL query for this be?

matc
h

gro
up

so
rt

SELECT state AS id, SUM(pop) AS totalPop
FROM zips
GROUP BY state
HAVING totalPop >= 15000000
ORDER BY totalPop DESCENDING

GROUP BY AGGS.

match after
group =
HAVING

Syntax somewhat different when called
from within Python3 (using pymongo)

Find, for every state, the biggest city and its population

aggregate([
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } },
{ $sort: { pop: -1 } },

{ $group: { _id : "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } },
{ $sort : {bigPop : -1} }
])

Approach:
} Group by pair of city and state, and compute population per city
} Order by population descending
} Group by state, and find first city and population per group (i.e., the highest population city)
} Order by population descending

{ ”_id" : "IL", "bigCity" : "CHICAGO", "bigPop" : 2452177 }
{ "_id" : "NY", "bigCity" : "BROOKLYN", "bigPop" : 2300504 }
{ "_id" : "CA", "bigCity" : "LOS ANGELES", "bigPop" : 2102295 }
{ "_id" : "TX", "bigCity" : "HOUSTON", "bigPop" : 2095918 }
{ "_id" : "PA", "bigCity" : "PHILADELPHIA", "bigPop" : 1610956 }
{ "_id" : "MI", "bigCity" : "DETROIT", "bigPop" : 963243 }
…

gro
up

so
rt

gro
up

so
rt

Can list multiple
aggregations

after grouping id

Syntax somewhat different when called
from within Python3 (using pymongo)

If we only want to keep the state and city …

aggregate([
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } },
{ $sort: { pop: -1 } },
{ $group: { _id : "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } },
{ $sort : {bigPop : -1} }
{ $project : {bigPop : 0} }
])

{ "_id" : "IL", "bigCity" : "CHICAGO" }
{ "_id" : "NY", "bigCity" : "BROOKLYN" }
{ "_id" : "CA", "bigCity" : "LOS ANGELES" }
{ "_id" : "TX", "bigCity" : "HOUSTON" }
{ "_id" : "PA", "bigCity" : "PHILADELPHIA" }
…

gro
up

so
rt

gro
up

so
rt pro

jec
t

Syntax somewhat different when called
from within Python3 (using pymongo)

If we wanted to nest the name of the city and population into a nested doc

aggregate([
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } },
{ $sort: { pop: -1 } },
{ $group: { _id : "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } },
{ $sort : {bigPop : -1} },
{ $project : { _id : 0, state : "$_id", bigCityDeets: { name: "$bigCity", pop: "$bigPop" } } }
])

{ "state" : "IL", "bigCityDeets" : { "name" : "CHICAGO", "pop" : 2452177 } }
{ "state" : "NY", "bigCityDeets" : { "name" : "BROOKLYN", "pop" : 2300504 } }
{ "state" : "CA", "bigCityDeets" : { "name" : "LOS ANGELES", "pop" : 2102295 } }
{ "state" : "TX", "bigCityDeets" : { "name" : "HOUSTON", "pop" : 2095918 } }
{ "state" : "PA", "bigCityDeets" : { "name" : "PHILADELPHIA", "pop" : 1610956 } }
…

Can construct new
nested documents

in output, unlike
vanilla projection

Syntax somewhat different when called
from within Python3 (using pymongo)

Q: Imagine if we want to find sum of qtys across items. How would we do this?

A common recipe in MQL queries is to unwind and then group by

aggregate([
{ $unwind : "$instock" },
{ $group : {_id : "$item", totalqty : {$sum : "$instock.qty"}}}

])

{ "_id" : "notebook", "totalqty" : 5 }
{ "_id" : "postcard", "totalqty" : 50 }
{ "_id" : "journal", "totalqty" : 20 }
{ "_id" : "planner", "totalqty" : 45 }
{ "_id" : "paper", "totalqty" : 75 }

Syntax somewhat different when called
from within Python3 (using pymongo)

{ $lookup: {

from: <collection to join>,
localField: <referencing field>,
foreignField: <referenced field>,
as: <output array field>

} }

Conceptually, for each document
} find documents in other coll that join (equijoin)
◦ local field must match foreign field

} place each of them in an array

Thus, a left outer equi-join, with the join results stored in an
array

Straightforward, but kinda gross. Let’s see…

Say, for each item, I want to find other items located in the
same location = self-join

db.inventory.aggregate([
{ $lookup : {from : "inventory", localField: "instock.loc",
foreignField: "instock.loc", as:"otheritems"}},
{ $project : {_id : 0, tags : 0, dim : 0}}

])

{ "item" : "journal", "instock" : [{ "loc" : "A", "qty" : 5 }, { "loc" : "C", "qty"
: 15 }], "otheritems" : [

{ "_id" : ObjectId("5fb6f9605f0594e0227d3c24"), "item" : "journal",
"instock" : [{ "loc" : "A", "qty" : 5 }, { "loc" : "C", "qty" : 15 }],
"tags" : ["blank", "red"], "dim" : [14, 21] },
{ "_id" : ObjectId("5fb6f9605f0594e0227d3c25"), "item" :
"notebook", "instock" : [{ "loc" : "C", "qty" : 5 }], "tags" : ["red",
"blank"], "dim" : [14, 21] },
{ "_id" : ObjectId("5fb6f9605f0594e0227d3c26"), "item" : "paper",
"instock" : [{ "loc" : "A", "qty" : 60 }, { "loc" : "B", "qty" : 15 }],
"tags" : ["red", "blank", "plain"], "dim" : [14, 21] },
…
] }

And many other records!

Syntax somewhat different when called
from within Python3 (using pymongo)

} Data Models: Then, and now
◦ History of Data Models (“what comes around…”)

◦ A data model for Key-value Stores (“a co-relational model..”)

} Languages
◦ Overview

◦ Datalog (“a survey of research…” and “declarative networking…”)

} Map-reduce and Spark
◦ Original MR Abstraction (”mapreduce:” …”)

◦ Spark (“resilient distributed datasets…”)

} SystemML: An abstraction for ML

} GraphX: An abstraction for Graphs

} Non-procedural Language (unlike RA)

} Basic Query: all tuples such that P(t) is true

} Example: Find instructors with department in the Watson Building

} Find students who have taken all courses offered by Biology

CHAP T E R 27
Formal-Relational Query
Languages

In Chapter 2 we introduced the relational model and presented the relational algebra
(RA), which forms the basis of the widely used SQL query language. In this chapter we
continue with our coverage of “pure” query languages. In particular, we cover the tuple
relational calculus and the domain relational calculus, which are declarative query lan-
guages based on mathematical logic. We also cover Datalog, which has a syntax mod-
eled after the Prolog language. Although not used commercially at present, Datalog has
been used in several research database systems. For Datalog, we present fundamental
constructs and concepts rather than a complete users’ guide for these languages. Keep
in mind that individual implementations of a language may differ in details or may
support only a subset of the full language.

27.1 The Tuple Relational Calculus

When we write a relational-algebra expression, we provide a sequence of procedures
that generates the answer to our query. The tuple relational calculus, by contrast, is a
nonprocedural query language. It describes the desired information without giving a
specific procedure for obtaining that information.

A query in the tuple relational calculus is expressed as:

{t | P(t)}

That is, it is the set of all tuples t such that predicate P is true for t. Following our earlier
notation, we use t[A] to denote the value of tuple t on attribute A, and we use t ∈ r to
denote that tuple t is in relation r.

Before we give a formal definition of the tuple relational calculus, we return to
some of the queries for which we wrote relational-algebra expressions in Section 2.6.

1

2 Chapter 27 Formal-Relational Query Languages

27.1.1 Example Queries

Find the ID, name, dept name, salary for instructors whose salary is greater than
$80,000:

{t | t ∈ instructor ∧ t[salary] > 80000}

Suppose that we want only the ID attribute, rather than all attributes of the instruc-
tor relation. To write this query in the tuple relational calculus, we need to write an
expression for a relation on the schema (ID). We need those tuples on (ID) such that
there is a tuple in instructor with the salary attribute > 80000. To express this request,
we need the construct “there exists” from mathematical logic. The notation:

∃ t ∈ r (Q(t))

means “there exists a tuple t in relation r such that predicate Q(t) is true.”
Using this notation, we can write the query “Find the instructor ID for each in-

structor with a salary greater than $80,000” as:

{t | ∃ s ∈ instructor (t[ID] = s[ID]
∧ s[salary] > 80000)}

In English, we read the preceding expression as “The set of all tuples t such that there
exists a tuple s in relation instructor for which the values of t and s for the ID attribute
are equal, and the value of s for the salary attribute is greater than $80,000.”

Tuple variable t is defined on only the ID attribute, since that is the only attribute
having a condition specified for t. Thus, the result is a relation on (ID).

Consider the query “Find the names of all instructors whose department is in
the Watson building.” This query is slightly more complex than the previous queries,
since it involves two relations: instructor and department. As we shall see, however, all
it requires is that we have two “there exists” clauses in our tuple-relational-calculus
expression, connected by and (∧). We write the query as follows:

{t | ∃ s ∈ instructor (t[name] = s[name]
∧ ∃ u ∈ department (u[dept name] = s[dept name]

∧ u[building] = “Watson”))}

Tuple variable u is restricted to departments that are located in the Watson building,
while tuple variable s is restricted to instructors whose dept name matches that of tuple
variable u. Figure 27.1 shows the result of this query.

To find the set of all courses taught in the Fall 2017 semester, the Spring 2018
semester, or both, we used the union operation in the relational algebra. In the tuple
relational calculus, we shall need two “there exists” clauses, connected by or (∨):

4 Chapter 27 Formal-Relational Query Languages

course id
CS-101

Figure 27.3 Courses offered in both the Fall 2017 and Spring 2018 semesters.

{t | ∃ s ∈ section (t[course id] = s[course id])
∧ s[semester] = “Fall” ∧ s[year] = 2017)

∧ ∃ u ∈ section (u[course id] = t[course id])
∧ u[semester] = “Spring” ∧ u[year] = 2018)}

The result of this query appears in Figure 27.3.
Now consider the query “Find all the courses taught in the Fall 2017 semester but

not in Spring 2018 semester.” The tuple-relational-calculus expression for this query
is similar to the expressions that we have just seen, except for the use of the not (¬)
symbol:

{t | ∃ s ∈ section (t[course id] = s[course id])
∧ s[semester] = “Fall” ∧ s[year] = 2017)

∧ ¬ ∃ u ∈ section (u[course id] = t[course id])
∧ u[semester] = “Spring” ∧ u[year] = 2018)}

This tuple-relational-calculus expression uses the ∃s ∈ section (…) clause to re-
quire that a particular course id is taught in the Fall 2017 semester, and it uses the
¬ ∃ u ∈ section (…) clause to eliminate those course id values that appear in some
tuple of the section relation as having been taught in the Spring 2018 semester.

The query that we shall consider next uses implication, denoted by ⇒. The formula
P ⇒ Q means “P implies Q”; that is, “if P is true, then Q must be true.” Note that
P ⇒ Q is logically equivalent to ¬P ∨ Q. The use of implication rather than not and
or often suggests a more intuitive interpretation of a query in English.

Consider the query that “Find all students who have taken all courses offered in the
Biology department.” To write this query in the tuple relational calculus, we introduce
the “for all” construct, denoted by ∀. The notation:

∀ t ∈ r (Q(t))

means “Q is true for all tuples t in relation r.”
We write the expression for our query as follows:

{t | ∃ r ∈ student (r[ID] = t[ID]) ∧
(∀ u ∈ course (u[dept name] = “ Biology” ⇒

∃ s ∈ takes (t[ID] = s[ID]
∧ s[course id] = u[course id]))}

} From Online Chapter at: https://db-book.io

} Extensional ”Facts”
◦ Map to tuples in relations

} “Rules”
◦ Allow inferring additional ‘intentional’ facts

◦ Can be thought of as defining “views”

} Example: account is extensional, and v1 allows inferring additional facts

27.4 Datalog 11

account number branch name balance

A-101 Downtown 500
A-215 Minus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Perryridge 900
A-222 Redwood 700
A-217 Perryridge 750

Figure 27.4 The account relation.

27.4 Datalog

Datalog is a nonprocedural query language based on the logic-programming language
Prolog. As in the relational calculus, a user describes the information desired with-
out giving a specific procedure for obtaining that information. The syntax of Datalog
resembles that of Prolog. However, the meaning of Datalog programs is defined in a
purely declarative manner, unlike the more procedural semantics of Prolog, so Datalog
simplifies writing simple queries and makes query optimization easier.

27.4.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal defini-
tion of Datalog rules and their formal meaning, we consider examples. Consider a
Datalog rule to define a view relation v1 containing account numbers and balances for
accounts at the Perryridge branch with a balance of over $700:

v1(A, B) :– account(A, “Perryridge”, B), B > 700

Datalog rules define views; the preceding rule uses the relation account, and defines
the view relation v1. The symbol :– is read as “if,” and the comma separating the
“account(A, “Perryridge”, B)” from “B > 700” is read as “and.” Intuitively, the rule is
understood as follows:

for all A, B
if (A, “Perryridge”, B) ∈ account and B > 700
then (A, B) ∈ v1

Suppose that the relation account is as shown in Figure 27.4. Then, the view relation
v1 contains the tuples in Figure 27.5.

To retrieve the balance of account number A-217 in the view relation v1, we can
write the following query:

27.4 Datalog 11

account number branch name balance

A-101 Downtown 500
A-215 Minus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Perryridge 900
A-222 Redwood 700
A-217 Perryridge 750

Figure 27.4 The account relation.

27.4 Datalog

Datalog is a nonprocedural query language based on the logic-programming language
Prolog. As in the relational calculus, a user describes the information desired with-
out giving a specific procedure for obtaining that information. The syntax of Datalog
resembles that of Prolog. However, the meaning of Datalog programs is defined in a
purely declarative manner, unlike the more procedural semantics of Prolog, so Datalog
simplifies writing simple queries and makes query optimization easier.

27.4.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal defini-
tion of Datalog rules and their formal meaning, we consider examples. Consider a
Datalog rule to define a view relation v1 containing account numbers and balances for
accounts at the Perryridge branch with a balance of over $700:

v1(A, B) :– account(A, “Perryridge”, B), B > 700

Datalog rules define views; the preceding rule uses the relation account, and defines
the view relation v1. The symbol :– is read as “if,” and the comma separating the
“account(A, “Perryridge”, B)” from “B > 700” is read as “and.” Intuitively, the rule is
understood as follows:

for all A, B
if (A, “Perryridge”, B) ∈ account and B > 700
then (A, B) ∈ v1

Suppose that the relation account is as shown in Figure 27.4. Then, the view relation
v1 contains the tuples in Figure 27.5.

To retrieve the balance of account number A-217 in the view relation v1, we can
write the following query:

means:

} From Online Chapter at: https://db-book.io

} Example: account is extensional, and v1 allows inferring additional facts

} Writing queries?

} Multiple rules typically used for the same view

} Can use Negation

27.4 Datalog 11

account number branch name balance

A-101 Downtown 500
A-215 Minus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Perryridge 900
A-222 Redwood 700
A-217 Perryridge 750

Figure 27.4 The account relation.

27.4 Datalog

Datalog is a nonprocedural query language based on the logic-programming language
Prolog. As in the relational calculus, a user describes the information desired with-
out giving a specific procedure for obtaining that information. The syntax of Datalog
resembles that of Prolog. However, the meaning of Datalog programs is defined in a
purely declarative manner, unlike the more procedural semantics of Prolog, so Datalog
simplifies writing simple queries and makes query optimization easier.

27.4.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal defini-
tion of Datalog rules and their formal meaning, we consider examples. Consider a
Datalog rule to define a view relation v1 containing account numbers and balances for
accounts at the Perryridge branch with a balance of over $700:

v1(A, B) :– account(A, “Perryridge”, B), B > 700

Datalog rules define views; the preceding rule uses the relation account, and defines
the view relation v1. The symbol :– is read as “if,” and the comma separating the
“account(A, “Perryridge”, B)” from “B > 700” is read as “and.” Intuitively, the rule is
understood as follows:

for all A, B
if (A, “Perryridge”, B) ∈ account and B > 700
then (A, B) ∈ v1

Suppose that the relation account is as shown in Figure 27.4. Then, the view relation
v1 contains the tuples in Figure 27.5.

To retrieve the balance of account number A-217 in the view relation v1, we can
write the following query:

12 Chapter 27 Formal-Relational Query Languages

account number balance

A-201 900
A-217 750

Figure 27.5 The v1 relation.

? v1(“A-217”, B)

The answer to the query is

(A-217, 750)

To get the account number and balance of all accounts in relation v1, where the balance
is greater than 800, we can write

? v1(A, B), B > 800

The answer to this query is

(A-201, 900)

In general, we need more than one rule to define a view relation. Each rule defines
a set of tuples that the view relation must contain. The set of tuples in the view relation
is then defined as the union of all these sets of tuples. The following Datalog program
specifies the interest rates for accounts:

interest rate(A, 5) :– account(A, N , B), B < 10000
interest rate(A, 6) :– account(A, N , B), B >= 10000

The program has two rules defining a view relation interest rate, whose attributes are
the account number and the interest rate. The rules say that, if the balance is less than
$10,000, then the interest rate is 5 percent, and if the balance is greater than or equal
to $10,000, the interest rate is 6 percent.

Datalog rules can also use negation. The following rules define a view relation c
that contains the names of all customers who have a deposit, but have no loan, at the
bank:

c(N) :– depositor(N ,A), not is borrower(N)
is borrower(N) :– borrower(N , L)

Prolog and most Datalog implementations recognize attributes of a relation by po-
sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL

12 Chapter 27 Formal-Relational Query Languages

account number balance

A-201 900
A-217 750

Figure 27.5 The v1 relation.

? v1(“A-217”, B)

The answer to the query is

(A-217, 750)

To get the account number and balance of all accounts in relation v1, where the balance
is greater than 800, we can write

? v1(A, B), B > 800

The answer to this query is

(A-201, 900)

In general, we need more than one rule to define a view relation. Each rule defines
a set of tuples that the view relation must contain. The set of tuples in the view relation
is then defined as the union of all these sets of tuples. The following Datalog program
specifies the interest rates for accounts:

interest rate(A, 5) :– account(A, N , B), B < 10000
interest rate(A, 6) :– account(A, N , B), B >= 10000

The program has two rules defining a view relation interest rate, whose attributes are
the account number and the interest rate. The rules say that, if the balance is less than
$10,000, then the interest rate is 5 percent, and if the balance is greater than or equal
to $10,000, the interest rate is 6 percent.

Datalog rules can also use negation. The following rules define a view relation c
that contains the names of all customers who have a deposit, but have no loan, at the
bank:

c(N) :– depositor(N ,A), not is borrower(N)
is borrower(N) :– borrower(N , L)

Prolog and most Datalog implementations recognize attributes of a relation by po-
sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL

12 Chapter 27 Formal-Relational Query Languages

account number balance

A-201 900
A-217 750

Figure 27.5 The v1 relation.

? v1(“A-217”, B)

The answer to the query is

(A-217, 750)

To get the account number and balance of all accounts in relation v1, where the balance
is greater than 800, we can write

? v1(A, B), B > 800

The answer to this query is

(A-201, 900)

In general, we need more than one rule to define a view relation. Each rule defines
a set of tuples that the view relation must contain. The set of tuples in the view relation
is then defined as the union of all these sets of tuples. The following Datalog program
specifies the interest rates for accounts:

interest rate(A, 5) :– account(A, N , B), B < 10000
interest rate(A, 6) :– account(A, N , B), B >= 10000

The program has two rules defining a view relation interest rate, whose attributes are
the account number and the interest rate. The rules say that, if the balance is less than
$10,000, then the interest rate is 5 percent, and if the balance is greater than or equal
to $10,000, the interest rate is 6 percent.

Datalog rules can also use negation. The following rules define a view relation c
that contains the names of all customers who have a deposit, but have no loan, at the
bank:

c(N) :– depositor(N ,A), not is borrower(N)
is borrower(N) :– borrower(N , L)

Prolog and most Datalog implementations recognize attributes of a relation by po-
sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL

12 Chapter 27 Formal-Relational Query Languages

account number balance

A-201 900
A-217 750

Figure 27.5 The v1 relation.

? v1(“A-217”, B)

The answer to the query is

(A-217, 750)

To get the account number and balance of all accounts in relation v1, where the balance
is greater than 800, we can write

? v1(A, B), B > 800

The answer to this query is

(A-201, 900)

In general, we need more than one rule to define a view relation. Each rule defines
a set of tuples that the view relation must contain. The set of tuples in the view relation
is then defined as the union of all these sets of tuples. The following Datalog program
specifies the interest rates for accounts:

interest rate(A, 5) :– account(A, N , B), B < 10000
interest rate(A, 6) :– account(A, N , B), B >= 10000

The program has two rules defining a view relation interest rate, whose attributes are
the account number and the interest rate. The rules say that, if the balance is less than
$10,000, then the interest rate is 5 percent, and if the balance is greater than or equal
to $10,000, the interest rate is 6 percent.

Datalog rules can also use negation. The following rules define a view relation c
that contains the names of all customers who have a deposit, but have no loan, at the
bank:

c(N) :– depositor(N ,A), not is borrower(N)
is borrower(N) :– borrower(N , L)

Prolog and most Datalog implementations recognize attributes of a relation by po-
sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL

} For non-recursive queries, the semantics are pretty straightforward

} More complex for recursive queries
◦ Assume we have a single relation: parent(child_id, parent_id)

◦ The following program gets ancestors

14 Chapter 27 Formal-Relational Query Languages

interest(A, I) :– account(A, “Perryridge”, B),
interest rate(A, R), I = B ∗ R∕100

interest rate(A, 5) :– account(A, N , B), B < 10000
interest rate(A, 6) :– account(A, N , B), B >= 10000

Figure 27.6 Datalog program that defines interest on Perryridge accounts.

A fact is written in the form

p(v1, v2,… , vn)

and denotes that the tuple (v1, v2,… , vn) is in relation p. A set of facts for a relation
can also be written in the usual tabular notation. A set of facts for the relations in a
database schema is equivalent to an instance of the database schema. Rules are built
out of literals and have the form

p(t1, t2,… , tn) :– L1, L2,… , Ln

where each Li is a (positive or negative) literal. The literal p(t1, t2,… , tn) is referred to
as the head of the rule, and the rest of the literals in the rule constitute the body of the
rule.

A Datalog program consists of a set of rules; the order in which the rules are written
has no significance. As mentioned earlier, there may be several rules defining a relation.

Figure 27.6 shows a Datalog program that defines the interest on each account in
the Perryridge branch. The first rule of the program defines a view relation interest,
whose attributes are the account number and the interest earned on the account. It
uses the relation account and the view relation interest rate. The last two rules of the
program are rules that we saw earlier.

A view relation v1 is said to depend directly on a view relation v2 if v2 is used in the
expression defining v1. In the preceding program, view relation interest depends directly
on relations interest rate and account. Relation interest rate in turn depends directly on
account.

A view relation v1 is said to depend indirectly on view relation v2 if there is a sequence
of intermediate relations i1, i2,… , in, for some n, such that v1 depends directly on i1, i1
depends directly on i2, and so on until in−1 depends on in.

In the example in Figure 27.6, since we have a chain of dependencies from interest
to interest rate to account, relation interest also depends indirectly on account.

Finally, a view relation v1 is said to depend on view relation v2 if v1 depends either
directly or indirectly on v2.

A view relation v is said to be recursive if it depends on itself. A view relation that
is not recursive is said to be nonrecursive.

27.4 Datalog 17

interest

account

interest_rate
perryridge_account

layer 2

layer 1

database

Figure 27.9 Layering of view relations.

• A relation is in layer 1 if all relations used in the bodies of rules defining it are
stored in the database.

• A relation is in layer 2 if all relations used in the bodies of rules defining it either
are stored in the database or are in layer 1.

• In general, a relation p is in layer i + 1 if (1) it is not in layers 1, 2,… , i and (2) all
relations used in the bodies of rules defining p either are stored in the database or
are in layers 1, 2,… , i.

Consider the program in Figure 27.6 with the additional rule:

perryridge account(X , Y) :– account(X , “Perryridge”, Y)

The layering of view relations in the program appears in Figure 27.9. The relation
account is in the database. Relation interest rate is in layer 1, since all the relations
used in the two rules defining it are in the database. Relation perryridge account
is similarly in layer 1. Finally, relation interest is in layer 2, since it is not in layer 1
and all the relations used in the rule defining it are in the database or in layers lower
than 2.

We can now define the semantics of a Datalog program in terms of the layering of
view relations. Let the layers in a given program be 1, 2,… , n. Let i denote the set of
all rules defining view relations in layer i.

• We define I0 to be the set of facts stored in the database, and we define I1 as

I1 = I0 ∪ infer(1, I0)

• We proceed in a similar fashion, defining I2 in terms of I1 and 2, and so on, using
the following definition:

Ii+1 = Ii ∪ infer(i+1, Ii)

27.4 Datalog 17

interest

account

interest_rate
perryridge_account

layer 2

layer 1

database

Figure 27.9 Layering of view relations.

• A relation is in layer 1 if all relations used in the bodies of rules defining it are
stored in the database.

• A relation is in layer 2 if all relations used in the bodies of rules defining it either
are stored in the database or are in layer 1.

• In general, a relation p is in layer i + 1 if (1) it is not in layers 1, 2,… , i and (2) all
relations used in the bodies of rules defining p either are stored in the database or
are in layers 1, 2,… , i.

Consider the program in Figure 27.6 with the additional rule:

perryridge account(X , Y) :– account(X , “Perryridge”, Y)

The layering of view relations in the program appears in Figure 27.9. The relation
account is in the database. Relation interest rate is in layer 1, since all the relations
used in the two rules defining it are in the database. Relation perryridge account
is similarly in layer 1. Finally, relation interest is in layer 2, since it is not in layer 1
and all the relations used in the rule defining it are in the database or in layers lower
than 2.

We can now define the semantics of a Datalog program in terms of the layering of
view relations. Let the layers in a given program be 1, 2,… , n. Let i denote the set of
all rules defining view relations in layer i.

• We define I0 to be the set of facts stored in the database, and we define I1 as

I1 = I0 ∪ infer(1, I0)

• We proceed in a similar fashion, defining I2 in terms of I1 and 2, and so on, using
the following definition:

Ii+1 = Ii ∪ infer(i+1, Ii)

ancestor(A, B) :- parent(B, A)
ancestor(A, B) :- ancestor(A, C), parent(C, B)

} Possible to write rules that generate infinite answers

} Datalog programs must satisfy safety conditions:
◦ Every variable in the head, must appear in a non-arithmetic positive literal in the body

◦ Every variable in a negative literal in the body must appear in some positive literal in the
body

} For non-recursive program, this guarantees finite results as long as the
database relations are finite

} Can relax the rules somewhat:

18 Chapter 27 Formal-Relational Query Languages

• Finally, the set of facts in the view relations defined by the program (also called
the semantics of the program) is given by the set of facts In corresponding to the
highest layer n.

For the program in Figure 27.6, I0 is the set of facts in the database, and I1 is the set
of facts in the database along with all facts that we can infer from I0 using the rules for
relations interest rate and perryridge account. Finally, I2 contains the facts in I1 along
with the facts for relation interest that we can infer from the facts in I1 by the rule
defining interest. The semantics of the program—that is, the set of those facts that are
in each of the view relations—is defined as the set of facts I2.

27.4.4 Safety

It is possible to write rules that generate an infinite number of answers. Consider the
rule

gt(X , Y) :– X > Y

Since the relation defining > is infinite, this rule would generate an infinite number
of facts for the relation gt, which calculation would, correspondingly, take an infinite
amount of time and space.

The use of negation can also cause similar problems. Consider the rule:

not in loan(L, B, A) :– not loan(L, B, A)

The idea is that a tuple (loan number, branch name, amount) is in view relation not in
loan if the tuple is not present in the loan relation. However, if the set of possible

loan numbers, branch names, and balances is infinite, the relation not in loan would
be infinite as well.

Finally, if we have a variable in the head that does not appear in the body, we may
get an infinite number of facts where the variable is instantiated to different values.

So that these possibilities are avoided, Datalog rules are required to satisfy the
following safety conditions:

1. Every variable that appears in the head of the rule also appears in a nonarithmetic
positive literal in the body of the rule.

2. Every variable appearing in a negative literal in the body of the rule also appears
in some positive literal in the body of the rule.

If all the rules in a nonrecursive Datalog program satisfy the preceding safety con-
ditions, then all the view relations defined in the program can be shown to be finite, as
long as all the database relations are finite. The conditions can be weakened somewhat

18 Chapter 27 Formal-Relational Query Languages

• Finally, the set of facts in the view relations defined by the program (also called
the semantics of the program) is given by the set of facts In corresponding to the
highest layer n.

For the program in Figure 27.6, I0 is the set of facts in the database, and I1 is the set
of facts in the database along with all facts that we can infer from I0 using the rules for
relations interest rate and perryridge account. Finally, I2 contains the facts in I1 along
with the facts for relation interest that we can infer from the facts in I1 by the rule
defining interest. The semantics of the program—that is, the set of those facts that are
in each of the view relations—is defined as the set of facts I2.

27.4.4 Safety

It is possible to write rules that generate an infinite number of answers. Consider the
rule

gt(X , Y) :– X > Y

Since the relation defining > is infinite, this rule would generate an infinite number
of facts for the relation gt, which calculation would, correspondingly, take an infinite
amount of time and space.

The use of negation can also cause similar problems. Consider the rule:

not in loan(L, B, A) :– not loan(L, B, A)

The idea is that a tuple (loan number, branch name, amount) is in view relation not in
loan if the tuple is not present in the loan relation. However, if the set of possible

loan numbers, branch names, and balances is infinite, the relation not in loan would
be infinite as well.

Finally, if we have a variable in the head that does not appear in the body, we may
get an infinite number of facts where the variable is instantiated to different values.

So that these possibilities are avoided, Datalog rules are required to satisfy the
following safety conditions:

1. Every variable that appears in the head of the rule also appears in a nonarithmetic
positive literal in the body of the rule.

2. Every variable appearing in a negative literal in the body of the rule also appears
in some positive literal in the body of the rule.

If all the rules in a nonrecursive Datalog program satisfy the preceding safety con-
ditions, then all the view relations defined in the program can be shown to be finite, as
long as all the database relations are finite. The conditions can be weakened somewhat

27.4 Datalog 19

to allow variables in the head to appear only in an arithmetic literal in the body in some
cases. For example, in the rule

p(A) :– q(B), A = B + 1

we can see that if relation q is finite, then so is p, according to the properties of addition,
even though variable A appears in only an arithmetic literal.

27.4.5 Relational Operations in Datalog

Nonrecursive Datalog expressions without arithmetic operations are equivalent in ex-
pressive power to expressions using the basic operations in relational algebra (∪, −, ×,
σ, Π, and ρ). We shall not formally prove this assertion here. Rather, we shall show
through examples how the various relational-algebra operations can be expressed in
Datalog. In all cases, we define a view relation called query to illustrate the operations.

We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule. To
project attribute account name from account, we use

query(A) :– account(A, N , B)

We can obtain the Cartesian product of two relations r1 and r2 in Datalog as fol-
lows:

query(X1, X2,… , Xn, Y1, Y2,… , Ym) :– r1(X1, X2,… , Xn), r2(Y1, Y2,… , Ym)

where r1 is of arity n, and r2 is of arity m, and the X1, X2,… , Xn, Y1, Y2,… , Ym are all
distinct variable names.

We form the union of two relations r1 and r2 (both of arity n) in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn)
query(X1, X2,… , Xn) :– r2(X1, X2,… , Xn)

We form the set difference of two relations r1 and r2 in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn), not r2(X1, X2,… , Xn)

Finally, we note that with the positional notation used in Datalog, the renaming oper-
ator ρ is not needed. A relation can occur more than once in the rule body, but instead
of renaming to give distinct names to the relation occurrences, we can use different
variable names in the different occurrences.

It is possible to show that we can express any nonrecursive Datalog query without
arithmetic by using the relational-algebra operations. We leave this demonstration as

} Select

} Project

} Cartesian Product

} Union

} Set Difference

} Extensions exist for aggregates as well

27.4 Datalog 19

to allow variables in the head to appear only in an arithmetic literal in the body in some
cases. For example, in the rule

p(A) :– q(B), A = B + 1

we can see that if relation q is finite, then so is p, according to the properties of addition,
even though variable A appears in only an arithmetic literal.

27.4.5 Relational Operations in Datalog

Nonrecursive Datalog expressions without arithmetic operations are equivalent in ex-
pressive power to expressions using the basic operations in relational algebra (∪, −, ×,
σ, Π, and ρ). We shall not formally prove this assertion here. Rather, we shall show
through examples how the various relational-algebra operations can be expressed in
Datalog. In all cases, we define a view relation called query to illustrate the operations.

We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule. To
project attribute account name from account, we use

query(A) :– account(A, N , B)

We can obtain the Cartesian product of two relations r1 and r2 in Datalog as fol-
lows:

query(X1, X2,… , Xn, Y1, Y2,… , Ym) :– r1(X1, X2,… , Xn), r2(Y1, Y2,… , Ym)

where r1 is of arity n, and r2 is of arity m, and the X1, X2,… , Xn, Y1, Y2,… , Ym are all
distinct variable names.

We form the union of two relations r1 and r2 (both of arity n) in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn)
query(X1, X2,… , Xn) :– r2(X1, X2,… , Xn)

We form the set difference of two relations r1 and r2 in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn), not r2(X1, X2,… , Xn)

Finally, we note that with the positional notation used in Datalog, the renaming oper-
ator ρ is not needed. A relation can occur more than once in the rule body, but instead
of renaming to give distinct names to the relation occurrences, we can use different
variable names in the different occurrences.

It is possible to show that we can express any nonrecursive Datalog query without
arithmetic by using the relational-algebra operations. We leave this demonstration as

27.4 Datalog 19

to allow variables in the head to appear only in an arithmetic literal in the body in some
cases. For example, in the rule

p(A) :– q(B), A = B + 1

we can see that if relation q is finite, then so is p, according to the properties of addition,
even though variable A appears in only an arithmetic literal.

27.4.5 Relational Operations in Datalog

Nonrecursive Datalog expressions without arithmetic operations are equivalent in ex-
pressive power to expressions using the basic operations in relational algebra (∪, −, ×,
σ, Π, and ρ). We shall not formally prove this assertion here. Rather, we shall show
through examples how the various relational-algebra operations can be expressed in
Datalog. In all cases, we define a view relation called query to illustrate the operations.

We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule. To
project attribute account name from account, we use

query(A) :– account(A, N , B)

We can obtain the Cartesian product of two relations r1 and r2 in Datalog as fol-
lows:

query(X1, X2,… , Xn, Y1, Y2,… , Ym) :– r1(X1, X2,… , Xn), r2(Y1, Y2,… , Ym)

where r1 is of arity n, and r2 is of arity m, and the X1, X2,… , Xn, Y1, Y2,… , Ym are all
distinct variable names.

We form the union of two relations r1 and r2 (both of arity n) in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn)
query(X1, X2,… , Xn) :– r2(X1, X2,… , Xn)

We form the set difference of two relations r1 and r2 in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn), not r2(X1, X2,… , Xn)

Finally, we note that with the positional notation used in Datalog, the renaming oper-
ator ρ is not needed. A relation can occur more than once in the rule body, but instead
of renaming to give distinct names to the relation occurrences, we can use different
variable names in the different occurrences.

It is possible to show that we can express any nonrecursive Datalog query without
arithmetic by using the relational-algebra operations. We leave this demonstration as

27.4 Datalog 19

to allow variables in the head to appear only in an arithmetic literal in the body in some
cases. For example, in the rule

p(A) :– q(B), A = B + 1

we can see that if relation q is finite, then so is p, according to the properties of addition,
even though variable A appears in only an arithmetic literal.

27.4.5 Relational Operations in Datalog

Nonrecursive Datalog expressions without arithmetic operations are equivalent in ex-
pressive power to expressions using the basic operations in relational algebra (∪, −, ×,
σ, Π, and ρ). We shall not formally prove this assertion here. Rather, we shall show
through examples how the various relational-algebra operations can be expressed in
Datalog. In all cases, we define a view relation called query to illustrate the operations.

We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule. To
project attribute account name from account, we use

query(A) :– account(A, N , B)

We can obtain the Cartesian product of two relations r1 and r2 in Datalog as fol-
lows:

query(X1, X2,… , Xn, Y1, Y2,… , Ym) :– r1(X1, X2,… , Xn), r2(Y1, Y2,… , Ym)

where r1 is of arity n, and r2 is of arity m, and the X1, X2,… , Xn, Y1, Y2,… , Ym are all
distinct variable names.

We form the union of two relations r1 and r2 (both of arity n) in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn)
query(X1, X2,… , Xn) :– r2(X1, X2,… , Xn)

We form the set difference of two relations r1 and r2 in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn), not r2(X1, X2,… , Xn)

Finally, we note that with the positional notation used in Datalog, the renaming oper-
ator ρ is not needed. A relation can occur more than once in the rule body, but instead
of renaming to give distinct names to the relation occurrences, we can use different
variable names in the different occurrences.

It is possible to show that we can express any nonrecursive Datalog query without
arithmetic by using the relational-algebra operations. We leave this demonstration as

27.4 Datalog 19

to allow variables in the head to appear only in an arithmetic literal in the body in some
cases. For example, in the rule

p(A) :– q(B), A = B + 1

we can see that if relation q is finite, then so is p, according to the properties of addition,
even though variable A appears in only an arithmetic literal.

27.4.5 Relational Operations in Datalog

Nonrecursive Datalog expressions without arithmetic operations are equivalent in ex-
pressive power to expressions using the basic operations in relational algebra (∪, −, ×,
σ, Π, and ρ). We shall not formally prove this assertion here. Rather, we shall show
through examples how the various relational-algebra operations can be expressed in
Datalog. In all cases, we define a view relation called query to illustrate the operations.

We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule. To
project attribute account name from account, we use

query(A) :– account(A, N , B)

We can obtain the Cartesian product of two relations r1 and r2 in Datalog as fol-
lows:

query(X1, X2,… , Xn, Y1, Y2,… , Ym) :– r1(X1, X2,… , Xn), r2(Y1, Y2,… , Ym)

where r1 is of arity n, and r2 is of arity m, and the X1, X2,… , Xn, Y1, Y2,… , Ym are all
distinct variable names.

We form the union of two relations r1 and r2 (both of arity n) in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn)
query(X1, X2,… , Xn) :– r2(X1, X2,… , Xn)

We form the set difference of two relations r1 and r2 in this way:

query(X1, X2,… , Xn) :– r1(X1, X2,… , Xn), not r2(X1, X2,… , Xn)

Finally, we note that with the positional notation used in Datalog, the renaming oper-
ator ρ is not needed. A relation can occur more than once in the rule body, but instead
of renaming to give distinct names to the relation occurrences, we can use different
variable names in the different occurrences.

It is possible to show that we can express any nonrecursive Datalog query without
arithmetic by using the relational-algebra operations. We leave this demonstration as

27.4 Datalog 11

account number branch name balance

A-101 Downtown 500
A-215 Minus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Perryridge 900
A-222 Redwood 700
A-217 Perryridge 750

Figure 27.4 The account relation.

27.4 Datalog

Datalog is a nonprocedural query language based on the logic-programming language
Prolog. As in the relational calculus, a user describes the information desired with-
out giving a specific procedure for obtaining that information. The syntax of Datalog
resembles that of Prolog. However, the meaning of Datalog programs is defined in a
purely declarative manner, unlike the more procedural semantics of Prolog, so Datalog
simplifies writing simple queries and makes query optimization easier.

27.4.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal defini-
tion of Datalog rules and their formal meaning, we consider examples. Consider a
Datalog rule to define a view relation v1 containing account numbers and balances for
accounts at the Perryridge branch with a balance of over $700:

v1(A, B) :– account(A, “Perryridge”, B), B > 700

Datalog rules define views; the preceding rule uses the relation account, and defines
the view relation v1. The symbol :– is read as “if,” and the comma separating the
“account(A, “Perryridge”, B)” from “B > 700” is read as “and.” Intuitively, the rule is
understood as follows:

for all A, B
if (A, “Perryridge”, B) ∈ account and B > 700
then (A, B) ∈ v1

Suppose that the relation account is as shown in Figure 27.4. Then, the view relation
v1 contains the tuples in Figure 27.5.

To retrieve the balance of account number A-217 in the view relation v1, we can
write the following query:

} Prolog uses a top-down evaluation approach (by default)
◦ Start with query as goal and use the rules to create more goals until you get to facts

◦ If we are asked to compute fibo_td(10, F) – we would expand the last rule, and
compute fibo_td(9, ?) and fibo_td(8, ?) first

◦ Need to use memo-ization in order to avoid exponential runtime

} Not a good approach for Datalog
◦ Efficient evaluation requires use of set-at-a-time processing, i.e., start with base facts

and generate more facts using the rules
◦ Drawback: may generate facts that are not needed

} Standard Fixpoint algorithm
◦ Start with all the facts (initially the base relations)

◦ Infer new facts using those and the provided rules

◦ Repeat until no more facts are inferred

} Sometimes called “naïve” evaluation

} Semi-Naïve Evaluation
◦ Keep track of which new “facts” were inferred in iteration N - 1

◦ In iteration N: only consider those rules as firing that include at least one of those facts

} Works for both recursive and non-recursive programs
◦ Bounded depth for non-recursive programs based on the query

} For “safe” Datalog programs, this will stop at some point assuming no
“negative” literals

} With negative literals, previous inferences may be invalidated
◦ e.g., q(X, Y) :- not R(Y, X), Y = 10, X = 5

◦ If R(10, 5) doesn’t exist, we can infer q(5, 10)

◦ However in a later iteration, we may get: R(10, 5)

} Note: SQL originally did not support recursion – so no way to do “transitive
closure” – SQL 99 added support

} We will discuss some other optimization techniques (e.g., magic sets) later

} Challenging to design new network protocols to handle rapidly
evolving landscape
◦ Correctness particularly an issue
◦ Hard to optimize when the bottlenecks change

} Proposed solution
◦ Model the distributed state across the routers/machines as ”tables”
◦ Use a recursive query language to define derived data, constraints, etc.

} Long line of work starting with this early paper in SIGMOD 2006
} More recent work on distributed programming in general by

Hellerstein et al.

} Base “extensional” relation: link(Src, Dest, Cost)
◦ Stored in a distributed manner across all nodes

} Four rules:
◦ sp1 and sp2 define a ”path” in the network recursively

◦ sp3 and sp4: an aggregate function to compute minimum-cost path

} @ used to specify where the derived fact should be stored

88 COMMUNICATIONS OF THE ACM | NOVEMBER 2009 | VOL. 52 | NO. 11

research highlights

The program has four rules (which for conve-
nience we label sp1–sp4), and takes as input a base
(extensional) relation link(Src, Dest, Cost). Rules
sp1–sp2 are used to derive “paths” in the graph, rep-
resented as tuples in the derived (intensional) relation
path(Src, Dest, Path, Cost). The Src and Dest fields
represent the source and destination endpoints of the
path, and Path is the actual path from Src to Dest. The
 number and types of fields in relations are inferred from
their (consistent) use in the program’s rules.

Since network protocols are typically computations over
distributed network state, one of the important require-
ments of NDlog is the ability to support rules that express
distributed computations. NDlog builds upon traditional
Datalog by providing control over the storage location of
tuples explicitly in the syntax via location specifiers. Each
location specifier is a field within a predicate that dictates
the partitioning of the table. To illustrate, in the above pro-
gram, each predicate has an “@” symbol prepended to a
single field denoting the location specifier. Each tuple gen-
erated is stored at the address determined by its location
specifier. For example, each path and link tuple is stored
at the address held in its first field @Src.

Rule sp1 produces path tuples directly from exist-
ing link tuples, and rule sp2 recursively produces path
tuples of increasing cost by matching (joining) the desti-
nation fields of existing links to the source fields of previ-
ously computed paths. The matching is expressed using
the repeated Nxt variable in link(Src,Nxt,Cost1) and
path(Nxt,Dest,Path2,Cost2) of rule sp2. Intuitively,
rule sp2 says that “if there is a link from node Src to node
Nxt, and there is a path from node Nxt to node Dest along
a path Path2, then there is a path Path from node Src to
node Dest where Path is computed by prepending Src
to Path2.” The matching of the common Nxt variable in
link and path corresponds to a join operation used in
 relational databases.

Given the path relation, rule sp3 derives the relation
spCost(Src,Dest,Cost) by computing the minimum
cost Cost for each source and destination for all input
paths. Rule sp4 takes as input spCost and path tuples
and then finds shortestPath(Src,Dest,Path,Cost)
tuples that contain the shortest path Path from Src to
Dest with cost Cost. Last, as denoted by the Query label,
the shortestPath table is the output of interest.

2.3. Shortest path execution example
We step through an execution of the shortest-path NDlog
program above to illustrate derivation and communica-
tion of tuples as the program is computed. We make use
of the example network in Figure 1. Our discussion is nec-
essarily informal since we have not yet presented our dis-
tributed implementation strategies; in the next section,
we show in greater detail the steps required to generate
the execution plan. Here, we focus on a high-level under-
standing of the data movement in the network during
query processing.

For ease of exposition, we will describe communication
in synchronized iterations, where at each iteration, each

2.1. Introduction to Datalog
We first provide a short review of Datalog, following the con-
ventions in Ramakrishnan and Ullman’s survey.27 A Datalog
program consists of a set of declarative rules and an optional
query. Since these programs are commonly called “recursive
queries” in the database literature, we use the term “query”
and “program” interchangeably when we refer to a Datalog
program.

A Datalog rule has the form p :- q1, q2, …, qn, which can be
read informally as “q1 and q2 and … and qn implies p.” p is the
head of the rule, and q1, q2, …, qn is a list of literals that consti-
tutes the body of the rule. Literals are either predicates over
fields (variables and constants), or functions (formally, func-
tion symbols) applied to fields. The rules can refer to each
other in a cyclic fashion to express recursion. The order in
which the rules are presented in a program is semantically
immaterial. The commas separating the predicates in a rule
are logical conjuncts (AND); the order in which predicates
appear in a rule body also has no semantic significance,
though most implementations (including ours) employ a
left-to-right execution strategy. Predicates in the rule body
are matched (or joined) based on their common variables to
produce the output in the rule head. The query (denoted by a
reserved rule label Query) specifies the output of interest.

The predicates in the body and head of traditional
Datalog rules are relations, and we refer to them inter-
changeably as predicates or relations. In our work, every
relation has a primary key, which is a set of fields that
uniquely identifies each tuple within the relation. In the
absence of other information, the primary key is the full set
of fields in the relation.

By convention, the names of predicates, function symbols,
and constants begin with a lowercase letter, while variable
names begin with an uppercase letter. Most implementations
of Datalog enhance it with a limited set of side-effect-free
function calls including standard infix arithmetic and various
simple string and list manipulations (which start with “f_” in
our syntax). Aggregate constructs are represented as aggrega-
tion functions with field variables within angle brackets (¢²).

2.2. NDLog by example
We introduce NDlog using an example program shown below
that implements the path-vector protocol, which computes
in a distributed fashion, for every node, the shortest paths
to all other nodes in a network. The path-vector protocol
is used as the base routing protocol for exchanging routes
among Internet Service Providers.

sp1 path(@Src,Dest,Path,Cost) :- link(@Src,Dest,Cost),

Path=f_init(Src,Dest).

sp2 path(@Src,Dest,Path,Cost) :- link(@Src,Nxt,Cost1),

path(@Nxt,Dest,Path2,Cost2), Cost=Cost1+Cost2,

Path=f_concatPath(Src,Path2).

sp3 spCost(@Src,Dest,min<Cost>) :- path(@Src,Dest,Path,Cost).

sp4 shortestPath(@Src,Dest,Path,Cost) :-

spCost(@Src, Dest,Cost), path(@Src,Dest,Path,Cost).

Query shortestPath(@Src,Dest,Path,Cost).

} In each iteration, nodes do their local computations and pass their state to
their neighbors

NOVEMBER 2009 | VOL. 52 | NO. 11 | COMMUNICATIONS OF THE ACM 89

along the physical links. In order to send a message in a low-
level network, there needs to be a link between the sender
and receiver. This is not a natural construct in Datalog.
Hence, to model physical networking components where
full connectivity is not available, NDlog provides restrictions
ensuring that rule execution results in communication only
among nodes that are physically connected with a bidirec-
tional link. This is syntactically achieved with the use of the
special link predicate in the form of link-restricted rules.
A link-restricted rule is either a local rule (having the same
location specifier variable in each predicate), or a rule with
the following properties:

1. There is exactly one link predicate in the body.
2. All other predicates (including the head predicate)

have their location specifier set to either the first
(source) or second (destination) field of the link
predicate.

This syntactic constraint precisely captures the require-
ment that we be able to operate directly on a network whose
link connectivity is not a full mesh. Further, as we demon-
strate in Section 3, link-restriction also guarantees that all
programs with only link-restricted rules can be rewritten
into a canonical form where every rule body can be evaluated
on a single node, with communication to a head predicate
along links. The following is an example of a link-restricted
rule:

p(@Dest,...) :- link(@Src,Dest...),p1(@Src,...),
p2(@Src,...),..., pn(@Src,...).

The rule body of this example is executed at @Src and the
resulting p tuples are sent to @Dest, preserving the commu-
nication constraints along links. Note that the body predi-
cates of this example all have the same location specifier:
@Src, the source of the link. In contrast, rule sp2 of the
shortest path program is link-restricted but has some rela-
tions whose location specifier is the source, and others
whose location specifier is the destination; this needs to be
rewritten to be executable in the network, a topic we return
to in Section 3.2.

In a fully connected network environment, an NDlog
parser can be configured to bypass the requirement for link-
restricted rules.
Soft-State Storage Model: Many network protocols use the
soft-state approach to maintain distributed state. In the soft-
state storage model, stored data have an associated lifetime
or time-to-live (TTL). A soft-state datum needs to be periodi-
cally refreshed; if more time than a TTL passes without a
datum being refreshed, that datum is deleted. Soft state is
often favored in networking implementations because in a
very simple manner it provides well-defined eventual consis-
tency semantics. Intuitively, periodic refreshes to network
state ensure that the eventual values are obtained even if
there are transient errors such as reordered messages, node
disconnection, or link failures. However, when persistent
failures occur, no coordination is required to register the

network node generates paths of increasing hop count, and
then propagates these paths to neighbor nodes along links.
We show only the derived paths communicated along the
solid lines. In actual query execution, derived tuples can be
sent along the bidirectional network links (dashed links).

In the first iteration, all nodes initialize their local
path tables to 1-hop paths using rule sp1. In the second
iteration, using rule sp2, each node takes the input paths
generated in the previous iteration, and computes 2-hop
paths, which are then propagated to its neighbors. For
example, path(@a,d,[a,b,d],6) is generated at node
b using path(@b,d,[b,d],1) from the first iteration,
and propagated to node a. In fact, many network protocols
propagate only the nextHop and avoid sending the entire
path vector.

As paths are computed, the shortest one is incre-
mentally updated. For example, node a computes the
cost of the shortest path from a to b as 5 with rule sp3,
and then finds the corresponding shortest path [a,b]
with rule sp4. In the next iteration, node a receives
path(@a,b,[a,c,b],2) from node c, which has lower
cost compared to the previous shortest cost of 5, and hence
shortestPath(@a,b,[a,c,b],2) replaces the previ-
ous tuple (the first two fields of source and destination are
the primary key of this relation).

Interestingly, while NDlog is a language to describe net-
works, there are no explicit communication primitives.
All communication is implicitly generated during rule
execution as a result of data placement specifications. For
example, in rule sp2, the path and link predicates have
different location specifiers, and in order to execute the rule
body of sp2 based on their matching fields, link and path
tuples have to be shipped in the network. It is the movement
of these tuples that generates the messages for the resulting
network protocol.

2.4. Language extensions
We describe two extensions to the NDlog language: link-
restricted rules that limit the expressiveness of the language
in order to capture physical network constraints, and a soft-
state storage model commonly used in networking protocols.
Link-Restricted Rules: In the above path vector protocol, the
evaluation of a rule must depend only on communication

p(@a,b,[a,b],5)
p(@a,c,[a,c],1)

a

b

c

d

Initially

l(@a,b,5)
l(@a,c,1)

l(@c,b,1)

l(@b,d,1)

5
1

1

a

b

c
5

1

First iteration

1 1
p(@c,b,[c,b],1)p(@b,d,[b,d],1)

p(@a,d,[a,b,d],6)
p(@a,b,[a,c,b],2) a

b

c
5

1

Second iteration

1
p(@c,d,[c,b,d],2)

el(@e,a,1)

1

p(@e,a,[e,a],1)
p(@e,b,[e,a,b],6)
p(@e,c,[e,a,c],2)

d

1

d

1

e e

11

Figure 1. Nodes in the network are running the shortest-path pro-
gram. We only show newly derived tuples at each iteration.

} Need to handle limitations of the underlying network

} Link-restricted rules:
◦ Not all nodes can talk directly to all nodes for execution of the program

◦ Only allow rules where there is a direct link between the two nodes that contain the data
required for any predicate

} Soft state storage:
◦ Network protocols data typically has a TTL (time-to-live)

◦ Introduce a new keyword: materialized

◦ Adds some complications in formal semantics

NOVEMBER 2009 | VOL. 52 | NO. 11 | COMMUNICATIONS OF THE ACM 89

along the physical links. In order to send a message in a low-
level network, there needs to be a link between the sender
and receiver. This is not a natural construct in Datalog.
Hence, to model physical networking components where
full connectivity is not available, NDlog provides restrictions
ensuring that rule execution results in communication only
among nodes that are physically connected with a bidirec-
tional link. This is syntactically achieved with the use of the
special link predicate in the form of link-restricted rules.
A link-restricted rule is either a local rule (having the same
location specifier variable in each predicate), or a rule with
the following properties:

1. There is exactly one link predicate in the body.
2. All other predicates (including the head predicate)

have their location specifier set to either the first
(source) or second (destination) field of the link
predicate.

This syntactic constraint precisely captures the require-
ment that we be able to operate directly on a network whose
link connectivity is not a full mesh. Further, as we demon-
strate in Section 3, link-restriction also guarantees that all
programs with only link-restricted rules can be rewritten
into a canonical form where every rule body can be evaluated
on a single node, with communication to a head predicate
along links. The following is an example of a link-restricted
rule:

p(@Dest,...) :- link(@Src,Dest...),p1(@Src,...),
p2(@Src,...),..., pn(@Src,...).

The rule body of this example is executed at @Src and the
resulting p tuples are sent to @Dest, preserving the commu-
nication constraints along links. Note that the body predi-
cates of this example all have the same location specifier:
@Src, the source of the link. In contrast, rule sp2 of the
shortest path program is link-restricted but has some rela-
tions whose location specifier is the source, and others
whose location specifier is the destination; this needs to be
rewritten to be executable in the network, a topic we return
to in Section 3.2.

In a fully connected network environment, an NDlog
parser can be configured to bypass the requirement for link-
restricted rules.
Soft-State Storage Model: Many network protocols use the
soft-state approach to maintain distributed state. In the soft-
state storage model, stored data have an associated lifetime
or time-to-live (TTL). A soft-state datum needs to be periodi-
cally refreshed; if more time than a TTL passes without a
datum being refreshed, that datum is deleted. Soft state is
often favored in networking implementations because in a
very simple manner it provides well-defined eventual consis-
tency semantics. Intuitively, periodic refreshes to network
state ensure that the eventual values are obtained even if
there are transient errors such as reordered messages, node
disconnection, or link failures. However, when persistent
failures occur, no coordination is required to register the

network node generates paths of increasing hop count, and
then propagates these paths to neighbor nodes along links.
We show only the derived paths communicated along the
solid lines. In actual query execution, derived tuples can be
sent along the bidirectional network links (dashed links).

In the first iteration, all nodes initialize their local
path tables to 1-hop paths using rule sp1. In the second
iteration, using rule sp2, each node takes the input paths
generated in the previous iteration, and computes 2-hop
paths, which are then propagated to its neighbors. For
example, path(@a,d,[a,b,d],6) is generated at node
b using path(@b,d,[b,d],1) from the first iteration,
and propagated to node a. In fact, many network protocols
propagate only the nextHop and avoid sending the entire
path vector.

As paths are computed, the shortest one is incre-
mentally updated. For example, node a computes the
cost of the shortest path from a to b as 5 with rule sp3,
and then finds the corresponding shortest path [a,b]
with rule sp4. In the next iteration, node a receives
path(@a,b,[a,c,b],2) from node c, which has lower
cost compared to the previous shortest cost of 5, and hence
shortestPath(@a,b,[a,c,b],2) replaces the previ-
ous tuple (the first two fields of source and destination are
the primary key of this relation).

Interestingly, while NDlog is a language to describe net-
works, there are no explicit communication primitives.
All communication is implicitly generated during rule
execution as a result of data placement specifications. For
example, in rule sp2, the path and link predicates have
different location specifiers, and in order to execute the rule
body of sp2 based on their matching fields, link and path
tuples have to be shipped in the network. It is the movement
of these tuples that generates the messages for the resulting
network protocol.

2.4. Language extensions
We describe two extensions to the NDlog language: link-
restricted rules that limit the expressiveness of the language
in order to capture physical network constraints, and a soft-
state storage model commonly used in networking protocols.
Link-Restricted Rules: In the above path vector protocol, the
evaluation of a rule must depend only on communication

p(@a,b,[a,b],5)
p(@a,c,[a,c],1)

a

b

c

d

Initially

l(@a,b,5)
l(@a,c,1)

l(@c,b,1)

l(@b,d,1)

5
1

1

a

b

c
5

1

First iteration

1 1
p(@c,b,[c,b],1)p(@b,d,[b,d],1)

p(@a,d,[a,b,d],6)
p(@a,b,[a,c,b],2) a

b

c
5

1

Second iteration

1
p(@c,d,[c,b,d],2)

el(@e,a,1)

1

p(@e,a,[e,a],1)
p(@e,b,[e,a,b],6)
p(@e,c,[e,a,c],2)

d

1

d

1

e e

11

Figure 1. Nodes in the network are running the shortest-path pro-
gram. We only show newly derived tuples at each iteration.

} Data Models: Then, and now
◦ History of Data Models (“what comes around…”)

◦ A data model for Key-value Stores (“a co-relational model..”)

} Languages
◦ Overview

◦ Datalog (“a survey of research…” and “declarative networking…”)

} Map-reduce and Spark
◦ Original MR Abstraction (”mapreduce:” …”)

◦ Spark (“resilient distributed datasets…”)

} SystemML: An abstraction for ML

} GraphX: An abstraction for Graphs

} For parallel, fault-tolerant computation over large volumes of
data

} Just two operators: “map” and “reduce”
◦ Map more like “flatMap” – can produce multiple outputs per input

◦ “reduce” == “reduceByKey” – operated on key-value pairs

input files mappers intermediate
files

reducers output
files

input files mappers intermediate
files

reducers

(a, 8)
(c, 5)

output
files

a b a c d b

b c d a a a

a b a b a b

c c c c c

(a, 1)
(a, 1)
(c, 1)
(a, 1)
(a, 1)
(a, 1)

…

(a, 1)
(b, 1)
(a, 1)
(c, 1)
(d, 1)
(b, 1)

(b, 1)
(d, 1)
(b, 1)
(b, 1)
(d, 1)
(b, 1)

…

(b, 6)
(d, 2)

input files mappers intermediate
files

reducers

(a, 8)
(c, 5)

output
files

a b a c d b

b c d a a a

a b a b a b

c c c c c

(a, 2)
(a, 3)
(c, 1)
(c, 5)

(a, 2)
(b, 2)
(c, 1)
(d, 1)

…

(b, 6)
(d, 2)

Called “mapper-side” combiner
Partial aggregation in DBMS terms

} For parallel, fault-tolerant computation over large volumes of
data

} Just two operators: “map” and “reduce”
◦ Map more like “flatMap” – can produce multiple outputs per input

◦ “reduce” == “reduceByKey” – operated on key-value pairs

} Each operator is ”embarrassingly” (“infinitely”) parallelizable
◦ Map can be done in parallel on each input

} Data written out to disk after each map or reduce
◦ For fault-tolerance

◦ If a machine fails, restart the computation on another machine with the
same input files

} Many optimizations to handle skew, etc.

} Was used in Google (at that time) for:
◦ Large-scale machine learning problems

◦ Clustering problems for Google News etc

◦ Generating summary reports

◦ Large-scale Graph Computations

◦ Extract-Transform-Load (ETL) tasks

} Also replaced original tools for large-scale indexing
◦ i.e., for generating the inverted indexes

◦ runs as a sequence of 5 to 10 MapReduce opeartions

} Limited functionality, but no RDMBS/data warehouse could
have handled those kinds of tasks
◦ Not fault-tolerant at the scale

◦ Most of the data not tabular or relation – SQL not a good fit

� Need flexible or no schemas

� User-defined functions can help but hard to use back then

◦ Loading the data into databases not feasible

� Much of the analysis is one-time

◦ Cost prohibitive (Distributed File Systems much cheaper)

} Mapreduce: A Major Step Backwards; DeWitt and Stonebraker;
2007

} See the later CACM papers by both camps

} Yahoo! open-sourced the Hadoop MapReduce; 2006
◦ Including other tools like Zookeeper, HDFS, etc.

◦ Many inter-operable modules built around this sinc then

} Soon afterwards: Dryad (MSFT), Hive (FB), Pig (Yahoo)
◦ Most supported higher-lever interfaces: Hive and Pig more like SQL,

whereas Dryad supported something like LINQ

} Latest generation of systems: Spark, F1, Impala, Tez, Naiad,
Flink, AsterixDB, Drill, etc…
◦ Higher-level query languages like SQL

◦ More advanced execution strategies

◦ Indexes, query optimization, etc.

◦ Support for streaming, ML, graphs, etc.

} Data Models: Then, and now
◦ History of Data Models (“what comes around…”)

◦ A data model for Key-value Stores (“a co-relational model..”)

} Languages
◦ Overview

◦ Datalog (“a survey of research…” and “declarative networking…”)

} Map-reduce and Spark
◦ Original MR Abstraction (”mapreduce:” …”)

◦ Spark (“resilient distributed datasets…”)

} SystemML: An abstraction for ML

} GraphX: An abstraction for Graphs

Spark
! Open-source, distributed cluster computing framework
! Much better performance than Hadoop MapReduce through in-

memory caching and pipelining
! Originally provided a low-level RDD-centric API, but today, most of

the use is through the “Dataframes” (i.e., relations) API
ê Dataframes support relational operations like Joins, Aggregates, etc.

Resilient Distributed Dataset (RDD)
! RDD = Collection of records stored across multiple machines in-memory

Worker Nodes
- Always running

Drivers
- Come and go
- Not fault-tolerant

In-memory partitions of RDD 2

In-memory partitions of RDD 3

In-memory partitions of RDD 1 RDD Manipulation
Commands

Results – typically at
the end

Spark
! Why “Resilient”?

ê Can survive the failure of a worker node
ê Spark maintains a “lineage graph” of how each RDD partition was created
ê If a worker node fails, the partitions are recreated from its inputs
ê Only a small set of well-defined operations are permitted on the RDDs

Ø But the operations usually take in arbitrary ”map” and “reduce” functions

! Fault tolerance for the “driver” is trickier
ê Drivers have arbitrary logic (cf., the programs you are writing)
ê In some cases (e.g., Spark Streaming), you can do fault tolerance
ê But in general, driver failure requires a restart

Driver

Example Spark Program
from pyspark import SparkContext

sc = SparkContext("local", "Simple App")

textFile = sc.textFile("README.md")

counts = textFile
.flatMap(lambda line: line.split(" "))
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a + b)

print(counts.take(100))

Initialize RDD by reading the textFile and
partitioning
If textFile stored on HDFS, it is already
partitioned – just read each partition as a
separate RDD partition

Split each line into words, creating an RDD
of words
For each word, output (word, 1), creating a
new RDD
Do a group-by SUM aggregate to count the
number of times each word appears Retrieve 100 of the values in the final RDD

RDD Operations

Dataframes Example
def basic_df_example(spark):

$example on:create_df$
spark is an existing SparkSession
df = spark.read.json("examples/src/main/resources/people.json")
Displays the content of the DataFrame to stdout
df.show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
$example off:create_df$

$example on:untyped_ops$
spark, df are from the previous example
Print the schema in a tree format
df.printSchema()
root
|-- age: long (nullable = true)
|-- name: string (nullable = true)

Select only the "name" column
df.select("name").show()
+-------+
| name|
+-------+
|Michael|
| Andy|
| Justin|
+-------+

Select everybody, but increment the age by 1
df.select(df['name'], df['age'] + 1).show()
+-------+---------+
| name|(age + 1)|
+-------+---------+
|Michael| null|
| Andy| 31|
| Justin| 20|
+-------+---------+

Select people older than 21
df.filter(df['age'] > 21).show()
+---+----+
|age|name|
+---+----+
| 30|Andy|
+---+----+

Count people by age
df.groupBy("age").count().show()
+----+-----+
| age|count|
+----+-----+
| 19| 1|
|null| 1|
| 30| 1|
+----+-----+
$example off:untyped_ops$

sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
$example off:run_sql$

$example on:global_temp_view$
Register the DataFrame as a global temporary view
df.createGlobalTempView("people")

Global temporary view is tied to a system preserved database
`global_temp`

spark.sql("SELECT * FROM global_temp.people").show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+

Dataframes Example
def basic_df_example(spark):

$example on:create_df$
spark is an existing SparkSession
df = spark.read.json("examples/src/main/resources/people.json")
Displays the content of the DataFrame to stdout
df.show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
$example off:create_df$

$example on:untyped_ops$
spark, df are from the previous example
Print the schema in a tree format
df.printSchema()
root
|-- age: long (nullable = true)
|-- name: string (nullable = true)

Select only the "name" column
df.select("name").show()
+-------+
| name|
+-------+
|Michael|
| Andy|
| Justin|
+-------+

Select everybody, but increment the age by 1
df.select(df['name'], df['age'] + 1).show()
+-------+---------+
| name|(age + 1)|
+-------+---------+
|Michael| null|
| Andy| 31|
| Justin| 20|
+-------+---------+

Select people older than 21
df.filter(df['age'] > 21).show()
+---+----+
|age|name|
+---+----+
| 30|Andy|
+---+----+

Count people by age
df.groupBy("age").count().show()
+----+-----+
| age|count|
+----+-----+
| 19| 1|
|null| 1|
| 30| 1|
+----+-----+
$example off:untyped_ops$

sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
$example off:run_sql$

$example on:global_temp_view$
Register the DataFrame as a global temporary view
df.createGlobalTempView("people")

Global temporary view is tied to a system preserved database
`global_temp`

spark.sql("SELECT * FROM global_temp.people").show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+

Summary

! Spark is a popular and widely used framework for large-scale
computing

! Simple programming interface
ê You don’t need to typically worry about the parallelization
ê That’s handled by Spark transparently
ê In practice, may need to fiddle with number of partitions etc.

! Managed services supported by several vendors including
Databricks (started by the authors of Spark), Cloudera, etc.

! Many other concepts that we did not discuss
ê Shared accumulator and broadcast variables
ê Support for Machine Learning, Graph Analytics, Streaming, and other use

cases

! Alternatives include: Apache Tez, Flink, and several others

