CMSC 724: Database Management Systems
Models, Languages, and Abstractions

Instructor: Amol Deshpande
amol@cs.umd.edu
Released on GitHub three programming assignments
 ◦ PostgreSQL, MongoDB, and Spark
 ◦ Spread out over the next month or so
 ◦ Goal to get to a common base for all of you
 ◦ Will post slides to help with those

First homework to be released by tomorrow
 ◦ Will focus on the readings for first two weeks

Readings for this and next week
 ◦ For 4 of the papers, just first couple of sections
Outline

- Data Models: Then, and now
 - History of Data Models (“what comes around...”)
 - A data model for Key-value Stores (“a co-relational model..”)
- Languages
 - Overview
 - Datalog (“a survey of research...” and “declarative networking...”)
- Map-reduce and Spark
 - Original MR Abstraction (“mapreduce:” ...”)
 - Spark (“resilient distributed datasets...”)
- SystemML: An abstraction for ML
- GraphX: An abstraction for Graphs
Outline

- Data Models: Then, and now
 - History of Data Models ("what comes around...")
 - A data model for Key-value Stores ("a co-relational model..")
- Languages
 - Overview
 - Datalog ("a survey of research..." and "declarative networking...")
- Map-reduce and Spark
 - Original MR Abstraction ("mapreduce:" ...")
 - Spark ("resilient distributed datasets...")
- SystemML: An abstraction for ML
- GraphX: An abstraction for Graphs
Things to Think About

- Goal is to choose a good data model for the data
 - Needs to be sufficient expressive – should capture real-world data
 - Easy to use for users – support physical and logical data independence
 - Lends to good performance

- Many similarities across models
 - Much convergence in the last two decades

- Keep in mind orthogonal issues of schema maintenance and evolution, and data integration/reconciliation
 - Possibly a much bigger headache in practice

- No doubt relational is the best low-level model, but should it continue to be the high-level model as well?
Physical & Logical Data Independence

- Examples of Physical Data Dependence (from Ted Codd, 1970)
 - Ordering dependence: How records are sorted hard-coded into the apps
 - Indexing dependence: What indexes are present on the data hard-coded in the apps
 - Access Path dependence: Dependence on the hierarchy or the network model chosen

- Logical data independence
 - Ability to make changes to the schema, e.g., add a new attribute, combine two tables, etc., without affecting external applications or APIs
 - Can be achieved through use of “views” in RDBMSs

- In general: we want the application programs to not hard-code any of those decisions so those can be changed easily
Running Example

Supplier (sno, sname, scity, sstate)
Part (pno, pname, psize, pcolor)
Supply (sno, pno, qty, price)

A Relational Schema

Figure 1

Supplier
16 General Supply Boston Ma
24 Special Supply Detroit Mi

Part
27 Power saw 7 silver
42 bolts 12 gray

Supply
16 27 100 $20.00
16 42 1000 $.10
24 42 5000 $.08

Some Sample Data
Figure 2
IMS Era (60’s)

- Main constructs: “record type” (schema), “instance” (must obey schema), “keys” (to uniquely identify records)
- Record types must be arranged in a hierarchy
 - Record instances stored using the same hierarchy
 - Records with the same parent stored as a linked list

Repeated information for the first hierarchy

Can’t store a part not supplied by anybody
IMS Era (60’s)

- "Record-at-a-time" query language
 - Programmer had to keep track of the “currency” indicators in their program – leads to complex edge cases

```
Get unique Supplier (sno = 16)
Until no-more {
    Get next within parent (color = red)
}
```

- Multiple storage options (e.g., sequential, using a B+-Tree, using Hashing)

- Supported some “physical data independence”
 - DL/1 language was written against the logical hierarchy to some extent
 - But use of hashing vs indexing still important (e.g., can’t use “get-next” on hashing storage)

- Several hacks added later to support non-tree structured data
 - Adds much more complexity
IMS Era (60’s)

- **Some Lessons**
 - Physical and logical data independence are highly desired
 - Tree-structured data models restrictive – not general enough, and hard to modify
 - Manual query optimization unlikely to work over long term

- **We see the same issues with JSON and XML databases of today**
 - No logical data independence – the hierarchies get hard-coded into queries
 - Significant physical data independence today though

```json
{
  "id": "16",
  "Name": "General Supply",
  "Location": "Boston, MA",
  "supplies": [
    {
      "id": "27",
      "Name": "Power Saw",
      "Qty": 7,
      "Color": "gray"
    },
    {...........}
  ]
}
```

```json
{
  "id": "24",
  "Name": "Special Supply",
  "Location": "Detroit, MI",
  "supplies": [
    {
      "id": "27",
      "Name": "Power Saw",
      "Color": "gray"
    },
    {...........}
  ]
}
```

VS

```json
Collection "Suppliers":
{
  "id": "16",
  "Name": "General Supply",
  "Location": "Boston, MA",
  "supplies": [
    {
      "id": "27",
      "Qty": 7,
      {...........}
    }
  ]
}
```

```json
Collection "Parts":
{
  "id": "27",
  "Name": "Power Saw",
  "Color": "silver"
}
```
CODASYL Era (70’s)

- Directed Graph Data Model, with a “record-at-a-time” data manipulation language
- Fewer restrictions than the IMS model
- But much more complex for the programmer (“programmer as a navigator”)
- Limited physical or logical data independence
- Harder to do bulk-loading of data
Let us illustrate the general effect that the \texttt{find} and \texttt{get} statements have on the program work area. Consider the sample data base of Figure A.16. Suppose that the current state of the program work area of a particular application program is as shown in Figure A.20. Further suppose that a \texttt{find} command is issued to locate the customer record belonging to Johnson. This command causes the following changes to occur in the state of the program work area:

- The current of record type \texttt{customer} now points to the record of Johnson.
- The current of set type \texttt{depositor} now points to the record of Johnson.

We have enclosed part of the query in a \texttt{while} loop, because we do not know in advance how many such customers exist. We exit from the loop when \texttt{DB-status} = 0. This action indicates that the most recent \texttt{find duplicate} operation failed, implying that we have exhausted all customers residing in Harrison.

A.4.4 Access of Records within a Set

The previous \texttt{find} commands located any database record of type \texttt{<record type>}. In this subsection, we concentrate on \texttt{find} commands that locate records in a particular \texttt{DBTG} set. The set in question is the one that is pointed to by the \texttt{<set-type> currency} pointer. There are three different types of commands. The basic \texttt{find} command is \texttt{find first <record type> within <set-type>}, which locates the first member record of type \texttt{<record type>} belonging to the current occurrence of \texttt{<set-type>}. The various ways in which a set can be ordered are discussed in Section A.6.6.

To step through the other members of type \texttt{<record type>} belonging to the set occurrence, we repeatedly execute the following command:

\texttt{find next <record type> within <set-type>}

The \texttt{find first} and \texttt{find next} commands need to specify the record type since a \texttt{DBTG} set can have members of different record types. As an illustration of how these commands execute, let us construct the \texttt{DBTG} query that prints the total balance of all accounts belonging to Hayes.

\begin{verbatim}
sum := 0;
customer.customer.name := "Hayes";
find any customer using customer.city;
while DB-status = 0 do
 begin
 get customer;
 print (customer.customer.name);
 find duplicate customer using customer.city;
 end;
end;
\end{verbatim}

\texttt{customer.customer.city := "Harrison"; find any customer using customer.city; while DB-status = 0 do begin get customer; print (customer.customer.name); find duplicate customer using customer.city end;}

\textbf{Figure A.20} Program work area.
Very similar to today’s graph data model proposals (e.g., “property graph”)

But those show significantly more physical and logical data independence
 ◦ Depending on the actual implementation
 ◦ Need to enforce schemas (many graph databases today don’t)

Many of the identified limitations of CODASYL really about the language and some implementation choices

Also bears much similarity with Entity-Relational Model (at the conceptual level)
 ◦ E/R Model never really had an implementation or a language
Relational Era

- Proposed by Ted Codd in 1969/1970
 - “IMS programmers were spending large amount of time doing maintenance on IMS applications when logical or physical changes occurred”

- Proposal:
 - Store data in a simple data structure (tables)
 - Access it through a high-level set-at-a-time DML (relational algebra → SQL)
 - No need to mandate any physical storage design (each system can do its own, and change easily as needed)

- Can easily represent 3-entity relationships (difficult for network model)

- No existence dependencies that plagued hierarchical model

- Cons:
 - Transitive closure
 - (initially) performance
 - (initially) too complex and mathematical languages
Relational Era

- Many debates in 1970’s
- Relational Model Advocates
 - Nothing as complex as CODASYL can possibly be a good idea
 - CODASYL does not provide acceptable data independence
 - Record-at-a-time programming is too hard to optimize
 - CODASYL and IMS are not flexible enough to easily represent common situations (such as marriage ceremonies)
- CODASYL Advocates
 - COBOL programmers cannot possibly understand the new-fangled relational languages
 - It is impossible to implement the relational model efficiently
 - CODASYL can represent tables, so what’s the big deal?
- Both camps changed positions to move towards each other
 - Relational systems got user-friendly languages (SQL, QUEL), and efficient implementation
- (According to Authors) Effectively settled by mini-computer revolution, and by IBM who announced new relational products
 - And by non-portability of CODASYL engines
Don Chamberlin of IBM was an early CODASYL advocate (later co-invented SQL)

“He (Codd) gave a seminar and a lot of us went to listen to him. This was as I say a revelation for me because Codd had a bunch of queries that were fairly complicated queries and since I’d been studying CODASYL, I could imagine how those queries would have been represented in CODASYL by programs that were five pages long that would navigate through this labyrinth of pointers and stuff. Codd would sort of write them down as one-liners. These would be queries like, "Find the employees who earn more than their managers." [laughter] He just whacked them out and you could sort of read them, and they weren’t complicated at all, and I said, "Wow." This was kind of a conversion experience for me, that I understood what the relational thing was about after that.”
Explicitly represent entities and relationships, and connections between them
- Much easier for conceptual development of a schema

No real uptake as the physical data model used by a database back then
- Lot of similarities to CODASYL
- Easy to map to relational

Widely used today for initial schema design
- Normal forms are too difficult to work with
- Don’t address the question of how to get started

An E-R Diagram
Figure 11
Many similarities to Object-relational Mapping Frameworks (like ruby-on-rails, python Django, etc).

- Those frameworks explicitly model “object types” and “relationships” between them
- Very widely used by application programmers today
- Typically mapped to a RDBMS at the backend (not always a faithful mapping)
- Also similar to “property graphs” (assuming schemas are enforced)

In my opinion: E/R model should be resurrected as the primary model for RDBMS

- Maintenance of relational model is too hard
- Changes made over time lead to un-normalized schemas with many issues
- See “Database Decay” by Stonebraker et al.
Many new proposals focusing on specific applications that were not a good fit for relational CAD, Text Management, Time, Graphics, etc.

GEM [Zaniolo 83]
- Set-valued attributes (e.g., available colors in “parts”)
- Cascaded dot notation (e.g., how you do in ORMs)
- Inheritance hierarchies

Main cons:
- No real improvements over the relational model, either functionality or performance
- Some of the key constructs could be easily added to relational model (e.g., new data types, arrays)

```
Select Supply.SR.sno
From Supply
Where Supply.PT.pcolor = “red”
```
Object-oriented Models

- Designed to handle the “impedance mismatch”
 - How data is represented in memory (typically as objects) vs how it is stored (in a normalized relational schema)

- Essentially became “persistent” programming languages
 - Interesting technical challenge: “pointer swizzling”

- Weak support for transactions, queries, etc.
 - Largely single-user systems
 - DBMS must run in the same address space as the application

- Several reasons didn’t succeed
 - No major additional functionality for most applications (i.e., a niche market)
 - No standards
 - Too tied to a single programming language

- Bear many similarities to Graph Databases
 - OrientDB, one of the major graph databases, basically an Object Store

<table>
<thead>
<tr>
<th>ID</th>
<th>FIRST_NAME</th>
<th>LAST_NAME</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>John</td>
<td>Connor</td>
<td>+16105551234</td>
</tr>
<tr>
<td>2</td>
<td>Matt</td>
<td>Makai</td>
<td>+12025555689</td>
</tr>
<tr>
<td>3</td>
<td>Sarah</td>
<td>Smith</td>
<td>+19735554512</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Python objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>class Person:</td>
</tr>
<tr>
<td>first_name = "John"</td>
</tr>
<tr>
<td>last_name = "Connor"</td>
</tr>
<tr>
<td>phone_number = "+16105551234"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Python objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>class Person:</td>
</tr>
<tr>
<td>first_name = "Matt"</td>
</tr>
<tr>
<td>last_name = "Makai"</td>
</tr>
<tr>
<td>phone_number = "+12025555689"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Python objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>class Person:</td>
</tr>
<tr>
<td>first_name = "Sarah"</td>
</tr>
<tr>
<td>last_name = "Smith"</td>
</tr>
<tr>
<td>phone_number = "+19735554512"</td>
</tr>
</tbody>
</table>
Object-relational Models

- Motivated by need to represent more complex data types
 - e.g., locations, rectangles, complex numbers etc.
- Possible to do in relational to some extent, but very painful and error-prone
- Instead, have:
 - User-defined types
 - User-defined operators (that change the meaning of “+”)
 - User-defined functions to work on those types (e.g., to find if a Point lies in a Rectangle)
 - User-defined “indexes” (for efficient searching): B+-trees don’t work well on spatial data

Postgres (research project at Berkeley, led by Stonebraker) the first real implementation
- UDFs a major benefit
 - By putting code in the databases, avoided many round-trips to the database from the client
Semi-structured Data

- Context: XML very popular in the industry and academia circa 2000
 - When this article was first written

- Flexible schemas (“schema later” or “schema-on-read”)
 - Don’t require a schema in advance – instead impose it when reading, or make it part of the data itself (self-describing)
 - Relational databases will reject any data that doesn’t conform to the schema
 - Easy to state, but hard to use due to semantic heterogeneity and other issues
 - Need a well-defined understanding of what the fields mean to use it properly (i.e., need a schema)

- These databases also support easy schema evolution, which is a major benefit especially in early application development

```
Person:
  Name: Joe Jones
  Wages: 14.75
  Employer: My_accounting
  Hobbies: skiing, bicycling
  Works_for: ref (Fred Smith)
  Favorite joke: Why did the chicken cross the road?
  Office number: 247
  Major skill: accountant
End Person

Person:
  Name: Smith, Vanessa
  Wages: 2000
  Favorite coffee: Arabian
  Pastimes: sewing, swimming
  Works_for: Between jobs
  Favorite restaurant: Panera
  Number of children: 3
End Person:
```
Semi-structured Data

- Context: XML very popular in the industry and academia circa 2000
 - When this article was first written

- Main constructs in XML (and JSON today, mostly)
 - "Self-describing" (the attribute names part of the data)
 - Hierarchical format
 - Can have links to other records (like CODASYL)
 - Set-valued attributes (leads to more complex language)

- XML popular early on as a “on-the-wire format” (as is JSON today)
 - Text-based, so can go through firewalls
 - Not proprietary
 - JSON widely used for APIs today
 - Other formats like Parquet are more common for large volumes of data
Developments since 2005

- From redbook.io: http://www.redbook.io/ch1-background.html

- XML didn’t really take over
 - Too complex, especially query languages (XQuery)
 - Inefficient implementations (e.g., for indexes)
 - No compelling use cases

- JSON more popular and very similar
 - Good for sparse data – can be handled by adding a JSON data type to the database
 - Schema on read – basically just a "project" on fewer attributes of interest
 - Doesn’t really solve semantic heterogeneity problems
NoSQL Data Models

- Quite a few different data models, but map closely to one of the standard ones
- Document Data Model: JSON, XML, etc.
- Key-Value: Simple interface
 - put(key, value), get(key)
 - Lot of logic in what “value” is and how it is manipulated
 - e.g., value may be JSON, time-series, etc.
- Graph Data Models:
 - A few different ones: Property Graph, RDF, ...
- Column families (e.g., Cassandra)
 - Puts a little more structure on key-value
 - “values” themselves are stored as columns of information
- Array Data Models
 - Proposed for scientific data management
 - Key abstraction: an array or a matrix
 - Key operations: Slicing, Subsetting, Filtering, etc.

![Figure 1: Simple Two Dimensional SciDB Array.](image-url)
Outline

- Data Models: Then, and now
 - History of Data Models ("what comes around...")
 - A data model for Key-value Stores ("a co-relational model..")

- Languages
 - Overview
 - Datalog ("a survey of research..." and "declarative networking...")

- Map-reduce and Spark
 - Original MR Abstraction ("mapreduce:..."")
 - Spark ("resilient distributed datasets...")

- SystemML: An abstraction for ML

- GraphX: An abstraction for Graphs
Goal to unify Relational and NoSQL (specifically, key-value) model under a single umbrella

View “key-value” data model as an “object graph”

- Bit of a stretch IMO
var q = from product in Products
 where product.Ratings.Any(rating => rating == "****")
 select new{ product.Title, product.Keywords };

Figure 2: Object Graph for Books with Four-star Ratings
class Products
{
 int ID;
 string Title;
 string Author;
 int Year;
 int Pages;
}

class Keywords
{
 int ID;
 string Keyword;
 int ProductID;
}

class Ratings
{
 int ID;
 string Rating;
 int ProductID;
}

![Figure 3: Relational Tables for Product Database](image3)

<table>
<thead>
<tr>
<th>ID</th>
<th>Rating</th>
<th>ProductID</th>
</tr>
</thead>
<tbody>
<tr>
<td>787</td>
<td>****</td>
<td>1579124585</td>
</tr>
<tr>
<td>747</td>
<td>4 stars</td>
<td>1579124585</td>
</tr>
</tbody>
</table>

![Figure 4: Tabular Result for Books with Four-star Ratings](image4)

<table>
<thead>
<tr>
<th>Title</th>
<th>Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Right Stuff</td>
<td>Book</td>
</tr>
<tr>
<td>The Right Stuff</td>
<td>Hardcover</td>
</tr>
<tr>
<td>The Right Stuff</td>
<td>American</td>
</tr>
</tbody>
</table>
Some Issues with SQL/Relational

- Referential Integrity requires a “closed-world” assumption
 - Simplifies implementation and allows query optimization
 - But makes it harder to distribute and scale-out data (harder to ensure referential integrity in that case)

- Non-compositional
 - SQL does not have expressions that denote tables or rows directly
 - Cannot create complex values from simpler values
 - No recursion
 - Semantics of NULL a big mess

- Impedance mismatch
 - O/R mappers can be seen as a way to fix this
But perhaps not so different from each other?

- In object graph: identities are “intensional”, i.e., not explicitly represented as keys, whereas they “extensional” in relational model
- The arrows are reversed
- Monads and Monad Comprehensions could unify the query languages as well
Thoughts

- Somewhat simplistic view of a NoSQL data model as an “object graph”
 - Even for key-value stores, a bit of stretch

- Similarities between SQL group-by aggregates, and Map-Reduce are well-known
 - Spark uses the same terminology as SQL in most places

- New insights here not fully clear
 - Use of Monads and Monad Comprehension interesting, but not sufficiently developed

- Doesn’t cover other popular data models and query languages
 - like MongoDB Query Language, or Graph Query Languages

- Many NoSQL databases have adopted an SQL-like language
 - Some with explicit SQL keywords (e.g., Cassandra QL, CouchDB)
 - Others using somewhat different keywords (e.g., MongoDB Query Language)
Outline

- Data Models: Then, and now
 - History of Data Models ("what comes around...")
 - A data model for Key-value Stores ("a co-relational model...")
- Languages
 - Overview
 - Datalog ("a survey of research..." and "declarative networking...")
- Map-reduce and Spark
 - Original MR Abstraction ("mapreduce:" ...")
 - Spark ("resilient distributed datasets...")
- SystemML: An abstraction for ML
- GraphX: An abstraction for Graphs
Procedural vs Declarative Languages

- **Procedural/imperative query languages**
 - Support a set of data-oriented operations
 - Usually need to specify the sequence of steps to be taken to get to the output
 - Often map one-to-one with the physical operators that are implemented
 - Large gap between those two ➔ more opportunities to optimize

- **Declarative query languages**
 - Specify the desired outcome, typically as a function over the inputs

- A different issue that how ”high-level” or abstract the language is

- Most languages today are somewhere in-between
 - SQL is more declarative than procedural
Early Languages

- DL/1 or DBTG were procedural in nature
- Not easy to write complex data processing operations

```plaintext
branch.branch.name := "Perryridge";
find any branch using branch.name;
find first account within account.branch;
while DB-status = 0 do
  begin
    find owner within depositor;
    get customer;
    print (customer.customer.name);
    find next account within account.branch;
  end

DBTG: CODASYL Language
```
Relational Algebra

- Original set of operators (select, project, join, union/intersection) proposed by Ted Codd in 1970
 - His “join” operation was somewhat different, but “natural join” same as today
 - Also procedural, but high-level and easy to use

- Six Basic Operations operating on Relations (see 424 slides for more)
 - Select (σ): Unary – select a subset of rows
 - Project (π): Unary – select a subset of columns
 - Set Union and Set Difference: Binary
 - Cartesian Product (×): Binary
 - Rename (ρ): Need to be able to do self-joins
Operations on Datasets: Select

- Input: Table, Output: Table
- Select only those rows that match the condition
- SQL: “where”
- May be called “match” or “find” or ”filter”

<table>
<thead>
<tr>
<th>Relation r</th>
<th>(\sigma_{A = B \land D > 5} (r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>α</td>
<td>α</td>
</tr>
<tr>
<td>α</td>
<td>β</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>α</td>
<td>α</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
</tr>
</tbody>
</table>
Input: Table, Output: Table
Select only those columns that match the condition
SQL: “select”
Operations on Datasets: Map

- Input: Rows of Objects, Output: Rows of Objects
 - i.e., don’t care about what’s in a row
- For each row, apply a function
- SQL: “select” can handle this (with UDFs)

Table t

<table>
<thead>
<tr>
<th>o1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>o2</td>
<td></td>
</tr>
<tr>
<td>o3</td>
<td></td>
</tr>
<tr>
<td>o4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t.map(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(o1)</td>
</tr>
<tr>
<td>f(o2)</td>
</tr>
<tr>
<td>f(o3)</td>
</tr>
<tr>
<td>f(o4)</td>
</tr>
</tbody>
</table>
Operations on Datasets: flatMap

- Has other names (e.g., unwind)
- Input: Rows of Objects, Output: Rows of Objects
- For each row, apply a function that may generate >= 0 rows
- SQL: No easy way to do this

Table t

<table>
<thead>
<tr>
<th>o1</th>
<th>o2</th>
<th>o3</th>
<th>o4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t.map(f)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f(o1) = [o1’, o2’, o3’]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f(o2) = []</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f(o3) = [o4’]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f(o4) = [o5’]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| o1’ |
| o2’ |
| o3’ |
| o4’ |
| o5’ |
Operations on Datasets: Group(\text{By})

- Input: Collection of \((k, v)\) pairs, Output: Collection of \((k, \{v\})\) pairs
 - \(k = \text{key}, v = \text{value}\)
- Group the input rows by the “\text{key}”
- Relational Algebra: No support (can’t have sets as values)
- SQL: Most implementations support it
 - e.g., postgresql has array aggregates or string aggregates
- Other Names: “nest”

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{t} & \textbf{t.groupByKey()} \\
\hline
k1 & [o1, o2] \\
\hline
k1 & o2 \\
\hline
k2 & o3 \\
\hline
k3 & o4 \\
\hline
\end{tabular}
\end{table}
Operations on Datasets: Group(By) Aggregates

- Input: Collection of (k, v) pairs, Output: Collection of (k, [v]) pairs
- Also called “reduceByKey” or “aggregateByKey”
- Group values by key, and apply a provided “function” to get a single value
- SQL has a predefined set of functions (SUM, COUNT, MAX, …)

Table t

<table>
<thead>
<tr>
<th>k1</th>
<th>o1</th>
</tr>
</thead>
<tbody>
<tr>
<td>k1</td>
<td>o2</td>
</tr>
<tr>
<td>k2</td>
<td>o3</td>
</tr>
<tr>
<td>k3</td>
<td>o4</td>
</tr>
</tbody>
</table>

\[t.\text{reduceByKey}(f) \]

<table>
<thead>
<tr>
<th>k1</th>
<th>f(o1, o2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k2</td>
<td>f(o3)</td>
</tr>
<tr>
<td>k3</td>
<td>f(o4)</td>
</tr>
</tbody>
</table>
Operations on Datasets: Group(By) Aggregates

- PostgreSQL (and other systems) support user-defined aggregate functions
 - init(): what’s the initial state (e.g., for AVG: \(\text{count} = 0, \text{sum} = 0\))
 - update(): modify state given a new value (e.g., for AVG: \(\text{count} + 1, \text{sum} + \text{newval}\))
 - final(): generate the final aggregate (e.g., for AVG: \(\text{sum}/\text{count}\))
 - The update operation must be insensitive to the order in which the values are processed
 - i.e., output should be the same if it sees: \(v_1, v_2, v_3\), versus if it sees: \(v_3, v_2, v_1\) in that order
 - Must process tuples sequentially

\[
\begin{align*}
 s &= \text{init}() \\
 s &= \text{update}(s, v_1) \\
 s &= \text{update}(s, v_2) \\
 \ldots \\
 \text{result} &= \text{final}(s)
\end{align*}
\]

- Another way to do it
 - Provide a binary function that is commutative and distributive
 - Shouldn’t matter in which order the objects are processed
 - More “parallelizable”
 - Can generate a (sum, count) pair, but for “average” need another “map”

Any of these are fine
\[
\begin{align*}
 \text{result} &= f(f(f(v_1, v_2), f(v_3, v_4)), v_5) \\
 \text{result} &= f(f(f(v_1, f(v_2, v_3)), v_4)), v_5) \\
 \text{result} &= f(f(f(f(f(v_1, v_2), v_3), v_4), v_5)) \\
 \text{result} &= f(f(v_1, f(v_2, v_3)), f(v_4, v_5))
\end{align*}
\]
Operations on Datasets: Unnest

- Opposite of “nest” (group by)
- Similar to “flatMap” and “unwind” (in MongoDB)
 - But defined for relational algebra (extended to handle sets as values)
- Useful abstraction to deal with non-1NF data (e.g., JSON which supports arrays)

Table t

<table>
<thead>
<tr>
<th>k1</th>
<th>[o1, o2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>k2</td>
<td>[o3]</td>
</tr>
<tr>
<td>k3</td>
<td>[o4]</td>
</tr>
</tbody>
</table>

unnest

<table>
<thead>
<tr>
<th>k1</th>
<th>o1</th>
</tr>
</thead>
<tbody>
<tr>
<td>k1</td>
<td>o2</td>
</tr>
<tr>
<td>k2</td>
<td>o3</td>
</tr>
<tr>
<td>k3</td>
<td>o4</td>
</tr>
</tbody>
</table>
UNNEST((SUBJECT(SUBJECT'),EXAMS))
Operations on Datasets: Set Union/Intersection/Difference

- Input: Two collections, Output: One collection
- SQL support: union/except/intersection
 - Requires collections (tables) to have the same schema
 - Removes duplicates by default (most SQL operations don’t remove duplicates)
 - Can use “union all” etc., to preserve duplicates

Relation r, s

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td>β</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td>β</td>
<td>3</td>
</tr>
</tbody>
</table>

$r \cup s$:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td>β</td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>3</td>
</tr>
</tbody>
</table>

$r - s$:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>1</td>
</tr>
</tbody>
</table>
Operations on Datasets: Cartesian Product

- Input: Two tables, Output: One table
- Note: a “set” product will result in nested output
 - First row would be: ((alpha, 1), (alpha, 10, a))
 - Relation algebra flattens it

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>β</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>β</td>
<td>20</td>
<td>b</td>
</tr>
<tr>
<td>γ</td>
<td>10</td>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>β</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>β</td>
<td>20</td>
<td>b</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>γ</td>
<td>10</td>
<td>b</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>α</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>β</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>β</td>
<td>20</td>
<td>b</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>γ</td>
<td>10</td>
<td>b</td>
</tr>
</tbody>
</table>
Operations on Datasets: Joins

- Input: Two tables, Output: One table
- Cartesian product followed by a “select”/“map”
- Many variations of joins used in database literature
 - Note: semi-join and anti-join are technically “select” operations on “r”, not a “join” operation

Tables: r(A, B), s(B, C)

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>SQL Equivalent</th>
<th>RA expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross product</td>
<td>⊗</td>
<td>select * from r, s;</td>
<td>r × s</td>
</tr>
<tr>
<td>natural join</td>
<td>⊙</td>
<td>natural join</td>
<td>π_{r.A, r.B, s.C}σ_{r.B = s.B}(r x s)</td>
</tr>
<tr>
<td>theta join</td>
<td>⋈_θ</td>
<td>from .. where θ;</td>
<td>σ_θ(r x s)</td>
</tr>
<tr>
<td>equi-join</td>
<td>⋈_θ</td>
<td></td>
<td>(theta must be equality)</td>
</tr>
<tr>
<td>left outer join</td>
<td>r ⟕ s</td>
<td>left outer join (with “on”)</td>
<td>(see previous slide)</td>
</tr>
<tr>
<td>full outer join</td>
<td>r ⟗ s</td>
<td>full outer join (with “on”)</td>
<td>–</td>
</tr>
<tr>
<td>(left) semijoin</td>
<td>r ⋈ s</td>
<td>none</td>
<td>π_{r.A, r.B}(r ⋈ s)</td>
</tr>
<tr>
<td>(left) antijoin</td>
<td>r ▷ s</td>
<td>none</td>
<td>r - π_{r.A, r.B}(r ⋈ s)</td>
</tr>
</tbody>
</table>
Another way to look at a left outer join

Input: Table, Output: Table
Augment the input table with data from another table
Supported by “Excel”, MongoDB, etc.

Table R

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c2</td>
</tr>
<tr>
<td>a3</td>
<td>b1</td>
<td>c1</td>
</tr>
</tbody>
</table>

Table S

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
<td>e1</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c2</td>
<td>d2</td>
<td>e1</td>
</tr>
<tr>
<td>a3</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
<td>e1</td>
</tr>
</tbody>
</table>

Table S

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>d1</td>
<td>e1</td>
</tr>
<tr>
<td>c2</td>
<td>d2</td>
<td>e1</td>
</tr>
<tr>
<td>c3</td>
<td>d2</td>
<td>e3</td>
</tr>
</tbody>
</table>

Lookup in S using “C”

C must be a “key” for S, o/w not well-defined
Operations on Datasets: Pivot

- Flip rows and columns
- No SQL equivalent, although supported by many systems (e.g., CROSSTAB in PostgreSQL)
- Usually used in conjunction with aggregates (so that the number of rows is small)

Table R

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c2</td>
</tr>
<tr>
<td>a3</td>
<td>b1</td>
<td>c1</td>
</tr>
</tbody>
</table>

pivot

<table>
<thead>
<tr>
<th>a1</th>
<th>a2</th>
<th>a3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>b2</td>
<td>b1</td>
</tr>
<tr>
<td>c1</td>
<td>c2</td>
<td>c1</td>
</tr>
</tbody>
</table>
Operations on Datasets

- Sorting and ordering
- Ranking (sparse vs dense rank)
- Distinct (duplicate elimination)
- Sample: generate a random sample
- Data Cubes
 - Allows aggregating on multiple attributes simultaneously
Many data management systems view data as collection/multiset of tuples or objects or (key, value) pairs

A common set of operations supported by most
- Some Unary, Some Binary (or more generally, n-ary)

Language constructs often map one-to-one to physical operators, but not always
- e.g., SQL JOIN is a n-ary operator, that maps to a sequence of binary JOINs
- Recent work on trying to do n-ary joins directly (asymptotically better in some cases)

More declarative a language ➔ More opportunities to optimize
- e.g., Pandas (Python Library), MongoDB, Apache Spark RDD interface, etc, not declarative even though pretty high-level
- However, physical operators themselves can be heavily optimized, especially in parallel settings
Originally SEQUEL: A Structured English Query Language (1974), developed at IBM for System R

Commercial implementations in Oracle and DB2 in late 70’s, early 80’s

Standardization by ANSI and ISO started in 1996

Very similar to Relational Algebra in the basic operators it supports

- Except for GROUP BYs and AGGREGATEs (among basic constructs), and some Set Operations (e.g., NOT IN, ALL)

Modern implementations support many additional constructs

- Window and Partitioning Functions
- Recursion
- Triggers

Skim through 424 Slides
Some Criticisms of SQL

- From: “A critique of SQL”, Date, 1984
- e.g., can’t use a table name as a table expression

```
SELECT EMP# FROM ( NYC UNION SFO )       vs
SELECT EMP# FROM NYC UNION
SELECT EMP# FROM SFO
```

- In general, a lot of inconsistencies in what can be used where
- Aggregates don’t have a natural formalism
- Some of those criticisms fixed since then, but many are fundamental to the language
Impedance Mismatch

- Recognized fairly early on: ”Some High Level Language Constructs for Data of Type Relation”; Schmidt, 1976
- Proposed an extension to Pascal/R to include a Relation as a basic data type

```pascal
type erectype = record enr, estatus:integer; cename:string end;
eroltype = relation (enr) of erectype;
trectype = record lenr, icnr, ttime:integer;
            tday, troom:string end;
treltype = relation (lenr, icnr, tday) of trectype;
crectype = record cnr, clevel:integer; cename:string end;
creltype = relation (cnr) of crectype;
var employees, result3, result4, result5, result6:creltype;
timetable:treltype;
courses:creltype;
begin
  .
  .
result3 := [each erc in employees:erc.estatus = 2];
result4 := [each erc in employees:some trec in timetable ((erc.enr = trec.icnr) and
            (trec.tday = 'friday'))];
result5 := [each erc in employees:all trec in timetable (erc.enr ≠ trec.tenr)];
result6 := [each erc in employees:all trec in timetable ((erc.enr ≠ trec.tenr) or
            some crec in courses ((trec.icnr = crec.cnr) and (crec.clevel = 1)))]
end.
```
Impedance Mismatch

- Also led to the work on Object-oriented Databases, and (later) Object-Relational Mapping (ORM) frameworks

- Language INtegrated Query (LINQ) Framework
 - A declarative component of the .NET OOPLs (C#, Visual Basic, F#)
 - Allows querying and manipulating collections of objects using SQL-style syntax

```csharp
class LINQQueryExpressions
{
    static void Main()
    {

        // Specify the data source.
        int[] scores = new int[] { 97, 92, 81, 60 };

        // Define the query expression.
        IEnumerable<int> scoreQuery =
            from score in scores
            where score > 80
            select score;

        // Execute the query.
        foreach (int i in scoreQuery)
        {
            Console.Write(i + " ");
        }
    }

    // Output: 97 92 81
```
// SQL-style syntax to join two input sets:
// scoreTriples and staticRank
var adjustedScoreTriples =
 from d in scoreTriples
 join r in staticRank on d.docID equals r.key
 select new QueryScoreDocIDTriple(d, r);
var rankedQueries =
 from s in adjustedScoreTriples
 group s by s.query into g
 select TakeTopQueryResults(g);

// Object-oriented syntax for the above join
var adjustedScoreTriples =
 scoreTriples.Join(staticRank,
 d => d.docID, r => r.key,
 (d, r) => new QueryScoreDocIDTriple(d, r));
var groupedQueries =
 adjustedScoreTriples.GroupBy(s => s.query);
var rankedQueries =
 groupedQueries.Select(
 g => TakeTopQueryResults(g));

Figure 3: A program fragment illustrating two ways of expressing the same operation. The first uses LINQ’s declarative syntax, and the second uses object-oriented interfaces. Statements such as r => r.key use C#’s syntax for anonymous lambda expressions.
Impedance Mismatch

- Also led to the work on Object-oriented Databases, and (later) Object-Relational Mapping (ORM) frameworks

- Language INtegrated Query (LINQ) Framework
 - A declarative component of the .NET OOPLs (C#, Visual Basic, F#)
 - Allows querying and manipulating collections of objects using SQL-style syntax

- Today, many programming languages have support for list comprehensions, dictionaries, and features like that
 - With libraries to make it easy to load and store data
 - For example, Pandas for Python, Libraries to read/write Parquet/Avro files, etc.
Input = collections, output = collections
 ◦ Very similar to Spark

Three main types of queries in the query language
 ◦ Retrieval: Restricted SELECT-WHERE-ORDER BY-LIMIT type queries
 ◦ Aggregation: A bit of a misnomer; a general pipeline of operators
 ◦ Can capture Retrieval as a special case
 ◦ But worth understanding Retrieval queries first...
 ◦ Updates

All queries are invoked as
 ◦ db.collection.operation1(...).operation2(...)
 ◦ collection: name of collection
 ◦ Unlike SQL which lists many tables in a FROM clause, MQL is centered around manipulating a single collection (like Spark)
Aggregation Pipelines

- Composed of a linear pipeline of stages
- Each stage corresponds to one of:
 - match
 - project
 - sort/limit
 - group
 - unwind
 - lookup
 - ... lots more!!
- Each stage manipulates the existing collection in some way

Syntax:
```
db.collection.aggregate([{
  $stage1Op: { }},
  { $stage2Op: { }},
  ...
  { $stageNOp: { } }
])
```
Find states with population > 15M, sort by descending order

```
> db.zips.find()
{ "_id" : "01022", "city" : "WESTOVER AFB", "loc" : [ -72.558657, 42.196672 ], "pop" : 1764, "state" : "MA" }
{ "_id" : "01011", "city" : "CHESTER", "loc" : [ -72.988761, 42.279421 ], "pop" : 1688, "state" : "MA" }
{ "_id" : "01026", "city" : "CUMMINGTON", "loc" : [ -72.905767, 42.435296 ], "pop" : 1484, "state" : "MA" }
```

Q: what would the SQL query for this be?

```sql
SELECT state AS id, SUM(pop) AS totalPop
FROM zips
GROUP BY state
HAVING totalPop >= 15000000
ORDER BY totalPop DESCENDING
```
Find, for every state, the biggest city and its population

```javascript
aggregate([ 
  { $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } },
  { $sort: { pop: -1 } },
  { $group: { _id: "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } },
  { $sort: {bigPop : -1} }
])
```

Approach:
- Group by pair of city and state, and compute population per city
- Order by population descending
- Group by state, and find first city and population per group (i.e., the highest population city)
- Order by population descending

```
{ "_id" : "IL", "bigCity" : "CHICAGO", "bigPop" : 2452177 }
{ "_id" : "NY", "bigCity" : "BROOKLYN", "bigPop" : 2300504 }
{ "_id" : "CA", "bigCity" : "LOS ANGELES", "bigPop" : 2102295 }
{ "_id" : "TX", "bigCity" : "HOUSTON", "bigPop" : 2095918 }
{ "_id" : "PA", "bigCity" : "PHILADELPHIA", "bigPop" : 1610956 }
{ "_id" : "MI", "bigCity" : "DETROIT", "bigPop" : 963243 }
...
```
Multiple Agg. with Vanilla Projection Example

If we only want to keep the state and city ...

```javascript
aggregate([ 
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } }, 
{ $sort: { pop: -1 } }, 
{ $group: { _id: "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } }, 
{ $sort: {bigPop: -1}} 
{ $project: {bigPop: 0} } ])
```

```
{ "_id": "IL", "bigCity": "CHICAGO" }
{ "_id": "NY", "bigCity": "BROOKLYN" }
{ "_id": "CA", "bigCity": "LOS ANGELES" }
{ "_id": "TX", "bigCity": "HOUSTON" }
{ "_id": "PA", "bigCity": "PHILADELPHIA" }
...
```

Syntax somewhat different when called from within Python3 (using pymongo)
Multiple Agg. with Adv. Projection Example

If we wanted to nest the name of the city and population into a nested doc

aggregate([
 { $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } },
 { $sort: { pop: -1 } },
 { $group: { _id: "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } },
 { $sort: {bigPop : -1} },
 { $project : { _id : 0, state : "$_id", bigCityDeets: { name: "$bigCity", pop: "$bigPop" } } }
])

{ "state" : "IL", "bigCityDeets" : { "name" : "CHICAGO", "pop" : 2452177 } }
{ "state" : "NY", "bigCityDeets" : { "name" : "BROOKLYN", "pop" : 2300504 } }
{ "state" : "CA", "bigCityDeets" : { "name" : "LOS ANGELES", "pop" : 2102295 } }
{ "state" : "TX", "bigCityDeets" : { "name" : "HOUSTON", "pop" : 2095918 } }
{ "state" : "PA", "bigCityDeets" : { "name" : "PHILADELPHIA", "pop" : 1610956 } }
...

Can construct new nested documents in output, unlike vanilla projection

Syntax somewhat different when called from within Python3 (using pymongo)
Q: Imagine if we want to find sum of qtys across items. How would we do this?

A common recipe in MQL queries is to *unwind* and then *group by*

```
aggregate([
    {
        $unwind: "$instock",
    },
    {
        $group: {_id: "$item", totalqty: {sum: "$instock.qty"}}
    }
])
```

```
{ "_id" : "notebook", "totalqty" : 5 }
{ "_id" : "postcard", "totalqty" : 50 }
{ "_id" : "journal", "totalqty" : 20 }
{ "_id" : "planner", "totalqty" : 45 }
{ "_id" : "paper", "totalqty" : 75 }
```

Syntax somewhat different when called from within Python3 (using pymongo)
Looking Up Other Collections

Conceptually, for each document

- find documents in other coll that join (equijoin)
 - local field must match foreign field
- place each of them in an array

Thus, a left outer equi-join, with the join results stored in an array

Straightforward, but kinda gross. Let’s see...

Say, for each item, I want to find other items located in the same location = self-join

```javascript
$lookup:
  from: <collection to join>,
  localField: <referencing field>,
  foreignField: <referenced field>,
  as: <output array field>

db.inventory.aggregate([ {$lookup: {from: "inventory", localField: "instock.loc", foreignField: "instock.loc", as: "otheritems"}}, {$project: {_id: 0, tags: 0, dim: 0}} ])
```

```
{ "item": "journal", "instock": [{ "loc": "A", "qty": 5 }, { "loc": "C", "qty": 15 }], "tags": [ "blank", "red" ], "dim": [ 14, 21 ] }
{ "_id": ObjectID("5fb6f9605f059a0227d3c24"), "item": "journal", "instock": [{ "loc": "A", "qty": 5 }, { "loc": "C", "qty": 15 }], "tags": [ "blank", "red" ], "dim": [ 14, 21 ] }
{ "_id": ObjectID("5fb6f9605f059a0227d3c25"), "item": "notebook", "instock": [{ "loc": "B", "qty": 60 }, { "loc": "A", "qty": 5 }], "tags": [ "red", "blank" ], "dim": [ 14, 21 ] },

... And many other records!
```

Syntax somewhat different when called from within Python3 (using pymongo)
Outline

- Data Models: Then, and now
 - History of Data Models ("what comes around...")
 - A data model for Key-value Stores ("a co-relational model..")
- Languages
 - Overview
 - Datalog ("a survey of research..." and "declarative networking...")
- Map-reduce and Spark
 - Original MR Abstraction ("mapreduce:...")
 - Spark ("resilient distributed datasets...")
- SystemML: An abstraction for ML
- GraphX: An abstraction for Graphs
Tuple Relational Calculus

- Non-procedural Language (unlike RA)
- Basic Query: all tuples such that \(P(t) \) is true
 \[
 \{ t \mid P(t) \}\]

- Example: Find instructors with department in the Watson Building
 \[
 \{ t \mid \exists s \in \text{instructor} \ (t[\text{name}] = s[\text{name}] \\
 \quad \land \exists u \in \text{department} \ (u[\text{dept_name}] = s[\text{dept_name}] \\
 \quad \land u[\text{building}] = \text{"Watson"})} \}
 \]

- Find students who have taken all courses offered by Biology
 \[
 \{ t \mid \exists r \in \text{student} \ (r[\text{ID}] = t[\text{ID}]) \land \\
 (\forall u \in \text{course} \ (u[\text{dept_name}] = \text{"Biology"}) \Rightarrow \\
 \exists s \in \text{takes} \ (t[\text{ID}] = s[\text{ID}] \\
 \land s[\text{course_id}] = u[\text{course_id}])} \}
 \]
From Online Chapter at: https://db-book.io

Extensional ”Facts”
- Map to tuples in relations

“Rules”
- Allow inferring additional ‘intentional’ facts
- Can be thought of as defining “views”

Example: account is extensional, and v1 allows inferring additional facts

\[v1(A, B) :\neg \text{account}(A, \text{“Perryridge”}, B), B > 700 \]

MEANS:

\[\text{for all } A, B \]
\[\text{if } (A, \text{“Perryridge”}, B) \in \text{account and } B > 700 \]
\[\text{then } (A, B) \in v1 \]
From Online Chapter at: https://db-book.io

Example: account is extensional, and v1 allows inferring additional facts

\[v1(A, B) : - \text{account}(A, \text{“Perryridge”}, B), B > 700 \]

Writing queries?

\[? \ v1(A, B), B > 800 \] \(\rightarrow \) \((A-201, 900) \)

Multiple rules typically used for the same view

\[
\begin{align*}
\text{interest} _ \text{rate}(A, 5) : & - \text{account}(A, N, B), B < 10000 \\
\text{interest} _ \text{rate}(A, 6) : & - \text{account}(A, N, B), B \geq 10000
\end{align*}
\]

Can use Negation

\[
\begin{align*}
c(N) : & - \text{depositor}(N,A), \textbf{not is} _ \text{borrower}(N) \\
\text{is} _ \text{borrower}(N) : & - \text{borrower}(N, L)
\end{align*}
\]
Datalog

- For non-recursive queries, the semantics are pretty straightforward

\[
\begin{align*}
\text{interest}(A, I) & \leftarrow \text{account}(A, \text{“Perryridge”, } B), \\
& \quad \text{interest_rate}(A, R), \ I = B \times R/100 \\
\text{interest_rate}(A, 5) & \leftarrow \text{account}(A, N, B), B < 10000 \\
\text{interest_rate}(A, 6) & \leftarrow \text{account}(A, N, B), B \geq 10000 \\
\text{perryridge_account}(X, Y) & \leftarrow \text{account}(X, \text{“Perryridge”, } Y)
\end{align*}
\]

- More complex for recursive queries
 - Assume we have a single relation: parent(child_id, parent_id)
 - The following program gets ancestors

\[
\begin{align*}
\text{ancestor}(A, B) & \leftarrow \text{parent}(B, A) \\
\text{ancestor}(A, B) & \leftarrow \text{ancestor}(A, C), \text{parent}(C, B)
\end{align*}
\]
Datalog: Safety

- Possible to write rules that generate infinite answers

 \[gt(X, Y) : \neg X > Y \]

 \[\text{not_in_loan}(L, B, A) : \neg \text{not_loan}(L, B, A) \]

- Datalog programs must satisfy safety conditions:

 1. Every variable in the head, must appear in a non-arithmetic positive literal in the body
 2. Every variable in a negative literal in the body must appear in some positive literal in the body

- For non-recursive program, this guarantees finite results as long as the database relations are finite

- Can relax the rules somewhat:

 \[p(A) : \neg q(B), A = B + 1 \]
Datalog: Mapping to RA

- **Select**

 \[vl(A, B) :- account(A, \text{“Perryridge"}, B), B > 700 \]

- **Project**

 \[q(A) :- account(A, N, B) \]

- **Cartesian Product**

 \[q(X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m) :- r_1(X_1, X_2, \ldots, X_n), r_2(Y_1, Y_2, \ldots, Y_m) \]

- **Union**

 \[q(X_1, X_2, \ldots, X_n) :- r_1(X_1, X_2, \ldots, X_n) \]

 \[q(X_1, X_2, \ldots, X_n) :- r_2(X_1, X_2, \ldots, X_n) \]

- **Set Difference**

 \[q(X_1, X_2, \ldots, X_n) :- r_1(X_1, X_2, \ldots, X_n), \textbf{not} r_2(X_1, X_2, \ldots, X_n) \]

- **Extensions exist for aggregates as well**
Datalog: Bottom-up vs Top-down Evaluation

- Prolog uses a top-down evaluation approach (by default)
 - Start with query as goal and use the rules to create more goals until you get to facts

 \[
 \begin{align*}
 \text{fibo}_\text{td}(0,0) & . \\
 \text{fibo}_\text{td}(1,1) & . \\
 \text{fibo}_\text{td}(\text{N}, \text{F}):= & \\
 & \text{N} > 1, \text{ N1} \text{ is N-1, N2} \text{ is N-2,} \\
 & \text{fibo}_\text{td}(\text{N1}, \text{F1}), \text{fibo}_\text{td}(\text{N2}, \text{F2}), \\
 & \text{F} \text{ is F1+F2}. \\
 \end{align*}
 \]

 - If we are asked to compute \text{fibo}_\text{td}(10, F) – we would expand the last rule, and compute \text{fibo}_\text{td}(9, ?) and \text{fibo}_\text{td}(8, ?) first
 - Need to use memo-ization in order to avoid exponential runtime

- Not a good approach for Datalog
 - Efficient evaluation requires use of set-at-a-time processing, i.e., start with base facts and generate more facts using the rules
 - Drawback: may generate facts that are not needed
Datalog: Bottom-up Evaluation

- Standard Fixpoint algorithm
 - Start with all the facts (initially the base relations)
 - Infer new facts using those and the provided rules
 - Repeat until no more facts are inferred

- Sometimes called “naïve” evaluation

- Semi-Naïve Evaluation
 - Keep track of which new “facts” were inferred in iteration N - 1
 - In iteration N: only consider those rules as firing that include at least one of those facts

- Works for both recursive and non-recursive programs
 - Bounded depth for non-recursive programs based on the query
For “safe” Datalog programs, this will stop at some point assuming no “negative” literals

With negative literals, previous inferences may be invalidated
- e.g., \(q(X, Y) : \neg R(Y, X), Y = 10, X = 5 \)
- If \(R(10, 5) \) doesn’t exist, we can infer \(q(5, 10) \)
- However in a later iteration, we may get: \(R(10, 5) \)

Note: SQL originally did not support recursion – so no way to do “transitive closure” – SQL 99 added support

We will discuss some other optimization techniques (e.g., magic sets) later
Challenging to design new network protocols to handle rapidly evolving landscape

- Correctness particularly an issue
- Hard to optimize when the bottlenecks change

Proposed solution

- Model the distributed state across the routers/machines as "tables"
- Use a recursive query language to define derived data, constraints, etc.

Long line of work starting with this early paper in SIGMOD 2006

More recent work on distributed programming in general by Hellerstein et al.
Network Datalog: Example

- Base “extensional” relation: `link(Src, Dest, Cost)`
 - Stored in a distributed manner across all nodes
- Four rules:
 - sp1 and sp2 define a ”path” in the network recursively
 - sp3 and sp4: an aggregate function to compute minimum-cost path
- @ used to specify where the derived fact should be stored

```
sp1  path(@Src, Dest, Path, Cost) :- link(@Src, Dest, Cost),
    Path=f_init(Src, Dest).

sp2  path(@Src, Dest, Path, Cost) :- link(@Src, Nxt, Cost1),
    path(@Nxt, Dest, Path2, Cost2),
    Cost=Cost1+Cost2,
    Path=f_concatPath(Src, Path2).

sp3  spCost(@Src, Dest, min<Cost>) :- path(@Src, Dest, Path, Cost).
sp4  shortestPath(@Src, Dest, Path, Cost) :-
    spCost(@Src, Dest, Cost),
    path(@Src, Dest, Path, Cost).
Query shortestPath(@Src, Dest, Path, Cost).
```
In each iteration, nodes do their local computations and pass their state to their neighbors.
Network Datalog: Extensions

- Need to handle limitations of the underlying network

- Link-restricted rules:
 - Not all nodes can talk directly to all nodes for execution of the program
 - Only allow rules where there is a direct link between the two nodes that contain the data required for any predicate

 \[
 p(@Dest,\ldots) :- \text{link}(\text{@Src},\text{Dest}\ldots), p1(\text{@Src}\ldots), p2(\text{@Src}\ldots), \ldots, pn(\text{@Src}\ldots).
 \]

- Soft state storage:
 - Network protocols data typically has a TTL (time-to-live)
 - Introduce a new keyword: materialized
 - Adds some complications in formal semantics
Outline

- Data Models: Then, and now
 - History of Data Models (“what comes around...”)
 - A data model for Key-value Stores (“a co-relational model..”)

- Languages
 - Overview
 - Datalog (“a survey of research...” and “declarative networking...”)

- Map-reduce and Spark
 - Original MR Abstraction (“mapreduce:” ...”)
 - Spark (“resilient distributed datasets...”)

- SystemML: An abstraction for ML

- GraphX: An abstraction for Graphs
Map Reduce; 2003

- For parallel, fault-tolerant computation over large volumes of data

- Just two operators: “map” and “reduce”
 - Map more like “flatMap” – can produce multiple outputs per input
 - “reduce” == “reduceByKey” – operated on key-value pairs

```java
map(String key, String value):
   // key: document name
   // value: document contents
   for each word w in value:
      EmitIntermediate(w, "1");

reduce(String key, Iterator values):
   // key: a word
   // values: a list of counts
   int result = 0;
   for each v in values:
      result += ParseInt(v);
   Emit(AsString(result));
```
MapReduce Framework

input files → mappers → intermediate files → reducers → output files
MapReduce Framework: Word Count

input files

mappers

intermediate files

reducers

output files

<table>
<thead>
<tr>
<th>input files</th>
<th>mappers</th>
<th>intermediate files</th>
<th>reducers</th>
<th>output files</th>
</tr>
</thead>
<tbody>
<tr>
<td>abacdb</td>
<td></td>
<td>(a, 1) (b, 1)</td>
<td></td>
<td>(a, 8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a, 1)</td>
<td></td>
<td>(c, 5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bcdaa</td>
<td></td>
<td>(a, 1) (c, 1)</td>
<td></td>
<td>(b, 6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a, 1)</td>
<td></td>
<td>(d, 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ababab</td>
<td></td>
<td>(b, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cc cccc</td>
<td></td>
<td>(b, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b, 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More Efficient Word Count

input files

mappers

intermediate files

reducers

output files

(a, 2)
(b, 2)
(c, 1)
(d, 1)

(a, 2)
(a, 3)
(c, 1)
(c, 5)

(b, 6)
(d, 2)

Called “mapper-side” combiner
Partial aggregation in DBMS terms
For parallel, fault-tolerant computation over large volumes of data

Just two operators: “map” and “reduce”
- Map more like “flatMap” – can produce multiple outputs per input
- “reduce” == “reduceByKey” – operated on key-value pairs

Each operator is ”embarrassingly” (“infinitely”) parallelizable
- Map can be done in parallel on each input

Data written out to disk after each map or reduce
- For fault-tolerance
- If a machine fails, restart the computation on another machine with the same input files

Many optimizations to handle skew, etc.
Was used in Google (at that time) for:

- Large-scale machine learning problems
- Clustering problems for Google News etc
- Generating summary reports
- Large-scale Graph Computations
- Extract-Transform-Load (ETL) tasks

Also replaced original tools for large-scale indexing

- i.e., for generating the inverted indexes
- runs as a sequence of 5 to 10 MapReduce operations
Map Reduce vs RDBMS

- Limited functionality, but no RDMBS/data warehouse could have handled those kinds of tasks
 - Not fault-tolerant at the scale
 - Most of the data not tabular or relation – SQL not a good fit
 - Need flexible or no schemas
 - User-defined functions can help but hard to use back then
 - Loading the data into databases not feasible
 - Much of the analysis is one-time
 - Cost prohibitive (Distributed File Systems much cheaper)

- Mapreduce: A Major Step Backwards; DeWitt and Stonebraker; 2007

- See the later CACM papers by both camps
Post-MapReduce Systems

- Yahoo! open-sourced the Hadoop MapReduce; 2006
 - Including other tools like Zookeeper, HDFS, etc.
 - Many inter-operable modules built around this since then

- Soon afterwards: Dryad (MSFT), Hive (FB), Pig (Yahoo)
 - Most supported higher-lever interfaces: Hive and Pig more like SQL, whereas Dryad supported something like LINQ

- Latest generation of systems: Spark, F1, Impala, Tez, Naiad, Flink, AsterixDB, Drill, etc...
 - Higher-level query languages like SQL
 - More advanced execution strategies
 - Indexes, query optimization, etc.
 - Support for streaming, ML, graphs, etc.
Outline

- Data Models: Then, and now
 - History of Data Models (“what comes around...”)
 - A data model for Key-value Stores (“a co-relational model..”)

- Languages
 - Overview
 - Datalog (“a survey of research...” and “declarative networking...”)

- Map-reduce and Spark
 - Original MR Abstraction (“mapreduce:” ...”)
 - Spark (“resilient distributed datasets...”)

- SystemML: An abstraction for ML

- GraphX: An abstraction for Graphs
Spark

- Open-source, distributed cluster computing framework
- Much better performance than Hadoop MapReduce through in-memory caching and pipelining
- Originally provided a low-level RDD-centric API, but today, most of the use is through the “Dataframes” (i.e., relations) API
 - Dataframes support relational operations like Joins, Aggregates, etc.
Resilient Distributed Dataset (RDD)

- **RDD** = Collection of records stored across multiple machines in-memory

Worker Nodes
- Always running

Drivers
- Come and go
- Not fault-tolerant

RDD Manipulation Commands

Results – typically at the end

In-memory partitions of RDD 1

In-memory partitions of RDD 2

In-memory partitions of RDD 3
Spark

Why “Resilient”?
- Can survive the failure of a worker node
- Spark maintains a “lineage graph” of how each RDD partition was created
- If a worker node fails, the partitions are recreated from its inputs
- Only a small set of well-defined operations are permitted on the RDDs
 - But the operations usually take in arbitrary "map" and “reduce” functions

Fault tolerance for the “driver” is trickier
- Drivers have arbitrary logic (cf., the programs you are writing)
- In some cases (e.g., Spark Streaming), you can do fault tolerance
- But in general, driver failure requires a restart
Example Spark Program

Initialize RDD by reading the textFile and partitioning.
If textFile stored on HDFS, it is already partitioned – just read each partition as a separate RDD partition.

Split each line into words, creating an RDD of words.
For each word, output (word, 1), creating a new RDD.
Do a group-by SUM aggregate to count the number of times each word appears.

Retrieve 100 of the values in the final RDD.

Driver

```python
from pyspark import SparkContext

sc = SparkContext("local", "Simple App")

textFile = sc.textFile("README.md")

counts = textFile
    .flatMap(lambda line: line.split(" "))
    .map(lambda word: (word, 1))
    .reduceByKey(lambda a, b: a + b)

print(counts.take(100))
```
RDD Operations

Transformations

The following table lists some of the common transformations supported by Spark. Refer to the RDD API doc (Scala, Java, Python, R) and pair RDD functions doc (Scala, Java) for details.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(func)</td>
<td>Return a new distributed dataset formed by passing each element of the source through a function func.</td>
</tr>
<tr>
<td>filter(func)</td>
<td>Return a new dataset formed by selecting those elements of the source on which func returns true.</td>
</tr>
<tr>
<td>flatMap(func)</td>
<td>Similar to map, but each input item can be mapped to 0 or more output items (so func should return a Seq rather than a single item).</td>
</tr>
<tr>
<td>mapPartitions(func)</td>
<td>Similar to map, but runs separately on each partition (block) of the RDD, so func must be of type Iterator[T] => Iterator[U] when running on an RDD of type T.</td>
</tr>
<tr>
<td>mapPartitionsWithIndex(func)</td>
<td>Similar to mapPartitions, but also provides func with an integer value representing the index of the partition, so func must be of type (Int, Iterator[T]) => Iterator[U] when running on an RDD of type T.</td>
</tr>
<tr>
<td>sample(withReplacement, fraction, seed)</td>
<td>Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed.</td>
</tr>
<tr>
<td>union(otherDataset)</td>
<td>Return a new dataset that contains the union of the elements in the source dataset and the argument.</td>
</tr>
<tr>
<td>intersection(otherDataset)</td>
<td>Return a new RDD that contains the intersection of elements in the source dataset and the argument.</td>
</tr>
<tr>
<td>distinct(numPartitions)</td>
<td>Return a new dataset that contains the distinct elements of the source dataset.</td>
</tr>
<tr>
<td>groupByKey(numPartitions)</td>
<td>When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable[V]) pairs. Note: If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using reduceByKey or aggregateByKey will yield much better performance.</td>
</tr>
</tbody>
</table>

Actions

The following table lists some of the common actions supported by Spark. Refer to the RDD API doc (Scala, Java, Python, R) and pair RDD functions doc (Scala, Java) for details.

<table>
<thead>
<tr>
<th>Action</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduce(func)</td>
<td>Aggregate the elements of the dataset using a function func (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel.</td>
</tr>
<tr>
<td>collect()</td>
<td>Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or other operation that returns a sufficiently small subset of the data.</td>
</tr>
<tr>
<td>count()</td>
<td>Return the number of elements in the dataset.</td>
</tr>
<tr>
<td>first()</td>
<td>Return the first element of the dataset (similar to take(1)).</td>
</tr>
<tr>
<td>take(n)</td>
<td>Return an array with the first n elements of the dataset.</td>
</tr>
<tr>
<td>takeSample(withReplacement, num, seed)</td>
<td>Return an array with a random sample of num elements of the dataset, with or without replacement, optionally pre-specifying a random number generator seed.</td>
</tr>
<tr>
<td>takeOrdered(n, ordering)</td>
<td>Return the first n elements of the RDD using either their natural order or a custom comparator.</td>
</tr>
<tr>
<td>saveAsTextFile(path)</td>
<td>Write the elements of the dataset as a text file (or set of text files) in a given directory in the local filesystem, HDFS or any other Hadoop-supported file system. Spark will call toString on each element to convert it to a line of text in the file.</td>
</tr>
<tr>
<td>saveAsSequenceFile(path, Java and Scala)</td>
<td>Write the elements of the dataset as a Hadoop SequenceFile in a given path in the local filesystem, HDFS or any other Hadoop-supported file system. This is available on RDDs of key-value pairs that implement Hadoop’s Writable interface. In Scala, it is also available on types that are implicitly convertible to Writable (Spark includes conversions for basic types like Int, Double, String, etc.).</td>
</tr>
<tr>
<td>saveAsObjectFile(path, Java and Scala)</td>
<td>Write the elements of the dataset in a simple format using Java serialization, which can then be loaded using SparkContext.loadObjectFile().</td>
</tr>
<tr>
<td>countByExample()</td>
<td>Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs with the count of each key.</td>
</tr>
<tr>
<td>foreach(func)</td>
<td>Run a function func on each element of the dataset. This is usually done for side effects such as updating an Accumulator or interacting with external storage systems. Note: modifying variables other than Accumulator outside of the foreach() may result in undefined behavior. See Understanding closures for more details.</td>
</tr>
</tbody>
</table>
def basic_df_example(spark):
 # $example on:create_df$
 # spark is an existing SparkSession
 df = spark.read.json("examples/src/main/resources/people.json")
 # Displays the content of the DataFrame to stdout
 df.show()
 # +-----+
 # | age |
 # +-----+
 # | null |
 # | 30 |
 # | 19 |
 # +-----+

 # $example off:create_df$
 # $example on:untyped_ops$
 # spark, df are from the previous example
 # Print the schema in a tree format
 df.printSchema()
 # root
 # |-- age: long (nullable = true)
 # |-- name: string (nullable = true)

 # $example off:untyped_ops$
 # Select only the "name" column
 df.select("name").show()
 # +-----+
 # | name |
 # +-----+
 # | Michael |
 # | Andy |
 # | Justin |
 # +-----+

 # $example on:global_temp_view$
 # Register the DataFrame as a global temporary view
 df.createGlobalTempView("people")
 # Global temporary view is tied to a system preserved database
 `global_temp`
 spark.sql("SELECT * FROM global_temp.people").show()
 # +-----+
 # | age |
 # +-----+
 # | 30 |
 # | 19 |
 # +-----+

 # Select people older than 21
 df.filter(df['age'] > 21).show()
 # +-----+
 # | age |
 # +-----+
 # | 30 |
 # | 19 |
 # +-----+

 # Count people by age
 df.groupBy("age").count().show()
 # +-----+
 # | age |
 # +-----+
 # | 30 |
 # | 19 |
 # +-----+

 sqlDF = spark.sql("SELECT * FROM people")
 sqlDF.show()
 # +-----+
 # | age |
 # +-----+
 # | null |
 # | 30 |
 # | 19 |
 # +-----+

 # $example off:run_sql$
```python
def basic_df_example(spark):
    # $example on:create_df$
    # spark is an existing SparkSession
    df = spark.read.json("examples/src/main/resources/people.json")
    # Displays the content of the DataFrame to stdout
    df.show()
    # | age| name|
    # |null|Michael|
    # | 30| Andy|
    # | 19| Justin|
    # $example off:create_df$

    # $example on:untyped_ops$
    # spark, df are from the previous example
    # Print the schema in a tree format
    df.printSchema()
    # root
    # |-- age: long (nullable = true)
    # |-- name: string (nullable = true)

    # Select only the "name" column
    df.select("name").show()
    # | name|
    # |Michael|
    # | Andy|
    # | Justin|
    # $example off:untyped_ops$

    # Select everybody, but increment the age by 1
    df.select(df['name'], df['age'] + 1).show()
    # | name|age + 1|
    # |null|Michael|
    # | 30| Andy|
    # | 19| Justin|
    # $example off:run_sql$

    # Select people older than 21
    df.filter(df['age'] > 21).show()
    # | age|name|
    # | 30| Andy|
    # $example off:untyped_ops$

    # Count people by age
    df.groupBy("age").count().show()
    # | age|count|
    # | 30| 1|
    # | 19| 1|
    # $example off:untyped_ops$

    sqlDF = spark.sql("SELECT * FROM people")
    sqlDF.show()
    # | age|name|
    # |null|Michael|
    # | 30| Andy|
    # | 19| Justin|
    # $example off:run_sql$

    # $example on:global_temp_view$
    # Register the DataFrame as a global temporary view
    df.createGlobalTempView("people")

    # Global temporary view is tied to a system preserved database
    spark.sql("SELECT * FROM global_temp.people").show()
    # | age|name|
    # |null|Michael|
    # | 30| Andy|
    # | 19| Justin|
    # $example off:global_temp_view$
```

Dataframes Example
Spark is a popular and widely used framework for large-scale computing

Simple programming interface
- You don’t need to typically worry about the parallelization
- That’s handled by Spark transparently
- In practice, may need to fiddle with number of partitions etc.

 Managed services supported by several vendors including Databricks (started by the authors of Spark), Cloudera, etc.

Many other concepts that we did not discuss
- Shared accumulator and broadcast variables
- Support for Machine Learning, Graph Analytics, Streaming, and other use cases

Alternatives include: Apache Tez, Flink, and several others