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Figure 2. Query processing steps.

plied in a second phase, a method called
deferred updates, or merged into the
search phase if there is no danger of
creating ambiguous update semantics. 1
The problem of ensuring ACID seman-

tics for updates—making updates
Atomic (all-or-nothing semantics), Con-
sistent (translating any consistent
database state into another consistent
database state), Isolated (from other
queries and requests), and Durable (per-
sistent across all failures)—is beyond the
scope of this paper; suitable techniques
have been described by many other au-
thors, e.g., Bernstein and Goodman
[1981], Bernstein et al. [1987], Gray and
Reuter [1991], and Haerder and Reuter
[1983].
Most research into providing ACID se-

mantics focuses on efficient techniques
for processing very large numbers of
relatively small requests. For example,
increasing the balance of one account and
decreasing the balance of another account
require exclusive access to only two
database records and writing some
information to an update log. Current
research and development efforts in
transaction processing target hundreds
and even thousands of small transactions
per second [Davis 1992; Serlin 1991].

.—
1A standard example for this danger is the “Hal-
loween” problem: Consider the request to “give all
employees with salaries greater than $30,000 a 3%
raise.” If (i) these employees are found using an
index on salaries, (ii) index entries are scanned in
increasing salary order, and (iii ) the index is up-
dated immediately as index entries are found, then
each qualifying employee will get an infinite num-
ber of raises.
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Query processing, on the other hand, fo-
cuses on extracting information from a
large amount of data without actually
changing the database. For example,
printing reports for each branch office
with average salaries of employees under
30 years old requires shared access to a
large number of records. Mixed requests
are also possible, e.g., for crediting
monthly earnings to a stock account by
combining information about a number
of sales transactions. The techniques dis-
cussed here apply to the search effort for
such a mixed request, e.g., for finding the
relevant sales transactions for each stock
account.
Embedded queries, i.e., database

queries that are contained in an applica-
tion program written in a standard pro-
gramming language such as Cobol, PL/1,
C, or Fortran, are also not addressed
specifically in this paper because all
techniques discussed here can be used
for interactive as well as embedded
queries. Embedded queries usually are
optimized when the program is compiled,
in order to avoid the optimization over-
head when the program runs. This
method was pioneered in System R, in-
cluding mechanisms for storing opti-
mized plans and invalidating stored plans
when they become infeasible, e.g., when
an index is dropped from the database
[Chamberlain et al. 1981b]. Of course, the
cut between compile-time and run-time
can be placed at any other point in the
sequence in Figure 2.
Recursive queries are omitted from this

survey, because the entire field of recur-
sive query processing—optimization
rules and heuristics, selectivity and cost

Update queries usually handled through “deferred updates” (use standard read-
only techniques to identify the modifications, and apply them afterwards.



} Logical algebra vs physical algebra
◦ Latter is system-specific, and refers to the specific implementations of 

operators

◦ Mapping from logical to physical operators is often not one-to-one

� Most operator implementations usually handle subsequent selects and projects

� A single logical operator may be broken up into multiple physical ones (e.g., 
“sort” is done separately from “merge” for ”sort-merge join”)

� A “symmetric” logical operator may be implemented by an “asymmetric” 
physical operator
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Figure 3. Logical and physical algebra expressions.

some operations that are permitted on
instances of such types, e.g., attribute
extraction, selection, insertion, deletion,
etc.
On the physical or representation level,

there is typically a smaller set of repre-
sentation types and structures, e.g., file,
record, record identifier (RID), and maybe
very large byte arrays [Carey et al. 1986].
For manipulation, the representation
types have their own operations, which
will be different from the operations on
logical types. Multiple logical types and
type constructors can be mapped to the
same physical concept. They may also be
situations in which one logical type con-
structor can be mapped to multiple phys-
ical concepts, e.g., a set depending on its
size. The mapping from logical types to
physical representation types and struc-
tures is called physical database design.
Query optimization is the mapping from
logical to physical operations, and the
query execution engine is the imple-
mentation of operations on physical rep-
resentation types and of mechanisms
for coordination and cooperation among
multiple such operations in complex que-
ries. The policies for using these mech-
anisms are part of the query optimizer.

Synchronization and data transfer be-
tween operators is the main issue to be
addressed in the architecture of the query
execution engine. Imagine a query with
two joins, and consider how the result of
the first join is passed to the second one.
The simplest method is to create (write)
and read a temporary file. The need for
temporary files, whether they are kept in
the buffer or not, is a direct result of
executing an operator’s input subplans
completely before starting the operator.
Alternatively, it is possible to create one

process for each operator and then to use
interprocess communication mechanisms
(e.g., pipes) to transfer data between op-
erators, leaving it to the operating sys-
tem to schedule and suspend operator
processes as pipes are full or empty.
While such data-driven execution re-
moves the need for temporary disk files,
it introduces another cost, that of operat-
ing system scheduling and interprocess
communication. In order to avoid both
temporary files and operating system
scheduling, Freytag and Goodman [1989]
proposed writing rule-based translation
programs that transform a plan repre-
sented as a tree structure into a single
iterative program with nested loops and
other control structures. However, the re-
quired rule set is not simple, in particu-
lar for algorithms with complex control
logic such as sorting, merge-join, or even
hybrid hash join (to be discussed later in
the section on matching).

The most practical alternative is to im-
plement all operators in such a way that
they schedule each other within a single
operating system process. The basic idea
is to define a granule, typically a single
record, and to iterate over all granules
comprising an intermediate query result.3
Each time an operator needs another
granule, it calls its input (operator) to
produce one. This call is a simple pro-

—-
3 It is possible to use multiple granule sizes within
a single query-processing system and to provide
special operators with the sole purpose of translat-
ing from one granule size to another. An example M
a query processing system that uses records as an
iteration granule except for the inputs of merge-join
(see later in the section on binary matching), for
which it uses “value packets,” i.e., groups of records
with equal join attribute values.

ACM Computmg Surveys, Vol. 25, No. 2, June 1993



} Materialization: Write out the results to a file, and the next operator reads it 
from the file

} Pipelining: Have both (or more) operators running at the same time (e.g., in 
different threads or processes), and use queues to transfer tuples
◦ Hard to make this work efficiently (e.g., OS may switch to an operator that has no inputs, 

leading to wasted context switches)

} Iterator model: Have operators ”schedule” each other
◦ When an operator needs more inputs, it “calls” the child operator(s)

◦ No IPC needed – these are function calls

◦ For Query Processing, can separate the work of an operator into:

� initialization (init())

� produce the next tuple (next())

� clean up (close())

◦ Main drawback (as we discuss later): too many function calls for modern architectures
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Table 1. Examples of Iterator Functions

Iterator Open Next Close Local State

Print open input call next on input; close input
format the item on
screen

Scan open file read next item close file open file descriptor
Select open input call next on input close input

until an item
qualifies

Hash join allocate hash call next on probe
(without

close probe input; hash directory
directory; open left input until a match is deallocate hash

overflow “build” input; build found directory
resolution) hash table calling

next on build input;
close build input;
open right “probe”
input

Merge-Join open both inputs get next item from
(without

close both inputs
input with smaller

duplicates) key until a match is
found

Sort open input; build all determine next destroy remaining merge heap, open file
initial run files output item; read run files descriptors for run files
calling next on input; new item from the
close input; merge correct run file
run files untd only
one merge step is left

Join C-D Join A-B

Jo::@ :fi: ‘m:.-.
A B c D

Figure 4. Left-deep, bushy, and right-deep plans.

scan. Each plan fragment that is exe-
cuted as a unit is indeed a tree. The
alternative is a “split” iterator that can
deliver data to multiple consumers, i.e.,
that can be invoked as iterator by multi-
ple consumer iterators. The split iterator
paces its input subtree as fast as the
fastest consumer requires it and holds
items until the slowest consumer has
consumed them. If the consumers re-
quest data at about the same rate, the
split operator does not require a tempo-
rary spool file; such a file and its associ-
ated 1/0 cost are required only if the
data rate required by the consumers di-

verges above some predefine threshold.
Among the implementations of itera-

tors for query processing, one group can
be called “stored-set oriented and the
other “algebra oriented.” In System R, an
example for the first group, complex join
plans are constructed using binary join
iterators that “attach” one more set
(stored relation) to an existing intermedi-
ate result [Astrahan et al. 1976; Lorie
and Nilsson 1979], a design that sup-
ports only left-deep plans. This design
led to a significant simplification of the
System R optimizer which could be based
on dynamic programming techniques, but
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} Can add in “exchange” operators (that follow iterator model) to parallelize a 
query plan

130 “ Goetz Graefe
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Figure 26. Operator model of parallehzation.

A second issue important to point out
is that the exchange operator only pro-
vides mechanisms for parallel query pro-
cessing; it does not determine or presup-
pose policies for using its mechanisms.
Policies for parallel processing such as
the degree of parallelism, partitioning
functions, and allocation of processes to
processors can be set either by a query
optimizer or by a human experimenter in
the Volcano system as they are still sub-
ject to intense research. The design of the
exchange operator permits execution of a
complex query in a single process (by
using a query plan without any exchange
operators, which is useful in single-
processor environments) or with a num-
ber of processes by using one or more
exchange operators in the query evalua-
tion plan. The mapping of a sequential
plan to a parallel plan by inserting ex-
change operators permits one process per
operator as well as multiple processes for
one operator (using data partitioning) or
multiple operators per process, which is
useful for executing a complex query plan
with a moderate number of processes.
Earlier parallel query execution engines
did not provide this degree of flexibility;
the bracket model used in the Gamma
design, for example, requires a separate
process for each operator [DeWitt et al.
1986].
Figure 27 shows the processes created

by the exchange operators in the previ-

Figure 27. Processes created by exchange operators.

ous figure, with each circle representing
a process. Note that this set of processes
is only one possible parallelization, which
makes sense if the joins are on the same
join attributes. Furthermore, the degrees
of data parallelism, i.e., the number of
processes in each process group, can be
controlled using an argument to the ex-
change operator.
There is no reason to assume that the

two models differ significantly in their
performance if implemented with similar
care. Both models can be implemented
with a minimum of control overhead and
can be combined with any partitioning
scheme for load balancing. The only dif-
ference with respect to performance is
that the operator model permits multiple
data manipulation operators such as join
in a single process, i.e., operator synchro-
nization and data transfer between oper-
ators with a single procedure call with-
out operating system involvement. The
important advantages of the operator
model are that it permits easy paral-
lelization of an existing sequential sys-
tem as well as development and mainte-
nance of operators and algorithms in a
familiar and relatively simple single-pro-
cess environment [Graefe and Davison
1993].
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} In some older papers, left-deep and right-deep are switched
◦ Think of “left” as “outer” and “right” as “inner”
◦ “Right-deep plans have only recently received more interest and may actually turn out to be 

very efficient, in particular in systems with ample memories” – refers to the ability to build 
many hash indexes at once, and today makes sense for “left-deep” plans

} In general, may be a DAG (directed acyclic graph)
◦ In case of common subexpressions

Query Evaluation Techniques ● 81

Table 1. Examples of Iterator Functions

Iterator Open Next Close Local State

Print open input call next on input; close input
format the item on
screen

Scan open file read next item close file open file descriptor
Select open input call next on input close input

until an item
qualifies

Hash join allocate hash call next on probe
(without

close probe input; hash directory
directory; open left input until a match is deallocate hash

overflow “build” input; build found directory
resolution) hash table calling

next on build input;
close build input;
open right “probe”
input

Merge-Join open both inputs get next item from
(without

close both inputs
input with smaller

duplicates) key until a match is
found

Sort open input; build all determine next destroy remaining merge heap, open file
initial run files output item; read run files descriptors for run files
calling next on input; new item from the
close input; merge correct run file
run files untd only
one merge step is left

Join C-D Join A-B

Jo::@ :fi: ‘m:.-.
A B c D

Figure 4. Left-deep, bushy, and right-deep plans.

scan. Each plan fragment that is exe-
cuted as a unit is indeed a tree. The
alternative is a “split” iterator that can
deliver data to multiple consumers, i.e.,
that can be invoked as iterator by multi-
ple consumer iterators. The split iterator
paces its input subtree as fast as the
fastest consumer requires it and holds
items until the slowest consumer has
consumed them. If the consumers re-
quest data at about the same rate, the
split operator does not require a tempo-
rary spool file; such a file and its associ-
ated 1/0 cost are required only if the
data rate required by the consumers di-

verges above some predefine threshold.
Among the implementations of itera-

tors for query processing, one group can
be called “stored-set oriented and the
other “algebra oriented.” In System R, an
example for the first group, complex join
plans are constructed using binary join
iterators that “attach” one more set
(stored relation) to an existing intermedi-
ate result [Astrahan et al. 1976; Lorie
and Nilsson 1979], a design that sup-
ports only left-deep plans. This design
led to a significant simplification of the
System R optimizer which could be based
on dynamic programming techniques, but
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} Volcano implementation:
◦ open() does most of the work

� If the input fits in memory, reads the 
entire input and does a quick-sort

� If it doesn’t fit in memory, uses external 
merge-sort except for the last merge

◦ next() simply produces the tuples in the 
first case, and actually does the last 
merge in the second case

◦ Probably better to do all the work in 
“next()” (with special-case code for the 
first call)



} Say main memory = M blocks (of b tuples each)
} Option 1: Read M blocks at a time, quick-sort, and write out the “sorted run” to 

disk
◦ Generates runs of size M

} Option 2: Replacement selection
◦ Read M*b tuples in memory, and keep it (always) in sorted order
◦ Write out the first tuple to disk as the first sorted run
◦ Say the largest value written out so far is 1000
◦ Read the next tuple from the original relation 

� If > 1000, add it to the same sorted run, and output the next tuple from that
� If not, start (or add to) a second sorted run in memory

◦ Keep doing this until the you the first sorted run in memory finishes is done (i.e., all 
new tuples get added to the second run)
◦ Can use the Heap data structure to do this efficiently



From: https://www.youtube.com/watch?v=LTpFZAd0cbE



} Need a data structure that efficiently supports removal of the smallest entry
◦ The “heap” data structure works well

} Replacement selection results in larger runs è more efficient merge
◦ If the input is already sorted or almost sorted, there is only one run
◦ For random inputs, the runs are of size 2M

} But RS has more complex I/O patterns and there are other complications
◦ Need to balance against the benefits of having fewer runs



} Usually better when “equality matching” is required
} Basic idea: 
◦ “Build” a hash table on one of the inputs on the equality attribute(s)
◦ “Probe” using the second input in any order

} What if the smaller input is too large?
◦ Partition both the inputs using some criteria on the equality attribute (could be another hash 

function, or a range function)
◦ Do partition-by-partition join



} Usually better when “equality matching” is required
} Basic idea: 
◦ “Build” a hash table on one of the inputs on the equality attribute(s)
◦ “Probe” using the second input in any order

} What if the smaller input is too large?
◦ Partition both the inputs using some criteria on the equality attribute (could be another hash 

function, or a range function)
◦ Do partition-by-partition join

} May need to do this “recursively”
◦ Very unlikely to happen with today’s large memories

} Hybrid hash join
◦ Keep one of the partitions in memory when doing the initial partitioning
◦ Can be done in a reactive fashion
◦ Works very well when the smaller input is just larger than memory



} Most operators can be implemented using sorting or hashing
} Many papers written on which one is better
◦ Depends a lot on the specific computing architecture

} Lot of recent work on multi-core sorting and hashing, and in 
shared-nothing settings

From Andy Pavlo’s course slides



} Sorting and Bitonic Merge Networks
◦ Fewer branches and more amenable to SIMD (vectorization)

3. PARALLELIZING SORT WITH SIMD
The dominant cost in sort-merge joins is sorting the input

relations. We thus now discuss strategies to implement sort-
ing in a hardware-conscious manner. Typically, sort-merge
joins use merge sort—a tribute to the latency/bandwidth
gap in modern system architectures. Both building blocks
of merge sort, (a) initial run generation and (b) the merging

of pre-sorted runs, benefit from SIMD.

3.1 Run Generation
For initial run generation, many chunks with a small num-

ber of tuples need to be sorted. This favors sorting al-
gorithms that can process multiple chunks in parallel over
ones that have a good asymptotic complexity with respect
to the tuple count. Sorting networks provide these char-
acteristics and fit well with the SIMD execution model of
modern CPUs [7, 10, 21].

3.1.1 Sorting Networks
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9 35
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Figure 1: Even-
odd network for
four inputs.

Figure 1 on the left illustrates, in the
notation of Knuth [17, Section 5.3.4], a
sorting network for four input items. A
set of four items h9, 5, 3, 6i enters the net-
work on the left and travels toward the
right through a series of comparators .
Every comparator emits the smaller of
its two input values at the top, the larger
on the bottom. After traversing the five
comparators, the data set is sorted.

The beauty of sorting networks is that comparators can be
implemented with help of min/max operators only. Specif-

e = min (a, b)

f = max (a, b)

g = min (c, d)

h = max (c, d)

i = max (e, g)

j = min (f, h)

w = min (e, g)

x = min (i, j)

y = max (i, j)

z = max (f, h)

ically, the five comparators in Figure 1 com-
pile into a sequence of ten min/max operations
as illustrated here on the right (input vari-
ables a, . . . , d and output variables w, . . . , z).
Limited data dependencies and the absence
of branching instructions make such code run
very e�ciently on modern hardware.

Sorting networks are also appealing be-
cause they can be accelerated through SIMD
instructions. When all variables in the code
on the right are instantiated with SIMD vec-
tors of  items and all min/max calls are replaced by SIMD
calls,  sets of items can be sorted in approximately the
same time that a single set would require in scalar mode
(suggesting a -fold speedup through SIMD).

3.1.2 Speedup Through SIMD
However, the strategy illustrated above will sort input

items across SIMD registers. That is, for each vector po-
sition i, the sequence wi, xi, yi, zi will be sorted, but not

the sequence of items within one vector (i.e., wi, . . . , w is
in undefined order). Only full SIMD vectors can be read or
written to memory consecutively. Before writing back initial
runs to main-memory, SIMD register contents must thus be
transposed, so items within each vector become sorted (i.e.,
w2 must be swapped with x1, w3 with y1, etc.).

Transposition can be achieved through SIMD shu✏e in-
structions that can be used to move individual values within
and across SIMD registers. A common configuration in the
context of join processing is to generate runs of four items
with  = 4. Eight shu✏e instructions are then needed
to transpose registers. That is, generating four runs of
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Figure 2: Bitonic merge network.

four items each requires 10 min/max instructions, 8 shu✏es,
4 loads, and 4 stores. Shu✏e operations significantly reduce
the e↵ective SIMD speedup for run generation from optimal
 = 4 to about 2.7.

3.2 Merging Sorted Runs

3.2.1 Bitonic Merge Networks
Although sequential in nature, merging also benefits from

SIMD acceleration. The basic idea comes from Inoue et
al. [13] and has been used for sorting [7] and joins [15].
Looking back to the idea of sorting networks, larger net-

works can be built with help of merging networks that com-
bine two pre-sorted inputs into an overall sorted output.
Figure 2 shows a network that combines two input lists of
size four. The network in Figure 2 is a sequence of three
stages, each consisting of four comparator elements . Each
stage can thus be implemented using one max and one min

SIMD instruction (assuming  = 4). Shu✏e instructions
in-between stages bring vector elements into their proper
positions (for instance, if a and b are provided as one SIMD
register each, b must be reversed using shu✏es to prepare
for the first min/max instruction pair).
On current Intel hardware, for  = 4, implementing a

bitonic merge network for 2⇥ 4 input items requires 6 SIMD
min/max instructions and 7–10 shu✏es. The exact number of
shu✏es depends on the bit width of the input items and the
instruction set o↵ered by the hardware (SSE, AVX, AVX2).

3.2.2 Merging Larger Lists using Bitonic Merge
For larger input sizes, merge networks scale poorly [21]:

sorting networks for N input items require O
�
N log2 N

�

comparators—clearly inferior to alternative algorithms. But
small merge networks can be used as a kernel within a merg-
ing algorithm for larger lists [13]. The resulting merging al-
gorithm (Algorithm 1) uses a working set of 2⇥k data items
(variables a and b, both implemented as SIMD registers).
In each iteration of the algorithm’s loop body, that working
set is sorted (using the merge kernel bitonic_merge4 () and
knowing that a and b themselves are sorted already) and the
smaller k items are emitted to the merge result.
The emitted SIMD vector is then replaced by fresh data

from the input. As in the classical scalar merge algorithm,
the two head elements of the input runs are used to decide
which new data to load (line 5 in Algorithm 1). Unlike in
the classical algorithm, however, the decision is used to load
an entire vector into the working set. The rationale is that
the resulting working set still contains at least k items that
are smaller than the larger of the two head items, and only
k items will be emitted in the next loop iteration.
In terms of performance, the separation between control

flow and merge kernel operations in Algorithm 1 fits well
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} Assume shared-nothing model

} Relations are already partitioned across a set of machines

R3, S3

R2, S2

R1, S1
Partitions of R (Not 
different relations)

Processor 1

Processor 2

Processor w

Processor 1 can 
directly read R1, S1

If it wants R2, 
Processor 2 must 
read it and send it to 
Processor 1



Read R1 and Partition 
Read S1 and Partition

R4, S4

R3, S3

R2, S2

R1, S1

Read R2 and Partition 
Read S2 and Partition

Read R3 and Partition 
Read S3 and Partition

Read R4 and Partition 
Read S4 and Partition

Join the R and S 
tuples with h(a) = 1

Join the R and S 
tuples with h(a) = 2

Join the R and S 
tuples with h(a) = 3

Join the R and S 
tuples with h(a) = 4

R1 and S1 tuples with 
h(a) = 1

h(a) = 2

h(a) = 4

h(a) = 3

Shuffle – typically expensive

Can be same machines 
or different



Read S1 and send 
it around

R4, S4

R3, S3

R2, S2

R1, S1

Read S2 and send 
it around

Read S3 and send 
it around

Read S4 and send 
it around

Join R1 with all of S

Join R2 with all of S

Join R3 with all of S

Join R4 with all of S

All S1 tuples (no need to 
send if same machine) 

All S1 tuples 

All S1 tuples 

All S1 tuples 



Sort R1 Locally

R4

R3

R2

R1

Partitions of R (Not 
different relations)

Sort R2 Locally

Sort R3 Locally

Sort R4 Locally

Sort received tuples

Sort received tuples

Sort received tuples

Sort received tuples

tuples with R.a < 100

100 <= R.a < 200

500 <= R.a

200 <= R.a < 500

Shuffle – typically expensive



Group tuples of R1; 
Compute 
partial aggregates

R4

R3

R2

R1

Partitions of R (Not 
different relations)

Combine partial 
aggregates

(a, 5, ..)
(b, 3, ..)
(a, 4, ..)

(a, 9, ..)
(b, 3, ..)

Partial aggregates

Group tuples of R2; 
Compute 
partial aggregates

Group tuples of R3; 
Compute 
partial aggregates

Group tuples of R4; 
Compute 
partial aggregates

• Similarly to how we have seen, 
”average” would require 
sending ”sum” an “count”, etc

• Amount of data transferred low
• Requires a proper 

aggregate/reduce, and small 
number of groups



Group tuples of R1; 
Compute 
partial aggregates

R4

R3

R2

R1 Combine partial 
aggregates

(a, 5, ..)
(b, 3, ..)
(a, 4, ..) (a, 9, ..)

Group tuples of R2; 
Compute 
partial aggregates

Group tuples of R3; 
Compute 
partial aggregates

Group tuples of R4; 
Compute 
partial aggregates

Combine partial 
aggregates

Combine partial 
aggregates

Combine partial 
aggregates

(b, 3, ..)

Use hashing to 
redistribute data



Group tuples of R1; 
Redistribute using 
Hashing

R4

R3

R2

R1 Compute aggregates
Or reduce functions

Group tuples of R2; 
Redistribute using 
Hashing

Group tuples of R3; 
Redistribute using 
Hashing

Group tuples of R4; 
Redistribute using 
Hashing

Compute aggregates
Or reduce functions

Compute aggregates
Or reduce functions

Compute aggregates
Or reduce functions

e.g., if we want to compute “median” or some other 
complex statistics – no “partial aggregation” possible



} Tuple placement skew: tuples are distributed non-uniformly

} Selectivity Skew: Selectivity of a predicate varies across tuples

} Redistribution skew: re-partitioning introduces skew

} Join product skew: the join selectivity varies across partitions



} Range Partitioning instead of hash partitioning 
◦ Can estimate the “splitting points” using sampling to distributed equally across machines

◦ Typically focus on uniform split of the “build” relation (probe relations less important)

} Subset-Replicate
◦ Need to handle the case of too many tuples with the same join value

◦ e.g., {1, 1, 1, 1, 1, 1, 2, 3} should be split into {1, 1, 1, 1} and {1, 1, 2, 3} – but this requires 
sending the probe relation tuples with value 1 to both the machine (replicate)

} Weighting
◦ Consider {1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6} split into {1, 2, 3, 4}, {4, 4, 4, 4}, {4, 4, 4, 6}

◦ For the probe relation tuples with value 4: 1/8 should go to machine 1, 1/2 to machine 2, 
and 3/8 should go to machine 3

} Virtual processor partitioning and load scheduling
◦ The above can’t handle join product skew well

◦ If m machines, create a partitioning into 100m partitions, and then assign those to the m
machines using round robin, or through a more complex cost-based manner



} Trickier in a disk-based model, especially with the data distributed across 
machines

} Stratified sampling: 
◦ Each processor takes a partial sample and we combine all of them

◦ Not guaranteed to be a random sample of the relation

} Even on each processor, can’t take a random sample of data
◦ Instead choose a page randomly and use all tuples or some of the tuples from it



} Gamma uses a “split table” to do the re-partitioning

} Added a new type of split table for “range” partitioning

} Weighted range partitioning can be added easily

} Virtual processor partitioning causes problems
◦ Split tables get large, and Gamma needs one page per entry in the split table

◦ Instead, add another layer of abstraction on top



} Basic hybrid hash works well with low skew, but often doesn’t finish in 
presence of large skew

} Among the other techniques, Virtual Processor Range Partitioning w/ Round 
Robin works best across different scenarios

} Final recommendation:
◦ Take a sample to see which of the relations (if either) is skewed

◦ If neither is skewed, use basic parallel hash join to avoid any of the overheads

◦ If one of them is skewed, use virtual process range partitioning w/ round robin –
with more skewed relation as the building relation

} Over partitioning widely used today as well, in systems like Spark



https://databricks.com/blog/2020/05/29/adaptive-query-
execution-speeding-up-spark-sql-at-runtime.html

Looks to be similar to “subset-replicate”



} Query evaluation techniques for large databases

} Skew avoidance strategies

} Query compilation

} Vectorization



} DBMSs built for 70’s-80’s hardware 

} Current hardware is much much different 
◦ Need to rethink the design 

} Key issues: 
◦ Pipelining → dependent code, branches bad 

◦ Multi-core

◦ Caches

◦ GPUs: lots of processing power, not clear how to use it Increasingly 

◦ NUMA architectures 

◦ FPGAs 



} Heavy use of instruction pipelining 

} Split a CPU instruction into large number of stages
◦ 1993 Pentium: 5-stage pipeline, 2004 Penitum4: 31 pipeline stages

◦ Example stages: IF = Instruction Fetch, ID = Instruction Decode, EX = 
Execute, MEM = Memory access, etc... 

◦ More stages –> simpler architecture

◦ More stages necessitates speculative execution

◦ More stages –> Wasted work because of dependent instructions and 
branch misprediction

} Super-scalar architectures
◦ Large number of independent pipelines

◦ Hard to keep feeding data into them in many cases 



Overview of Modern CPUs Where does the time go? Vectorized processing Cache-conscious algorithms PAX Multi-core GPUs FPGAs?
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Super-scalar architectures
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/* branch version */
if (src[i] < V)

out[j++] = i;
/* predicated version */
bool b = (src[i] < V);

j += b;
out[j] = i;

return j;
}

}
query selectivity

int sel_lt_int_col_int_val(int n, int* res, int* in, int V) {

m
se

c.

for(int i=0,j=0; i<n; i++){
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Figure 2: Itanium Hardware Predication Eliminates
Branch Mispredictions

Most programming languages do not require
programmers to explicitly specify in their programs
which instructions (or expressions) are independent
Therefore, compiler optimizations have become crit-
ical to achieving good CPU utilization. The most
important technique is loop pipelining, in which an
operation consisting of multiple dependent operations
F(), G() on all n independent elements of an array A

is transformed from:
F(A[0]),G(A[0]), F(A[1]),G(A[1]),.. F(A[n]),G(A[n])

into:
F(A[0]),F(A[1]),F(A[2]), G(A[0]),G(A[1]),G(A[2]), F(A[3]),..

Supposing the pipeline dependency latency of F()

is 2 cycles, when G(A[0]) is taken into execution, the
result of F(A[0]) has just become available.

In the case of the Itanium2 processor, the impor-
tance of the compiler is even stronger, as it is the
compiler which has to find instructions that can go
into different pipelines (other CPUs do that at run-
time, using out-of-order execution). As the Itanium2
chip does not need any complex logic dedicated to find-
ing out-of-order execution opportunities, it can contain
more pipelines that do real work. The Itanium2 also
has a feature called branch predication for eliminating
branch mispredictions, by allowing to execute both the
THEN and ELSE blocks in parallel and discard one
of the results as soon as the result of the condition
becomes known. It is also the task of the compiler to
detect opportunities for branch predication.

Figure 2 shows a micro-benchmark of the selection
query SELECT oid FROM table WHERE col < X, where X

is uniformly and randomly distributed over [0:100]

and we vary the selectivity X between 0 and 100. Nor-
mal CPUs like the AthlonMP show worst-case behav-
ior around 50%, due to branch mispredictions. As sug-
gested in [17], by rewriting the code cleverly, we can
transform the branch into a boolean calculation (the
“predicated” variant). Performance of this rewritten
variant is independent of the selectivity, but incurs a
higher average cost. Interestingly, the “branch” vari-
ant on Itanium2 is highly efficient and independent of
selectivity as well, because the compiler transforms the

branch into hardware-predicated code.
Finally, we should mention the importance of on-

chip caches to CPU throughput. About 30% of all
instructions executed by a CPU are memory loads
and stores, that access data on DRAM chips, located
inches away from the CPU on a motherboard. This
imposes a physical lower bound on memory latency of
around 50 ns. This (ideal) minimum latency of 50ns
already translates into 180 wait cycles for a 3.6GHz
CPU. Thus, only if the overwhelming majority of the
memory accessed by a program can be found in an on-
chip cache, a modern CPU has a chance to operate at
its maximum throughput. Recent database research
has shown that DBMS performance is strongly im-
paired by memory access cost (“cache misses”) [3], and
can significantly improve if cache-conscious data struc-
tures are used, such as cache-aligned B-trees [16, 7] or
column-wise data layouts such as PAX [2] and DSM [8]
(as in MonetDB). Also, query processing algorithms
that restrict their random memory access patterns to
regions that fit a CPU cache, such as radix-partitioned
hash-join [18, 11], strongly improve performance.

All in all, CPUs have become highly complex de-
vices, where the instruction throughput of a processor
can vary by orders of magnitude (!) depending on
the cache hit-ratio of the memory loads and stores,
the number of branches and whether they can be pre-
dicted/predicated, as well as the amount of indepen-
dent instructions a compiler and the CPU can detect
on average. It has been shown that query execution in
commercial DBMS systems get an IPC of only 0.7 [6],
thus executing less than one instruction per cycle. In
contrast, scientific computation (e.g. matrix multipli-
cation) or multimedia processing does extract average
IPCs of up to 2 out of modern CPUs. We argue that
database systems do not need to perform so badly,
especially not on large-scale analysis tasks, where mil-
lions of tuples need to be examined and expressions
to be calculated. This abundance of work contains
plenty of independence that should be able to fill all
the pipelines a CPU can offer. Hence, our quest is to
adapt database architecture to expose this to the com-
piler and CPU where possible, and thus significantly
improve query processing throughput.

3 Microbenchmark: TPC-H Query 1

While we target CPU efficiency of query processing in
general, we first focus on expression calculation, dis-
carding more complex relational operations (like join)
to simplify our analysis. We choose Query 1 of the
TPC-H benchmark, shown in Figure 3, this query is
CPU-bound because on all RDBMSs we tested. Also,
this query requires virtually no optimization or fancy
join implementations as its plan is so simple. Thus, all
database systems operate on a level playing field and
mainly expose their expression evaluation efficiency.

The TPC-H benchmark operates on a data ware-
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Itanium does hardware branch predication, i.e., execute 
both branches while condition is being evaluated

(may be a little more complex than that)



house of 1GB, the size of which can be increased with a
Scaling Factor (SF). Query 1 is a scan on the lineitem

table of SF*6M tuples, that selects almost all tu-
ples (SF*5.9M), and computes a number of fixed-point
decimal expressions: two column-to-constant subtrac-
tions, one column-to-constant addition, three column-
to-column multiplications, and eight aggregates (four
SUM()s, three AVG()s and a COUNT()). The aggre-
gate grouping is on two single-character columns, and
yields only 4 unique combinations, such that it can be
done efficiently with a small hash-table, requiring no
additional I/O nor even CPU cache misses (for access-
ing the hash-table).

In the following, we analyze the performance of
Query 1 first on relational database systems, then on
MonetDB/MIL and finally in a hand-coded program.

TPC-H Query 1 Experiments
DBMS “X” 28.1 1 1 AthlonMP 1533MHz, 609/547

MySQL 4.1 26.6 1 1 AthlonMP 1533MHz, 609/547
MonetDB/MIL 3.7 1 1 AthlonMP 1533MHz, 609/547
MonetDB/MIL 3.4 1 1 Itanium2 1.3GHz, 1132/1891
hand-coded 0.22 1 1 AthlonMP 1533MHz, 609/547
hand-coded 0.14 1 1 Itanium2 1.3GHz, 1132/1891

MonetDB/X100 0.50 1 1 AthlonMP 1533MHz, 609/547
MonetDB/X100 0.31 1 1 Itanium2 1.3GHz, 1132/1891
MonetDB/X100 0.30 100 1 Itanium2 1.3GHz, 1132/1891

(sec*#CPU)/SF SF #CPU, SPECcpu int/fp

Oracle10g 18.1 100 16 Itanium2 1.3GHz, 1132/1891
Oracle10g 13.2 1000 64 Itanium2 1.5GHz, 1408/2161
SQLserver2000 18.0 100 2 Xeon P4 3.0GHz, 1294/1208
SQLserver2000 21.8 1000 8 Xeon P4 2.8GHz, 1270/1094

DB2 UDB 8.1 9.0 100 4 Itanium2 1.5GHz, 1408/2161
DB2 UDB 8.1 7.4 100 2 Opteron 2.0GHz, 1409/1514
Sybase IQ 12.5 15.6 100 2 USIII 1.28GHz, 704/1054
Sybase IQ 12.5 15.8 1000 2 USIII 1.28GHz, 704/1054

TPC-H Query 1 Reference Results (www.tpc.org)

Table 1: TPC-H Query 1 Performance

3.1 Query 1 on Relational Database Systems

Since the early days of RDBMSs, query execution
functionality is provided by implementing a physical
SELECT l_returnflag, l_linestatus,

sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount))
AS sum_disc_price,

sum(l_extendedprice * (1 - l_discount) *
(1 + l_tax)) AS sum_charge,

avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date ’1998-09-02’
GROUP BY l_returnflag, l_linestatus

Figure 3: TPC-H Query 1

relational algebra, typically following the Volcano [10]
model of pipelined processing. Relational algebra,
however, has a high degree of freedom in its param-
eters. For instance, even a simple ScanSelect(R, b, P )
only at query-time receives full knowledge of the for-
mat of the input relation R (number of columns, their
types, and record offsets), the boolean selection ex-
pression b (which may be of any form), and a list
of projection expressions P (each of arbitrary com-
plexity) that define the output relation. In order to
deal with all possible R, b, and P , DBMS implemen-
tors must in fact implement an expression interpreter
that can handle expressions of arbitrary complexity.

One of the dangers of such an interpreter, especially
if the granularity of interpretation is a tuple, is that
the cost of the “real work” (i.e. executing the expres-
sions found in the query) is only a tiny fraction of
total query execution cost. We can see this happen-
ing in Table 2 that shows a gprof trace of a MySQL
4.1 of TPC-H Query 1 on a database of SF=1. The
second column shows the percentage of total execu-
tion time spent in the routine, excluding time spent
in routines it called (excl.). The first column is a cu-
mulative sum of the second (cum.). The third column
lists how many times the routine was called, while the
fourth and fifth columns show the average number of
instructions executed on each call, as well as the IPC
achieved.

The first observation to make is that the five oper-
ations that do all the “work” (displayed in boldface),
correspond to only 10% of total execution time. Closer
inspection shows that 28% of execution time is taken
up by creation and lookup in the hash-table used for
aggregation. The remaining 62% of execution time is
spread over functions like rec get nth field, that navi-
gate through MySQL’s record representation and copy
data in and out of it. Other factors, such as locking
overhead (pthread mutex unlock, mutex test and set)
or buffer page allocation (buf frame align) seem to
play only a minor role in this decision support query.

The second observation is the cost of the Item op-
erations that correspond to the computational “work”
of the query. For example, Item func plus::val has a
cost of 38 instructions per addition. This performance
trace was made on an SGI machine with MIPS R12000
CPU3, which can execute three integer or floating-
point instructions and one load/store per cycle, with
an average operation latency of about 5 cycles. A sim-
ple arithmetic operation +(double src1, double src2)

: double in RISC instructions would look like:

LOAD src1,reg1
LOAD src2,reg2
ADD reg1,reg2,reg3
STOR dst,reg3

The limiting factor in this code are the three
3On our Linux test platforms, no multi-threaded profiling

tools seem to be available.
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house of 1GB, the size of which can be increased with a
Scaling Factor (SF). Query 1 is a scan on the lineitem

table of SF*6M tuples, that selects almost all tu-
ples (SF*5.9M), and computes a number of fixed-point
decimal expressions: two column-to-constant subtrac-
tions, one column-to-constant addition, three column-
to-column multiplications, and eight aggregates (four
SUM()s, three AVG()s and a COUNT()). The aggre-
gate grouping is on two single-character columns, and
yields only 4 unique combinations, such that it can be
done efficiently with a small hash-table, requiring no
additional I/O nor even CPU cache misses (for access-
ing the hash-table).

In the following, we analyze the performance of
Query 1 first on relational database systems, then on
MonetDB/MIL and finally in a hand-coded program.

TPC-H Query 1 Experiments
DBMS “X” 28.1 1 1 AthlonMP 1533MHz, 609/547

MySQL 4.1 26.6 1 1 AthlonMP 1533MHz, 609/547
MonetDB/MIL 3.7 1 1 AthlonMP 1533MHz, 609/547
MonetDB/MIL 3.4 1 1 Itanium2 1.3GHz, 1132/1891
hand-coded 0.22 1 1 AthlonMP 1533MHz, 609/547
hand-coded 0.14 1 1 Itanium2 1.3GHz, 1132/1891

MonetDB/X100 0.50 1 1 AthlonMP 1533MHz, 609/547
MonetDB/X100 0.31 1 1 Itanium2 1.3GHz, 1132/1891
MonetDB/X100 0.30 100 1 Itanium2 1.3GHz, 1132/1891

(sec*#CPU)/SF SF #CPU, SPECcpu int/fp

Oracle10g 18.1 100 16 Itanium2 1.3GHz, 1132/1891
Oracle10g 13.2 1000 64 Itanium2 1.5GHz, 1408/2161
SQLserver2000 18.0 100 2 Xeon P4 3.0GHz, 1294/1208
SQLserver2000 21.8 1000 8 Xeon P4 2.8GHz, 1270/1094

DB2 UDB 8.1 9.0 100 4 Itanium2 1.5GHz, 1408/2161
DB2 UDB 8.1 7.4 100 2 Opteron 2.0GHz, 1409/1514
Sybase IQ 12.5 15.6 100 2 USIII 1.28GHz, 704/1054
Sybase IQ 12.5 15.8 1000 2 USIII 1.28GHz, 704/1054
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3.1 Query 1 on Relational Database Systems

Since the early days of RDBMSs, query execution
functionality is provided by implementing a physical
SELECT l_returnflag, l_linestatus,

sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount))
AS sum_disc_price,

sum(l_extendedprice * (1 - l_discount) *
(1 + l_tax)) AS sum_charge,

avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date ’1998-09-02’
GROUP BY l_returnflag, l_linestatus

Figure 3: TPC-H Query 1

relational algebra, typically following the Volcano [10]
model of pipelined processing. Relational algebra,
however, has a high degree of freedom in its param-
eters. For instance, even a simple ScanSelect(R, b, P )
only at query-time receives full knowledge of the for-
mat of the input relation R (number of columns, their
types, and record offsets), the boolean selection ex-
pression b (which may be of any form), and a list
of projection expressions P (each of arbitrary com-
plexity) that define the output relation. In order to
deal with all possible R, b, and P , DBMS implemen-
tors must in fact implement an expression interpreter
that can handle expressions of arbitrary complexity.

One of the dangers of such an interpreter, especially
if the granularity of interpretation is a tuple, is that
the cost of the “real work” (i.e. executing the expres-
sions found in the query) is only a tiny fraction of
total query execution cost. We can see this happen-
ing in Table 2 that shows a gprof trace of a MySQL
4.1 of TPC-H Query 1 on a database of SF=1. The
second column shows the percentage of total execu-
tion time spent in the routine, excluding time spent
in routines it called (excl.). The first column is a cu-
mulative sum of the second (cum.). The third column
lists how many times the routine was called, while the
fourth and fifth columns show the average number of
instructions executed on each call, as well as the IPC
achieved.

The first observation to make is that the five oper-
ations that do all the “work” (displayed in boldface),
correspond to only 10% of total execution time. Closer
inspection shows that 28% of execution time is taken
up by creation and lookup in the hash-table used for
aggregation. The remaining 62% of execution time is
spread over functions like rec get nth field, that navi-
gate through MySQL’s record representation and copy
data in and out of it. Other factors, such as locking
overhead (pthread mutex unlock, mutex test and set)
or buffer page allocation (buf frame align) seem to
play only a minor role in this decision support query.

The second observation is the cost of the Item op-
erations that correspond to the computational “work”
of the query. For example, Item func plus::val has a
cost of 38 instructions per addition. This performance
trace was made on an SGI machine with MIPS R12000
CPU3, which can execute three integer or floating-
point instructions and one load/store per cycle, with
an average operation latency of about 5 cycles. A sim-
ple arithmetic operation +(double src1, double src2)

: double in RISC instructions would look like:

LOAD src1,reg1
LOAD src2,reg2
ADD reg1,reg2,reg3
STOR dst,reg3

The limiting factor in this code are the three
3On our Linux test platforms, no multi-threaded profiling

tools seem to be available.
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} Lot of overhead due to interpretation
◦ Database code designed to handle arbitrary expressions, known only at run-time

◦ Something that should take 4 cycles takes 49 cycles in MySQL

◦ Likely due to inability to use loop pipelining 

� Should be able to evaluate an operation in parallel on all tuples

� But compiler can’t do that

� The function call cost not getting amortized
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gate grouping is on two single-character columns, and
yields only 4 unique combinations, such that it can be
done efficiently with a small hash-table, requiring no
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3.1 Query 1 on Relational Database Systems

Since the early days of RDBMSs, query execution
functionality is provided by implementing a physical
SELECT l_returnflag, l_linestatus,

sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
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AS sum_disc_price,
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count(*) AS count_order
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GROUP BY l_returnflag, l_linestatus
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relational algebra, typically following the Volcano [10]
model of pipelined processing. Relational algebra,
however, has a high degree of freedom in its param-
eters. For instance, even a simple ScanSelect(R, b, P )
only at query-time receives full knowledge of the for-
mat of the input relation R (number of columns, their
types, and record offsets), the boolean selection ex-
pression b (which may be of any form), and a list
of projection expressions P (each of arbitrary com-
plexity) that define the output relation. In order to
deal with all possible R, b, and P , DBMS implemen-
tors must in fact implement an expression interpreter
that can handle expressions of arbitrary complexity.

One of the dangers of such an interpreter, especially
if the granularity of interpretation is a tuple, is that
the cost of the “real work” (i.e. executing the expres-
sions found in the query) is only a tiny fraction of
total query execution cost. We can see this happen-
ing in Table 2 that shows a gprof trace of a MySQL
4.1 of TPC-H Query 1 on a database of SF=1. The
second column shows the percentage of total execu-
tion time spent in the routine, excluding time spent
in routines it called (excl.). The first column is a cu-
mulative sum of the second (cum.). The third column
lists how many times the routine was called, while the
fourth and fifth columns show the average number of
instructions executed on each call, as well as the IPC
achieved.

The first observation to make is that the five oper-
ations that do all the “work” (displayed in boldface),
correspond to only 10% of total execution time. Closer
inspection shows that 28% of execution time is taken
up by creation and lookup in the hash-table used for
aggregation. The remaining 62% of execution time is
spread over functions like rec get nth field, that navi-
gate through MySQL’s record representation and copy
data in and out of it. Other factors, such as locking
overhead (pthread mutex unlock, mutex test and set)
or buffer page allocation (buf frame align) seem to
play only a minor role in this decision support query.

The second observation is the cost of the Item op-
erations that correspond to the computational “work”
of the query. For example, Item func plus::val has a
cost of 38 instructions per addition. This performance
trace was made on an SGI machine with MIPS R12000
CPU3, which can execute three integer or floating-
point instructions and one load/store per cycle, with
an average operation latency of about 5 cycles. A sim-
ple arithmetic operation +(double src1, double src2)

: double in RISC instructions would look like:

LOAD src1,reg1
LOAD src2,reg2
ADD reg1,reg2,reg3
STOR dst,reg3

The limiting factor in this code are the three
3On our Linux test platforms, no multi-threaded profiling

tools seem to be available.
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cum. excl. calls ins. IPC function

11.9 11.9 846M 6 0.64 ut fold ulint pair
20.4 8.5 0.15M 27K 0.71 ut fold binary
26.2 5.8 77M 37 0.85memcpy
29.3 3.1 23M 640.88Item sum sum::update field
32.3 3.0 6M 247 0.83 row search for mysql
35.2 2.9 17M 790.70Item sum avg::update field
37.8 2.6 108M 11 0.60 rec get bit field 1
40.3 2.5 6M 213 0.61 row sel store mysql rec
42.7 2.4 48M 25 0.52 rec get nth field
45.1 2.4 60 19M 0.69 ha print info
47.5 2.4 5.9M 195 1.08 end update
49.6 2.1 11M 89 0.98 field conv
51.6 2.0 5.9M 16 0.77Field float::val real
53.4 1.8 5.9M 14 1.07 Item field::val
54.9 1.5 42M 17 0.51 row sel field store in mysql..
56.3 1.4 36M 18 0.76 buf frame align
57.6 1.3 17M 380.80Item func mul::val
59.0 1.4 25M 25 0.62 pthread mutex unlock
60.2 1.2 206M 2 0.75 hash get nth cell
61.4 1.2 25M 21 0.65mutex test and set
62.4 1.0 102M 4 0.62 rec get 1byte offs flag
63.4 1.0 53M 9 0.58 rec 1 get field start offs
64.3 0.9 42M 11 0.65 rec get nth field extern bit
65.3 1.0 11M 380.80Item func minus::val
65.8 0.5 5.9M 380.80Item func plus::val

Table 2: MySQL gprof trace of TPC-H Q1:
+,-,*,SUM,AVG takes <10%, low IPC of 0.7

load/store instructions, thus a MIPS processor can do
one *(double,double) per 3 cycles. This is in sharp
contrast to the MySQL cost of #ins/Instruction-Per-
Cycle (IPC) = 38/0.8 = 49 cycles! One explanation
for this high cost is the absence of loop pipelining. As
the routine called by MySQL only computes one ad-
dition per call, instead of an array of additions, the
compiler cannot perform loop pipelining. Thus, the
addition consists of four dependent instructions that
have to wait for each other. With a mean instruction
latency of 5 cycles, this explains a cost of about 20
cycles. The rest of the 49 cycles are spent on jumping
into the routine, and pushing and popping the stack.

The consequence of the MySQL policy to execute
expressions tuple-at-a-time, is twofold:

• Item func plus::val only performs one addition,
preventing the compiler from creating a pipelined
loop. As the instructions for one operation are
highly dependent, empty pipeline slots must be
generated (stalls) to wait for the instruction la-
tencies, such that the cost of the loop becomes 20
instead of 3 cycles.

• the cost of the routine call (in the ballpark of 20
cycles) must be amortized over only one opera-
tion, which effectively doubles the operation cost.

We also tested the same query on a well-known com-
mercial RDBMS (see the first row of Table 1). As we
obviously lack the source code of this product, we can-
not produce a gprof trace. However, the query evalu-
ation cost on this DBMS is very similar to MySQL.

The lower part of Table 1 includes some official
TPC-H Query 1 results taken from the TPC website.

SF=1 SF=0.001 tot res (BW = MB/s)
ms BW us BW MB size MIL statement
127 352 150 305 45 5.9M s0 := select(l shipdate).mark
134 505 113 608 68 5.9M s1 := join(s0,l returnflag)
134 506 113 608 68 5.9M s2 := join(s0,l linestatus)
235 483 129 887 114 5.9M s3 := join(s0,l extprice)
233 488 130 881 114 5.9M s4 := join(s0,l discount)
232 489 127 901 114 5.9M s5 := join(s0,l tax)
134 507 104 660 68 5.9M s6 := join(s0,l quantity)
290 155 324 141 45 5.9M s7 := group(s1)
329 136 368 124 45 5.9M s8 := group(s7,s2)

0 0 0 0 0 4 s9 := unique(s8.mirror)
206 440 60 1527 91 5.9M r0 := [+](1.0,s5)
210 432 51 1796 91 5.9M r1 := [-](1.0,s4)
274 498 83 1655 137 5.9M r2 := [*](s3,r1)
274 499 84 1653 137 5.9M r3 := [*](s12,r0)
165 271 121 378 45 4 r4 := {sum}(r3,s8,s9)
165 271 125 366 45 4 r5 := {sum}(r2,s8,s9)
163 275 128 357 45 4 r6 := {sum}(s3,s8,s9)
163 275 128 357 45 4 r7 := {sum}(s4,s8,s9)
144 151 107 214 22 4 r8 := {sum}(s6,s8,s9)
112 196 145 157 22 4 r9 := {count}(s7,s8,s9)
3724 2327 TOTAL

Table 3: MonetDB/MIL trace of TPC-H Query 1

Query 1 is dominated by computations in a full scan
and this scales linearly with table size. The query is
also “embarrasingly parallel” using horizontal paral-
lelism, such that TPC-H results on parallel systems
most likely achieved linear speedup. Thus, we can
compare throughput for different systems, by normal-
izing all times towards SF=1 and a single CPU. We
also provide the SPECcpu int/float scores of the var-
ious hardware platforms used. We mainly do this in
order to check that the relational DBMS results we ob-
tained are roughly in the same ballpark as what is pub-
lished by TPC. This leads us to believe that what we
see in the MySQL trace is likely representative of what
happens in commercial RDBMS implementations.

3.2 Query 1 on MonetDB/MIL

The MonetDB system [4] developed by our group, is
mostly known for its use of vertical fragmentation,
storing tables column-wise, each column in a Binary
Association Table (BAT) that contains [oid,value]

combinations. A BAT is a 2-column table where the
left column is called head and the right column tail.
The algebraic query language of MonetDB is a column-
algebra called MIL [5].

In contrast to the relational algebra, the MIL al-
gebra does not have any degree of freedom. Its al-
gebraic operators have a fixed number of parame-
ters of a fixed format (all two-column tables or con-
stants). The expression calculated by an operator is
fixed, as well as the shape of the result. For example,
the MIL join(BAT[tl, te] A, BAT[te, tr] B) : BAT[tl, tr]

is an equi-join between the tail column of A and head
column of B, that for each matching combination of
tuples returns the head value from A and tail value
from B. The mechanism in MIL to join on the other
column (i.e. the head, instead of the tail) of A, is

229



} MonetDB uses the DSM model

} All operators take in a few BATs as input, and produce a BAT
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} MonetDB uses the DSM model

} All operators take in a few BATs as input, and produce a BAT

} Performance better than alternatives

} However:
◦ All MIL operations become memory-bound instead of CPU-bound

◦ For large enough BATs, every MIL operation (effectively) brings the input BATs from memory to cache, and 
writes out the output BAT to memory



} Much faster than anything else

} Proposed solution comes close to achieving that

to use the MIL reverse(A) operator that returns a
view on A with its columns swapped: BAT[te, tl]. This
reverse is a zero-cost operation in MonetDB that
just swaps some pointers in the internal representa-
tion of a BAT. Complex expressions must be exe-
cuted using multiple statements in MIL. For example,
extprice * (1 - tax) becomes tmp1 := [-](1,tax);

tmp2 := [*](extprice,tmp1), where [*]() and [-]()

are multiplex operators that “map” a function onto an
entire BAT (column). MIL executes in column-wise
fashion in the sense that its operators always consume
a number of materialized input BATs and materialize
a single output BAT.

We used the MonetDB/MIL SQL front-end to
translate TPC-H Query 1 into MIL and run it. Ta-
ble 3 shows all 20 MIL invocations that together span
more than 99% of elapsed query time. On TPC-H
Query 1, MonetDB/MIL is clearly faster than MySQL
and the commercial DBMS on the same machine, and
is also competitive with the published TPC-H scores
(see Table 1). However, closer inspection of Table 3
shows that almost all MIL operators are memory-
bound instead of CPU-bound! This was established
by running the same query plan on the TPC-H dataset
with SF=0.001, such that all used columns of the
lineitem table as well as all intermediate results fit
inside the CPU cache, eliminating any memory traf-
fic. MonetDB/MIL then becomes almost twice as fast.
Columns 2 and 4 list the bandwidth (BW) in MB/s
achieved by the individual MIL operations, counting
both the size of the input BATs and the produced out-
put BAT. On SF=1, MonetDB gets stuck at 500MB/s,
which is the maximum bandwidth sustainable on this
hardware [1]. When running purely in the CPU cache
at SF=0.001, bandwidths can get above 1.5GB/s. For
the multiplexed multiplication [*](), a bandwidth of
only 500MB/s means 20M tuples per second (16 bytes
in, 8 bytes out), thus 75 cycles per multiplication on
our 1533MHz CPU, which is even worse than MySQL.

Thus, the column-at-a-time policy in MIL turns out
to be a two-edged sword. To its advantage is the fact
that MonetDB is not prone to the MySQL problem
of spending 90% of its query execution time in tuple-
at-a-time interpretation “overhead”. As the multiplex
operations that perform expression calculations work
on entire BATs (basically arrays of which the layout is
known at compile-time), the compiler is able to employ
loop-pipelining such that these operators achieve high
CPU efficiencies, embodied by the SF=0.001 results.

However, we identify the following problems with
full materialization. First, queries that contain com-
plex calculation expressions over many tuples will ma-
terialize an entire result column for each function in
the expression. Often, such function results are not
required in the query result, but just serve as inputs
to other functions in the expression. For instance, if
an aggregation is the top-most operator in the query

plan, the eventual result size might even be negligible
(such as in Query 1). In such cases, MIL material-
izes much more data than strictly necessary, causing
its high bandwidth consumption.

Also, Query 1 starts with a 98% selection of the
6M tuple table, and performs the aggregations on the
remaining 5.9M million tuples. Again, MonetDB ma-
terializes the relevant result columns of the select()

using six positional join()s. These joins are not re-
quired in a Volcano-like pipelined execution model. It
can do the selection, computations and aggregation all
in a single pass, not materializing any data.

While in this paper we concentrate on CPU effi-
ciency in main-memory scenarios, we point out that
the “artificially” high bandwidths generated by Mon-
etDB/MIL make it harder to scale the system to
disk-based problems efficiently, simply because mem-
ory bandwidth tends to be much larger (and cheaper)
than I/O bandwidth. Sustaining a data transfer of e.g.
1.5GB/s would require a truly high-end RAID system
with a very large number of disks.

static void tpch_query1(int n, int hi_date,
unsigned char*__restrict__ p_returnflag,
unsigned char*__restrict__ p_linestatus,
double*__restrict__ p_quantity,
double*__restrict__ p_extendedprice,
double*__restrict__ p_discount,
double*__restrict__ p_tax,
int*__restrict__ p_shipdate,
aggr_t1*__restrict__ hashtab)

{
for(int i=0; i<n; i++) {
if (p_shipdate[i] <= hi_date) {
aggr_t1 *entry = hashtab +

(p_returnflag[i]<<8) + p_linestatus[i];
double discount = p_discount[i];
double extprice = p_extendedprice[i];
entry->count++;
entry->sum_qty += p_quantity[i];
entry->sum_disc += discount;
entry->sum_base_price += extprice;
entry->sum_disc_price += (extprice *= (1-discount));
entry->sum_charge += extprice*(1-p_tax[i]);

}}}

Figure 4: Hard-Coded UDF for Query 1 in C

3.3 Query 1: Baseline Performance

To get a baseline of what modern hardware can do
on a problem like Query 1, we implemented it as a
single User Defined Function (UDF) in MonetDB, as
shown in Figure 4. The UDF gets passed in only those
columns touched by the query. In MonetDB, these
columns are stored as arrays in BAT[void,T]s. That
is, the oid values in the head column are densely as-
cending from 0 upwards. In such cases, MonetDB uses
voids (“virtual-oids”) that are not stored. The BAT
then takes the form of an array. We pass these arrays
as restrict pointers, such that the C compiler knows
that they are non-overlapping. Only then can it apply
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} Key Idea: Combine the best of Volcano Iterator Model and Vectorized execution

} Use the iterator model as the top-level model

} But transfer batches of data (i.e., fragments of BATs) between the operators – called 
vectors

} Continue to use DSM model for efficient disk-to-memory transfer

} Decompression of data happens when it is loaded into Cache
◦ Bandwidth doesn’t matter for Cache as much

} Ensure that loop pipelining is clear to the compiler

} Combine multiple operations together through compilation
◦ Similar to query compilation ideas



loop-pipelining!
This implementation exploits the fact that a

GROUP BY on two single-byte characters can never
yield more than 65536 combinations, such that their
combined bit-representation can be used directly as an
array index to the table with aggregation results. Like
in MonetDB/MIL, we performed some common subex-
pression elimination such that one minus and three
AVG aggregates can be omitted.

Table 1 shows that this UDF implementation (la-
beled “hand-coded”) reduces query evaluation cost to
a stunning 0.22 seconds. From the same table, you
will notice that our new X100 query processor, that is
the topic of the remainder of this paper, is able to get
within a factor 2 of this hand-coded implementation.

4 X100: A Vectorized Query Processor

The goal of X100 is to (i) execute high-volume queries
at high CPU efficiency, (ii) be extensible to other ap-
plication domains like data mining and multi-media
retrieval, and achieve those same high efficiencies on
extensibility code, and (iii) scale with the size of the
lowest storage hierarchy (disk).

In order to achieve our goals, X100 must fight bot-
tlenecks throughout the entire computer architecture:

Disk the ColumnBM I/O subsystem of X100 is geared
towards efficient sequential data access. To re-
duce bandwidth requirements, it uses a vertically
fragmented data layout, that in some cases is en-
hanced with lightweight data compression.

RAM like I/O, RAM access is carried out through ex-
plicit memory-to-cache and cache-to-memory rou-
tines (which contain platform-specific optimiza-
tions, sometimes including e.g. SSE prefetching
and data movement assembly instructions). The
same vertically partitioned and even compressed
disk data layout is used in RAM to save space and
bandwidth.

Cache we use a Volcano-like execution pipeline based
on a vectorized processing model. Small (e.g.
1000 values) vertical chunks of cache-resident data
items, called “vectors” are the unit of operation
for X100 execution primitives. The CPU cache is
the only place where bandwidth does not mat-
ter, and therefore (de)compression happens on
the boundary between RAM and cache. The
X100 query processing operators should be cache-
conscious and fragment huge datasets efficiently
into cache-chunks and perform random data ac-
cess only there.

CPU vectorized primitives expose to the compiler that
processing a tuple is independent of the previous
and next tuples. Vectorized primitives for projec-
tions (expression calculation) do this easily, but

we try to achieve the same for other query process-
ing operators as well (e.g. aggregation). This al-
lows compilers to produce efficient loop-pipelined
code. To improve the CPU throughput further
(mainly by reducing the number of load/stores in
the instruction mix), X100 contains facilities to
compile vectorized primitives for whole expression
sub-trees rather than single functions. Currently,
this compilation is statically steered, but it may
eventually become a run-time activity mandated
by an optimizer.

To maintain focus in this paper, we only sum-
marily describe disk storage issues, also because the
ColumnBM buffer manager is still under development.
In all our experiments, X100 uses MonetDB as its stor-
age manager (as shown in Figure 5), where it operates
on in-memory BATs.

X100 Optimizer
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X100 Cost Model
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Figure 5: X100 Software Architecture

4.1 Query Language

X100 uses a rather standard relational algebra as query
language. We departed from the column-at-a-time
MIL language so that the relational operators can pro-
cess (vectors of) multiple columns at the same time,
allowing to use a vector produced by one expression
as the input to another, while the data is in the CPU
cache.

4.1.1 Example

To demonstrate the behavior of MonetDB/X100, Fig-
ure 6 presents the execution of a simplified version of
a TPC-H Query 1, with the following X100 relational
algebra syntax:

Aggr(
Project(
Select(
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Table(lineitem),
< (shipdate, date(’1998-09-03’))),

[ discountprice = *( -( flt(’1.0’), discount),
extendedprice) ]),

[ returnflag ],
[ sum_disc_price = sum(discountprice) ])

Execution proceeds using Volcano-like pipelining,
on the granularity of a vector (e.g. 1000 values).
The Scan operator retrieves data vector-at-a-time from
Monet BATs. Note that only attributes relevant to the
query are actually scanned.

A second step is the Select operator, which cre-
ates a selection-vector, filled with positions of tuples
that match our predicate. Then the Project opera-
tor is executed to calculate expressions needed for the
final aggregation. Note that ”discount” and ”extend-
edprice” columns are not modified during selection.
Instead, the selection-vector is taken into account by
map-primitives to perform calculations only for rele-
vant tuples, writing results at the same positions in
the output vector as they were in the input one. This
behavior requires propagating of the selection-vector
to the final Aggr. There, for each tuple its position in
the hash table is calculated, and then, using this data,
aggregate results are updated. Additionally, for the
new elements in the hash table, values of the group-
ing attribute are saved. The contents of the hash-table
becomes available as the query result as soon as the un-
derlying operators become exhausted and cannot pro-
duce more vectors.

4.1.2 X100 Algebra

Figure 7 lists the currently supported X100 algebra op-
erators. In X100 algebra, a Table is a materialized rela-
tion, whereas a Dataflow just consists of tuples flowing
through a pipeline.

Order, TopN and Select return a Dataflow with the
same shape as its input. The other operators define a
Dataflow with a new shape. Some peculiarities of this
algebra are that Project is just used for expression
calculation; it does not eliminate duplicates. Dupli-
cate elimination can be performed using an Aggr with
only group-by columns. The Array operator generates
a Dataflow representing a N -dimensional array as an
N -ary relation containing all valid array index coordi-
nates in column-major dimension order. It is used by
the RAM array manipulation front-end for the Mon-
etDB system [9].

Aggregation is supported by three physical opera-
tors: (i) direct aggregation, (ii) hash aggregation, and
(iii) ordered aggregation. The latter is chosen if all
group-members will arrive right after each other in the
source Dataflow. Direct aggregation can be used for
small datatypes where the bit-representation is lim-
ited to a known (small) domain, similar to the way
aggregation was handled in the “hand-coded” solution
(Section 3.3). In all other cases, hash-aggregation is
used.
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Figure 6: Execution scheme of a simplified TPC-H
Query 1 in MonetDB/X100

X100 currently only supports left-deep joins. The
default physical implementation is a CartProd operator
with a Select on top (i.e. nested-loop join). If X100
detects a foreign-key condition in a join condition, and
a join-index is available, it exploits it with a Fetch1Join

or FetchNJoin.
The inclusion of these fetch-joins in X100 is no co-

incidence. In MIL, the “positional-join” of an oid into
a void column has proven valuable on vertically frag-
mented data stored in dense columns. Positional joins
allow dealing with the “extra” joins needed for vertical
fragmentation in a highly efficient way [4]. Just like
the void type in MonetDB, X100 gives each table a vir-
tual #rowId column, which is just a densely ascending
number from 0. The Fetch1Join allows to positionally
fetch column values by #rowId.

4.2 Vectorized Primitives

The primary reason for using the column-wise vector
layout is not to optimize memory layout in the cache
(X100 is supposed to operate on cached data anyway).
Rather, vectorized execution primitives have the ad-
vantage of a low degree of freedom (as discussed in
Section 3.2). In a vertically fragmented data model,
the execution primitives only know about the columns
they operate on without having to know about the
overall table layout (e.g. record offsets). When compil-
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Table(lineitem),
< (shipdate, date(’1998-09-03’))),

[ discountprice = *( -( flt(’1.0’), discount),
extendedprice) ]),

[ returnflag ],
[ sum_disc_price = sum(discountprice) ])

Execution proceeds using Volcano-like pipelining,
on the granularity of a vector (e.g. 1000 values).
The Scan operator retrieves data vector-at-a-time from
Monet BATs. Note that only attributes relevant to the
query are actually scanned.

A second step is the Select operator, which cre-
ates a selection-vector, filled with positions of tuples
that match our predicate. Then the Project opera-
tor is executed to calculate expressions needed for the
final aggregation. Note that ”discount” and ”extend-
edprice” columns are not modified during selection.
Instead, the selection-vector is taken into account by
map-primitives to perform calculations only for rele-
vant tuples, writing results at the same positions in
the output vector as they were in the input one. This
behavior requires propagating of the selection-vector
to the final Aggr. There, for each tuple its position in
the hash table is calculated, and then, using this data,
aggregate results are updated. Additionally, for the
new elements in the hash table, values of the group-
ing attribute are saved. The contents of the hash-table
becomes available as the query result as soon as the un-
derlying operators become exhausted and cannot pro-
duce more vectors.

4.1.2 X100 Algebra

Figure 7 lists the currently supported X100 algebra op-
erators. In X100 algebra, a Table is a materialized rela-
tion, whereas a Dataflow just consists of tuples flowing
through a pipeline.

Order, TopN and Select return a Dataflow with the
same shape as its input. The other operators define a
Dataflow with a new shape. Some peculiarities of this
algebra are that Project is just used for expression
calculation; it does not eliminate duplicates. Dupli-
cate elimination can be performed using an Aggr with
only group-by columns. The Array operator generates
a Dataflow representing a N -dimensional array as an
N -ary relation containing all valid array index coordi-
nates in column-major dimension order. It is used by
the RAM array manipulation front-end for the Mon-
etDB system [9].

Aggregation is supported by three physical opera-
tors: (i) direct aggregation, (ii) hash aggregation, and
(iii) ordered aggregation. The latter is chosen if all
group-members will arrive right after each other in the
source Dataflow. Direct aggregation can be used for
small datatypes where the bit-representation is lim-
ited to a known (small) domain, similar to the way
aggregation was handled in the “hand-coded” solution
(Section 3.3). In all other cases, hash-aggregation is
used.
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X100 currently only supports left-deep joins. The
default physical implementation is a CartProd operator
with a Select on top (i.e. nested-loop join). If X100
detects a foreign-key condition in a join condition, and
a join-index is available, it exploits it with a Fetch1Join

or FetchNJoin.
The inclusion of these fetch-joins in X100 is no co-

incidence. In MIL, the “positional-join” of an oid into
a void column has proven valuable on vertically frag-
mented data stored in dense columns. Positional joins
allow dealing with the “extra” joins needed for vertical
fragmentation in a highly efficient way [4]. Just like
the void type in MonetDB, X100 gives each table a vir-
tual #rowId column, which is just a densely ascending
number from 0. The Fetch1Join allows to positionally
fetch column values by #rowId.

4.2 Vectorized Primitives

The primary reason for using the column-wise vector
layout is not to optimize memory layout in the cache
(X100 is supposed to operate on cached data anyway).
Rather, vectorized execution primitives have the ad-
vantage of a low degree of freedom (as discussed in
Section 3.2). In a vertically fragmented data model,
the execution primitives only know about the columns
they operate on without having to know about the
overall table layout (e.g. record offsets). When compil-
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Table(ID) : Table
Scan( Table) : Dataflow

Array(List<Exp<int>>) : Dataflow
Select(Dataflow, Exp<bool>) : Dataflow

Join(Dataflow, Table, Exp<bool>, List<Column>) : Dataflow
CartProd(Dataflow, Table, List<Column>)
Fetch1Join(Dataflow, Table, Exp<int>, List<Column>)
FetchNJoin(Dataflow, Table, Exp<int>,

Exp<int>, Column, List<Column>)

Project(Dataflow, List<Exp<*>>) : Dataflow
Aggr(Dataflow, List<Exp<*>>, List<AggrExp>) : Dataflow
OrdAggr(Dataflow, List<Exp<*>>, List<AggrExp>)
DirectAggr(Dataflow, List<Exp<*>>, List<AggrExp>)
HashAggr(Dataflow, List<Exp<*>>, List<AggrExp>])
TopN(Dataflow, List<OrdExp>, List<Exp<*>>, int):Dataflow

Order(Table, List<OrdExp>, List<AggrExp>) : Table

Figure 7: X100 Query Algebra

ing X100, the C compiler sees that the X100 vectorized
primitives operate on restricted (independent) arrays
of fixed shape. This allows it to apply aggressive loop
pipelining, critical for modern CPU performance (see
Section 2). As an example, we show the (generated)
code for vectorized floating-point addition:

map_plus_double_col_double_col(int n,
double*__restrict__ res,
double*__restrict__ col1, double*__restrict__ col2,
int*__restrict__ sel)

{
if (sel) {
for(int j=0;j<n; j++) {

int i = sel[j];
res[i] = col1[i] + col2[i];

}
} else {
for(int i=0;i<n; i++)

res[i] = col1[i] + col2[i];
} }

The sel parameter may be NULL or point to an
array of n selected array positions (i.e. the “selection-
vector” from Figure 6). All X100 vectorized primitives
allow passing such selection vectors. The rationale is
that after a selection, leaving the vectors delivered by
the child operator intact is often quicker than copying
all selected data into new (contiguous) vectors.

X100 contains hundreds of vectorized primitives.
These are not written (and maintained) by hand, but
are generated from primitive patterns. The primitive
pattern for addition is:

any::1 +(any::1 x,any::1 y) plus = x + y

This pattern states that an addition of two values
of the same type (but without any type restriction)
is implemented in C by the infix operator +. It pro-
duces a result of the same type, and the name identi-
fier should be plus. Type-specific patterns later in the
specification file may override this pattern (e.g. str

+(str x,str y) concat = str concat(x,y)).
The other part of primitive generation is a file with

map signature requests:

+(double*, double*)
+(double, double*)
+(double*, double)
+(double, double)

This requests to generate all possible combinations
of addition between single values and columns (the
latter identified with an extra *). Other extensible
RDBMSs often only allow UDFs with single-value pa-
rameters [19]. This inhibits loop pipelining, reducing
performance (see Section 3.1). 4

We can also request compound primitive signatures:

/(square(-(double*, double*)), double*)

The above signature is the Mahanalobis distance,
a performance-critical operation for some multi-media
retrieval tasks [9]. We found that the compound prim-
itives often perform twice as fast as the single-function
vectorized primitives. Note that this factor 2 is simi-
lar to the difference between MonetDB/X100 and the
hand-coded implementation of TPC-H Query in Ta-
ble 1. The reason why compound primitives are more
efficient is a better instruction mix. Like in the exam-
ple with addition on the MIPS processor in Section 3.1,
vectorized execution often becomes load/store bound,
because for simple 2-ary calculations, each vectorized
instruction requires loading two parameters and stor-
ing one result (1 work instruction, 3 memory instruc-
tions). Modern CPUs can typically only perform 1 or
2 load/store operations per cycle. In compound prim-
itives, the results from one calculation are passed via a
CPU register to the next calculation, with load/stores
only occurring at the edges of the expression graph.

Currently, the primitive generator is not much more
than a macro expansion script in the make sequence
of the X100 system. However, we intend to implement
dynamic compilation of compound primitives as man-
dated by an optimizer.

A slight variation on the map primitives are the
select * primitives (see also Figure 2). These only
exist for code patterns that return a boolean. Instead
of producing a full result vector of booleans (as the
map does), the select primitives fill a result array of
selected vector positions (integers), and return the to-
tal number of selected tuples.

Similarly, there are the aggr * primitives that calcu-
late aggregates like count, sum, min, and max. For each,
an initialization, an update, and an epilogue pattern
need to be specified. The primitive generator then
generates the relevant routines for the various imple-
mentations of aggregation in X100.

The X100 mechanism of allowing database exten-
sion developers to provide (source-)code patterns in-

4If X100 is used in resource-restricted environments, the size
of the X100 binary (less than a MB now) could be further re-
duced by omitting the column-versions of (certain) execution
primitives. X100 will still be able to process those primitives
although more slowly, with a vector size of 1.
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ble 1. The reason why compound primitives are more
efficient is a better instruction mix. Like in the exam-
ple with addition on the MIPS processor in Section 3.1,
vectorized execution often becomes load/store bound,
because for simple 2-ary calculations, each vectorized
instruction requires loading two parameters and stor-
ing one result (1 work instruction, 3 memory instruc-
tions). Modern CPUs can typically only perform 1 or
2 load/store operations per cycle. In compound prim-
itives, the results from one calculation are passed via a
CPU register to the next calculation, with load/stores
only occurring at the edges of the expression graph.

Currently, the primitive generator is not much more
than a macro expansion script in the make sequence
of the X100 system. However, we intend to implement
dynamic compilation of compound primitives as man-
dated by an optimizer.

A slight variation on the map primitives are the
select * primitives (see also Figure 2). These only
exist for code patterns that return a boolean. Instead
of producing a full result vector of booleans (as the
map does), the select primitives fill a result array of
selected vector positions (integers), and return the to-
tal number of selected tuples.

Similarly, there are the aggr * primitives that calcu-
late aggregates like count, sum, min, and max. For each,
an initialization, an update, and an epilogue pattern
need to be specified. The primitive generator then
generates the relevant routines for the various imple-
mentations of aggregation in X100.

The X100 mechanism of allowing database exten-
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Currently, the primitive generator is not much more
than a macro expansion script in the make sequence
of the X100 system. However, we intend to implement
dynamic compilation of compound primitives as man-
dated by an optimizer.

A slight variation on the map primitives are the
select * primitives (see also Figure 2). These only
exist for code patterns that return a boolean. Instead
of producing a full result vector of booleans (as the
map does), the select primitives fill a result array of
selected vector positions (integers), and return the to-
tal number of selected tuples.

Similarly, there are the aggr * primitives that calcu-
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vector” from Figure 6). All X100 vectorized primitives
allow passing such selection vectors. The rationale is
that after a selection, leaving the vectors delivered by
the child operator intact is often quicker than copying
all selected data into new (contiguous) vectors.

X100 contains hundreds of vectorized primitives.
These are not written (and maintained) by hand, but
are generated from primitive patterns. The primitive
pattern for addition is:

any::1 +(any::1 x,any::1 y) plus = x + y

This pattern states that an addition of two values
of the same type (but without any type restriction)
is implemented in C by the infix operator +. It pro-
duces a result of the same type, and the name identi-
fier should be plus. Type-specific patterns later in the
specification file may override this pattern (e.g. str

+(str x,str y) concat = str concat(x,y)).
The other part of primitive generation is a file with

map signature requests:

+(double*, double*)
+(double, double*)
+(double*, double)
+(double, double)

This requests to generate all possible combinations
of addition between single values and columns (the
latter identified with an extra *). Other extensible
RDBMSs often only allow UDFs with single-value pa-
rameters [19]. This inhibits loop pipelining, reducing
performance (see Section 3.1). 4

We can also request compound primitive signatures:

/(square(-(double*, double*)), double*)

The above signature is the Mahanalobis distance,
a performance-critical operation for some multi-media
retrieval tasks [9]. We found that the compound prim-
itives often perform twice as fast as the single-function
vectorized primitives. Note that this factor 2 is simi-
lar to the difference between MonetDB/X100 and the
hand-coded implementation of TPC-H Query in Ta-
ble 1. The reason why compound primitives are more
efficient is a better instruction mix. Like in the exam-
ple with addition on the MIPS processor in Section 3.1,
vectorized execution often becomes load/store bound,
because for simple 2-ary calculations, each vectorized
instruction requires loading two parameters and stor-
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tions). Modern CPUs can typically only perform 1 or
2 load/store operations per cycle. In compound prim-
itives, the results from one calculation are passed via a
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only occurring at the edges of the expression graph.

Currently, the primitive generator is not much more
than a macro expansion script in the make sequence
of the X100 system. However, we intend to implement
dynamic compilation of compound primitives as man-
dated by an optimizer.

A slight variation on the map primitives are the
select * primitives (see also Figure 2). These only
exist for code patterns that return a boolean. Instead
of producing a full result vector of booleans (as the
map does), the select primitives fill a result array of
selected vector positions (integers), and return the to-
tal number of selected tuples.

Similarly, there are the aggr * primitives that calcu-
late aggregates like count, sum, min, and max. For each,
an initialization, an update, and an epilogue pattern
need to be specified. The primitive generator then
generates the relevant routines for the various imple-
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} Decomposition storage model

} Uses a “delta” structure to handle updates

} Also does lightweight compression (looks to be dictionary encoding)

stead of compiled code, allows all ADTs to get first-
class-citizen treatment during query execution. This
was also a weak point of MIL (and most extensible
DBMSs [19]), as its main algebraic operators were only
optimized for the built-in types.

4.3 Data Storage

MonetDB/X100 stores all tables in vertically frag-
mented form. The storage scheme is the same whether
the new ColumnBM buffer manager is used, or Mon-
etDB BAT[void,T] storage. While MonetDB stores
each BAT in a single contiguous file, ColumnBM par-
titions those files in large (>1MB) chunks.

A disadvantage of vertical storage is an increased
update cost: a single row update or delete must per-
form one I/O for each column. MonetDB/X100 cir-
cumvents this by treating the vertical fragments as
immutable objects. Updates go to delta structures
instead. Figure 8 shows that deletes are handled by
adding the tuple ID to a deletion list, and that inserts
lead to appends in separate delta columns. ColumnBM
actually stores all delta columns together in a chunk,
which equates PAX [2]. Thus, both operations incur
only one I/O. Updates are simply a deletion followed
by an insertion. Updates make the delta columns
grow, such that whenever their size exceeds a (small)
percentile of the total table size, data storage should
be reorganized, such that the vertical storage is up-to-
date again and the delta columns are empty.

An advantage of vertical storage is that queries that
access many tuples but not all columns save bandwidth
(this holds both for RAM bandwidth and I/O band-
width). We further reduce bandwidth requirements
using lightweight compression. MonetDB/X100 sup-
ports enumeration types, which effectively store a col-
umn as a single-byte or two-byte integer. This integer
refers to #rowId of a mapping table. MonetDB/X100
automatically adds a Fetch1Join operation to retrieve
the uncompressed value using the small integer when
such columns are used in a query. Notice that since the
vertical fragments are immutable, updates just go to
the delta columns (which are never compressed) and
do not complicate the compression scheme.

MonetDB/X100 also supports simple “summary”
indices, similar to [12], which are used if a column is
clustered (almost sorted). These summary indices con-
tain a #rowId, the running maximum value of the col-
umn until that point in the base table, and a reversely
running minimum at a very coarse granularity (the de-
fault size is 1000 entries, with #rowids taken with fixed
intervals from the base table). These summary indices
can be used to quickly derive #rowId bounds for range
predicates. Notice again, due to the property that
vertical fragments are immutable, indices on them ef-
fectively require no maintenance. The delta columns,
which are supposed to be small and in-memory, are
not indexed and must always be accessed.
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Figure 8: Vertical Storage and Updates

5 TPC-H Experiments

Table 4 shows the results of executing all TPC-H
queries on both MonetDB/MIL and MonetDB/X100.
We ran the SQL benchmark queries on an out-of-
the-box MonetDB/MIL system with its SQL-frontend
on our AthlonMP platform (1533MHz, 1GB RAM,
Linux2.4) at SF=1. We also hand-translated all TPC-
H queries to X100 algebra, and ran them on Mon-
etDB/X100. The comparison between the first two
result columns clearly shows that MonetDB/X100 out-
performs MonetDB/MIL.

Both MonetDB/MIL and MonetDB/X100 use join
indices over all foreign key paths. For MonetDB/X100
we sorted the orders table on date, and kept lineitem

clustered with it. We use summary indices (see Sec-
tion 4.3) on all date columns of both tables. We
also sorted both suppliers and customers on (re-
gion,country). In all, total disk storage for Mon-
etDB/MIL was about 1GB, and around 0.8GB for
MonetDB/X100 (SF=1). The reduction was achieved
by using enumeration types, where possible.

We also ran TPC-H both at SF=1 and SF=100 on
our Itanium2 1.3GHz (3MB cache) server with 12GB
RAM running Linux2.4. The last column of Table 4
lists official TPC-H results for the MAXDATA Plat-
inum 9000-4R, a server machine with four 1.5GHz
(6MB cache) Itanium2 processors and 32GB RAM
running DB2 8.1 UDB5.

We should clarify that all MonetDB TPC-H num-
bers are in-memory results; no I/O occurs. This
should be taken into account especially when compar-
ing with the DB2 results. It also shows that even at
SF=100, MonetDB/X100 needs less than our 12GB
RAM for each individual query. If we would have had
32GB of RAM like the DB2 platform, the hot-set for
all TPC-H queries would have fit in memory.

While the DB2 TPC-H numbers obviously do in-
clude I/O, its impact may not be that strong as its
test platform uses 112 SCSI disks. This suggests that
disks were added until DB2 became CPU-bound. In

5These results are from stream 0, also known as the “power
test”, in which there are no concurrent queries nor updates.

234



} Query evaluation techniques for large databases

} Skew avoidance strategies

} Query compilation

} Vectorization



} Basic iterator model makes too many function calls

} Vectorization helps, but makes too many copies

} Benefits of “pipelining” are lost
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ABSTRACT
As main memory grows, query performance is more and more
determined by the raw CPU costs of query processing itself.
The classical iterator style query processing technique is very
simple and flexible, but shows poor performance on modern
CPUs due to lack of locality and frequent instruction mis-
predictions. Several techniques like batch oriented processing
or vectorized tuple processing have been proposed in the
past to improve this situation, but even these techniques are
frequently out-performed by hand-written execution plans.

In this work we present a novel compilation strategy that
translates a query into compact and e�cient machine code
using the LLVM compiler framework. By aiming at good
code and data locality and predictable branch layout the
resulting code frequently rivals the performance of hand-
written C++ code. We integrated these techniques into the
HyPer main memory database system and show that this
results in excellent query performance while requiring only
modest compilation time.

1. INTRODUCTION
Most database systems translate a given query into an

expression in a (physical) algebra, and then start evaluating
this algebraic expression to produce the query result. The
traditional way to execute these algebraic plans is the iterator
model [8], sometimes also called Volcano-style processing [4]:
Every physical algebraic operator conceptually produces a
tuple stream from its input, and allows for iterating over this
tuple stream by repeatedly calling the next function of the
operator.
This is a very nice and simple interface, and allows for

easy combination of arbitrary operators, but it clearly comes
from a time when query processing was dominated by I/O
and CPU consumption was less important: First, the next
function will be called for every single tuple produced as
intermediate or final result, i.e., millions of times. Second,
the call to next is usually a virtual call or a call via a function
pointer. Consequently, the call is even more expensive than
a regular call and degrades the branch prediction of modern
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Figure 1: Hand-written code vs. execution engines
for TPC-H Query 1 (Figure 3 of [16])

CPUs. Third, this model often results in poor code locality
and complex book-keeping. This can be seen by considering
a simple table scan over a compressed relation. As the tuples
must be produced one at a time, the table scan operator has
to remember where in the compressed stream the current
tuple is and jump to the corresponding decompression code
when asked for the next tuple.

These observations have led some modern systems to a
departure from this pure iterator model, either internally
(e.g., by internally decompressing a number of tuples at
once and then only iterating over the decompressed data), or
externally by producing more than one tuple during each next
call [11] or even producing all tuples at once [1]. This block-
oriented processing amortizes the costs of calling another
operator over the large number of produced tuples, such
that the invocation costs become negligible. However, it also
eliminates a major strength of the iterator model, namely the
ability to pipeline data. Pipelining means that an operator
can pass data to its parent operator without copying or
otherwise materializing the data. Selections, for example,
are pipelining operators, as they only pass tuples around
without modifying them. But also more complex operators
like joins can be pipelined, at least on one of their input
sides. When producing more than one tuple during a call
this pure pipelining usually cannot be used any more, as the
tuples have to be materialized somewhere to be accessible.
This materialization has other advantages like allowing for
vectorized operations [2], but in general the lack of pipelining
is very unfortunate as it consumes more memory bandwidth.
An interesting observation in this context is that a hand-

written program clearly outperforms even very fast vectorized
systems, as shown in Figure 1 (originally from [16]). In a
way that is to be expected, of course, as a human might use
tricks that database management systems would never come
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} Basic iterator model makes too many function calls

} This doesn’t count the additional function calls due to expression interpretation
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8

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

⨝
for t1 in left.next():

buildHashTable(t1)
for t2 in right.next():

if probe(t2): emit(t1⨝t2)

for t in child.next():
if evalPred(t): emit(t)σ ⨝

for t1 in left.next():
buildHashTable(t1)

for t2 in right.next():
if probe(t2): emit(t1⨝t2)

for t in A:
emit(t)A

for t in B:
emit(t)B for t in C:

emit(t)C

for t in child.next():
if evalPred(t): emit(t)σ

Γ
for t in child.next():
buildAggregateTable(t)

for t in aggregateTable:
emit(t)

From Andy Pavlo’s slides



} Generated C++ Code using Templates

} Example below: Hardcodes “int” nature of the value, as well as 
the offset of the attribute within the tuple
◦ For a query like: select * from R where R.A = 10



} Two issues with HIQUE:
◦ Still using iterator model, leading to function calls across operators

◦ Compilation cost very high

} Goals for the Hyper work:
◦ Processing is ”data-centric” – data kept in CPU registers as long as 

possible

◦ Data pushed towards the operator, rather than pulled by them

◦ Queries compiled into native machine code using LLVM



} Basic iterator model makes too many function calls

} Vectorization helps, but makes too many copies

} Benefits of “pipelining” are lost

} Goals for this work:
◦ Processing is ”data-centric” – data kept in CPU registers as long as 

possible

◦ Data pushed towards the operator, rather than pulled by them

◦ Queries compiled into native machine code using LLVM



} Pipeline breakers: Operators that remove tuples from CPU 
registers

} Iterator (pull-based) model can’t keep data in CPU registers 
because of function calls – end up evicting register contents

} Block-oriented (vectorized) execution break pipelines – produce 
batches that go beyond register capacity

} Instead: “push” data through the operators until they reach a 
pipeline breaker 



select *
from R1,R3,

(select R2.z,count(*)
from R2
where R2.y=3
group by R2.z) R2

where R1.x=7 and R1.a=R3.b and R2.z=R3.c

Figure 2: Example Query

original with pipeline boundaries

Figure 3: Example Execution Plan for Figure 2

data is always pushed from one pipeline-breaker into another
pipeline-breaker. Operators in-between leave the tuples in
CPU registers and are therefore very cheap to compute. Fur-
thermore, in a push-based architecture the complex control
flow logic tends to be outside tight loops, which reduces
register pressure. As the typical pipeline-breakers would
have to materialize the tuples anyway, we produce execution
plans that minimize the number of memory accesses.

As an illustrational example consider the execution plan in
Figure 3 (� denotes a group by operator). The corresponding
SQL query is shown in Figure 2. It selects some tuples
from R2, groups them by z, joins the result with R3, and
joins that result with some tuples from R1. In the classical
operator model, the top-most join would produce tuples by
first asking its left input for tuples repeatedly, placing each of
them in a hash table, and then asking its right input for tuples
and probing the hash table for each table. The input sides
themselves would operate in a similar manner recursively.
When looking at the data flow in this example more carefully,
we see that in principle the tuples are always passed from one
materialization point to another. The join a = b materializes
the tuples from its left input in a hash table, and receives
them from a materialized state (namely from the scan of R1).
The selection in between pipelines the tuples and performs no
materialization. These materialization points (i.e., pipeline
boundaries) are shown on the right hand side of Figure 3.

As we have to materialize the tuples anyway at some point,
we therefore propose to compile the queries in a way that
all pipelining operations are performed purely in CPU (i.e.,
without materialization), and the execution itself goes from
one materialization point to another. The corresponding
compilation for our running example is shown in Figure 4.
(Note that we assume fully in-memory computation for now to
keep the example readable.) Besides initialization, the code
consists of four fragments that correspond to the pipeline
fragments in the algebraic plan: The first fragment filters
tuples from R1 and places them into the hashtable of Ba,b,
the second does the same for R2 and �z, and the third
transfers the results from �z into the hashtable of Bz=c. The
fourth and final fragment passes the tuples of R3 along the
join hash tables and produces the result. All four fragments
in themselves are strongly pipelining, as they can keep their

initialize memory of Ba=b, Bc=z, and �z

for each tuple t in R1

if t.x = 7
materialize t in hash table of Ba=b

for each tuple t in R2

if t.y = 3
aggregate t in hash table of �z

for each tuple t in �z

materialize t in hash table of Bz=c

for each tuple t3 in R3

for each match t2 in Bz=c[t3.c]
for each match t1 in Ba=b[t3.b]

output t1 � t2 � t3

Figure 4: Compiled query for Figure 3

tuples in CPU registers and only access memory to retrieve
new tuples or to materialize their results. Furthermore, we
have very good code locality as small code fragments are
working on large amounts of data in tight loops. As such,
we can expect to get very good performance from such an
evaluation scheme. And indeed, as we will see in Section 6,
such a query evaluation method greatly outperforms iterator-
based evaluation. The main challenge now is to translate a
given algebraic execution plan into such code fragments. We
will first discuss the high-level translation in the next section,
and then explain the actual code generation in Section 4.

3.2 Compiling Algebraic Expressions
When looking at the query code in Figure 4, we notice

that the boundaries between operators are blurred. The
first fragment for example combines the scan of R1, the
selection �x=7, and the build part of Bc=z into one code
fragment. The query execution code is no longer operator
centric but data centric: Each code fragment performs all
actions that can be done within one part of the execution
pipeline, before materializing the result into the next pipeline
breaker. The individual operator logic can, and most likely
will, be spread out over multiple code fragments, which makes
query compilation more di�cult than usual. In addition,
these code fragments have a very irregular structure. For
example, for binary pipeline breakers materializing an input
tuple from the left will be very di↵erent from materializing an
input tuple from the right. In the iterator model everything
is a simple next call, but here the complex operator logic
directly a↵ects the code generation. It is important to note
that this is an advantage, not a limitation of the approach!
The iterator model has a nice, simple interface, but it pays
for this by using virtual function calls and frequent memory
accesses. By exposing the operator structure, we can generate
near optimal assembly code, as we generate exactly the
instructions that are relevant for the given situation, and we
can keep all relevant values in CPU registers. As we will
see below, the abstractions that are needed to keep the code
maintainable and understandable exist, i.e., all operators
o↵er a uniform interface, but they exist only in the query
compiler itself. The generated code exposes all the details (for
e�ciency reasons), but that is fine, as the code is generated
anyway.

From the point of view of the query compiler the operators
o↵er an interface that is nearly as simple as in the iterator
model. Conceptually each operator o↵ers two functions:

• produce()
• consume(attributes,source)
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data is always pushed from one pipeline-breaker into another
pipeline-breaker. Operators in-between leave the tuples in
CPU registers and are therefore very cheap to compute. Fur-
thermore, in a push-based architecture the complex control
flow logic tends to be outside tight loops, which reduces
register pressure. As the typical pipeline-breakers would
have to materialize the tuples anyway, we produce execution
plans that minimize the number of memory accesses.

As an illustrational example consider the execution plan in
Figure 3 (� denotes a group by operator). The corresponding
SQL query is shown in Figure 2. It selects some tuples
from R2, groups them by z, joins the result with R3, and
joins that result with some tuples from R1. In the classical
operator model, the top-most join would produce tuples by
first asking its left input for tuples repeatedly, placing each of
them in a hash table, and then asking its right input for tuples
and probing the hash table for each table. The input sides
themselves would operate in a similar manner recursively.
When looking at the data flow in this example more carefully,
we see that in principle the tuples are always passed from one
materialization point to another. The join a = b materializes
the tuples from its left input in a hash table, and receives
them from a materialized state (namely from the scan of R1).
The selection in between pipelines the tuples and performs no
materialization. These materialization points (i.e., pipeline
boundaries) are shown on the right hand side of Figure 3.

As we have to materialize the tuples anyway at some point,
we therefore propose to compile the queries in a way that
all pipelining operations are performed purely in CPU (i.e.,
without materialization), and the execution itself goes from
one materialization point to another. The corresponding
compilation for our running example is shown in Figure 4.
(Note that we assume fully in-memory computation for now to
keep the example readable.) Besides initialization, the code
consists of four fragments that correspond to the pipeline
fragments in the algebraic plan: The first fragment filters
tuples from R1 and places them into the hashtable of Ba,b,
the second does the same for R2 and �z, and the third
transfers the results from �z into the hashtable of Bz=c. The
fourth and final fragment passes the tuples of R3 along the
join hash tables and produces the result. All four fragments
in themselves are strongly pipelining, as they can keep their
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for each match t2 in Bz=c[t3.c]
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tuples in CPU registers and only access memory to retrieve
new tuples or to materialize their results. Furthermore, we
have very good code locality as small code fragments are
working on large amounts of data in tight loops. As such,
we can expect to get very good performance from such an
evaluation scheme. And indeed, as we will see in Section 6,
such a query evaluation method greatly outperforms iterator-
based evaluation. The main challenge now is to translate a
given algebraic execution plan into such code fragments. We
will first discuss the high-level translation in the next section,
and then explain the actual code generation in Section 4.

3.2 Compiling Algebraic Expressions
When looking at the query code in Figure 4, we notice

that the boundaries between operators are blurred. The
first fragment for example combines the scan of R1, the
selection �x=7, and the build part of Bc=z into one code
fragment. The query execution code is no longer operator
centric but data centric: Each code fragment performs all
actions that can be done within one part of the execution
pipeline, before materializing the result into the next pipeline
breaker. The individual operator logic can, and most likely
will, be spread out over multiple code fragments, which makes
query compilation more di�cult than usual. In addition,
these code fragments have a very irregular structure. For
example, for binary pipeline breakers materializing an input
tuple from the left will be very di↵erent from materializing an
input tuple from the right. In the iterator model everything
is a simple next call, but here the complex operator logic
directly a↵ects the code generation. It is important to note
that this is an advantage, not a limitation of the approach!
The iterator model has a nice, simple interface, but it pays
for this by using virtual function calls and frequent memory
accesses. By exposing the operator structure, we can generate
near optimal assembly code, as we generate exactly the
instructions that are relevant for the given situation, and we
can keep all relevant values in CPU registers. As we will
see below, the abstractions that are needed to keep the code
maintainable and understandable exist, i.e., all operators
o↵er a uniform interface, but they exist only in the query
compiler itself. The generated code exposes all the details (for
e�ciency reasons), but that is fine, as the code is generated
anyway.

From the point of view of the query compiler the operators
o↵er an interface that is nearly as simple as in the iterator
model. Conceptually each operator o↵ers two functions:

• produce()
• consume(attributes,source)
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data is always pushed from one pipeline-breaker into another
pipeline-breaker. Operators in-between leave the tuples in
CPU registers and are therefore very cheap to compute. Fur-
thermore, in a push-based architecture the complex control
flow logic tends to be outside tight loops, which reduces
register pressure. As the typical pipeline-breakers would
have to materialize the tuples anyway, we produce execution
plans that minimize the number of memory accesses.

As an illustrational example consider the execution plan in
Figure 3 (� denotes a group by operator). The corresponding
SQL query is shown in Figure 2. It selects some tuples
from R2, groups them by z, joins the result with R3, and
joins that result with some tuples from R1. In the classical
operator model, the top-most join would produce tuples by
first asking its left input for tuples repeatedly, placing each of
them in a hash table, and then asking its right input for tuples
and probing the hash table for each table. The input sides
themselves would operate in a similar manner recursively.
When looking at the data flow in this example more carefully,
we see that in principle the tuples are always passed from one
materialization point to another. The join a = b materializes
the tuples from its left input in a hash table, and receives
them from a materialized state (namely from the scan of R1).
The selection in between pipelines the tuples and performs no
materialization. These materialization points (i.e., pipeline
boundaries) are shown on the right hand side of Figure 3.

As we have to materialize the tuples anyway at some point,
we therefore propose to compile the queries in a way that
all pipelining operations are performed purely in CPU (i.e.,
without materialization), and the execution itself goes from
one materialization point to another. The corresponding
compilation for our running example is shown in Figure 4.
(Note that we assume fully in-memory computation for now to
keep the example readable.) Besides initialization, the code
consists of four fragments that correspond to the pipeline
fragments in the algebraic plan: The first fragment filters
tuples from R1 and places them into the hashtable of Ba,b,
the second does the same for R2 and �z, and the third
transfers the results from �z into the hashtable of Bz=c. The
fourth and final fragment passes the tuples of R3 along the
join hash tables and produces the result. All four fragments
in themselves are strongly pipelining, as they can keep their
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tuples in CPU registers and only access memory to retrieve
new tuples or to materialize their results. Furthermore, we
have very good code locality as small code fragments are
working on large amounts of data in tight loops. As such,
we can expect to get very good performance from such an
evaluation scheme. And indeed, as we will see in Section 6,
such a query evaluation method greatly outperforms iterator-
based evaluation. The main challenge now is to translate a
given algebraic execution plan into such code fragments. We
will first discuss the high-level translation in the next section,
and then explain the actual code generation in Section 4.

3.2 Compiling Algebraic Expressions
When looking at the query code in Figure 4, we notice

that the boundaries between operators are blurred. The
first fragment for example combines the scan of R1, the
selection �x=7, and the build part of Bc=z into one code
fragment. The query execution code is no longer operator
centric but data centric: Each code fragment performs all
actions that can be done within one part of the execution
pipeline, before materializing the result into the next pipeline
breaker. The individual operator logic can, and most likely
will, be spread out over multiple code fragments, which makes
query compilation more di�cult than usual. In addition,
these code fragments have a very irregular structure. For
example, for binary pipeline breakers materializing an input
tuple from the left will be very di↵erent from materializing an
input tuple from the right. In the iterator model everything
is a simple next call, but here the complex operator logic
directly a↵ects the code generation. It is important to note
that this is an advantage, not a limitation of the approach!
The iterator model has a nice, simple interface, but it pays
for this by using virtual function calls and frequent memory
accesses. By exposing the operator structure, we can generate
near optimal assembly code, as we generate exactly the
instructions that are relevant for the given situation, and we
can keep all relevant values in CPU registers. As we will
see below, the abstractions that are needed to keep the code
maintainable and understandable exist, i.e., all operators
o↵er a uniform interface, but they exist only in the query
compiler itself. The generated code exposes all the details (for
e�ciency reasons), but that is fine, as the code is generated
anyway.

From the point of view of the query compiler the operators
o↵er an interface that is nearly as simple as in the iterator
model. Conceptually each operator o↵ers two functions:

• produce()
• consume(attributes,source)
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NOTE: We typically build hash tables on the “right” side
Here they are building it on the “left” side



} Instead of implementing:
◦ next()

} Each operator implements:
◦ produce(): ask the operator to produce its next tuple (but doesn’t wait)

◦ consume(attributes, source): ask the operator to consume a new tuple from its children

B.produce B.left.produce; B.right.produce;
B.consume(a,s) if (s==B.left)

print “materialize tuple in hash table”;
else
print “for each match in hashtable[”

+a.joinattr+“]”;
B.parent.consume(a+new attributes)

�.produce �.input.produce
�.consume(a,s) print “if ”+�.condition;

�.parent.consume(attr,�)
scan.produce print “for each tuple in relation”

scan.parent.consume(attributes,scan)

Figure 5: A simple translation scheme to illustrate
the produce/consume interaction

Conceptually, the produce function asks the operator to
produce its result tuples, which are then pushed towards the
consuming operator by calling their consume functions. For
our running example, the query would be executed by calling
Ba=b.produce. This produce function would then in itself call
�x=7.produce to fill its hash table, and the � operator would
call R1.produce to access the relation. R1 is a leaf in the
operator tree, i.e., it can produce tuples on its own. Therefore
it scans the relation R1, and for each tuple loads the required
attributes and calls �x=7.consume(attributes,R1) to hand
the tuple to the selection. The selection filters the tuples, and
if it qualifies it passes it by calling Ba=b(attributes,�x=7).
The join sees that it gets tuples from the left side, and thus
stores them in the hash table. After all tuples from R1 are
produced, the control flow goes back to the join, which will
call Bc=z.produce to get the tuples from the probe side etc.

However, this produce/consume interface is only a mental
model. These functions do not exist explicitly, they are only
used by the code generation. When compiling an SQL query,
the query is first processed as usual, i.e., the query is parsed,
translated into algebra, and the algebraic expression is opti-
mized. Only then do we deviate from the standard scheme.
The final algebraic plan is not translated into physical al-
gebra that can be executed, but instead compiled into an
imperative program. And only this compilation step uses the
produce/consume interface internally to produce the required
imperative code. This code generation model is illustrated
in Figure 5. It shows a very simple translation scheme that
converts B, �, and scans into pseudo-code. The readers can
convince themselves that applying the rules from Figure 5 to
the operator tree in Figure 3 will produce the pseudo-code
from Figure 4 (except for di↵erences in variable names and
memory initialization). The real translation code is signifi-
cantly more complex, of course, as we have to keep track of
the loaded attributes, the state of the operators involved, at-
tribute dependencies in the case of correlated subqueries, etc.,
but in principle this simple mapping already shows how we
can translate algebraic expressions into imperative code. We
include a more detailed operator translation in Appendix A.
As these code fragments always operate on certain pieces of
data at a time, thus having very good locality, the resulting
code proved to execute e�ciently.

4. CODE GENERATION
4.1 Generating Machine Code

So far we have only discussed the translation of algebraic
expressions into pseudo-code, but in practice we want to
compile the query into machine code. Initially we exper-

Figure 6: Interaction of LLVM and C++

imented with generating C++ code from the query and
passing it through a compiler at runtime, loading the re-
sult as shared library. Compiling to C++ was attractive
as the C++ code could directly access the data structures
and the code of our database system, which is also written
in C++. However, it has several disadvantages. First, an
optimizing C++ compiler is really slow, compiling a complex
query could take multiple seconds. Second, C++ does not
o↵er total control over the generated code, which can lead
to suboptimal performance. In particular, overflow flags
etc. are unavailable. Instead, we used the Low Level Vir-
tual Machine (LLVM) compiler framework [7] to generate
portable assembler code, which can then be executed directly
using an optimizing JIT compiler provided by LLVM. While
generating assembler code might sound daunting at first, pro-
ducing assembler code using LLVM is much more robust than
writing it manually. For example LLVM hides the problem
of register allocation by o↵ering an unbounded number of
registers (albeit in Single Static Assignment form). We can
therefore pretend that we have a CPU register available for
every attribute in our tuple, which simplifies life considerably.
And the LLVM assembler is portable across machine architec-
tures, as only the LLVM JIT compiler translates the portable
LLVM assembler into architecture dependent machine code.
Furthermore, the LLVM assembler is strongly typed, which
caught many bugs that were hidden in our original textual
C++ code generation. And finally LLVM is a full strength
optimizing compiler, which produces extremely fast machine
code, and usually requires only a few milliseconds for query
compilation, while C or C++ compilers would need seconds
(see Section 6 and [6]).

Still, one does not want to implement the complete query
processing logic in LLVM assembler. First, because writing
assembler code is more tedious than using a high-level lan-
guage like C++, and second, because much of the database
logic like index structures is written in C++ anyway. But
one can easily mix LLVM and C++, as C++ methods can
be called directly from LLVM and vice versa. (To the com-
piler, there is no di↵erence between both types of code, as
both result in native machine code and both have strongly
typed prototypes.) This results in a mixed execution model
which is metaphorically sketched in Figure 6. The complex
part of the query processing (e.g., complex data structure
management or spilling to disk) is written in C++, and
forms the cogwheels in Figure 6. The di↵erent operators are
connected together by LLVM code, which forms the chain in
Figure 6. The C++ “cogwheels” are pre-compiled; only the
LLVM “chain” for combining them is dynamically generated.
Thereby we achieve very low query compilation times. In
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} Tried C++ initially, but:
◦ Optimizing C++ compiler really slow (remember this is being done for each query, in addition 

to parsing, optimization, etc)

◦ Can lead to suboptimal performance because of less control

} Instead use LLVM == Low Level Virtual Machine, Compiler Framework
◦ Hides the problem of register allocation 

◦ Portable across machine architectures

◦ Strongly typed è easy to catch bugs early

◦ Full strength optimizing compiler

} Can mix C++ and LLVM code
B.produce B.left.produce; B.right.produce;
B.consume(a,s) if (s==B.left)

print “materialize tuple in hash table”;
else
print “for each match in hashtable[”

+a.joinattr+“]”;
B.parent.consume(a+new attributes)

�.produce �.input.produce
�.consume(a,s) print “if ”+�.condition;

�.parent.consume(attr,�)
scan.produce print “for each tuple in relation”

scan.parent.consume(attributes,scan)

Figure 5: A simple translation scheme to illustrate
the produce/consume interaction

Conceptually, the produce function asks the operator to
produce its result tuples, which are then pushed towards the
consuming operator by calling their consume functions. For
our running example, the query would be executed by calling
Ba=b.produce. This produce function would then in itself call
�x=7.produce to fill its hash table, and the � operator would
call R1.produce to access the relation. R1 is a leaf in the
operator tree, i.e., it can produce tuples on its own. Therefore
it scans the relation R1, and for each tuple loads the required
attributes and calls �x=7.consume(attributes,R1) to hand
the tuple to the selection. The selection filters the tuples, and
if it qualifies it passes it by calling Ba=b(attributes,�x=7).
The join sees that it gets tuples from the left side, and thus
stores them in the hash table. After all tuples from R1 are
produced, the control flow goes back to the join, which will
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used by the code generation. When compiling an SQL query,
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mized. Only then do we deviate from the standard scheme.
The final algebraic plan is not translated into physical al-
gebra that can be executed, but instead compiled into an
imperative program. And only this compilation step uses the
produce/consume interface internally to produce the required
imperative code. This code generation model is illustrated
in Figure 5. It shows a very simple translation scheme that
converts B, �, and scans into pseudo-code. The readers can
convince themselves that applying the rules from Figure 5 to
the operator tree in Figure 3 will produce the pseudo-code
from Figure 4 (except for di↵erences in variable names and
memory initialization). The real translation code is signifi-
cantly more complex, of course, as we have to keep track of
the loaded attributes, the state of the operators involved, at-
tribute dependencies in the case of correlated subqueries, etc.,
but in principle this simple mapping already shows how we
can translate algebraic expressions into imperative code. We
include a more detailed operator translation in Appendix A.
As these code fragments always operate on certain pieces of
data at a time, thus having very good locality, the resulting
code proved to execute e�ciently.

4. CODE GENERATION
4.1 Generating Machine Code

So far we have only discussed the translation of algebraic
expressions into pseudo-code, but in practice we want to
compile the query into machine code. Initially we exper-

C++
scan

C+
+

C+
+

Figure 6: Interaction of LLVM and C++

imented with generating C++ code from the query and
passing it through a compiler at runtime, loading the re-
sult as shared library. Compiling to C++ was attractive
as the C++ code could directly access the data structures
and the code of our database system, which is also written
in C++. However, it has several disadvantages. First, an
optimizing C++ compiler is really slow, compiling a complex
query could take multiple seconds. Second, C++ does not
o↵er total control over the generated code, which can lead
to suboptimal performance. In particular, overflow flags
etc. are unavailable. Instead, we used the Low Level Vir-
tual Machine (LLVM) compiler framework [7] to generate
portable assembler code, which can then be executed directly
using an optimizing JIT compiler provided by LLVM. While
generating assembler code might sound daunting at first, pro-
ducing assembler code using LLVM is much more robust than
writing it manually. For example LLVM hides the problem
of register allocation by o↵ering an unbounded number of
registers (albeit in Single Static Assignment form). We can
therefore pretend that we have a CPU register available for
every attribute in our tuple, which simplifies life considerably.
And the LLVM assembler is portable across machine architec-
tures, as only the LLVM JIT compiler translates the portable
LLVM assembler into architecture dependent machine code.
Furthermore, the LLVM assembler is strongly typed, which
caught many bugs that were hidden in our original textual
C++ code generation. And finally LLVM is a full strength
optimizing compiler, which produces extremely fast machine
code, and usually requires only a few milliseconds for query
compilation, while C or C++ compilers would need seconds
(see Section 6 and [6]).

Still, one does not want to implement the complete query
processing logic in LLVM assembler. First, because writing
assembler code is more tedious than using a high-level lan-
guage like C++, and second, because much of the database
logic like index structures is written in C++ anyway. But
one can easily mix LLVM and C++, as C++ methods can
be called directly from LLVM and vice versa. (To the com-
piler, there is no di↵erence between both types of code, as
both result in native machine code and both have strongly
typed prototypes.) This results in a mixed execution model
which is metaphorically sketched in Figure 6. The complex
part of the query processing (e.g., complex data structure
management or spilling to disk) is written in C++, and
forms the cogwheels in Figure 6. The di↵erent operators are
connected together by LLVM code, which forms the chain in
Figure 6. The C++ “cogwheels” are pre-compiled; only the
LLVM “chain” for combining them is dynamically generated.
Thereby we achieve very low query compilation times. In
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} Compilation cost itself can be significant for large OLAP queries
◦ Later work looked into doing this in an on-demand fashion (ICDE 2018) 

◦ Execute interpreted code while the query is being compiled

} Other bottlenecks can start showing up 

} Vectorization or Compilation?
◦ At odds to some extent 

◦ Later work compared both of them, and tried to harmonize

} Most high-performance systems today use query compilation
◦ PostgreSQL supports this today for a small set of operations like expression evaluation



} Query evaluation techniques for large databases

} Skew avoidance strategies

} Query compilation

} Vectorization

} Query Optimization: Overview



} Goal: Given a SQL query, find the best “physical operator” tree 
to execute the query
◦ Large number of logically equivalent algebraic representations for a query
◦ Many operator trees for each algebraic expression

} For “cost-based” optimization, we need:
◦ A space of plans to search through (search space)
◦ Cost estimation techniques
◦ Enumeration/search algorithm

} Heuristic optimizers typically use “rules”
◦ e.g., push down selections as much as possible – typically a good idea but 

not always
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1. OBJECTIVE 
Them has been cxtensivc work in query optimization since the 
enrly ‘70s. It is hard to capture the breadth and depth of this large 
body of work in a short article. Therefore, I have decided to focus 
primarily on the optimization of SQL queries in relational 
dntnbasc systems and present my biased and incomplete view of 
this licld, The goal of this article is not to be comprehensive, but 
ratbcr to explain the foundations and present samplings of 
significant work in this area. I would like to apologize to the many 
contributors in this area whose work I have failed to explicitly 
ncknowlcdge due to oversight or lack of space. I take the liberty of 
trndlng tcchnicnl precision for ease of presentation. 

Index Nested Loop 
(A-x = C-x) 

/\ 
Merge-Join 
(A.x=B.x) 

/\ 

Index Scan C 

Sort Sort 

I I 
2. INTRODUCTION Table Scan A Table Scan B 
Rclntional query languages provide a high-level “declarative” 
lntcrfnce to access data stored in relational databases. Over time, 
SQL [41] has emerged as the standard for relational query 
languages, Two key components of the query evaluation 
component of a SQL database system are the query optimizer and 
the qrrery execrrtiort engine. 

Figure 1. Operator Tree 

The query cxccution engine implements a set of physical 
operators, An operator takes as input one or more data streams 
and produces an output data stream. Examples of physical 
operators nrc (external) sort, sequential scan, index scan, nested- 
loop join, nnd sort-merge join. I refer to such operators as 
physical operators since they are not necessarily tied one-to-one 
with relntionnl operators, The simplest way to think of physical 
operntors is ns pieces of code that are used as building blocks to 
mnkc possible the execution of SQL queries. An abstract 
representation of such nn execution is a physical operator tree, as 
lllustrntcd in Figure I. The edges in an operator tree represent the 
data flow among the physical operators. We use the terms 
physical operator tree and executbt plan (or, simply plan) 
lnterchnngenbly. The execution engine is responsible for the 
execution of the plan that results in generating answers to the 
query. Therefore, the capabilities of the query execution engine 
dctcrminc the structure of the operator trees that are feasible. We 
rcfcr the reader to [20] for an overview of query evaluation 
techniques, 

The query optimizer is responsible for generating the input for the 
execution engine. It takes a parsed representation of a SQL query 
as input and is responsible for generating an eflcient execution 
plan for the given SQL query from the space of possible execution 
plans. The task of an optimizer is nontrivial since for a given SQL 
query, there can be a large number of possible operator trees: 
. The algebraic representation of the given query can be 

transformed into many other logically equivalent algebraic 
representations: e.g., 
Join(Join(A,B),C)= Join(Join(B,C),A) 

. For a given algebraic representation, there may be many 
operator trees that implement the algebraic expression, e.g., 
typically there are several join algorithms supported in a 
database system. 

Furthermore, the throughput or the response times for the 
execution of these plans may be widely different. Therefore, a 
judicious choice of an execution by the optimizer is of critical 
importance. Thus, query optimization can be viewed as a difficult 
search problem. In order to solve this problem, we need to 
provide: 
. A space of plans (search space). 
. A cost estimation technique so that a cost may be assigned to 

each plan in the search space. Intuitively, this is an 
estimation of the resources needed for the execution of the 
ph. 

. An enumeration algorithm that can search through the 
execution space. 
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} Focused on SPJ queries (select-project-join) 

} Search space:
◦ Linear (left-deep) plans 
◦ Each join can be nested loop or sort-merge (no hash joins)
◦ Each scan node either an index scan or a sequential scan

} Cost estimation done using:
◦ A set of statistics: #data pages for a relation, #distinct values in a column
◦ Formulas for estimating intermediate result sizes

� Relied on “magic” constants for anything not covered by the statistics
◦ Formulas for CPU and I/O cost for each operator



} Search algorithm: Bottom-up Dynamic Programming
◦ Insight: the best overall plan uses the best plan for any subexpression inside of it

The best overall plan should use the 
“best” plan for (r1 join r2 join r3 join r4)
and the “best” plan for (r1 join r2 join r3)..

e.g., if the best plan for r1 – r2 – r3 was 
to join r1 and r3 first and then join with 
r2, we can just substitute that plan, and 
get an overall better plan

Major caveat: the alternate plan should not miss any 
“physical properties” that are important
e.g., if the original plan produce r1-r2-r3 in sorted 
order by D, and the alternate doesn’t, the substitution 
may change the cost of the next join (with r4)



Dynamic Programming Algo.

l Join R1, R2, R3, R4, R5

R1 R2 R3 R4 R5

R1 ⨝ R2
cost: 100
plan: HJ

R1 ⨝ R3
cost: 300
plan: SMJ

R1 ⨝ R4
….

R1 ⨝ R2 ⨝ R3

Options:
1. Join R1R2 with R3 using HJ

cost = 100 + cost of this join
2. Join R1R2 with R3 using SMJ

cost = 100 + cost of this join
3. Join R1R3 with R2 using HJ

cost = 300 + cost of this join
… 

R4 ⨝ R5
cost: 300
plan: HJ



R1 ⨝ R2
cost: 100
plan: HJ

R1 ⨝ R3
cost: 300
plan: SMJ

R1 ⨝ R4
….

R4 ⨝ R5
cost: 300
plan: HJ

R1 ⨝ R2 ⨝ R3
cost: 400

plan: SMJ(R1R2, R3)

….

….

R1 ⨝ R2 ⨝ R3 ⨝ R4 ⨝ R5
cost: 1200

plan: HJ(R1R2R3, R4R5)

R1 ⨝ R2 ⨝ R3 ⨝ R4
cost: 700

plan: HJ(R1R2R3, R4)
….

R1 R2 R3 R4 R5

⨝

⨝

⨝

⨝

R5R4R3

R2R1

HJ

HJ

HJ

SMJ



} Interesting orders
◦ Sort orders is an important physical property for the query executor 

(given the reliance on sort-merge joins)
◦ So keep track of the sort order in which results are generated
◦ Two plans for a subexpression are NOT comparable if the sort orders are 

different
◦ è For each subexpression, more than one plan may be maintained with 

different sort orders

} Can be generalized to handle “incomparable-ness” in general
◦ e.g., one subplan may have better CPU but worse Memory, and the other 

subplans may have better Memory but worse CPU



} Intermediate representations
◦ Query graphs commonly used in research papers, but only capture a simple 

subset 
◦ QGM Structure used in Starburst (will cover later)
◦ Many others just use an “operator tree” or an “expression tree”

} Join ordering
◦ Bushy plans commonly considered today
◦ Significantly add to the search complexity
◦ Cartesian products may be allowed in some cases

} Outerjoins
◦ Only commute with joins in some cases (will cover later)
◦ e.g., Join(R, S LOJ T) = Join(R, S) LOJ T

output stream that is useful in the subsequent join. However, the 
ncstcd-loop join does not have such ordering. Therefore, given a 
query, System R identified ordering of tuples that are potentially 
consequential to execution plans for the query (hence the name 
interesting orders), Furthermore, in the System R optimizer, two 
plans arc compared only if they represent the same expression as 
well as have the same interesting order. The idea of interesting 
order was later generalized to physical properties in [22] and is 
used cxtensivcly in modem optimizers. Intuitively, a physical 
property is any characteristic of a plan that is not shared by all 
plans for the same logical expression, but can impact the cost of 
subscqucnt operations. Finally, note that the System-R’s approach 
of taking into account physical properties demonstrates a simple 
mechanism to handle any violation of the principle of optimality. 
not ncccssarily arising only from physical properties. 
Despite the elegance of the System-R approach, the framework 
cannot be easily extended to incorporate other logical 
transformations (beyond join ordering) that expand the search 
space, This led to the development of more extensible 
optimization architectures. However, the use of cost-based 
optimization, dynamic programming and interesting orders 
strongly influenced subsequent developments in optimization. 

4. SEARCH SPACE 
As mentioned in Section 2, the search space for optimization 
depends on the set of algebraic transformations that preserve 
cquivalcnce and the set of physical operators supported in an 
optimizer. In this section, I will discuss a few of the many 
important algebraic transformations that have been discovered. It 
should be noted that trunsfonnations do not necessarily reduce 
cost arrd therefore mwt be applied in a cost-based manner by the 
errwrtcrulior~ algorirhm to ensure a positive benejit. 
The optimizer may use several representations of a query during 
the llfccyclc of optimizing a query. The initial representation is 
often the parse tree of the query and the final representation is an 
operator tree. An intermediate representation that is also used is 
that of logical operator trees (also called query trees) that captures 
an algebraic expression. Figure 2 is an example of a query tree. 
Often, nodes of the query trees are annotated with additional 
Information. 
Some systems also use a “calculus-oriented” representation for 
analyzing the structure of the query. For SPJ queries, such a 
structure is often captured by a qlrery graph where nodes 
represent relations (correlation variables) and labeled edges 
represent join predicates among the relations (see Figure 3). 
Although conceptually simple, such a representation falls short of 
rcprcsenting the structure of arbitrary SQL statements in a number 
of ways. First, predicate graphs only represent a set of join 
prcdlcatcs and cannot represent other algebraic operators, e.g., 
union. Next, unlike natural join, operators such as outerjoin are 
asymmetric and arc sensitive to the order of evaluation. Finally, 
such a representation does not capture the fact that SQL 
statements may have nested query blocks. In the QGM structure 
used in the Starburst system [26], the building block is an 
cnhanccd query graph that is able to represent a simple SQL 
statcmcnt that has no nesting (“single block” query). Multi block 
qucrics are rcprcscntcd as a set of subgraphs with edges among 
subgraphs that represent predicates (and quantifiers) across query 
blocks, In contrast, Exodus [22] and its derivatives, uniformly use 
query trees and operator trees for all phases of optimization. 
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Figure 3. Query 

4.1 Commuting Between Operators 
A large and important class of transformations exploits 
commutativity among operators. In this section. we see examples 
of such transformations. 

4.1 .I Generalizing Join Sequencing 
In many of the systems, the sequence of join operations is 
syntactically restricted to limit search space. For example, in the 
System R project, only linear sequences of join operations are 
considered and Cartesian product among relations is deferred until 
after all the joins. 
Since join operations are commutative and associative, the 
sequence of joins in an operator tree need not be linear, In 
particular, the query consisting of join among relations 
RI, R2, R3, Rq can be algebraically represented and evaluated as 
Join(Join(A,B),Join(C,D) ). Suchquerytrees arecalled 
bushy, illustrated in Figure 2(b). Bushy join sequences require 
materialization of intermediate relations. While bushy trees may 
result in cheaper query plan, they expand the cost of enumerating 
the search space considerably’. Although there has been some 
studies of merits of exploring the bushy join sequences, by and 
large most systems still focus on linear join sequences and only 
restricted subsets of bushy join trees. 
Deferring Cartesian products may also result in poor performance. 
In many decision-support queries where the query graph forms a 
star, it has been observed that a Cartesian product among 
appropriate nodes (“dimensional” tables in OLAP terminology 
[7]) results in a significant reduction in cost. 
In an extensible system, the behavior of the join enumerator may 
be adapted on a per query basis so as to restrict the “bushy’-ness 
of the join trees and to allow or disallow Cartesian products [46]. 
However, it is nontrivial to determine a priori the effects of such 
tuning on the quality and cost of the search. 

4.1.2 Outerjoin and Join 
One-sided outerjoin is an asymmetric operator in SQL that 
preserves all of the tuples of one relation. Symmetric outerjoins 
preserve both the operand relations. Thus, (R LOJ S). where LOJ 
designates left outerjoin between R and S, preserves all tuples of 
R. In addition to the tuples from natural join, the above operation 
contains all remaining tuples in R that fail to join with S (padded 
with NULLs for their S attributes). Unlike natural joins. a 

’ It is not the cost of generating the syntactic join orders that is 
most expensive. Rather, the task of choosing physical operators 
and computing the cost of each alternative plan is 
computationally intensive. 
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A dcsirabic optimizer is one where (1) the search space includes 
plans that have low cosr (2) the costing technique is accurure (3) 
the cnumcration algorithm is efjcienr. Each of these three tasks is 
nontrivial and that is why building a good optimizer is an 
enormous undertaking, 
WC begin by discussing the System-R optimization framework 
since this was a remarkably elegant approach that helped fuel 
much of the subsequent work in optimization. In Section 4, we 
will discuss the search space that is considered by optimizers. 
This section will provide the forum for presentation of important 
algebraic transformations that are incorporated in the search 
space In Section 5, we address the problem of cost estimation. In 
Section 6, WC take up the topic of enumerating the search space. 
This completes the discussion of the basic optimization 
framework, In Section 7, we discuss some of the recent 
developments in query optimization. 

3. AN EXAMPLE: SYSTEM-R OPTIMIZER 
The System-R project significantly advanced the state of query 
oplimization of relational systems. The ideas in [55] have been 
Incorporated in many commercial optimizers continue to be 
remarkably relevant. I will present a subset of those important 
ideas hem in the context of Select-Project-Join (SPJ) queries. The 
class of SPJ queries is closely related to and encapsulates 
co~$rncrivc queries, which are widely studied in Database Theory. 
The search space for the System-R optimizer in the context of a 
SPJ query consists of operator trees that correspond to linear 
scqucncc of join operations, e.g., the sequence 
JOin (Join (Join (A, B) , C) , D) is illustrated in Figure 
2w Such sequences are logically equivalent because of 
associative and commutative properties of joins. A join operator 
can USC either the nested loop or sort-merge implementation. Each 
scan node can use either index scan (using a clustered or non- 
clustered index) or sequential scan. Finally, predicates are 
evaluated as early as possible. 
The cost model assigns an estimated cost to any partial or 
complete plan in the search space. It also determines the estimated 
size of the data stream for output of every operator in the plan. It 
relies on: 
(4 

(b> 

(4 

ThC 

A set of statistics maintained on relations and indexes, e.g., 
number of data pages in a relation, number of pages in an 
index, number of distinct values in a column 
Formulas to estimate selectivity of predicates and to project 
the size of the output data stream for every operator node. 
For example, the size of the output of a join is estimated by 
taking the product of the sizes of the two relations and then 
applying the joint selectivity of all applicable predicates. 
Formulas to estimate the CPU and 110 costs of query 
execution for every operator. These formulas take into 
account the statistical properties of its input data streams, 
existing access methods over the input data streams, and any 
available order on the data stream (e.g., if a data stream is 
ordered, then the cost of a sort-merge join on that stream may 
be significantly reduced). In addition, it is also checked if the 
output data stream will have any order. 
cost model uses (a)-(c) to compute and associate the 

following information in a bottom-up fashion for operators in a 
plan: (1) The size of the data stream represented by the output of 

the operator node. (2) Any ordering of tuples created or sustained 
by the output data stream of the operator node. (3) Estimated 
execution cost for the operator (and the cumulative cost of the 
partiaI plan so far). 

Join(C,D) 

Join(~;*i(*,B&.Dl 

A C 
A 

A B A B C D 

(a) W 

I Figure 2. (a) Linear and (b) bushy join I 
The enumeration algorithm for System-R optimizer demonstrates 
two important techniques: use of dynamic programming and use 
of interesting orders. 
The essence of the dynamic programming approach is based on 
the assumption that the cost model satisfies the principle of 
optimality. Specifically, it assumes that in order to obtain an 
optimal plan for a SPJ query Q consisting of k joins, it suffices to 
consider only the optimal plans for subexpressions of Q that 
consist of (k-l) joins and extend those plans with an additional 
join. In other words, the suboptimal plans for subexpressions of Q 
(also called subqueries) consisting of (k-l) joins do not need to be 
considered further in determining the optimal plan for Q. 
Accordingly, the dynamic programming based enumeration views 
a SPJ query Q as a sef of relations (RI, . .R,) to be joined. The 
enumeration algorithm proceeds bottom-up. At the end of the j-th 
step, the algorithm produces the optimal plans for all subqueries 
of size j. To obtain an optimal plan for a subquery consisting of 
(j+l) relations, we consider all possible ways of constructing a 
plan for the subquery by extending the plans constructed in the j- 
th step. For example, the optimal plan for (RI, Rz, R3, R4) is 
obtained by picking the plan with the cheapest cost from among 
the optimal plans for: (1) Joint {RI, R2, R31, R4) (2) 
Join(fRl,R2,%1,R3) (3) Join ((RlrR3,R41,R2) (4) 
Join(CRz,Ra,%l, RI). The rest of the plans for 
(RI, R2, Rx, &} may be discarded. The dynamic programming 
approach is significantly faster than the ndive approach since 
instead of O(n!) plans, only O(n2”“) plans need to be enumerated. 
The second important aspect of System R optimizer is the 
consideration of interesting orders. Let us now consider a query 
that represents the join among (Rt , RZ , R3) with the predicates 
RI _ a = R2 _ a = R3. a. Let us also assume that the cost of the 
plans for the subquery (RI, Rz) are x and y for nested-loop and 
sort-merge join respectively and x c y. In such a case, while 
considering the plan for {RI, R2, R,), we will not consider the 
plan where RI and Rz are joined using sort-merge. However, note 
that if sort-merge is used to join RI and R2, the result ofthe join is 
sorted on a. The sorted order may significantly reduce the cost of 
the join with R3. Thus, pruning the plan that represents the sort- 
merge join between RI and R2 can result in sub-optimality of the 
global plan. The problem arises because the result of the sort- 
merge join between RI and R2 has an ordering of tuples in the 
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} Group-By and Joins
◦ Pushing group by below a join results in significant reductions in tuples 

being joined

scqucncc ofoutcrjoins and joins do not freely commute. However, 
when the join predicate is between (R.S) and the outer-join 
predicate is between (ST), the following identity holds: 

Join(R, S LOJ T) = Join (R,S) LOJ T 
If the above associative NIC can be repeatedly applied, we obtain 
nn equivalent expression where evaluation of the “block of joins” 
prcccdcs the “block of outerjoins”. Subsequently, the joins may be 
I-WAY reordered among themselves, As with other 
transformations, use of this identity needs to be cost-based. The 
identities in [53] define a class of queries where joins and 
outcrjoins may be reordered. 

4,1,3 Group-By and Join 

I Figure 4. Group By and Join I 

In traditional execution of a SPJ query with group-by, the 
evaluation of the SPJ component of the query precedes the group- 
by, The set of transformations described in this section enable the 
group by operation to precede a join. These transformations are 
npplicablc to queries with SELECT DISTINCT since the latter is 
a special case of group-by, Evaluation of a group-by operator can 
potentially result in a significant reduction in the number of 
tupics, since only one tuple is generated for every partition of the 
relation induced by the group-by operator. Therefore, in some 
cases, by tirst doing the group-by, the cost of the join may be 
significantly reduced, Moreover, in the presence of an appropriate 
index, a group-by operation may be evaluated inexpensively. A 
dun1 of such transformations corresponds to the case where a 
group-by operator may be pulled up past a join. These 
trnnsformations arc described in [5,60,25,6] (see [4] for an 
overview). 
In thls section, we briefly discuss specific instances where the 
transformation to do an early group-by prior to the join may be 
npplicablc. Consider the query tree in Figure 4(a). Let the join 
bctwccn RI and RZ be a foreign key join and let the aggregated 
columns of G bc from columns in Rl and the set of group-by 
columns be a superset of the foreign key columns of R1. For such 
R query, Ict us consider the corresponding operator tree in Fig. 
4(b), where Gl=G. In that tree, the final join with RZ can only 
climinatc a set of potential partitions of Rl created by Gl but will 
not affect the partitions nor the aggregates computed for the 
partitions by G1 since every tuple in Rl will join with at fnost one 
tuple in Rs. Therefore, we can push down the group-by, as shown 
in Fig. 4(b) and preserve equivalence for arbifrury side-effect free 
nggrcgatc functions, Fig. 4(c) illustrates an example where the 
transformation irrfrohccs a group-by and represents a class of 
useful cxnmplcs where the group-by operation is done in sruges. 
For example, assume that in Fig. 4(a), where all the columns on 

which aggregated functions are applied are from Rl. In these 
cases, the introduced group-by operator Gl partitions the relation 
on the projection columns of the RI node and computes the 
aggregated values on those partitions. However, the true partitions 
in Fig 4(a) may need to combine multiple partitions introduced by 
G1 into a single partition (many to one mapping), The group-by 
operator G ensures the above. Such staged computation may still 
be useful in reducing the cost of the join because of the data 
reduction effect of Gl. Such staged aggregation requires the 
aggregating function to satisfy the property that Agg (S U S ’ ) 
can be computed from Agg (Sl and Agg (S ‘ 1. For example, in 
order to compute total sales for all products in each division, we 
can use the transformation in Fig. 4(c) to do an early aggregation 
and obtain the total sales for each product. We then need a 
subsequent group-by that sums over all products that belong to 
each division. 

4.2 Reducing Mu&Block Queries to Single- 
Block 
The technique described in this section shows how under some 
conditions, it is possible to collapse a multi-block SQL query into 
a single block SQL query. 

4.2.1 Merging Views 
Let us consider a conjunctive query using SELECT ANY. If one 
or more relations in the query are views, but each is defined 
through a conjunctive query, then the view definitions can simply 
be “unfolded” to obtain a single block SQL query. For example, if 
aqueryQ = Join(R,V) andviewV = Join(S,T),thenthe 
query Q can be unfolded to Join(R, Join(S,T) ) and may be 
freely reordered. Such a step may require some renaming of the 
variables in the view definitions. 
Unfortunately, this simple unfolding fails to work when the views 
are more complex than simple SPJ queries. When one or more of 
the views contain SELECT DISTINCT, transformations to move 
or pull up DISTINCT need to be careful to preserve the number 
of duplicates correctly, [49]. More generally, when the view 
contains a group by operator, unfolding requires the ability to 
pull-up the group-by operator and then to freely reorder not only 
the joins but also the group-by operator to ensure optimality. In 
particular, we are given a query such as the one in Fig. 4(b) and 
we are trying to consider how we can transform it in a form such 
as Fig. 4(a) so that R1 and RZ may be freely reordered. While the 
transformations in Section 4.1.3 may be used in such cases, it 
underscores the complexity of the problem [6]. 

4.2.2 Merging Nested Sabqueries 
Consider the following example of a nested query from [I31 
where Emp# and Depth are keys of the corresponding relations: 
SELECT Emp . Name 
FROM Emp 
WEERE Emp.Dept# IN 

SELECT Dept.Dept# FRON Dept 
WHERE Dept.Loc=‘Denver’ 
AND Emp.Emp* = Dept.Mgr 

If tuple iteration semantics are used to answer the query, then the 
inner query is evaluated for each tuple of the Dept relation once. 
An obvious optimization applies when the inner query block 
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select R1.A, sum(R1.B)
from R1, R2
where R1.A = R2.A 
group by R1.A

equivalent to

select x.A, x.sumB
from R2, (select A, sum(R1.B) as sumB

from R1 
group by A) x

where R2.A = x.A

only if: A is a primary key of R2
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being joined

select R1.A, sum(R1.B)
from R1, R2
where R1.A = R2.A 
group by R1.A

equivalent to

select R2.C, sum(x.sumB)
from R2, (select A, sum(R1.B) as sumB

from R1 
group by A) x

where R2.A = x.A
group by R2.C

only if: in R2, A à C

scqucncc ofoutcrjoins and joins do not freely commute. However, 
when the join predicate is between (R.S) and the outer-join 
predicate is between (ST), the following identity holds: 

Join(R, S LOJ T) = Join (R,S) LOJ T 
If the above associative NIC can be repeatedly applied, we obtain 
nn equivalent expression where evaluation of the “block of joins” 
prcccdcs the “block of outerjoins”. Subsequently, the joins may be 
I-WAY reordered among themselves, As with other 
transformations, use of this identity needs to be cost-based. The 
identities in [53] define a class of queries where joins and 
outcrjoins may be reordered. 

4,1,3 Group-By and Join 

I Figure 4. Group By and Join I 

In traditional execution of a SPJ query with group-by, the 
evaluation of the SPJ component of the query precedes the group- 
by, The set of transformations described in this section enable the 
group by operation to precede a join. These transformations are 
npplicablc to queries with SELECT DISTINCT since the latter is 
a special case of group-by, Evaluation of a group-by operator can 
potentially result in a significant reduction in the number of 
tupics, since only one tuple is generated for every partition of the 
relation induced by the group-by operator. Therefore, in some 
cases, by tirst doing the group-by, the cost of the join may be 
significantly reduced, Moreover, in the presence of an appropriate 
index, a group-by operation may be evaluated inexpensively. A 
dun1 of such transformations corresponds to the case where a 
group-by operator may be pulled up past a join. These 
trnnsformations arc described in [5,60,25,6] (see [4] for an 
overview). 
In thls section, we briefly discuss specific instances where the 
transformation to do an early group-by prior to the join may be 
npplicablc. Consider the query tree in Figure 4(a). Let the join 
bctwccn RI and RZ be a foreign key join and let the aggregated 
columns of G bc from columns in Rl and the set of group-by 
columns be a superset of the foreign key columns of R1. For such 
R query, Ict us consider the corresponding operator tree in Fig. 
4(b), where Gl=G. In that tree, the final join with RZ can only 
climinatc a set of potential partitions of Rl created by Gl but will 
not affect the partitions nor the aggregates computed for the 
partitions by G1 since every tuple in Rl will join with at fnost one 
tuple in Rs. Therefore, we can push down the group-by, as shown 
in Fig. 4(b) and preserve equivalence for arbifrury side-effect free 
nggrcgatc functions, Fig. 4(c) illustrates an example where the 
transformation irrfrohccs a group-by and represents a class of 
useful cxnmplcs where the group-by operation is done in sruges. 
For example, assume that in Fig. 4(a), where all the columns on 

which aggregated functions are applied are from Rl. In these 
cases, the introduced group-by operator Gl partitions the relation 
on the projection columns of the RI node and computes the 
aggregated values on those partitions. However, the true partitions 
in Fig 4(a) may need to combine multiple partitions introduced by 
G1 into a single partition (many to one mapping), The group-by 
operator G ensures the above. Such staged computation may still 
be useful in reducing the cost of the join because of the data 
reduction effect of Gl. Such staged aggregation requires the 
aggregating function to satisfy the property that Agg (S U S ’ ) 
can be computed from Agg (Sl and Agg (S ‘ 1. For example, in 
order to compute total sales for all products in each division, we 
can use the transformation in Fig. 4(c) to do an early aggregation 
and obtain the total sales for each product. We then need a 
subsequent group-by that sums over all products that belong to 
each division. 

4.2 Reducing Mu&Block Queries to Single- 
Block 
The technique described in this section shows how under some 
conditions, it is possible to collapse a multi-block SQL query into 
a single block SQL query. 

4.2.1 Merging Views 
Let us consider a conjunctive query using SELECT ANY. If one 
or more relations in the query are views, but each is defined 
through a conjunctive query, then the view definitions can simply 
be “unfolded” to obtain a single block SQL query. For example, if 
aqueryQ = Join(R,V) andviewV = Join(S,T),thenthe 
query Q can be unfolded to Join(R, Join(S,T) ) and may be 
freely reordered. Such a step may require some renaming of the 
variables in the view definitions. 
Unfortunately, this simple unfolding fails to work when the views 
are more complex than simple SPJ queries. When one or more of 
the views contain SELECT DISTINCT, transformations to move 
or pull up DISTINCT need to be careful to preserve the number 
of duplicates correctly, [49]. More generally, when the view 
contains a group by operator, unfolding requires the ability to 
pull-up the group-by operator and then to freely reorder not only 
the joins but also the group-by operator to ensure optimality. In 
particular, we are given a query such as the one in Fig. 4(b) and 
we are trying to consider how we can transform it in a form such 
as Fig. 4(a) so that R1 and RZ may be freely reordered. While the 
transformations in Section 4.1.3 may be used in such cases, it 
underscores the complexity of the problem [6]. 

4.2.2 Merging Nested Sabqueries 
Consider the following example of a nested query from [I31 
where Emp# and Depth are keys of the corresponding relations: 
SELECT Emp . Name 
FROM Emp 
WEERE Emp.Dept# IN 

SELECT Dept.Dept# FRON Dept 
WHERE Dept.Loc=‘Denver’ 
AND Emp.Emp* = Dept.Mgr 

If tuple iteration semantics are used to answer the query, then the 
inner query is evaluated for each tuple of the Dept relation once. 
An obvious optimization applies when the inner query block 
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scqucncc ofoutcrjoins and joins do not freely commute. However, 
when the join predicate is between (R.S) and the outer-join 
predicate is between (ST), the following identity holds: 

Join(R, S LOJ T) = Join (R,S) LOJ T 
If the above associative NIC can be repeatedly applied, we obtain 
nn equivalent expression where evaluation of the “block of joins” 
prcccdcs the “block of outerjoins”. Subsequently, the joins may be 
I-WAY reordered among themselves, As with other 
transformations, use of this identity needs to be cost-based. The 
identities in [53] define a class of queries where joins and 
outcrjoins may be reordered. 

4,1,3 Group-By and Join 

I Figure 4. Group By and Join I 

In traditional execution of a SPJ query with group-by, the 
evaluation of the SPJ component of the query precedes the group- 
by, The set of transformations described in this section enable the 
group by operation to precede a join. These transformations are 
npplicablc to queries with SELECT DISTINCT since the latter is 
a special case of group-by, Evaluation of a group-by operator can 
potentially result in a significant reduction in the number of 
tupics, since only one tuple is generated for every partition of the 
relation induced by the group-by operator. Therefore, in some 
cases, by tirst doing the group-by, the cost of the join may be 
significantly reduced, Moreover, in the presence of an appropriate 
index, a group-by operation may be evaluated inexpensively. A 
dun1 of such transformations corresponds to the case where a 
group-by operator may be pulled up past a join. These 
trnnsformations arc described in [5,60,25,6] (see [4] for an 
overview). 
In thls section, we briefly discuss specific instances where the 
transformation to do an early group-by prior to the join may be 
npplicablc. Consider the query tree in Figure 4(a). Let the join 
bctwccn RI and RZ be a foreign key join and let the aggregated 
columns of G bc from columns in Rl and the set of group-by 
columns be a superset of the foreign key columns of R1. For such 
R query, Ict us consider the corresponding operator tree in Fig. 
4(b), where Gl=G. In that tree, the final join with RZ can only 
climinatc a set of potential partitions of Rl created by Gl but will 
not affect the partitions nor the aggregates computed for the 
partitions by G1 since every tuple in Rl will join with at fnost one 
tuple in Rs. Therefore, we can push down the group-by, as shown 
in Fig. 4(b) and preserve equivalence for arbifrury side-effect free 
nggrcgatc functions, Fig. 4(c) illustrates an example where the 
transformation irrfrohccs a group-by and represents a class of 
useful cxnmplcs where the group-by operation is done in sruges. 
For example, assume that in Fig. 4(a), where all the columns on 

which aggregated functions are applied are from Rl. In these 
cases, the introduced group-by operator Gl partitions the relation 
on the projection columns of the RI node and computes the 
aggregated values on those partitions. However, the true partitions 
in Fig 4(a) may need to combine multiple partitions introduced by 
G1 into a single partition (many to one mapping), The group-by 
operator G ensures the above. Such staged computation may still 
be useful in reducing the cost of the join because of the data 
reduction effect of Gl. Such staged aggregation requires the 
aggregating function to satisfy the property that Agg (S U S ’ ) 
can be computed from Agg (Sl and Agg (S ‘ 1. For example, in 
order to compute total sales for all products in each division, we 
can use the transformation in Fig. 4(c) to do an early aggregation 
and obtain the total sales for each product. We then need a 
subsequent group-by that sums over all products that belong to 
each division. 

4.2 Reducing Mu&Block Queries to Single- 
Block 
The technique described in this section shows how under some 
conditions, it is possible to collapse a multi-block SQL query into 
a single block SQL query. 

4.2.1 Merging Views 
Let us consider a conjunctive query using SELECT ANY. If one 
or more relations in the query are views, but each is defined 
through a conjunctive query, then the view definitions can simply 
be “unfolded” to obtain a single block SQL query. For example, if 
aqueryQ = Join(R,V) andviewV = Join(S,T),thenthe 
query Q can be unfolded to Join(R, Join(S,T) ) and may be 
freely reordered. Such a step may require some renaming of the 
variables in the view definitions. 
Unfortunately, this simple unfolding fails to work when the views 
are more complex than simple SPJ queries. When one or more of 
the views contain SELECT DISTINCT, transformations to move 
or pull up DISTINCT need to be careful to preserve the number 
of duplicates correctly, [49]. More generally, when the view 
contains a group by operator, unfolding requires the ability to 
pull-up the group-by operator and then to freely reorder not only 
the joins but also the group-by operator to ensure optimality. In 
particular, we are given a query such as the one in Fig. 4(b) and 
we are trying to consider how we can transform it in a form such 
as Fig. 4(a) so that R1 and RZ may be freely reordered. While the 
transformations in Section 4.1.3 may be used in such cases, it 
underscores the complexity of the problem [6]. 

4.2.2 Merging Nested Sabqueries 
Consider the following example of a nested query from [I31 
where Emp# and Depth are keys of the corresponding relations: 
SELECT Emp . Name 
FROM Emp 
WEERE Emp.Dept# IN 

SELECT Dept.Dept# FRON Dept 
WHERE Dept.Loc=‘Denver’ 
AND Emp.Emp* = Dept.Mgr 

If tuple iteration semantics are used to answer the query, then the 
inner query is evaluated for each tuple of the Dept relation once. 
An obvious optimization applies when the inner query block 
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contains no variables from the outer query block (uncorrelufed). 
In such cases, the inner query block needs to be evaluated only 
once I-lowcver, when there is indeed a variable from the outer 
block, WC say that the query blocks are correlated. For example, 
in the query above, Emp.Emp# acts as the correlated variable. 
Kim [35] and subsequently others [16,13&j have identified 
techniques to unnest a correlated nested SQL query and “flatten” 
it to n single query. For example, the above nested query reduces 
to: SELECT E *Name 

FROM Emp E, Dept D 
WHERE E.Dept# = D.Dept# 
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr 

Dayal [ 131 was the first to offer an algebraic view of unnesting. 
The complexity of the problem depends on the structure of the 
nesting, i.e., whether the nested subquery has quantifiers (e.g., 
ALL, EXISTS), aggregates or neither. In the simplest case, of 
which the above query is an example, [ 131 observed that the tuple 
semantics ctm be modeled as Semijoin(Emp,Dept, 
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is 
not hard to see why the query may be merged since: 
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) = 
Project(Join(Emp,Dept), Emp.*) 
Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# = 
Dopt . Dept# , The second argument of the Project opemto? 
indicates that all columns of the relation Emp must be retained. 
The problem is more complex when aggregates are present in the 
ncslcd subquery, as in the example below from [44] since merging 
query blocks now requires pulling up the aggregation without 
violating the semantics of the nested query: 
SELECT Dept. name 
FRON Dept 
WHERE Dept,num-of-machines 2 
(SELECT coum (Emp . * ) ~~01~ Emp 
WHERE Dep t , name= Emp . Dep t-name ) 

It is especially tricky to preserve duplicates and nulls. To 
nppreclate the subtlety, observe that if for a specific value of 
Dopb .name (say d), there are no tuples with a matching 
Emp,Dept:,name, i.e., even if the predicate Dept -name= 
Emp. dept,name fails, then there is still an output tuple for the 
Dept tuple d. However, if we were to adopt the transformation 
used in the first query of this section, then there will be no output 
tuplc for the dept d since the join predicate fails. Therefore, in 
the presence of aggregation, we must preserve all the tuples of the 
outer query block by a left metjoin. In particular, the above 
query can be correctly transformed to: 
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp 
ON (Dcpt,name= Emp.dept,name ) 
GROUP BY Dept.name 
HAVING Dept. num-of-machines c COUNT @rap.*) 
Thus, for this class of queries the merged single block query has 
outcrjoins. If the nesting structure among query blocks is linear, 
then this approach is applicable and transformations produce a 

’ Semijoin(A,B,P) stands for semijoin between A and B that 
prcservcs attributes of A and where P is the semijoin predicate. 

3 I assume that the operator does not remove duplicates. 

single block query that consists of a linear sequence of joins and 
outer-joins. It turns out that the sequence of joins and outer-joins is 
such that we can use the associative rule described in Section 
4.1.2 to compute all the joins first and then do all the outerjoins in 
sequence. Another approach to unnesting subqueries is to 
transform a query into one that uses table-expressions or views 
(and therefore, not a single block query). This was the direction of 
Kim’s work (3.51 and it was subsequently refined in [44]. 

4.3 Using Semijoin Like Techniques for 
Optimizing Multi-Block Queries 
In the previous section, I presented examples of how multi-block 
queries may be collapsed in a single block. In this section, 1 
discuss a complementary approach. The goal of the approach 
described in this section is to exploit the selectivity of predicates 
across blocks4 It is conceptually similar to the idea of using 
semijoin to propagate from a site A to a remote site B information 
on relevant values of A so that B sends to A no unnecessary 
tuples. In the context of multi-block queries, A and B are in 
different query blocks but are parts of the same query and 
therefore the transmission cost is not an issue. Bather, the 
information “received from A” is used to reduce the computation 
needed in B as well as to ensure that the results produced by B are 
relevant to A as well. This technique requires introducing new 
table expressions and views. For example, consider the following 
query from [56]: 
CREATE VIEW DepAvgSal As ( 

SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E 
GROUP BY E-did) 

SELECT E.eid, E-Sal 
FROM Emp E, Dept D, DepAvgSal V 
WHERE E-did = D-did AND E-did = V.did 
AND E-age c 30 AND D-budget > 100k 
AND E.sal > V.avgsal 
The technique recognizes that we can create the set of relevant 
E.did by doing only the join between E and D in the above 
query and projecting the unique E. did. This set can be passed to 
the view DepAvgSal to restrict its computation. This is 
accomplished by the following three views. 
CREATE VIEW partialresult AS 
(SELECT E-id, E.sal, E-did 
FROM Emp E, Dept D 
WHERE E.did=D.did AND E-age c: 30 
AND D-budget > lOOk) 

CREATE VIEW Filter AS 
(SELECT DISTINCT P-did FROM PartialResult P) 
CREATE VIEW LimitedAvgSal AS 
(SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E, Filter F 
WHERE E-did = F-did GROUP BY E.did) 
The reformulated query on the next page exploits the above views 
to restrict computation. 

’ Although this technique historically developed as a derivative of 
Magic Sets and sideways inforrnation passing [2], 1 find the 
relationship to semijoin more intuitive and less magical. 
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contains no variables from the outer query block (uncorrelufed). 
In such cases, the inner query block needs to be evaluated only 
once I-lowcver, when there is indeed a variable from the outer 
block, WC say that the query blocks are correlated. For example, 
in the query above, Emp.Emp# acts as the correlated variable. 
Kim [35] and subsequently others [16,13&j have identified 
techniques to unnest a correlated nested SQL query and “flatten” 
it to n single query. For example, the above nested query reduces 
to: SELECT E *Name 

FROM Emp E, Dept D 
WHERE E.Dept# = D.Dept# 
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr 

Dayal [ 131 was the first to offer an algebraic view of unnesting. 
The complexity of the problem depends on the structure of the 
nesting, i.e., whether the nested subquery has quantifiers (e.g., 
ALL, EXISTS), aggregates or neither. In the simplest case, of 
which the above query is an example, [ 131 observed that the tuple 
semantics ctm be modeled as Semijoin(Emp,Dept, 
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is 
not hard to see why the query may be merged since: 
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) = 
Project(Join(Emp,Dept), Emp.*) 
Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# = 
Dopt . Dept# , The second argument of the Project opemto? 
indicates that all columns of the relation Emp must be retained. 
The problem is more complex when aggregates are present in the 
ncslcd subquery, as in the example below from [44] since merging 
query blocks now requires pulling up the aggregation without 
violating the semantics of the nested query: 
SELECT Dept. name 
FRON Dept 
WHERE Dept,num-of-machines 2 
(SELECT coum (Emp . * ) ~~01~ Emp 
WHERE Dep t , name= Emp . Dep t-name ) 

It is especially tricky to preserve duplicates and nulls. To 
nppreclate the subtlety, observe that if for a specific value of 
Dopb .name (say d), there are no tuples with a matching 
Emp,Dept:,name, i.e., even if the predicate Dept -name= 
Emp. dept,name fails, then there is still an output tuple for the 
Dept tuple d. However, if we were to adopt the transformation 
used in the first query of this section, then there will be no output 
tuplc for the dept d since the join predicate fails. Therefore, in 
the presence of aggregation, we must preserve all the tuples of the 
outer query block by a left metjoin. In particular, the above 
query can be correctly transformed to: 
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp 
ON (Dcpt,name= Emp.dept,name ) 
GROUP BY Dept.name 
HAVING Dept. num-of-machines c COUNT @rap.*) 
Thus, for this class of queries the merged single block query has 
outcrjoins. If the nesting structure among query blocks is linear, 
then this approach is applicable and transformations produce a 

’ Semijoin(A,B,P) stands for semijoin between A and B that 
prcservcs attributes of A and where P is the semijoin predicate. 

3 I assume that the operator does not remove duplicates. 

single block query that consists of a linear sequence of joins and 
outer-joins. It turns out that the sequence of joins and outer-joins is 
such that we can use the associative rule described in Section 
4.1.2 to compute all the joins first and then do all the outerjoins in 
sequence. Another approach to unnesting subqueries is to 
transform a query into one that uses table-expressions or views 
(and therefore, not a single block query). This was the direction of 
Kim’s work (3.51 and it was subsequently refined in [44]. 

4.3 Using Semijoin Like Techniques for 
Optimizing Multi-Block Queries 
In the previous section, I presented examples of how multi-block 
queries may be collapsed in a single block. In this section, 1 
discuss a complementary approach. The goal of the approach 
described in this section is to exploit the selectivity of predicates 
across blocks4 It is conceptually similar to the idea of using 
semijoin to propagate from a site A to a remote site B information 
on relevant values of A so that B sends to A no unnecessary 
tuples. In the context of multi-block queries, A and B are in 
different query blocks but are parts of the same query and 
therefore the transmission cost is not an issue. Bather, the 
information “received from A” is used to reduce the computation 
needed in B as well as to ensure that the results produced by B are 
relevant to A as well. This technique requires introducing new 
table expressions and views. For example, consider the following 
query from [56]: 
CREATE VIEW DepAvgSal As ( 

SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E 
GROUP BY E-did) 

SELECT E.eid, E-Sal 
FROM Emp E, Dept D, DepAvgSal V 
WHERE E-did = D-did AND E-did = V.did 
AND E-age c 30 AND D-budget > 100k 
AND E.sal > V.avgsal 
The technique recognizes that we can create the set of relevant 
E.did by doing only the join between E and D in the above 
query and projecting the unique E. did. This set can be passed to 
the view DepAvgSal to restrict its computation. This is 
accomplished by the following three views. 
CREATE VIEW partialresult AS 
(SELECT E-id, E.sal, E-did 
FROM Emp E, Dept D 
WHERE E.did=D.did AND E-age c: 30 
AND D-budget > lOOk) 

CREATE VIEW Filter AS 
(SELECT DISTINCT P-did FROM PartialResult P) 
CREATE VIEW LimitedAvgSal AS 
(SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E, Filter F 
WHERE E-did = F-did GROUP BY E.did) 
The reformulated query on the next page exploits the above views 
to restrict computation. 

’ Although this technique historically developed as a derivative of 
Magic Sets and sideways inforrnation passing [2], 1 find the 
relationship to semijoin more intuitive and less magical. 
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contains no variables from the outer query block (uncorrelufed). 
In such cases, the inner query block needs to be evaluated only 
once I-lowcver, when there is indeed a variable from the outer 
block, WC say that the query blocks are correlated. For example, 
in the query above, Emp.Emp# acts as the correlated variable. 
Kim [35] and subsequently others [16,13&j have identified 
techniques to unnest a correlated nested SQL query and “flatten” 
it to n single query. For example, the above nested query reduces 
to: SELECT E *Name 

FROM Emp E, Dept D 
WHERE E.Dept# = D.Dept# 
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr 

Dayal [ 131 was the first to offer an algebraic view of unnesting. 
The complexity of the problem depends on the structure of the 
nesting, i.e., whether the nested subquery has quantifiers (e.g., 
ALL, EXISTS), aggregates or neither. In the simplest case, of 
which the above query is an example, [ 131 observed that the tuple 
semantics ctm be modeled as Semijoin(Emp,Dept, 
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is 
not hard to see why the query may be merged since: 
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) = 
Project(Join(Emp,Dept), Emp.*) 
Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# = 
Dopt . Dept# , The second argument of the Project opemto? 
indicates that all columns of the relation Emp must be retained. 
The problem is more complex when aggregates are present in the 
ncslcd subquery, as in the example below from [44] since merging 
query blocks now requires pulling up the aggregation without 
violating the semantics of the nested query: 
SELECT Dept. name 
FRON Dept 
WHERE Dept,num-of-machines 2 
(SELECT coum (Emp . * ) ~~01~ Emp 
WHERE Dep t , name= Emp . Dep t-name ) 

It is especially tricky to preserve duplicates and nulls. To 
nppreclate the subtlety, observe that if for a specific value of 
Dopb .name (say d), there are no tuples with a matching 
Emp,Dept:,name, i.e., even if the predicate Dept -name= 
Emp. dept,name fails, then there is still an output tuple for the 
Dept tuple d. However, if we were to adopt the transformation 
used in the first query of this section, then there will be no output 
tuplc for the dept d since the join predicate fails. Therefore, in 
the presence of aggregation, we must preserve all the tuples of the 
outer query block by a left metjoin. In particular, the above 
query can be correctly transformed to: 
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp 
ON (Dcpt,name= Emp.dept,name ) 
GROUP BY Dept.name 
HAVING Dept. num-of-machines c COUNT @rap.*) 
Thus, for this class of queries the merged single block query has 
outcrjoins. If the nesting structure among query blocks is linear, 
then this approach is applicable and transformations produce a 

’ Semijoin(A,B,P) stands for semijoin between A and B that 
prcservcs attributes of A and where P is the semijoin predicate. 

3 I assume that the operator does not remove duplicates. 

single block query that consists of a linear sequence of joins and 
outer-joins. It turns out that the sequence of joins and outer-joins is 
such that we can use the associative rule described in Section 
4.1.2 to compute all the joins first and then do all the outerjoins in 
sequence. Another approach to unnesting subqueries is to 
transform a query into one that uses table-expressions or views 
(and therefore, not a single block query). This was the direction of 
Kim’s work (3.51 and it was subsequently refined in [44]. 

4.3 Using Semijoin Like Techniques for 
Optimizing Multi-Block Queries 
In the previous section, I presented examples of how multi-block 
queries may be collapsed in a single block. In this section, 1 
discuss a complementary approach. The goal of the approach 
described in this section is to exploit the selectivity of predicates 
across blocks4 It is conceptually similar to the idea of using 
semijoin to propagate from a site A to a remote site B information 
on relevant values of A so that B sends to A no unnecessary 
tuples. In the context of multi-block queries, A and B are in 
different query blocks but are parts of the same query and 
therefore the transmission cost is not an issue. Bather, the 
information “received from A” is used to reduce the computation 
needed in B as well as to ensure that the results produced by B are 
relevant to A as well. This technique requires introducing new 
table expressions and views. For example, consider the following 
query from [56]: 
CREATE VIEW DepAvgSal As ( 

SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E 
GROUP BY E-did) 

SELECT E.eid, E-Sal 
FROM Emp E, Dept D, DepAvgSal V 
WHERE E-did = D-did AND E-did = V.did 
AND E-age c 30 AND D-budget > 100k 
AND E.sal > V.avgsal 
The technique recognizes that we can create the set of relevant 
E.did by doing only the join between E and D in the above 
query and projecting the unique E. did. This set can be passed to 
the view DepAvgSal to restrict its computation. This is 
accomplished by the following three views. 
CREATE VIEW partialresult AS 
(SELECT E-id, E.sal, E-did 
FROM Emp E, Dept D 
WHERE E.did=D.did AND E-age c: 30 
AND D-budget > lOOk) 

CREATE VIEW Filter AS 
(SELECT DISTINCT P-did FROM PartialResult P) 
CREATE VIEW LimitedAvgSal AS 
(SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E, Filter F 
WHERE E-did = F-did GROUP BY E.did) 
The reformulated query on the next page exploits the above views 
to restrict computation. 

’ Although this technique historically developed as a derivative of 
Magic Sets and sideways inforrnation passing [2], 1 find the 
relationship to semijoin more intuitive and less magical. 
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LOJ is essential here
Otherwise will miss depts with no employees



} Say only a few departments (say 10) satisfy the join condition out of, say 10000
◦ Only need to compute the “view” tuples for those 10 departments

} So we are passing information “sideways” from the main block into the nested 
block

contains no variables from the outer query block (uncorrelufed). 
In such cases, the inner query block needs to be evaluated only 
once I-lowcver, when there is indeed a variable from the outer 
block, WC say that the query blocks are correlated. For example, 
in the query above, Emp.Emp# acts as the correlated variable. 
Kim [35] and subsequently others [16,13&j have identified 
techniques to unnest a correlated nested SQL query and “flatten” 
it to n single query. For example, the above nested query reduces 
to: SELECT E *Name 

FROM Emp E, Dept D 
WHERE E.Dept# = D.Dept# 
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr 

Dayal [ 131 was the first to offer an algebraic view of unnesting. 
The complexity of the problem depends on the structure of the 
nesting, i.e., whether the nested subquery has quantifiers (e.g., 
ALL, EXISTS), aggregates or neither. In the simplest case, of 
which the above query is an example, [ 131 observed that the tuple 
semantics ctm be modeled as Semijoin(Emp,Dept, 
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is 
not hard to see why the query may be merged since: 
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) = 
Project(Join(Emp,Dept), Emp.*) 
Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# = 
Dopt . Dept# , The second argument of the Project opemto? 
indicates that all columns of the relation Emp must be retained. 
The problem is more complex when aggregates are present in the 
ncslcd subquery, as in the example below from [44] since merging 
query blocks now requires pulling up the aggregation without 
violating the semantics of the nested query: 
SELECT Dept. name 
FRON Dept 
WHERE Dept,num-of-machines 2 
(SELECT coum (Emp . * ) ~~01~ Emp 
WHERE Dep t , name= Emp . Dep t-name ) 

It is especially tricky to preserve duplicates and nulls. To 
nppreclate the subtlety, observe that if for a specific value of 
Dopb .name (say d), there are no tuples with a matching 
Emp,Dept:,name, i.e., even if the predicate Dept -name= 
Emp. dept,name fails, then there is still an output tuple for the 
Dept tuple d. However, if we were to adopt the transformation 
used in the first query of this section, then there will be no output 
tuplc for the dept d since the join predicate fails. Therefore, in 
the presence of aggregation, we must preserve all the tuples of the 
outer query block by a left metjoin. In particular, the above 
query can be correctly transformed to: 
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp 
ON (Dcpt,name= Emp.dept,name ) 
GROUP BY Dept.name 
HAVING Dept. num-of-machines c COUNT @rap.*) 
Thus, for this class of queries the merged single block query has 
outcrjoins. If the nesting structure among query blocks is linear, 
then this approach is applicable and transformations produce a 

’ Semijoin(A,B,P) stands for semijoin between A and B that 
prcservcs attributes of A and where P is the semijoin predicate. 

3 I assume that the operator does not remove duplicates. 

single block query that consists of a linear sequence of joins and 
outer-joins. It turns out that the sequence of joins and outer-joins is 
such that we can use the associative rule described in Section 
4.1.2 to compute all the joins first and then do all the outerjoins in 
sequence. Another approach to unnesting subqueries is to 
transform a query into one that uses table-expressions or views 
(and therefore, not a single block query). This was the direction of 
Kim’s work (3.51 and it was subsequently refined in [44]. 

4.3 Using Semijoin Like Techniques for 
Optimizing Multi-Block Queries 
In the previous section, I presented examples of how multi-block 
queries may be collapsed in a single block. In this section, 1 
discuss a complementary approach. The goal of the approach 
described in this section is to exploit the selectivity of predicates 
across blocks4 It is conceptually similar to the idea of using 
semijoin to propagate from a site A to a remote site B information 
on relevant values of A so that B sends to A no unnecessary 
tuples. In the context of multi-block queries, A and B are in 
different query blocks but are parts of the same query and 
therefore the transmission cost is not an issue. Bather, the 
information “received from A” is used to reduce the computation 
needed in B as well as to ensure that the results produced by B are 
relevant to A as well. This technique requires introducing new 
table expressions and views. For example, consider the following 
query from [56]: 
CREATE VIEW DepAvgSal As ( 

SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E 
GROUP BY E-did) 

SELECT E.eid, E-Sal 
FROM Emp E, Dept D, DepAvgSal V 
WHERE E-did = D-did AND E-did = V.did 
AND E-age c 30 AND D-budget > 100k 
AND E.sal > V.avgsal 
The technique recognizes that we can create the set of relevant 
E.did by doing only the join between E and D in the above 
query and projecting the unique E. did. This set can be passed to 
the view DepAvgSal to restrict its computation. This is 
accomplished by the following three views. 
CREATE VIEW partialresult AS 
(SELECT E-id, E.sal, E-did 
FROM Emp E, Dept D 
WHERE E.did=D.did AND E-age c: 30 
AND D-budget > lOOk) 

CREATE VIEW Filter AS 
(SELECT DISTINCT P-did FROM PartialResult P) 
CREATE VIEW LimitedAvgSal AS 
(SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E, Filter F 
WHERE E-did = F-did GROUP BY E.did) 
The reformulated query on the next page exploits the above views 
to restrict computation. 

’ Although this technique historically developed as a derivative of 
Magic Sets and sideways inforrnation passing [2], 1 find the 
relationship to semijoin more intuitive and less magical. 
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contains no variables from the outer query block (uncorrelufed). 
In such cases, the inner query block needs to be evaluated only 
once I-lowcver, when there is indeed a variable from the outer 
block, WC say that the query blocks are correlated. For example, 
in the query above, Emp.Emp# acts as the correlated variable. 
Kim [35] and subsequently others [16,13&j have identified 
techniques to unnest a correlated nested SQL query and “flatten” 
it to n single query. For example, the above nested query reduces 
to: SELECT E *Name 

FROM Emp E, Dept D 
WHERE E.Dept# = D.Dept# 
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr 

Dayal [ 131 was the first to offer an algebraic view of unnesting. 
The complexity of the problem depends on the structure of the 
nesting, i.e., whether the nested subquery has quantifiers (e.g., 
ALL, EXISTS), aggregates or neither. In the simplest case, of 
which the above query is an example, [ 131 observed that the tuple 
semantics ctm be modeled as Semijoin(Emp,Dept, 
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is 
not hard to see why the query may be merged since: 
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) = 
Project(Join(Emp,Dept), Emp.*) 
Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# = 
Dopt . Dept# , The second argument of the Project opemto? 
indicates that all columns of the relation Emp must be retained. 
The problem is more complex when aggregates are present in the 
ncslcd subquery, as in the example below from [44] since merging 
query blocks now requires pulling up the aggregation without 
violating the semantics of the nested query: 
SELECT Dept. name 
FRON Dept 
WHERE Dept,num-of-machines 2 
(SELECT coum (Emp . * ) ~~01~ Emp 
WHERE Dep t , name= Emp . Dep t-name ) 

It is especially tricky to preserve duplicates and nulls. To 
nppreclate the subtlety, observe that if for a specific value of 
Dopb .name (say d), there are no tuples with a matching 
Emp,Dept:,name, i.e., even if the predicate Dept -name= 
Emp. dept,name fails, then there is still an output tuple for the 
Dept tuple d. However, if we were to adopt the transformation 
used in the first query of this section, then there will be no output 
tuplc for the dept d since the join predicate fails. Therefore, in 
the presence of aggregation, we must preserve all the tuples of the 
outer query block by a left metjoin. In particular, the above 
query can be correctly transformed to: 
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp 
ON (Dcpt,name= Emp.dept,name ) 
GROUP BY Dept.name 
HAVING Dept. num-of-machines c COUNT @rap.*) 
Thus, for this class of queries the merged single block query has 
outcrjoins. If the nesting structure among query blocks is linear, 
then this approach is applicable and transformations produce a 

’ Semijoin(A,B,P) stands for semijoin between A and B that 
prcservcs attributes of A and where P is the semijoin predicate. 

3 I assume that the operator does not remove duplicates. 

single block query that consists of a linear sequence of joins and 
outer-joins. It turns out that the sequence of joins and outer-joins is 
such that we can use the associative rule described in Section 
4.1.2 to compute all the joins first and then do all the outerjoins in 
sequence. Another approach to unnesting subqueries is to 
transform a query into one that uses table-expressions or views 
(and therefore, not a single block query). This was the direction of 
Kim’s work (3.51 and it was subsequently refined in [44]. 

4.3 Using Semijoin Like Techniques for 
Optimizing Multi-Block Queries 
In the previous section, I presented examples of how multi-block 
queries may be collapsed in a single block. In this section, 1 
discuss a complementary approach. The goal of the approach 
described in this section is to exploit the selectivity of predicates 
across blocks4 It is conceptually similar to the idea of using 
semijoin to propagate from a site A to a remote site B information 
on relevant values of A so that B sends to A no unnecessary 
tuples. In the context of multi-block queries, A and B are in 
different query blocks but are parts of the same query and 
therefore the transmission cost is not an issue. Bather, the 
information “received from A” is used to reduce the computation 
needed in B as well as to ensure that the results produced by B are 
relevant to A as well. This technique requires introducing new 
table expressions and views. For example, consider the following 
query from [56]: 
CREATE VIEW DepAvgSal As ( 

SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E 
GROUP BY E-did) 

SELECT E.eid, E-Sal 
FROM Emp E, Dept D, DepAvgSal V 
WHERE E-did = D-did AND E-did = V.did 
AND E-age c 30 AND D-budget > 100k 
AND E.sal > V.avgsal 
The technique recognizes that we can create the set of relevant 
E.did by doing only the join between E and D in the above 
query and projecting the unique E. did. This set can be passed to 
the view DepAvgSal to restrict its computation. This is 
accomplished by the following three views. 
CREATE VIEW partialresult AS 
(SELECT E-id, E.sal, E-did 
FROM Emp E, Dept D 
WHERE E.did=D.did AND E-age c: 30 
AND D-budget > lOOk) 

CREATE VIEW Filter AS 
(SELECT DISTINCT P-did FROM PartialResult P) 
CREATE VIEW LimitedAvgSal AS 
(SELECT E-did, Avg(E.Sal) AS avgsal 
FROM Emp E, Filter F 
WHERE E-did = F-did GROUP BY E.did) 
The reformulated query on the next page exploits the above views 
to restrict computation. 

’ Although this technique historically developed as a derivative of 
Magic Sets and sideways inforrnation passing [2], 1 find the 
relationship to semijoin more intuitive and less magical. 
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SELECT P,ei.d, P.sal 
FRO14 PartlalResult P, LimitedDepAvgSal V 
V!HERE P,did = V.did AND P.sal > V.avgsal 
The above technique can be used in a multi-block query 
containing view (including recursive view) definitions or nested 
subqueries [42,43,56,57]. In each case, the goal is to avoid 
redundant computation in the views or the nested subqueries. It is 
also important to recognize the tradeoff between the cost of 
computing the views (the view PartialResult in the example 
above) and USC of such views to reduce the cost of computation. 
The formal relationship of the above transformation to semijoin 
has rcccntiy been presented in [56] and may form the basis for 
integration of this strategy in a cost-based optimizer. Note that a 
dgcncratc application of this technique is passing the predicates 
across query blocks instead of results of views. This simpler 
technique has been used in distributed and heterogeneous 
databases and generalized in [36]. 

5. STATISTICS AND COST ESTIMATION 
Given a query, there arc many logically equivalent algebraic 
cxprcssions and for each of the expressions, there are many ways 
to impicment them as operators, Even if we ignore the 
computational complexity of enumerating the space of 
posdbilities, there remains the question of deciding which of the 
operator trees consumes the least resources. Resources may be 
CPU time, J/O cost, memory, communication bandwidth, or a 
combination of these. Therefore, given an operator tree (partial or 
complete) of a query, being able to accurately and efficiently 
cvnluatc its cost is of fundamental importance. The cost 
estimation must be accurate because optimizurion is only as good 
as its cost cs~brrat~~~ Cost estimation must be efficient since it is 
In the inner loop of query optimization and is repeatedly invoked. 
The basic estimation framework is derived from the System-R 
approach: 
I, Collect statistical summaries of data that has been stored. 
2, Given an operator and the statistical summary for each of its 

input data streams, determine the: 
(a) Statistical summary of the output data stream 
(b) Estimated cost of executing the operation 

Step 2 can be applied iteratively to an operator tree of arbitrary 
depth to derive the costs for each of its operators. Once we have 
the costs for each of the operator nodes, the cost for the plan may 
bc obtained by combining the costs of each of the operator nodes 
in the tree, In Section 5.1, we discuss the statistical parameters 
for the stored data that are used in cost optimization and efficient 
ways of obtaining such statistical information. We also discuss 
how to propagate such statistical information. The issue of 
estimating cost for physical operators is discussed in Section 5.2. 
It is important to recognize the differences between the nature of 
the statistical property and the cost of a plan. The statistical 
property of the output data stream of a plan is the same as that of 
any other plan for the same query, but its cost can be different 
from other plans. In other words, statistical summary is a logical 
property but the cost of a plan is a physical property. 

5.1 Statistical Summaries of Data 
51.1 Statistical Information on Base Data 
For every tabIe, the necessary statistical information includes the 
number of tuples in a data stream since this parameter determines 
the cost of data scans, joins, and their memory requirements, In 
addition to the number of tupIes, the number of physical pages 
used by the table is important. Statistical information on columns 
of the data stream is of interest since these statistics can be used to 
estimate the selectivity of predicates on that column. Such 
information is created for columns on which there are one or more 
indexes, although it may be created on demand for any other 
column as well. 
In a large number of systems, information on the data distribution 
on a column is provided by histograms. A histogram divides the 
values on a column into k buckets. In many cases, k is a constant 
and determines the degree of accuracy of the histogram. However, 
k also determines the memory usage, since while optimizing a 
query, relevant columns of the histogram are loaded in memory. 
There are several choices for “bucketization” of values. In many 
database systems, equi-depth (also called equi-height) histograms 
are used to represent the data distribution on a column. If the table 
has n records and the histogram has k buckets, then an equi-depth 
histogram divides the set of values on that column into k ranges 
such that each range has the same nrtmber of values, i.e., n/k. 
Compressed histograms place frequently occurring values in 
singleton buckets. The number of such singleton buckets may be 
tuned. It has been shown in [52] that such histograms are effective 
for either high or low skew data. One aspect of histograms 
relevant to optimization is the assumption made about values 
within a bucket. For example, in an equi-depth histogram, values 
within the endpoints of a bucket may be assumed to occur with 
uniform spread. A discussion of the above assumption as well as a 
broad taxonomy of histograms and ramifications of the histogram 
structures on accuracy appears in 1521. In the absence of 
histograms, information such as the min and mar of the values in 
a column may be used. However, in practice, the second lowest 
and the second highest values are used since the min and mar 
have a high probabitity of being outlying vaIues. Histogram 
information is complemented by information on parameters such 
as number of distinct values on that column 
Although histograms provide information on a single column, 
they do not provide information on the correfufions among 
columns. In order to capture correlations, we need the joint 
distribution of values. One option is to consider 2-dimensional 
histograms [45,51]. UnfortunateIy. the space of possibilities is 
quite large. In many systems, instead of providing detailed joint 
distribution, only summary information such as the number of 
distinct pairs of values is used. For example, the statistical 
information associated with a multi-column index may consist of 
a histogram on the leading column and the total count of distinct 
combinations of column values present in the data. 

5.1.2 Estimating Statistics on Base Data 
Enterprise class databases often have large schema and also have 
large volumes of data. Therefore, to have the flexibility of 
obtaining statistics to improve accuracy, it is important to be able 
to estimate the statistical parameters accurately and efficiently, 
Sumphg data provides one possibIe approach. However, the 
challenge is to limit the error in estimation. In [48]. Shapiro and 
Connell show that for a given query, only a small sample is 



} In general: more information about the data è better estimates
} Single-column statistics
◦ min, max, #distinct, #bytes, etc.
◦ Histograms for value distributions (e.g., to estimate #tuples satisfying “age < 20”)
◦ Many different types of histograms proposed over the years

} Multi-column statistics
◦ Correlations among attributes a major issue for estimates
◦ Queries of type: “SSN = 0123 and Name = ‘John Smith’” pretty common

� Independence assumption è huge underestimation of the result size
◦ Many proposals for capturing correlations, but hard to make work in practice

} Propagation of errors
◦ Even if estimates lower in the query plan are pretty good, estimates for more 

complex subexpressions become erroneous very quickly



} Need the optimization algorithm to be “extensible”
◦ So it can handle new physical operators, new transformations, new cost estimation approaches, 

easicly

} Starburst:
◦ Uses a rule engine and an intermediate representation called QGM to do query 

rewrites/transformations
◦ Uses a somewhat generalized bottom-up query optimizer

} Volcano/Cascades:
◦ Transformation rules to map algebraic expressions
◦ Implementation rules to map algebraic expression into an operator tree
◦ Uses a “top-down” query optimizer

� Starts with the overall expression and tries to find all possible ways to get to it
� Uses “memoization” to keep avoid redoing work

◦ Formed the basis of the Microsoft database systems



} Distributed and Parallel Databases
◦ Much bigger search space (can place operators anywhere, and can partition them)
◦ What to optimize for? Communication cost? Total resources? Response time?
◦ Standard approach is to generate a single-machine query plan and then parallelize it (2-phase 

optimization)

} User-defined Functions
◦ Need to consider the cost of executing those (can be hard to estimate)

} Materialized views
◦ Given a set of materialized views, hard to decide if those can be used in place of the original 

relations (undecidable in general)

} …



} Query evaluation techniques for large databases

} Skew avoidance strategies

} Query compilation

} Vectorization

} Query Optimization: Overview

} How good are the query optimizers, really?



} Build using the IMDB dataset
◦ 21 tables, total of 3.6 GB in CSV format

} 113 SPJ queries – no aggregates or subqueries

} More realistic than the commonly used TPC-H/DS benchmarks (or synthetic 
benchmarks)

are quite robust even in the presence of large cardinality estima-
tion errors. The more indexes are available, the harder the problem
becomes for the query optimizer resulting in runtimes that are far
away from the optimal query plan. Section 5 shows that with the
currently-used cardinality estimation techniques, the influence of
cost model errors is dwarfed by cardinality estimation errors and
that even quite simple cost models seem to be sufficient. Sec-
tion 6 investigates different plan enumeration algorithms and shows
that—despite large cardinality misestimates and sub-optimal cost
models—exhaustive join order enumeration improves performance
and that using heuristics leaves performance on the table. Finally,
after discussing related work in Section 7, we present our conclu-
sions and future work in Section 8.

2. BACKGROUND AND METHODOLOGY
Many query optimization papers ignore cardinality estimation

and only study search space exploration for join ordering with ran-
domly generated, synthetic queries (e.g., [32, 13]). Other papers
investigate only cardinality estimation in isolation either theoreti-
cally (e.g., [21]) or empirically (e.g., [43]). As important and in-
teresting both approaches are for understanding query optimizers,
they do not necessarily reflect real-world user experience.

The goal of this paper is to investigate the contribution of all rele-
vant query optimizer components to end-to-end query performance
in a realistic setting. We therefore perform our experiments using a
workload based on a real-world data set and the widely-used Post-
greSQL system. PostgreSQL is a relational database system with
a fairly traditional architecture making it a good subject for our
experiments. Furthermore, its open source nature allows one to in-
spect and change its internals. In this section we introduce the Join
Order Benchmark, describe all relevant aspects of PostgreSQL, and
present our methodology.

2.1 The IMDB Data Set
Many research papers on query processing and optimization use

standard benchmarks like TPC-H, TPC-DS, or the Star Schema
Benchmark (SSB). While these benchmarks have proven their value
for evaluating query engines, we argue that they are not good bench-
marks for the cardinality estimation component of query optimiz-
ers. The reason is that in order to easily be able to scale the bench-
mark data, the data generators are using the very same simplifying
assumptions (uniformity, independence, principle of inclusion) that
query optimizers make. Real-world data sets, in contrast, are full
of correlations and non-uniform data distributions, which makes
cardinality estimation much harder. Section 3.3 shows that Post-
greSQL’s simple cardinality estimator indeed works unrealistically
well for TPC-H.

Therefore, instead of using a synthetic data set, we chose the
Internet Movie Data Base

1
(IMDB). It contains a plethora of in-

formation about movies and related facts about actors, directors,
production companies, etc. The data is freely available2 for non-
commercial use as text files. In addition, we used the open-source
imdbpy

3 package to transform the text files into a relational database
with 21 tables. The data set allows one to answer queries like
“Which actors played in movies released between 2000 and 2005
with ratings above 8?”. Like most real-world data sets IMDB is full
of correlations and non-uniform data distributions, and is therefore
much more challenging than most synthetic data sets. Our snap-
shot is from May 2013 and occupies 3.6 GB when exported to CSV
1
http://www.imdb.com/

2
ftp://ftp.fu-berlin.de/pub/misc/movies/database/

3
https://bitbucket.org/alberanid/imdbpy/get/5.0.zip
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Figure 2: Typical query graph of our workload

files. The two largest tables, cast info and movie info have
36 M and 15 M rows, respectively.

2.2 The JOB Queries
Based on the IMDB database, we have constructed analytical

SQL queries. Since we focus on join ordering, which arguably is
the most important query optimization problem, we designed the
queries to have between 3 and 16 joins, with an average of 8 joins
per query. Query 13d, which finds the ratings and release dates for
all movies produced by US companies, is a typical example:

SELECT cn.name, mi.info, miidx.info

FROM company_name cn, company_type ct,

info_type it, info_type it2, title t,

kind_type kt, movie_companies mc,

movie_info mi, movie_info_idx miidx

WHERE cn.country_code =’[us]’

AND ct.kind = ’production companies’

AND it.info = ’rating’

AND it2.info = ’release dates’

AND kt.kind = ’movie’

AND ... -- (11 join predicates)

Each query consists of one select-project-join block4. The join
graph of the query is shown in Figure 2. The solid edges in the
graph represent key/foreign key edges (1 : n) with the arrow head
pointing to the primary key side. Dotted edges represent foreign
key/foreign key joins (n : m), which appear due to transitive join
predicates. Our query set consists of 33 query structures, each with
2-6 variants that differ in their selections only, resulting in a total
of 113 queries. Note that depending on the selectivities of the base
table predicates, the variants of the same query structure have dif-
ferent optimal query plans that yield widely differing (sometimes
by orders of magnitude) runtimes. Also, some queries have more
complex selection predicates than the example (e.g., disjunctions
or substring search using LIKE).

Our queries are “realistic” and “ad hoc” in the sense that they
answer questions that may reasonably have been asked by a movie
4Since in this paper we do not model or investigate aggregation,
we omitted GROUP BY from our queries. To avoid communica-
tion from becoming the performance bottleneck for queries with
large result sizes, we wrap all attributes in the projection clause
with MIN(...) expressions when executing (but not when es-
timating). This change has no effect on PostgreSQL’s join order
selection because its optimizer does not push down aggregations.
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are quite robust even in the presence of large cardinality estima-
tion errors. The more indexes are available, the harder the problem
becomes for the query optimizer resulting in runtimes that are far
away from the optimal query plan. Section 5 shows that with the
currently-used cardinality estimation techniques, the influence of
cost model errors is dwarfed by cardinality estimation errors and
that even quite simple cost models seem to be sufficient. Sec-
tion 6 investigates different plan enumeration algorithms and shows
that—despite large cardinality misestimates and sub-optimal cost
models—exhaustive join order enumeration improves performance
and that using heuristics leaves performance on the table. Finally,
after discussing related work in Section 7, we present our conclu-
sions and future work in Section 8.

2. BACKGROUND AND METHODOLOGY
Many query optimization papers ignore cardinality estimation

and only study search space exploration for join ordering with ran-
domly generated, synthetic queries (e.g., [32, 13]). Other papers
investigate only cardinality estimation in isolation either theoreti-
cally (e.g., [21]) or empirically (e.g., [43]). As important and in-
teresting both approaches are for understanding query optimizers,
they do not necessarily reflect real-world user experience.

The goal of this paper is to investigate the contribution of all rele-
vant query optimizer components to end-to-end query performance
in a realistic setting. We therefore perform our experiments using a
workload based on a real-world data set and the widely-used Post-
greSQL system. PostgreSQL is a relational database system with
a fairly traditional architecture making it a good subject for our
experiments. Furthermore, its open source nature allows one to in-
spect and change its internals. In this section we introduce the Join
Order Benchmark, describe all relevant aspects of PostgreSQL, and
present our methodology.

2.1 The IMDB Data Set
Many research papers on query processing and optimization use

standard benchmarks like TPC-H, TPC-DS, or the Star Schema
Benchmark (SSB). While these benchmarks have proven their value
for evaluating query engines, we argue that they are not good bench-
marks for the cardinality estimation component of query optimiz-
ers. The reason is that in order to easily be able to scale the bench-
mark data, the data generators are using the very same simplifying
assumptions (uniformity, independence, principle of inclusion) that
query optimizers make. Real-world data sets, in contrast, are full
of correlations and non-uniform data distributions, which makes
cardinality estimation much harder. Section 3.3 shows that Post-
greSQL’s simple cardinality estimator indeed works unrealistically
well for TPC-H.

Therefore, instead of using a synthetic data set, we chose the
Internet Movie Data Base

1
(IMDB). It contains a plethora of in-

formation about movies and related facts about actors, directors,
production companies, etc. The data is freely available2 for non-
commercial use as text files. In addition, we used the open-source
imdbpy

3 package to transform the text files into a relational database
with 21 tables. The data set allows one to answer queries like
“Which actors played in movies released between 2000 and 2005
with ratings above 8?”. Like most real-world data sets IMDB is full
of correlations and non-uniform data distributions, and is therefore
much more challenging than most synthetic data sets. Our snap-
shot is from May 2013 and occupies 3.6 GB when exported to CSV
1
http://www.imdb.com/

2
ftp://ftp.fu-berlin.de/pub/misc/movies/database/

3
https://bitbucket.org/alberanid/imdbpy/get/5.0.zip

Figure 2: Typical query graph of our workload

files. The two largest tables, cast info and movie info have
36 M and 15 M rows, respectively.

2.2 The JOB Queries
Based on the IMDB database, we have constructed analytical

SQL queries. Since we focus on join ordering, which arguably is
the most important query optimization problem, we designed the
queries to have between 3 and 16 joins, with an average of 8 joins
per query. Query 13d, which finds the ratings and release dates for
all movies produced by US companies, is a typical example:

SELECT cn.name, mi.info, miidx.info

FROM company_name cn, company_type ct,

info_type it, info_type it2, title t,

kind_type kt, movie_companies mc,

movie_info mi, movie_info_idx miidx

WHERE cn.country_code =’[us]’

AND ct.kind = ’production companies’

AND it.info = ’rating’

AND it2.info = ’release dates’

AND kt.kind = ’movie’

AND ... -- (11 join predicates)

Each query consists of one select-project-join block4. The join
graph of the query is shown in Figure 2. The solid edges in the
graph represent key/foreign key edges (1 : n) with the arrow head
pointing to the primary key side. Dotted edges represent foreign
key/foreign key joins (n : m), which appear due to transitive join
predicates. Our query set consists of 33 query structures, each with
2-6 variants that differ in their selections only, resulting in a total
of 113 queries. Note that depending on the selectivities of the base
table predicates, the variants of the same query structure have dif-
ferent optimal query plans that yield widely differing (sometimes
by orders of magnitude) runtimes. Also, some queries have more
complex selection predicates than the example (e.g., disjunctions
or substring search using LIKE).

Our queries are “realistic” and “ad hoc” in the sense that they
answer questions that may reasonably have been asked by a movie
4Since in this paper we do not model or investigate aggregation,
we omitted GROUP BY from our queries. To avoid communica-
tion from becoming the performance bottleneck for queries with
large result sizes, we wrap all attributes in the projection clause
with MIN(...) expressions when executing (but not when es-
timating). This change has no effect on PostgreSQL’s join order
selection because its optimizer does not push down aggregations.
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} Standard dynamic programming-based optimizer
◦ Includes bushy plans, but no Cartesian products

} Statistics: Single-column histograms, min, max, most frequent values, etc.
◦ Assume independence and uniformity outside of those

◦ Especially for conjunctive predicates (like A = 10 and B = 20)

} Modified for the purposes of this paper to accept “cardinality injection”
◦ i.e., use different cardinality estimates than the ones it computed

◦ e.g., true cardinalities, or cardinalities per another system
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ABSTRACT
Finding a good join order is crucial for query performance. In this
paper, we introduce the Join Order Benchmark (JOB) and exper-
imentally revisit the main components in the classic query opti-
mizer architecture using a complex, real-world data set and realistic
multi-join queries. We investigate the quality of industrial-strength
cardinality estimators and find that all estimators routinely produce
large errors. We further show that while estimates are essential for
finding a good join order, query performance is unsatisfactory if
the query engine relies too heavily on these estimates. Using an-
other set of experiments that measure the impact of the cost model,
we find that it has much less influence on query performance than
the cardinality estimates. Finally, we investigate plan enumera-
tion techniques comparing exhaustive dynamic programming with
heuristic algorithms and find that exhaustive enumeration improves
performance despite the sub-optimal cardinality estimates.

1. INTRODUCTION
The problem of finding a good join order is one of the most stud-

ied problems in the database field. Figure 1 illustrates the classical,
cost-based approach, which dates back to System R [36]. To obtain
an efficient query plan, the query optimizer enumerates some subset
of the valid join orders, for example using dynamic programming.
Using cardinality estimates as its principal input, the cost model
then chooses the cheapest alternative from semantically equivalent
plan alternatives.

Theoretically, as long as the cardinality estimations and the cost
model are accurate, this architecture obtains the optimal query plan.
In reality, cardinality estimates are usually computed based on sim-
plifying assumptions like uniformity and independence. In real-
world data sets, these assumptions are frequently wrong, which
may lead to sub-optimal and sometimes disastrous plans.

In this experiments and analyses paper we investigate the three
main components of the classical query optimization architecture
in order to answer the following questions:

• How good are cardinality estimators and when do bad esti-
mates lead to slow queries?

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 3
Copyright 2015 VLDB Endowment 2150-8097/15/11.

SELECT ...
FROM R,S,T
WHERE ...

v

B

B

R
S

T

HJ

INLcardinality
estimation

cost
model

plan space
enumeration

Figure 1: Traditional query optimizer architecture

• How important is an accurate cost model for the overall query
optimization process?

• How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that allows
us to isolate the influence of the individual optimizer components
on query performance. Our experiments are conducted using a real-
world data set and 113 multi-join queries that provide a challeng-
ing, diverse, and realistic workload. Another novel aspect of this
paper is that it focuses on the increasingly common main-memory
scenario, where all data fits into RAM.

The main contributions of this paper are listed in the following:

• We design a challenging workload named Join Order Bench-

mark (JOB), which is based on the IMDB data set. The
benchmark is publicly available to facilitate further research.

• To the best of our knowledge, this paper presents the first
end-to-end study of the join ordering problem using a real-
world data set and realistic queries.

• By quantifying the contributions of cardinality estimation,
the cost model, and the plan enumeration algorithm on query
performance, we provide guidelines for the complete design
of a query optimizer. We also show that many disastrous
plans can easily be avoided.

The rest of this paper is organized as follows: We first discuss
important background and our new benchmark in Section 2. Sec-
tion 3 shows that the cardinality estimators of the major relational
database systems produce bad estimates for many realistic queries,
in particular for multi-join queries. The conditions under which
these bad estimates cause slow performance are analyzed in Sec-
tion 4. We show that it very much depends on how much the
query engine relies on these estimates and on how complex the
physical database design is, i.e., the number of indexes available.
Query engines that mainly rely on hash joins and full table scans,
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} q-error: ratio of correct result and estimate
} Base tables: sampling (Hyper and A) works better than histograms
} Huge underestimation seen as #joins increases
◦ Underestimation generally worse – results in more aggressive plans (e.g., NL joins)

} Note: The experimental setup may naturally “select” for underestimates
◦ (Missing enough details to be sure)
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Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes
the error distribution of all subexpressions with a particular size (over all queries in the workload)

median 90th 95th max
PostgreSQL 1.00 2.08 6.10 207
DBMS A 1.01 1.33 1.98 43.4
DBMS B 1.00 6.03 30.2 104000
DBMS C 1.06 1677 5367 20471
HyPer 1.02 4.47 8.00 2084

Table 1: Q-errors for base table selections

cardinality estimates are sometimes wrong by orders of magnitude,
and that such errors are usually the reason for slow queries. In this
section, we experimentally investigate the quality of cardinality es-
timates in relational database systems by comparing the estimates
with the true cardinalities.

3.1 Estimates for Base Tables
To measure the quality of base table cardinality estimates, we

use the q-error, which is the factor by which an estimate differs
from the true cardinality. For example, if the true cardinality of
an expression is 100, the estimates of 10 or 1000 both have a q-
error of 10. Using the ratio instead of an absolute or quadratic
difference captures the intuition that for making planning decisions
only relative differences matter. The q-error furthermore provides
a theoretical upper bound for the plan quality if the q-errors of a
query are bounded [30].

Table 1 shows the 50th, 90th, 95th, and 100th percentiles of the
q-errors for the 629 base table selections in our workload. The
median q-error is close to the optimal value of 1 for all systems,
indicating that the majority of all selections are estimated correctly.
However, all systems produce misestimates for some queries, and
the quality of the cardinality estimates differs strongly between the
different systems.

Looking at the individual selections, we found that DBMS A and
HyPer can usually predict even complex predicates like substring
search using LIKE very well. To estimate the selectivities for base

tables HyPer uses a random sample of 1000 rows per table and
applies the predicates on that sample. This allows one to get ac-

curate estimates for arbitrary base table predicates as long as the
selectivity is not too low. When we looked at the selections where
DBMS A and HyPer produce errors above 2, we found that most
of them have predicates with extremely low true selectivities (e.g.,
10�5 or 10�6). This routinely happens when the selection yields
zero tuples on the sample, and the system falls back on an ad-hoc
estimation method (“magic constants”). It therefore appears to be
likely that DBMS A also uses the sampling approach.

The estimates of the other systems are worse and seem to be
based on per-attribute histograms, which do not work well for many
predicates and cannot detect (anti-)correlations between attributes.
Note that we obtained all estimates using the default settings af-
ter running the respective statistics gathering tool. Some commer-
cial systems support the use of sampling for base table estimation,
multi-attribute histograms (“column group statistics”), or ex post
feedback from previous query runs [38]. However, these features
are either not enabled by default or are not fully automatic.

3.2 Estimates for Joins
Let us now turn our attention to the estimation of intermediate

results for joins, which are more challenging because sampling or
histograms do not work well. Figure 3 summarizes over 100,000
cardinality estimates in a single figure. For each intermediate re-
sult of our query set, we compute the factor by which the estimate
differs from the true cardinality, distinguishing between over- and
underestimation. The graph shows one “boxplot” (note the legend
in the bottom-left corner) for each intermediate result size, which
allows one to compare how the errors change as the number of joins
increases. The vertical axis uses a logarithmic scale to encompass
underestimates by a factor of 108 and overestimates by a factor of
104.

Despite the better base table estimates of DBMS A, the overall
variance of the join estimation errors, as indicated by the boxplot,
is similar for all systems with the exception of DBMS B. For all
systems we routinely observe misestimates by a factor of 1000 or
more. Furthermore, as witnessed by the increasing height of the
box plots, the errors grow exponentially (note the logarithmic scale)
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} Used cardinality injection to use other systems’ estimates or the true 
cardinalities

} Most bad plans boil down to NL joins
◦ Disabling improves performance but doesn’t fully solve the problem

4. WHEN DO BAD CARDINALITY ESTI-
MATES LEAD TO SLOW QUERIES?

While the large estimation errors shown in the previous section
are certainly sobering, large errors do not necessarily lead to slow
query plans. For example, the misestimated expression may be
cheap in comparison with other parts of the query, or the relevant
plan alternative may have been misestimated by a similar factor
thus “canceling out” the original error. In this section we investi-
gate the conditions under which bad cardinalities are likely to cause
slow queries.

One important observation is that query optimization is closely
intertwined with the physical database design: the type and number
of indexes heavily influence the plan search space, and therefore
affects how sensitive the system is to cardinality misestimates. We
therefore start this section with experiments using a relatively ro-
bust physical design with only primary key indexes and show that
in such a setup the impact of cardinality misestimates can largely be
mitigated. After that, we demonstrate that for more complex con-
figurations with many indexes, cardinality misestimation makes it
much more likely to miss the optimal plan by a large margin.

4.1 The Risk of Relying on Estimates
To measure the impact of cardinality misestimation on query per-

formance we injected the estimates of the different systems into
PostgreSQL and then executed the resulting plans. Using the same
query engine allows one to compare the cardinality estimation com-
ponents in isolation by (largely) abstracting away from the different
query execution engines. Additionally, we inject the true cardinali-
ties, which computes the—with respect to the cost model—optimal
plan. We group the runtimes based on their slowdown w.r.t. the op-
timal plan, and report the distribution in the following table, where
each column corresponds to a group:

<0.9 [0.9,1.1) [1.1,2) [2,10) [10,100) >100
PostgreSQL 1.8% 38% 25% 25% 5.3% 5.3%
DBMS A 2.7% 54% 21% 14% 0.9% 7.1%
DBMS B 0.9% 35% 18% 15% 7.1% 25%
DBMS C 1.8% 38% 35% 13% 7.1% 5.3%
HyPer 2.7% 37% 27% 19% 8.0% 6.2%

A small number of queries become slightly slower using the true
instead of the erroneous cardinalities. This effect is caused by cost
model errors, which we discuss in Section 5. However, as expected,
the vast majority of the queries are slower when estimates are used.
Using DBMS A’s estimates, 78% of the queries are less than 2⇥
slower than using the true cardinalities, while for DBMS B this is
the case for only 53% of the queries. This corroborates the findings
about the relative quality of cardinality estimates in the previous
section. Unfortunately, all estimators occasionally lead to plans
that take an unreasonable time and lead to a timeout. Surprisingly,
however, many of the observed slowdowns are easily avoidable de-
spite the bad estimates as we show in the following.

When looking at the queries that did not finish in a reasonable
time using the estimates, we found that most have one thing in
common: PostgreSQL’s optimizer decides to introduce a nested-
loop join (without an index lookup) because of a very low cardinal-
ity estimate, whereas in reality the true cardinality is larger. As we
saw in the previous section, systematic underestimation happens
very frequently, which occasionally results in the introduction of
nested-loop joins.

The underlying reason why PostgreSQL chooses nested-loop joins
is that it picks the join algorithm on a purely cost-based basis. For
example, if the cost estimate is 1,000,000 with the nested-loop

default + no nested-loop join + rehashing

(a) (b) (c)

0%

20%

40%

60%

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

Figure 6: Slowdown of queries using PostgreSQL estimates
w.r.t. using true cardinalities (primary key indexes only)

join algorithm and 1,000,001 with a hash join, PostgreSQL will
always prefer the nested-loop algorithm even if there is a equality
join predicate, which allows one to use hashing. Of course, given
the O(n2) complexity of nested-loop join and O(n) complexity of
hash join, and given the fact that underestimates are quite frequent,
this decision is extremely risky. And even if the estimates happen
to be correct, any potential performance advantage of a nested-loop
join in comparison with a hash join is very small, so taking this high

risk can only result in a very small payoff.
Therefore, we disabled nested-loop joins (but not index-nested-

loop joins) in all following experiments. As Figure 6b shows, when
rerunning all queries without these risky nested-loop joins, we ob-
served no more timeouts despite using PostgreSQL’s estimates.

Also, none of the queries performed slower than before despite
having less join algorithm options, confirming our hypothesis that
nested-loop joins (without indexes) seldom have any upside. How-
ever, this change does not solve all problems, as there are still a
number of queries that are more than a factor of 10 slower (cf., red
bars) in comparison with the true cardinalities.

When investigating the reason why the remaining queries still
did not perform as well as they could, we found that most of them
contain a hash join where the size of the build input is underesti-
mated. PostgreSQL up to and including version 9.4 chooses the
size of the in-memory hash table based on the cardinality estimate.
Underestimates can lead to undersized hash tables with very long
collisions chains and therefore bad performance. The upcoming
version 9.5 resizes the hash table at runtime based on the number
of rows actually stored in the hash table. We backported this patch
to our code base, which is based on 9.4, and enabled it for all re-
maining experiments. Figure 6c shows the effect of this change
in addition with disabled nested-loop joins. Less than 4% of the
queries are off by more than 2⇥ in comparison with the true cardi-
nalities.

To summarize, being “purely cost-based”, i.e., not taking into
account the inherent uncertainty of cardinality estimates and the
asymptotic complexities of different algorithm choices, can lead to
very bad query plans. Algorithms that seldom offer a large benefit
over more robust algorithms should not be chosen. Furthermore,
query processing algorithms should, if possible, automatically de-
termine their parameters at runtime instead of relying on cardinality
estimates.

4.2 Good Plans Despite Bad Cardinalities
The query runtimes of plans with different join orders often vary

by many orders of magnitude (cf. Section 6.1). Nevertheless, when
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Figure 7: Slowdown of queries using PostgreSQL estimates
w.r.t. using true cardinalities (different index configurations)

the database has only primary key indexes, as in all in experiments
so far, and once nested loop joins have been disabled and rehashing
has been enabled, the performance of most queries is close to the
one obtained using the true cardinalities. Given the bad quality
of the cardinality estimates, we consider this to be a surprisingly
positive result. It is worthwhile to reflect on why this is the case.

The main reason is that without foreign key indexes, most large
(“fact”) tables need to be scanned using full table scans, which
dampens the effect of different join orders. The join order still
matters, but the results indicate that the cardinality estimates are
usually good enough to rule out all disastrous join order decisions
like joining two large tables using an unselective join predicate.
Another important reason is that in main memory picking an index-
nested-loop join where a hash join would have been faster is never
disastrous. With all data and indexes fully cached, we measured
that the performance advantage of a hash join over an index-nested-
loop join is at most 5⇥ with PostgreSQL and 2⇥ with HyPer. Ob-
viously, when the index must be read from disk, random IO may
result in a much larger factor. Therefore, the main-memory setting
is much more forgiving.

4.3 Complex Access Paths
So far, all query executions were performed on a database with

indexes on primary key attributes only. To see if the query opti-
mization problem becomes harder when there are more indexes,
we additionally indexed all foreign key attributes. Figure 7b shows
the effect of additional foreign key indexes. We see large perfor-
mance differences with 40% of the queries being slower by a factor
of 2! Note that these results do not mean that adding more indexes
decreases performance (although this can occasionally happen). In-
deed overall performance generally increases significantly, but the
more indexes are available the harder the job of the query optimizer
becomes.

4.4 Join-Crossing Correlations
There is consensus in our community that estimation of interme-

diate result cardinalities in the presence of correlated query predi-
cates is a frontier in query optimization research. The JOB work-
load studied in this paper consists of real-world data and its queries
contain many correlated predicates. Our experiments that focus on
single-table subquery cardinality estimation quality (cf. Table 1)
show that systems that keep table samples (HyPer and presumably
DBMS A) can achieve almost perfect estimation results, even for
correlated predicates (inside the same table). As such, the cardinal-
ity estimation research challenge appears to lie in queries where the

correlated predicates involve columns from different tables, con-
nected by joins. These we call “join-crossing correlations”. Such
correlations frequently occur in the IMDB data set, e.g., actors born
in Paris are likely to play in French movies.

Given these join-crossing correlations one could wonder if there
exist complex access paths that allow to exploit these. One exam-
ple relevant here despite its original setting in XQuery processing
is ROX [22]. It studied runtime join order query optimization in
the context of DBLP co-authorship queries that count how many
Authors had published Papers in three particular venues, out of
many. These queries joining the author sets from different venues
clearly have join-crossing correlations, since authors who publish
in VLDB are typically database researchers, likely to also publish in
SIGMOD, but not—say—in Nature.

In the DBLP case, Authorship is a n : m relationship that
links the relation Authors with the relation Papers. The op-
timal query plans in [22] used an index-nested-loop join, look-
ing up each author into Authorship.author (the indexed pri-
mary key) followed by a filter restriction on Paper.venue, which
needs to be looked up with yet another join. This filter on venue
would normally have to be calculated after these two joins. How-
ever, the physical design of [22] stored Authorship partitioned by

Paper.venue.7 This partitioning has startling effects: instead of
one Authorship table and primary key index, one physically has
many, one for each venue partition. This means that by accessing
the right partition, the filter is implicitly enforced (for free), before

the join happens. This specific physical design therefore causes
the optimal plan to be as follows: first join the smallish authorship
set from SIGMOD with the large set for Nature producing almost
no result tuples, making the subsequent nested-loops index lookup
join into VLDB very cheap. If the tables would not have been parti-
tioned, index lookups from all SIGMOD authors into Authorships

would first find all co-authored papers, of which the great majority
is irrelevant because they are about database research, and were not
published in Nature. Without this partitioning, there is no way to
avoid this large intermediate result, and there is no query plan that
comes close to the partitioned case in efficiency: even if cardinality
estimation would be able to predict join-crossing correlations, there
would be no physical way to profit from this knowledge.

The lesson to draw from this example is that the effects of query
optimization are always gated by the available options in terms of
access paths. Having a partitioned index on a join-crossing predi-

cate as in [22] is a non-obvious physical design alternative which
even modifies the schema by bringing in a join-crossing column
(Paper.venue) as partitioning key of a table (Authorship). The
partitioned DBLP set-up is just one example of how one particu-
lar join-crossing correlation can be handled, rather than a generic
solution. Join-crossing correlations remain an open frontier for
database research involving the interplay of physical design, query
execution and query optimization. In our JOB experiments we do
not attempt to chart this mostly unknown space, but rather charac-
terize the impact of (join-crossing) correlations on the current state-
of-the-art of query processing, restricting ourselves to standard PK
and FK indexing.

5. COST MODELS
The cost model guides the selection of plans from the search

space. The cost models of contemporary systems are sophisticated
7In fact, rather than relational table partitioning, there was a sep-
arate XML document per venue, e.g., separate documents for
SIGMOD, VLDB, Nature and a few thousand more venues. Stor-
age in a separate XML document has roughly the same effect on
access paths as partitioned tables.
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} PostgreSQL uses a disk-oriented cost model –
a weighted sum of I/O and CPU costs
◦ No easy way to set the parameters

} Plot predicted costs vs actual costs – a linear 
line is the best outcome here

} Findings:
◦ Default estimates result in fairly poor fit –

predicted and actual costs quite different
◦ Most of the error goes away if the optimizer has 

access to true cardinalities
◦ Tuning the cost model doesn’t really help that 

much
◦ Using a much simpler cost model gives similar 

results
� Just count the number of tuples being processed by 

each operator



Computed estimated costs with true 
cardinalities for 1000 random plans

Slowest or even median query plans 
much worse than optimal (several 
orders of magnitude in many cases)

Prior work from approx. 20 years ago 
that does this in more depth

into available memory (admittedly, the core of PostgreSQL was
shaped decades ago when database servers only had few megabytes
of RAM). This does not eliminate the page access costs entirely
(due to buffer manager overhead), but significantly bridges the gap
between the I/O and CPU processing costs.

Arguably, the most important change that needs to be done in the
cost model for a main-memory workload is to decrease the propor-
tion between these two groups. We have done so by multiplying the
CPU cost parameters by a factor of 50. The results of the workload
run with improved parameters are plotted in the two middle subfig-
ures of Figure 8. Comparing Figure 8b with d, we see that tuning
does indeed improve the correlation between the cost and the run-
time. On the other hand, as is evident from comparing Figure 8c
and d, parameter tuning improvement is still overshadowed by the
difference between the estimated and the true cardinalities. Note
that Figure 8c features a set of outliers for which the optimizer has
accidentally discovered very good plans (runtimes around 1 ms)
without realizing it (hence very high costs). This is another sign of
“oscillation” in query planning caused by cardinality misestimates.

In addition, we measure the prediction error ✏ of the tuned cost
model, as defined in Section 5.2. We observe that tuning improves
the predictive power of the cost model: the median error decreases
from 38% to 30%.

5.4 Are Complex Cost Models Necessary?
As discussed above, the PostgreSQL cost model is quite com-

plex. Presumably, this complexity should reflect various factors
influencing query execution, such as the speed of a disk seek and
read, CPU processing costs, etc. In order to find out whether this
complexity is actually necessary in a main-memory setting, we will
contrast it with a very simple cost function Cmm. This cost func-
tion is tailored for the main-memory setting in that it does not model
I/O costs, but only counts the number of tuples that pass through
each operator during query execution:

Cmm(T ) =

8
>>><

>>>:

⌧ · |R| if T = R _ T = �(R)

|T |+ Cmm(T1) + Cmm(T2) if T = T1 ./
HJ

T2

Cmm(T1)+ if T = T1 ./
INL

T2,

� · |T1| · max( |T1./R|
|T1|

, 1) (T2 = R _ T2 = �(R))

In the formula above R is a base relation, and ⌧  1 is a pa-
rameter that discounts the cost of a table scan in comparison with
joins. The cost function distinguishes between hash ./

HJ and index-
nested loop ./

INL joins: the latter scans T1 and performs index
lookups into an index on R, thus avoiding a full table scan of R.
A special case occurs when there is a selection on the right side of
the index-nested loop join, in which case we take into account the
number of tuple lookups in the base table index and essentially dis-
card the selection from the cost computation (hence the multiplier
max( |T1./R|

|T1|
, 1)). For index-nested loop joins we use the constant

� � 1 to approximate by how much an index lookup is more ex-
pensive than a hash table lookup. Specifically, we set � = 2 and
⌧ = 0.2. As in our previous experiments, we disable nested loop
joins when the inner relation is not an index lookup (i.e., non-index
nested loop joins).

The results of our workload run with Cmm as a cost function are
depicted in Figure 8e and f. We see that even our trivial cost model
is able to fairly accurately predict the query runtime using the true
cardinalities. To quantify this argument, we measure the improve-
ment in the runtime achieved by changing the cost model for true
cardinalities: In terms of the geometric mean over all queries, our
tuned cost model yields 41% faster runtimes than the standard Post-
greSQL model, but even a simple Cmm makes queries 34% faster

JOB 6a JOB 13a JOB 16d JOB 17b JOB 25c

no indexes
PK indexes

PK + FK indexes

1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4
cost relative to optimal FK plan  [log scale]

Figure 9: Cost distributions for 5 queries and different index
configurations. The vertical green lines represent the cost of
the optimal plan

than the built-in cost function. This improvement is not insignifi-
cant, but on the other hand, it is dwarfed by improvement in query
runtime observed when we replace estimated cardinalities with the
real ones (cf. Figure 6b). This allows us to reiterate our main mes-
sage that cardinality estimation is much more crucial than the cost
model.

6. PLAN SPACE
Besides cardinality estimation and the cost model, the final im-

portant query optimization component is a plan enumeration algo-
rithm that explores the space of semantically equivalent join orders.
Many different algorithms, both exhaustive (e.g., [29, 12]) as well
as heuristic (e.g, [37, 32]) have been proposed. These algorithms
consider a different number of candidate solutions (that constitute
the search space) when picking the best plan. In this section we
investigate how large the search space needs to be in order to find a
good plan.

The experiments of this section use a standalone query optimizer,
which implements Dynamic Programming (DP) and a number of
heuristic join enumeration algorithms. Our optimizer allows the in-
jection of arbitrary cardinality estimates. In order to fully explore
the search space, we do not actually execute the query plans pro-
duced by the optimizer in this section, as that would be infeasible
due to the number of joins our queries have. Instead, we first run
the query optimizer using the estimates as input. Then, we recom-
pute the cost of the resulting plan with the true cardinalities, giving
us a very good approximation of the runtime the plan would have
in reality. We use the in-memory cost model from Section 5.4 and
assume that it perfectly predicts the query runtime, which, for our
purposes, is a reasonable assumption since the errors of the cost
model are negligible in comparison the cardinality errors. This ap-
proach allows us to compare a large number of plans without exe-
cuting all of them.

6.1 How Important Is the Join Order?
We use the Quickpick [40] algorithm to visualize the costs of

different join orders. Quickpick is a simple, randomized algorithm
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} Bushy trees important to consider

} Exhaustive algorithms (DP or top-down) needed

PK indexes PK + FK indexes
PostgreSQL estimates true cardinalities PostgreSQL estimates true cardinalities
median 95% max median 95% max median 95% max median 95% max

Dynamic Programming 1.03 1.85 4.79 1.00 1.00 1.00 1.66 169 186367 1.00 1.00 1.00
Quickpick-1000 1.05 2.19 7.29 1.00 1.07 1.14 2.52 365 186367 1.02 4.72 32.3
Greedy Operator Ordering 1.19 2.29 2.36 1.19 1.64 1.97 2.35 169 186367 1.20 5.77 21.0

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy
Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

certain correlations [19] to subsequently create multi-column his-
tograms [34] for these.

However, many of our JOB queries contain join-crossing cor-
relations, which single-table samples do not capture, and where
the current generation of systems still apply the independence as-
sumption. There is a body of existing research work to better esti-
mate result sizes of queries with join-crossing correlations, mainly
based on join samples [17], possibly enhanced against skew (end-
biased sampling [10], correlated samples [43]), using sketches [35]
or graphical models [39]. This work confirms that without ad-
dressing join-crossing correlations, cardinality estimates deterio-
rate strongly with more joins [21], leading to both the over- and
underestimation of result sizes (mostly the latter), so it would be
positive if some of these techniques would be adopted by systems.

Another way of learning about join-crossing correlations is by
exploiting query feedback, as in the LEO project [38], though there
it was noted that deriving cardinality estimations based on a mix of
exact knowledge and lack of knowledge needs a sound mathemat-
ical underpinning. For this, maximum entropy (MaxEnt [28, 23])
was defined, though the costs for applying maximum entropy are
high and have prevented its use in systems so far. We found that
the performance impact of estimation mistakes heavily depends on
the physical database design; in our experiments the largest impact
is in situations with the richest designs. From the ROX [22] dis-
cussion in Section 4.4 one might conjecture that to truly unlock
the potential of correctly predicting cardinalities for join-crossing
correlations, we also need new physical designs and access paths.

Another finding in this paper is that the adverse effects of cardi-
nality misestimations can be strongly reduced if systems would be
“hedging their bets” and not only choose the plan with the cheapest
expected cost, but take the probabilistic distribution of the estimate
into account, to avoid plans that are marginally faster than others
but bear a high risk of strong underestimation. There has been work
both on doing this for cardinality estimates purely [30], as well as
combining these with a cost model (cost distributions [2]).

The problem with fixed hash table sizes for PostgreSQL illus-
trates that cost misestimation can often be mitigated by making the
runtime behavior of the query engine more “performance robust”.
This links to a body of work to make systems adaptive to estima-
tion mistakes, e.g., dynamically switch sides in a join, or change
between hashing and sorting (GJoin [15]), switch between sequen-
tial scan and index lookup (smooth scan [4]), adaptively reordering
join pipelines during query execution [24], or change aggregation
strategies at runtime depending on the actual number of group-by
values [31] or partition-by values [3].

A radical approach is to move query optimization to runtime,
when actual value-distributions become available [33, 9]. However,
runtime techniques typically restrict the plan search space to limit
runtime plan exploration cost, and sometimes come with functional
restrictions such as to only consider (sampling through) operators
which have pre-created indexed access paths (e.g., ROX [22]).

Our experiments with the second query optimizer component be-
sides cardinality estimation, namely the cost model, suggest that
tuning cost models provides less benefits than improving cardi-
nality estimates, and in a main-memory setting even an extremely
simple cost-model can produce satisfactory results. This conclu-
sion resonates with some of the findings in [42] which sets out to
improve cost models but shows major improvements by refining
cardinality estimates with additional sampling.

For testing the final query optimizer component, plan enumera-
tion, we borrowed in our methodology from the Quickpick method
used in randomized query optimization [40] to characterize and vi-
sualize the search space. Another well-known search space visu-
alization method is Picasso [18], which visualizes query plans as
areas in a space where query parameters are the dimensions. Inter-
estingly, [40] claims in its characterization of the search space that
good query plans are easily found, but our tests indicate that the
richer the physical design and access path choices, the rarer good
query plans become.

Query optimization is a core database research topic with a huge
body of related work, that cannot be fully represented in this sec-
tion. After decades of work still having this problem far from re-
solved [26], some have even questioned it and argued for the need
of optimizer application hints [6]. This paper introduces the Join
Order Benchmark based on the highly correlated IMDB real-world
data set and a methodology for measuring the accuracy of cardinal-
ity estimation. Its integration in systems proposed for testing and
evaluating the quality of query optimizers [41, 16, 14, 27] is hoped
to spur further innovation in this important topic.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have provided quantitative evidence for conven-

tional wisdom that has been accumulated in three decades of prac-
tical experience with query optimizers. We have shown that query
optimization is essential for efficient query processing and that ex-
haustive enumeration algorithms find better plans than heuristics.
We have also shown that relational database systems produce large
estimation errors that quickly grow as the number of joins increases,
and that these errors are usually the reason for bad plans. In con-
trast to cardinality estimation, the contribution of the cost model to
the overall query performance is limited.

Going forward, we see two main routes for improving the plan
quality in heavily-indexed settings. First, database systems can in-
corporate more advanced estimation algorithms that have been pro-
posed in the literature. The second route would be to increase the
interaction between the runtime and the query optimizer. We leave
the evaluation of both approaches for future work.

We encourage the community to use the Join Order Benchmark
as a test bed for further experiments, for example into the risk/re-
ward tradeoffs of complex access paths. Furthermore, it would be
interesting to investigate disk-resident and distributed databases,
which provide different challenges than our main-memory setting.
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that picks joins edges at random until all joined relations are fully
connected. Each run produces a correct, but usually slow, query
plan. By running the algorithm 10,000 times per query and com-
puting the costs of the resulting plans, we obtain an approximate
distribution for the costs of random plans. Figure 9 shows density
plots for 5 representative example queries and for three physical
database designs: no indexes, primary key indexes only, and pri-
mary+foreign key indexes. The costs are normalized by the opti-
mal plan (with foreign key indexes), which we obtained by running
dynamic programming and the true cardinalities.

The graphs, which use a logarithmic scale on the horizontal cost
axis, clearly illustrate the importance of the join ordering problem:
The slowest or even median cost is generally multiple orders of
magnitude more expensive than the cheapest plan. The shapes of
the distributions are quite diverse. For some queries, there are many
good plans (e.g., 25c), for others few (e.g., 16d). The distribution
are sometimes wide (e.g., 16d) and sometimes narrow (e.g., 25c).
The plots for the “no indexes” and the “PK indexes” configurations
are very similar implying that for our workload primary key in-
dexes alone do not improve performance very much, since we do
not have selections on primary key columns. In many cases the
“PK+FK indexes” distributions have additional small peaks on the
left side of the plot, which means that the optimal plan in this index
configuration is much faster than in the other configurations.

We also analyzed the entire workload to confirm these visual ob-
servations: The percentage of plans that are at most 1.5⇥ more
expensive than the optimal plan is 44% without indexes, 39% with
primary key indexes, but only 4% with foreign key indexes. The
average fraction between the worst and the best plan, i.e., the width
of the distribution, is 101⇥ without indexes, 115⇥ with primary
key indexes, and 48120⇥ with foreign key indexes. These sum-
mary statistics highlight the dramatically different search spaces of
the three index configurations.

6.2 Are Bushy Trees Necessary?
Most join ordering algorithms do not enumerate all possible tree

shapes. Virtually all optimizers ignore join orders with cross prod-
ucts, which results in a dramatically reduced optimization time with
only negligible query performance impact. Oracle goes even fur-
ther by not considering bushy join trees [1]. In order to quantify
the effect of restricting the search space on query performance, we
modified our DP algorithm to only enumerate left-deep, right-deep,
or zig-zag trees.

Aside from the obvious tree shape restriction, each of these
classes implies constraints on the join method selection. We fol-
low the definition by Garcia-Molina et al.’s textbook, which is re-
verse from the one in Ramakrishnan and Gehrke’s book: Using
hash joins, right-deep trees are executed by first creating hash ta-
bles out of each relation except one before probing in all of these
hash tables in a pipelined fashion, whereas in left-deep trees, a new
hash table is built from the result of each join. In zig-zag trees,
which are a super set of all left- and right-deep trees, each join
operator must have at least one base relation as input. For index-
nested loop joins we additionally employ the following convention:
the left child of a join is a source of tuples that are looked up in the
index on the right child, which must be a base table.

Using the true cardinalities, we compute the cost of the optimal
plan for each of the three restricted tree shapes. We divide these
costs by the optimal tree (which may have any shape, including
“bushy”) thereby measuring how much performance is lost by re-
stricting the search space. The results in Table 2 show that zig-zag
trees offer decent performance in most cases, with the worst case
being 2.54⇥ more expensive than the best bushy plan. Left-deep

PK indexes PK + FK indexes
median 95% max median 95% max

zig-zag 1.00 1.06 1.33 1.00 1.60 2.54
left-deep 1.00 1.14 1.63 1.06 2.49 4.50
right-deep 1.87 4.97 6.80 47.2 30931 738349

Table 2: Slowdown for restricted tree shapes in comparison to
the optimal plan (true cardinalities)

trees are worse than zig-zag trees, as expected, but still result in
reasonable performance. Right-deep trees, on the other hand, per-
form much worse than the other tree shapes and thus should not be
used exclusively. The bad performance of right-deep trees is caused
by the large intermediate hash tables that need to be created from
each base relation and the fact that only the bottom-most join can
be done via index lookup.

6.3 Are Heuristics Good Enough?
So far in this paper, we have used the dynamic programming

algorithm, which computes the optimal join order. However, given
the bad quality of the cardinality estimates, one may reasonably ask
whether an exhaustive algorithm is even necessary. We therefore
compare dynamic programming with a randomized and a greedy
heuristics.

The “Quickpick-1000” heuristics is a randomized algorithm that
chooses the cheapest (based on the estimated cardinalities) 1000
random plans. Among all greedy heuristics, we pick Greedy Op-
erator Ordering (GOO) since it was shown to be superior to other
deterministic approximate algorithms [11]. GOO maintains a set
of join trees, each of which initially consists of one base relation.
The algorithm then combines the pair of join trees with the lowest
cost to a single join tree. Both Quickpick-1000 and GOO can pro-
duce bushy plans, but obviously only explore parts of the search
space. All algorithms in this experiment internally use the Post-
greSQL cardinality estimates to compute a query plan, for which
we compute the “true” cost using the true cardinalities.

Table 3 shows that it is worthwhile to fully examine the search
space using dynamic programming despite cardinality misestima-
tion. However, the errors introduced by estimation errors cause
larger performance losses than the heuristics. In contrast to some
other heuristics (e.g., [5]), GOO and Quickpick-1000 are not re-
ally aware of indexes. Therefore, GOO and Quickpick-1000 work
better when few indexes are available, which is also the case when
there are more good plans.

To summarize, our results indicate that enumerating all bushy
trees exhaustively offers moderate but not insignificant performance
benefits in comparison with algorithms that enumerate only a sub
set of the search space. The performance potential from good car-
dinality estimates is certainly much larger. However, given the ex-
istence of exhaustive enumeration algorithms that can find the opti-
mal solution for queries with dozens of relations very quickly (e.g.,
[29, 12]), there are few cases where resorting to heuristics or dis-
abling bushy trees should be necessary.

7. RELATED WORK
Our cardinality estimation experiments show that systems which

keep table samples for cardinality estimation predict single-table
result sizes considerably better than those which apply the inde-
pendence assumption and use single-column histograms [20]. We
think systems should be adopting table samples as a simple and ro-
bust technique, rather than earlier suggestions to explicitly detect
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} Single-table (e.g., R.A and R.B are correlated, throwing off estimation of 
R.A = 10 and R.B = 20)
◦ Handled by the “sampling” techniques 
◦ Build multi-dimensional histograms (don’t really work well)
◦ Identify “soft” functional dependencies (i.e., very highly correlated columns)

� e.g., “car make” and “car model” are highly correlated
� Queries like: Make = Honda and Model = Accord are underestimated
� But not a functional dependency: Model à Make is false 

} Join-crossing Correlations
select * 
from actors JOIN movies
where actors.location = ‘Paris’ and movies.language = ‘French’

◦ Unclear how one can benefit from capturing this correlation (even if one could)
◦ Need a new operator or access method



} Query evaluation techniques for large databases

} Skew avoidance strategies

} Query compilation

} Vectorization

} Query Optimization: Overview

} How good are the query optimizers, really?

} Reordering for Outerjoins



} Preserve the tuples even when there are no matches

} Many common use cases
◦ Database merging

◦ Hierarchical views (e.g., in document stores)

◦ Nested queries

◦ …

} However, unclear how to reorder/commute joins and outerjoins
in general



} Consider:

} Possibly only a few tuples in CUSTOMERS_NY 
◦ So better to do: customers_NY LOJ orders first

} But no way to combine with “items” after that:
◦ (customers_ny LOJ orders) JOIN items: will throw away customers without 

orders (the join attribute will be NULL)

◦ (customers_ny LOJ orders) LOJ items: will keep orders with no items

} Basically need a new join operator with desired behavior



} Outerunion: Union of two relations that don’t have the same schema, done 
by adding extra columns with NULLs as needed

} Outerjoins using Outerunions:

} Example:



} Some basic identities
◦ Note: can’t push down the selection on the RHS here

} A predicate “rejects” NULLs on attributes A if it evaluates to 
FALSE or UNKNOWN if all attributes in A are NULL

} Can replace outerjoins with joins if a subsequent predicates 
rejects NULLs



} The top join condition (pAB) will not evaluate to true for any tuple with all B 
attributes = NULL
◦ This assume pAB is on an attribute coming from B alone





- A new binary join operator that “preserves” a subset of the attributes
- Not much harder to implement than a standard outerjoin, but may need 
additional duplicate elimination step



Two new equivalences

Helps solve the original problem



} For a class of “simple” queries, the set of equivalences is 
“complete”
◦ i.e., you can get to any possible and correct reordering by repeated 

application of the rules

} Bunch of caveats though…
◦ So in practice, possible that we miss out on some optimization 

opportunities



A B C D E

1 .. .. .. ..

2 .. .. .. ..

3 .. .. .. ..

8 .. .. .. ..

8 .. .. .. ..

9 .. .. .. ..

A F G H I

2 .. .. .. ..

4 .. .. .. ..

8 .. .. .. ..

9 .. .. .. ..

9 .. .. .. ..

9 .. .. .. ..

Site A Site B

R = 10M Tuples S = 10M Tuples

But only a small number of join
results

Say: 1M tuples from R match with 
1M tuples of S



A B C D E

1 .. .. .. ..

2 .. .. .. ..

3 .. .. .. ..

8 .. .. .. ..

8 .. .. .. ..

9 .. .. .. ..

A F G H I

2 .. .. .. ..

4 .. .. .. ..

8 .. .. .. ..

9 .. .. .. ..

9 .. .. .. ..

9 .. .. .. ..

Site A Site B

R = 10M Tuples S = 10M Tuples

Option 1: Send R to Site B
Comm Cost = 50M

Option 2: Send S to Site A
Comm Cost = 50M

Option 3: 
(1) Send R.A to Site B
(2) Send matching tuples to Site A

Comm Cost = 10M + 1M*5
= 15M



} Query evaluation techniques for large databases

} Skew avoidance strategies

} Query compilation

} Vectorization

} Query Optimization: Overview

} How good are the query optimizers, really?

} Reordering for Outerjoins

} Query Rewriting
◦ Starburst

◦ Unnesting arbitrary queries

◦ APPLY (SQL Server)



} Many queries are written in a way that forces a procedural execution
◦ Use of WITH clause or Views to simplify

◦ Procedural code easier for users to write

◦ Modern frameworks/query languages often not that declarative

◦ Automated translation of other DSLs into SQL

◦ Program synthesis?

} Harder for optimizers to deal with
◦ Join order optimization usually goes block-by-block è significant benefits 

in reducing the number of blocks

◦ Redundant DISTINCTs etc., lead to unnecessary work



} Merging of select blocks
◦ Different “blocks” get created because of: 

� WITH, Views

� Table expressions in FROM (e.g., select * from R, (select S.A, max(S.B) from S group by S.A) X)…)

� Table expressions in WHERE/SELECT/HAVING etc. (e.g., where R.A in (select S.A from S))

� Scalar expressions in WHERE/SELECT/HAVING etc. (e.g., where R.A = (select max(S.A) from S)))

} Correlations Across Blocks
◦ When an ”lower” block refers to an “upper” block

◦ Forces a “dependent” ”nested-loops” execution

� For every tuple in the outer block, the inner block is executed



Correlated



R(A, B), and S(B, C)

R Natural Join S

ht = dict()
for r in R:

if r.B in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
for r in ht.get(s.B, []):

yield (s, r)

S Semi Join R (build on R)

ht = set()
for r in R:

ht.add(r.B)
for s in S:

if s.B in ht:
yield s

R Semi Join S (build on R)

ht = dict()
for r in R:

if r.B not in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
for r in ht[s.B]:

yield r
ht[s.B] = [] -- avoid 

duplicates

Most other join operators built as 
minor modifications (special cases) 
of this basic code



R(A, B), and S(B, C)

R Natural Join S

ht = dict()
for r in R:

if r.B in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
for r in ht.get(s.B, []):

yield (s, r)

S Anti Join R

ht = set()
for r in R:

ht.add(r.B)
for s in S:

if s.B not in ht:
yield s

R Anti Join S

ht = dict()
for r in R:

if r.B not in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
ht[s.B] = [] --- remove r 

for r in ht.values():
yield r



R(A, B), and S(B, C)

R Natural Join S

ht = dict()
for r in R:

if r.B in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
for r in ht.get(s.B, []):

yield (s, r)

R Full Outer Join S

ht = dict()
found_set = set()
for r in R:

if r.B in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
if s.B in ht:

found_set.add(s.B)
for r in ht[s.B]:

yield (s, r)
else:

yield (NULLS, s)

for x in ht:
if x not in found_set:

for r in ht[x]:
yield(r, NULLS)    



} Query evaluation techniques for large databases

} Skew avoidance strategies

} Query compilation

} Vectorization

} Query Optimization: Overview

} How good are the query optimizers, really?

} Reordering for Outerjoins

} Query Rewriting
◦ Starburst

◦ Unnesting  (de-correlating) arbitrary queries

◦ APPLY (SQL Server)



} Goals:
◦ Make queries more “declarative” by removing procedural parts

◦ Perform natural heuristics like predicate pushdown
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Abstract
This paper describes the Query Rewrite facility of the Starburst
extensible database system, a novel phase of query optimization.
We present a suite of rewrite rules used in Starburst to transform
queries into equivalent queries for faster execution, and also describe
the production rule engine which is used by Starburst to choose
and execute these rules. Examples we provided demonstrating that
these Query Rewrite transformations lead to query execution time
improvements of orders of magnitude, suggesting that Query Rewrite
in general — and these rewrite rules in particular — are an essential
step in query optimization for modern database systems.

1 Introduction
In traditional database systems, query optimization typically con-
sists of a single phase of processing in which access methods, join
orders and join methods are chosen to provide an efficient plan for
executing a user’s declarative query. We refer to this phase as plan
optimization. In this paper we present a distinct phase of query
optimization, Query Rewrite, which has been impletnented in the
Starburst DBMS [HCL+ 90] to precede plan optimization in the pro-
cessing of a query.

The goal of Query Rewrite is twofold:

1.

2.

Make queries as declarative as possible: In database languages
such as SQL, it is often possible for a poorly expressed query,
though ostensibly declarative, to force typical plan optimizers
into choosing sub-optimal execution plans. A major goal of
Query Rewrite is the transformation of such “procedural” queries
into equivalent but more declarative queries.

Perform natural heuristics: Certain heuristics can be performed
in Query Rewrite and are generally accepted in the literature as
being valuable. A typical example is that of “predicate push-
down”, in which predicates are applied as early as possible in the
query (i.e. they are “pushed” from their original positions into
table accesses, subqueries, views, etc.) Such rules can signifi-
cantly improve query execution time, and while a few of these
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heuristics are done in typical plan optitnizers, they often can be
applied in a more general way during Query Rewrite.

Although it is accepted doctrine that query languages should be
declarative, we shall see in our examples that alternative but equiv-
alent expressions of a query can have widely varying performance,
often differing by orders of magnitude. It is therefore our conviction
that Query Rewrite is an essential step in query optimization, since it
further ensures that the expression of the query will be insignificant
with respect to its performance.

1.1 Queries with Path Expressions
The goals of Query Rewrite explained above are even more signifi-
cant in Object Oriented applications, which typically generate com-
plicated queries with “path expressions” connecting various collec-
tions of objects [BTA90, LLOW91, LLPS91]. In such applications,
both the complexity of the logic and the volume of the data are far
greater than in traditional DBMS applications ~SS88]. As a resul~
query optimization becomes increasingly important.

The following is an example of a query involving ath expres-
rsions, using the Object SQL syntax defined in [BTA90]. This query

is a small variation of an example presented in [BTA90]. The ex-
ample database contains records of patients. Medical records are set
afti”bufes of patients. All accesses to data are via methods. Given
a patient’s record, the medical records are returned by the function
getmedicaJ-records. The example retrieves male patients who have
been diagnosed with malaria or smallpox prior to ‘10/10/89’. The
FROM clause enumerates the patients and the WHERE clause re-
stricts the patients to males and checks for the existence of a malaria
or smallpox diagnosis prior to a given date.

SELECT DISTINCT P
FROM Patient p IN Patient_Set
WHERE p.sex == ‘male’ &&

EXISTS ( SELECT r
FROM Medicrd.xecord r IN p.getmedical-recordo
WHERE r.get_dateo < ‘10/10/89’ &&

( r.get-diagnosiso == ‘Malaria’ II
r.get-diagnosiso == ‘Smallpox’ );

Queries such as this essentially involve path expressions in which,
given a record, the related information is obtained through a path
(e.g., getting the medical records of a patient). Queries involving
path expressions are very common in complex applications such as
CAD/CAM. In general, many path expressions may be involved in
a query, and each may have a length of more than one. Finding
an efficient execution plan for such path expressions is a problem
very similar to that of optimizing (nested) SQL subquenes. The
above query is commonly executed by enumerating the male patients,

*This is a proposal for a standard 00 query
implemented by some commercial 00DBMSS

language, and is
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A query with a “path expression”

Option 1:
- For each male patient

- Go through their records and check if any 
matches

Basically a “nested-loops join”
Highly inefficient if very few matching records

Option 2:
Better to find the matching records first, and then look 
for patients
Need to convert to a join first
select distinct p
from patient p in patient_set, record r in record_set
where [[ r conditions ]] and p.sex = ‘male’ and [[ join 
conditions ]]



} Internal representation – goal is to have as few “select boxes” as possible

} Most optimizers today use “operator tree” representations
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q4, the predicate represented by the edge between q2 and q4 is true.
In Box 3, ql and q2 participate in joins, and their columns are used

in the output tuples. These quantifiers have type F, since they come
from the query’s FROIkfclause. Quantifier 4 has type A, representing
a universal (ALL) quantifier. SQL’s predicates EXISTS, IN, ANY
and SOME are true if at least one tuple of the subquery satisfies
the predicate. Hence, all of these predicates are existential, and
the quantifiers associated with such subqueries have type E. Each
quantifier is labeled with the columns that it needs from the table it
ranges over.

Box 4 represents the subquery. It contains an F quantifier q3 over

/QuANT’F’ER’hFHthe quotations table, and ha; a predicate that refers-to q2 and q3.
The body of every box has an attribute called distinct which

has a value of ENFORCE, PRESERVE or PERMIT. ENFORCE
: means that the operation must eliminate duplicates in order to enforce

SELECT: headOdi5tinct = TRUE. pRESERvE ~ean5 that the operation can
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SELECT DISTINCT ql.

.................... ...
Example QGM graph

partno, ql .descr, q2.suppno
FROM inventory ql, quotations q2
WHERE ql .partno = qz.partno AND ql .descr=’engine’

AND q2.price ~ ALL
( SELECT q3.price FROM quotations q3
WHERE q2.partno=q3.partno);

This query gives information about suppliers and parts for which
the supplier price is less than that of all other suppliers. Figure 1
shows the QGMfor this query. The graph contains four boxes. Boxes
1 and 2 are associated with base tables invenfory and quotations. Box
3 is a SELECT box associated with the main part of the query, and
Box 4 is a SELECT box associated with the subquery. Each box has
a head and a body. The head describes the output table produced by
the box, and the body specifies the operation required to compute
the output table. Base tables can be considered to have empty or
non-existent bodies.

Let’s study Box 3. The head specifies output columns partno,
descr and suppno, as specified in the select list of the query. The
specification of these columns includes column names, types, smd
output ordering information. The head has a Boolerm attribute called
distinct which indicates whether the associated table contains only
distinct tuples (head.distinct = TRUE), or whether it contains dupli-
cates (head.distinct = FALSE).

The body of a box contains a graph. The vertices of this graph
(dark circles in our diagrams) represent quantified tuple variables,
called quantifiers. In Box 3, we have quantifiers gl, q2, and q4.
Quantifiers ql and q2 range over the base tables inventory and quo-
tations respectively, and correspond to the table references in the
FROM clause of the SQL query. Note that nodes ql and q2 are
connected via an inter-box edge to the head of the inventory and
quotations boxes. The edge between ql and q2 specifies the join
predicate. The (loop) edge attached to ql is the local predicate on
ql. In fac~ each inter-quantifier edge represents a conjunct of the
WHERE clause in the query block — the conjuncts being repre-
sented in the diagram by the Iabelled rectangle along the edge. Such
edges are also referred to as Boolean factors [SAC+79]. Quantifier
3 is a universal quantifier, associated with the ALL subquery in the
WHERE clause. This represents that for all tuples associated with

preserve the number of duplicates it generates. This cou~d be because
head.distinct = FALSE, or because head.distinct = TRUE and no
duplicates could exist in the output of the operation even without
duplicate elimination. PERMIT means that the operation is permitted
to eliminate (or generate) duplicates arbitrarily. For example, the
dishirct attribute of Box 4 can have the value PERMIT because its
output is used in a universal quantifier (q4 in Box 3), and universal
quantifiers are insensitive to duplicate tuples. This will be covered
in more detail in Section 3.

Like each box body, each quantifier also has an attribute called
distinct which has a value of ENFORCE, PRESERVE or PERMIT.
ENFORCE means that the quantifier requires the table over which it
ranges to enforce duplicate elimination. PRESERVE means that the
quantifier requires that the exact number of duplicates in the lower
table be preserved. PERMIT means that the table below may have an
arbitrary number of duplicates. Existential and universal quantifiers
can always have distinct = PERMIT, since they are insensitive to
duplicates.

In the body, each output column may have an associated expres-
sion corresponding to expressions allowed in the select list of the
query. In Figure 1, all of these expressions are simple identity func-
tions over the referenced quantifier columns.

SQL2 has table expressions, which are similar to view definitions,
and can be defined anywhere a table can be used. In Starburs4
table expressions and views, just like queries and subqueries, have a
QGM, with one or many boxes, and become part of the QGM graph
of queries referring to them.

The output of a box can be used multiple times (e.g., a view
may be used multiple times in the same query), creating common
subexpressions. Recursive queries create cycles in QGM. As the
size of the graph grows, the cost of optimization also grows. The
number of QGM boxes in a query typically ranges from 2 to 10. For
much more complex queries, such as those produced by XNF, this
number oflen ranges from 10 to 100.

2.1 Environment for Performance Measurements

It is not uncommon for queries to take hours or even days to com-
plete. Query Rewrite can improve performance by several orders of
‘magnitude ——in many cases converting an over-night query to an
interactive one. We will be demonstrating this fact during the course
of the discussion by measuring the performance effect of our rewrite
rules on vurious queries. In this section we present the environment
used for these measurements.

A comprehensive performance evaluation requires a definition of
a benchmurk database and a set of queries for a particulm work-
load. We focus on a complex query workload (involving subqueries,
views, etc), rather than a transaction workload, where queries are
relatively simple. There is no accepted standard complex query
workload, although several have been proposed ([TOB89, O’N89]).
To measure the performance effect of the rewrite rules, we employ a
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output ordering information. The head has a Boolerm attribute called
distinct which indicates whether the associated table contains only
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(dark circles in our diagrams) represent quantified tuple variables,
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FROM clause of the SQL query. Note that nodes ql and q2 are
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WHERE clause. This represents that for all tuples associated with

preserve the number of duplicates it generates. This cou~d be because
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duplicates could exist in the output of the operation even without
duplicate elimination. PERMIT means that the operation is permitted
to eliminate (or generate) duplicates arbitrarily. For example, the
dishirct attribute of Box 4 can have the value PERMIT because its
output is used in a universal quantifier (q4 in Box 3), and universal
quantifiers are insensitive to duplicate tuples. This will be covered
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ENFORCE means that the quantifier requires the table over which it
ranges to enforce duplicate elimination. PRESERVE means that the
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table be preserved. PERMIT means that the table below may have an
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In the body, each output column may have an associated expres-
sion corresponding to expressions allowed in the select list of the
query. In Figure 1, all of these expressions are simple identity func-
tions over the referenced quantifier columns.

SQL2 has table expressions, which are similar to view definitions,
and can be defined anywhere a table can be used. In Starburs4
table expressions and views, just like queries and subqueries, have a
QGM, with one or many boxes, and become part of the QGM graph
of queries referring to them.

The output of a box can be used multiple times (e.g., a view
may be used multiple times in the same query), creating common
subexpressions. Recursive queries create cycles in QGM. As the
size of the graph grows, the cost of optimization also grows. The
number of QGM boxes in a query typically ranges from 2 to 10. For
much more complex queries, such as those produced by XNF, this
number oflen ranges from 10 to 100.

2.1 Environment for Performance Measurements

It is not uncommon for queries to take hours or even days to com-
plete. Query Rewrite can improve performance by several orders of
‘magnitude ——in many cases converting an over-night query to an
interactive one. We will be demonstrating this fact during the course
of the discussion by measuring the performance effect of our rewrite
rules on vurious queries. In this section we present the environment
used for these measurements.

A comprehensive performance evaluation requires a definition of
a benchmurk database and a set of queries for a particulm work-
load. We focus on a complex query workload (involving subqueries,
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relatively simple. There is no accepted standard complex query
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Correlation

Need to be careful with “distincts”
In some cases, the above operator doesn’t care
- Can use that for optimization



} Take two select boxes connected by “F” quantifier, and merge them
◦ Typical example: A “view” or “select expression” in FROM

} Need to be careful with DISTINCTS
◦ upper.body.distinct = PERMIT è don’t care

◦ upper.head.distinct = TRUE and upper.body.distinct = ENFORCE è upper box is required to eliminate 
duplicates, so we are okay

◦ Other cases a bit more complicated

◦ Can’t apply the rule if:

� upper.head.distinct = FALSE, upper.body.distinct = PRESERVE, and lower.body.distinct = ENFORCE: No easy way to 
reconcile the DISTINCT requirements for the lower and the upper box after merge

� Need to apply some of the other rules before we can use SELMERGE

into one box. The benefit of this transformation is that it makes more
join orders possible; in the resulting single SELECT box the plan
optimizer can choose as a join order any permutation of the tables
under F quantifiers, whereas in the original query the tables refer-
enced in the table expression (lower box) could not be interleaved
with those of the box above. Note that if we can apply this rule to all
boxes in a que~, we end up with a single SELECT box, so this rule
leads directly to the realization of our Rewrite Philosophy. In order
to exploit the utility of this rule, the rest of the rules in this section
will attempt to make the condition of this rule satisfied in as many
situations as possible.3

The issue of duplicates forces us to introduce some complexity
to ensure the rule’s correctness. Ignoring duplicates for a momen~
it should be clear why this rule works: it follows directly from the
commutativity of joins and predicate applications. Since joins and
predicate applications are commutative, we can interleave those of
the lower and upper boxes, which is equivalent to saying that we can
merge the two. This argument applies directly to the case in which
neither the upper nor the lower box removes duplicates.

Some analysis is required to see that this rule handles duplicates
correctly. We break down the cases for duplicates and argue the
correctness of each case:

●

●

b

upper. head. distinct = TRUE This can happen in one of two
ways:

- If upper. body. distinct= ENFORCE, then any duplicates pro-
ducedby the lower box in the original query will be removed
by the upper box, and thus no duplicates are lost or intro-
duced by the merge.

- If upper. body. distinct = PRESERVE, then all the F quan-
tifiers in the upper box produce sets without duplicates.
If lower body. distinct = PRESERVE then we can simply
merge the lower box into the upper box, without any effect
on duplicates. If lower. body. disdrrct = ENFORCE then we
must set upper. body. distinct to ENFORCE to ensure that
no duplicates will be produced after merge occurs. Note
that we cannot have lower. body. disdrrct = PERMIT — if
we did, then the lower box could produce as many dupli-
cates as it found convenien~ meaning that we could not
have upped]ead.distitrct = TRUE and upper. body, distinct =
PRESERVE, a contradiction.

uppenbody.distinct = PERM~ In this case we may ignore the
issue of duplicates by definition.

Jower.body.disdnct != ENFORCE In this remaining case,
the previous two conditions must be false, i.e. we know
that upperhead.distinct = FfiSE and uppe~body.distinct =
PRESERVE. As a result we cannot merge the boxes if
lowe~body.distinct = ENFORCE, since we would be unable in
a single box to remove the duplicates from the quantifiers of the
lower box, and preserve those of the remaining quantifiers of the
upper box. However, if lowe~ body. distinct != ENFORCE we
need not worry about this issue, and thus can merge.

Note that the only cases in which we cannot apply SELMERGE
to two SELECT boxes connected by F quantifiers are when the
lower box has multiple quantifiers ranging over i~ or when up-
per.head.distincf = FUSE, upper. body. distinct = PRESERVE and
Jower.body.distinct = ENFORCE. We shall see that these cases are
handled by the BOXCOPY and ADDKEYS rules respectively, guar-
anteeing that SELMERGE will eventually get to be executed.

We have chosen a relatively simple query to measure the effect
of the above rule in the performance environment explained in Sec-
tion 2. In practice, queries are typically more complicated, and the

3As noted in [HP88], the importance of triggering this rule is
emphasized when we remember that early relational systems such as
System R supported only mergable views.

Query CPU Time Elapsed time

Before Rewrite 20 min 34.51 sec 24 min 19.80 sec
After Rewrite O min 1.10 sec Omin 7.20 sec

Table 3: Example 1, Before and After Rewrite

if ( in a SELECT box
either quantifier-nodup-condition
or one-tuple-condition
holds for all F quantifiers)

{ head.distinct = TRUE;
body.distinct = PRESERVE;}

Table 4: Rule 2 — DISTPU

merge rule only becomes applicable after many of the rules enu-
merated below are applied. Although this example is simple, many
commercial DBMSS miss this optimization.

Consider a view which gives the item number and vendors for
an item which vendors have supplied since the year 85. This view
is used in a query which gives information about certain items and
their vendors.

Example 1.
CREATE VIEW itpv AS
( SELECT DISTINCT itp.itemn, pur.vendn

FROM itp, pur
WHERE itp.ponum = pur.ponum AND pur.odate >’85 ‘);

SELECT itm.itmn, itpv.vendn FROM itm, itpv
WHERE itm.itemn = itpv.itemn

AND itm.itemn > ‘O1‘ AND itm.itemn < ‘20’;

The rewrite logic first recognizes that the result of the query is
DISTINCT by applying the DISTPU rule explained below. Then the
merge rule is applied. The resulting query is:

SELECT DISTINCT itm.itmn, pur.vendn
FROM itm, itp, pur
WHERE itp.ponum = pur.ponum AND itrn.itemn = itp.itemn

AND pur.odate >’85’
AND itm.itemn ~ ’01’ AND itm.itemn < ‘20’;

As a result of merging the view with the query, the plan optimizer
can use an index to access the tables within the view, and therefore it
chooses a plan which exploits this fact while doing a join on behalf
of the query. The results of executing this query with and without
rewrite are shown in Table 3. After applying the rewrite rule, we get
an 1100x improvement in CPU time (and hence in pathlength) and
a 200x improvement in the elapsed time.

Rule 2. Distinct Pulhsp
In the DISTPU rule (Table 4) a SELECT box upper infers that no

duplicate elimination is needed to guarantee that its output tuples are
distinct. It does this by isolating the following properties:

o one-tuple-condition: given a quantifier and a set of predicates,
this condition is TRUE iff at most one tuple of the quantifier
satisfies the set of predicates.

● quantifier-nodup-condition: given an F quantifier in a SE-
LECT box, this condition is TRUE iff at least the primary key
or a candidate key of the F quantifier appears in the output.

Upper must find that either quantifier-nodup-condition or one-
tuple-condition holds for each of its F quantifiers and their asso-
ciated predicates. If this is not true of some F quantifier, then the
projection of the Cartesian product of the boxes below will have
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into one box. The benefit of this transformation is that it makes more
join orders possible; in the resulting single SELECT box the plan
optimizer can choose as a join order any permutation of the tables
under F quantifiers, whereas in the original query the tables refer-
enced in the table expression (lower box) could not be interleaved
with those of the box above. Note that if we can apply this rule to all
boxes in a que~, we end up with a single SELECT box, so this rule
leads directly to the realization of our Rewrite Philosophy. In order
to exploit the utility of this rule, the rest of the rules in this section
will attempt to make the condition of this rule satisfied in as many
situations as possible.3

The issue of duplicates forces us to introduce some complexity
to ensure the rule’s correctness. Ignoring duplicates for a momen~
it should be clear why this rule works: it follows directly from the
commutativity of joins and predicate applications. Since joins and
predicate applications are commutative, we can interleave those of
the lower and upper boxes, which is equivalent to saying that we can
merge the two. This argument applies directly to the case in which
neither the upper nor the lower box removes duplicates.

Some analysis is required to see that this rule handles duplicates
correctly. We break down the cases for duplicates and argue the
correctness of each case:

●

●
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upper. head. distinct = TRUE This can happen in one of two
ways:

- If upper. body. distinct= ENFORCE, then any duplicates pro-
ducedby the lower box in the original query will be removed
by the upper box, and thus no duplicates are lost or intro-
duced by the merge.

- If upper. body. distinct = PRESERVE, then all the F quan-
tifiers in the upper box produce sets without duplicates.
If lower body. distinct = PRESERVE then we can simply
merge the lower box into the upper box, without any effect
on duplicates. If lower. body. disdrrct = ENFORCE then we
must set upper. body. distinct to ENFORCE to ensure that
no duplicates will be produced after merge occurs. Note
that we cannot have lower. body. disdrrct = PERMIT — if
we did, then the lower box could produce as many dupli-
cates as it found convenien~ meaning that we could not
have upped]ead.distitrct = TRUE and upper. body, distinct =
PRESERVE, a contradiction.

uppenbody.distinct = PERM~ In this case we may ignore the
issue of duplicates by definition.

Jower.body.disdnct != ENFORCE In this remaining case,
the previous two conditions must be false, i.e. we know
that upperhead.distinct = FfiSE and uppe~body.distinct =
PRESERVE. As a result we cannot merge the boxes if
lowe~body.distinct = ENFORCE, since we would be unable in
a single box to remove the duplicates from the quantifiers of the
lower box, and preserve those of the remaining quantifiers of the
upper box. However, if lowe~ body. distinct != ENFORCE we
need not worry about this issue, and thus can merge.

Note that the only cases in which we cannot apply SELMERGE
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lower box has multiple quantifiers ranging over i~ or when up-
per.head.distincf = FUSE, upper. body. distinct = PRESERVE and
Jower.body.distinct = ENFORCE. We shall see that these cases are
handled by the BOXCOPY and ADDKEYS rules respectively, guar-
anteeing that SELMERGE will eventually get to be executed.

We have chosen a relatively simple query to measure the effect
of the above rule in the performance environment explained in Sec-
tion 2. In practice, queries are typically more complicated, and the

3As noted in [HP88], the importance of triggering this rule is
emphasized when we remember that early relational systems such as
System R supported only mergable views.
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into one box. The benefit of this transformation is that it makes more
join orders possible; in the resulting single SELECT box the plan
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with those of the box above. Note that if we can apply this rule to all
boxes in a que~, we end up with a single SELECT box, so this rule
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will attempt to make the condition of this rule satisfied in as many
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it should be clear why this rule works: it follows directly from the
commutativity of joins and predicate applications. Since joins and
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the lower and upper boxes, which is equivalent to saying that we can
merge the two. This argument applies directly to the case in which
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Some analysis is required to see that this rule handles duplicates
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ways:
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must set upper. body. distinct to ENFORCE to ensure that
no duplicates will be produced after merge occurs. Note
that we cannot have lower. body. disdrrct = PERMIT — if
we did, then the lower box could produce as many dupli-
cates as it found convenien~ meaning that we could not
have upped]ead.distitrct = TRUE and upper. body, distinct =
PRESERVE, a contradiction.

uppenbody.distinct = PERM~ In this case we may ignore the
issue of duplicates by definition.

Jower.body.disdnct != ENFORCE In this remaining case,
the previous two conditions must be false, i.e. we know
that upperhead.distinct = FfiSE and uppe~body.distinct =
PRESERVE. As a result we cannot merge the boxes if
lowe~body.distinct = ENFORCE, since we would be unable in
a single box to remove the duplicates from the quantifiers of the
lower box, and preserve those of the remaining quantifiers of the
upper box. However, if lowe~ body. distinct != ENFORCE we
need not worry about this issue, and thus can merge.

Note that the only cases in which we cannot apply SELMERGE
to two SELECT boxes connected by F quantifiers are when the
lower box has multiple quantifiers ranging over i~ or when up-
per.head.distincf = FUSE, upper. body. distinct = PRESERVE and
Jower.body.distinct = ENFORCE. We shall see that these cases are
handled by the BOXCOPY and ADDKEYS rules respectively, guar-
anteeing that SELMERGE will eventually get to be executed.

We have chosen a relatively simple query to measure the effect
of the above rule in the performance environment explained in Sec-
tion 2. In practice, queries are typically more complicated, and the

3As noted in [HP88], the importance of triggering this rule is
emphasized when we remember that early relational systems such as
System R supported only mergable views.

Query CPU Time Elapsed time

Before Rewrite 20 min 34.51 sec 24 min 19.80 sec
After Rewrite O min 1.10 sec Omin 7.20 sec

Table 3: Example 1, Before and After Rewrite

if ( in a SELECT box
either quantifier-nodup-condition
or one-tuple-condition
holds for all F quantifiers)

{ head.distinct = TRUE;
body.distinct = PRESERVE;}

Table 4: Rule 2 — DISTPU

merge rule only becomes applicable after many of the rules enu-
merated below are applied. Although this example is simple, many
commercial DBMSS miss this optimization.

Consider a view which gives the item number and vendors for
an item which vendors have supplied since the year 85. This view
is used in a query which gives information about certain items and
their vendors.

Example 1.
CREATE VIEW itpv AS
( SELECT DISTINCT itp.itemn, pur.vendn

FROM itp, pur
WHERE itp.ponum = pur.ponum AND pur.odate >’85 ‘);

SELECT itm.itmn, itpv.vendn FROM itm, itpv
WHERE itm.itemn = itpv.itemn

AND itm.itemn > ‘O1‘ AND itm.itemn < ‘20’;

The rewrite logic first recognizes that the result of the query is
DISTINCT by applying the DISTPU rule explained below. Then the
merge rule is applied. The resulting query is:

SELECT DISTINCT itm.itmn, pur.vendn
FROM itm, itp, pur
WHERE itp.ponum = pur.ponum AND itrn.itemn = itp.itemn

AND pur.odate >’85’
AND itm.itemn ~ ’01’ AND itm.itemn < ‘20’;

As a result of merging the view with the query, the plan optimizer
can use an index to access the tables within the view, and therefore it
chooses a plan which exploits this fact while doing a join on behalf
of the query. The results of executing this query with and without
rewrite are shown in Table 3. After applying the rewrite rule, we get
an 1100x improvement in CPU time (and hence in pathlength) and
a 200x improvement in the elapsed time.

Rule 2. Distinct Pulhsp
In the DISTPU rule (Table 4) a SELECT box upper infers that no

duplicate elimination is needed to guarantee that its output tuples are
distinct. It does this by isolating the following properties:

o one-tuple-condition: given a quantifier and a set of predicates,
this condition is TRUE iff at most one tuple of the quantifier
satisfies the set of predicates.

● quantifier-nodup-condition: given an F quantifier in a SE-
LECT box, this condition is TRUE iff at least the primary key
or a candidate key of the F quantifier appears in the output.

Upper must find that either quantifier-nodup-condition or one-
tuple-condition holds for each of its F quantifiers and their asso-
ciated predicates. If this is not true of some F quantifier, then the
projection of the Cartesian product of the boxes below will have
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} Distinct Pullup: If all F quantifiers are guaranteed to either:
◦ Have a single tuple

◦ Have a primary key of the attributes in the output

◦ THEN, we can set: head.distinct = TRUE, and body.distinct = PRESERVE

◦ Why? More “distinct = true” will make it easier to do merges

} Distinct pulldown
◦ If a box has body.distinct = PERMIT or ENFORCE, it can tell its children to set body.distinct = 

PERMIT

� i.e., the upper box either doesn’t care about duplicates, or is going to enforce DISTINCT è lower boxes 
don’t need to worry about it

◦ If all parents of a box don’t care about duplicates (i.e., have body.distinct = PERMIT), then we 
can set body.distinct = PERMIT for this box as well



} If a quantifier has type = E (existential) or A (all), then for the lower box: set 
body.distinct = PERMIT

/“ DISTPDFR */
if ( in a box with type SELECT, UNION,

INTERSECT or EXCEPT,
body. distinct = PERMIT or ENFORCE)

{ for (each F quantifier in the body)
quantifier. distinct = PERMI~}

/* DISTPDT() */
if ( in a box with type SELECT, UNION,

INTERSECT or EXCEPT,
all quantifiers ranging over the box
have quantifier.distinct = PERMIT)

{body.distinct = PER~}

Table 5: Rule 3 — DISTPDFR/DISTPDTO

duplicates, and upper must remove them; if one of the two condi-
tions is true for each F quantifier in upper, then the projection of the
Cartesian product will have no duplicates.

Note the “locality” of this rule – in writing the rule we need not
worry about the type of the boxes below us, rather we focus on the
F quantifiers over those boxes.

Rtrle 3. Distinct Pushdown From/To
In this pair of rules (Table 5), a box informs the boxes under it

that it does not require them to eliminate duplicates. It does so by
“pushing” the distinct attribute ji-om itself to the boxes below it.
This may save the lower boxes below from needing a sort or hash
for duplicate elimination, and may also allow the lower boxes to be
subject to rules which can introduce duplicates (such as EtoF below.)

For the DISTINCT set operators (UNION, INTERSECT, andEX-
CEPT) the DISTPDFR rule is correct because of the semantics of
duplicate elimination in those operators. The DISTINCT set opera-
tors are defined as removing duplicates from all their inputs before
any further processing [1S091]. Thus these boxes will disregard any
duplicates produced by boxes below them, and can safely signal this
by pushing DISTINCT down along their quantifiers.

In the case of a SELECT box with body.distinct = PERMIT, we do
not worry about the issue of duplicates. To seethe correctness of the
DISTPDFR rule for a SELECT box with body.distinct = ENFORCE,
it suffices to notice that any tuple resulting from such a box is a
projection of the concatenation of tuples tl,....tnfiorn the n inputs
(under F quantifiers) to the box. Regardless of how many copies of
each t,there are in the corresponding input table i, no more than one
tuple projected from tl . . . . . tn will be in the output of the SELECT
DISTINCT box. Thus each input can safely remove or introduce
duplicates without affecting the output of the SELECT box above.

The DISTPDTO rule is quite simple — if all boxes ranging over
a given box indicate their indifference to the number of duplicates
produced by their inputs, then that box may introduce or remove du-
plicates at will, and hence can set its body’s distinct flag to PERMIT,
and its head’s distinct flag to FALSE.

Note the use of mle locality here: the task involves two boxes, and
thus is broken into two separate rules, with the information passed via
the quantifier between the boxes. Each operator need only concern
itself with its own behavior in the activity of pushing down the
DISTINCT attribute, and need not know anything about the other
operators involved in the activity. Note further that if processing
halts after DISTPDFR but before DISTPDTO (as can happen in our
rule engine, see below), the QGM is still consistent and valid.

Rule 4. E or A Distinct Pushdown From
This rule (Table 6) is a special case of distinct pushdown “from”,

which exploits the fact that existential and universal quantifications
are blind to duplicates. That is, the number of tuples in a subquery

if ( in a SELECT box
a quantifier has type = E or A)

{quantifier.distinct = PERMIT}

Table 6: Rule 4 — EorAPDFR

if ( in a SELECT box
more than one quantifier
ranges over the box)

{ Make a copy of the box;
Take one of the quantifiers

ranging over the original box
and change it to range over the new copy;}

Table 7: Rule 5 — BOXCOPY

which satisfy the existential predicate is insignifican~ existential
predicates merely require that one of the tuples of the subquery
match. Similarly the number of duplicates in a subquery has no
bearing on a universal predicate; either all tuples in the subquery
match the universal predicate, or not all do.

Example 2.
CREATE VIEW richemps AS
( SELECT DISTINCT empno, salary, workdept

FROM employee
WHERE salary > 50000);

SELECT mgrno FROM department dept
wHERE NOT (EXISTS (

SELECT * FROM richemps rich, project proj
WHERE proj.deptno = rich. workdept

AND rich.workdept = dept. deptno));

This example returns those managers who have no rich employees
in their department. By applying EorAPDFR and DISTPDTO, we
make the subquery have body. distinct = PERMIT, which results in
the view richemps being merged into the subquery. After rewrite,
the query is:

SELECT mgmo FROM department dept
WHERE NOT (EXISTS (

SELECT * FROM employee emp, project proj
WHERE proj.deptno = emp.workdept

AND emp,workdept = dept.deptno
AND emp.salary > 50000));

Rule 5. Common Sttbexpression Replication
This rule (Table 7) breaks common subexpressions in a QGM by

replicating them. Doing so can allow one or both of the resulting
boxes to merge.4

Rttle 6. Add Keys
Given two SELECT boxes upper and lower, such ttrat lower is

ranged over only by an F quantifier in upper, ADDKEYS (Table 8)
guarantees that upper and lower will be merged. It does so by
modifying any SELECT box which preserves duplicates to be able
to safely eliminate duplicates. We achieve this by adding “key”
columns (or unique tuple ID’s) to the inputs, which are passed up
into the SELECT box. Once this is done, we can eliminate duplicates
from the SELECT box without any effect since each tuple in the

41f queries are correlated, the copy logic is more complicated.
This issue is beyond the scope of this paper, but is treated correctly
in Starburst’s version of this rule.
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/“ DISTPDFR */
if ( in a box with type SELECT, UNION,

INTERSECT or EXCEPT,
body. distinct = PERMIT or ENFORCE)

{ for (each F quantifier in the body)
quantifier. distinct = PERMI~}

/* DISTPDT() */
if ( in a box with type SELECT, UNION,

INTERSECT or EXCEPT,
all quantifiers ranging over the box
have quantifier.distinct = PERMIT)

{body.distinct = PER~}

Table 5: Rule 3 — DISTPDFR/DISTPDTO

duplicates, and upper must remove them; if one of the two condi-
tions is true for each F quantifier in upper, then the projection of the
Cartesian product will have no duplicates.

Note the “locality” of this rule – in writing the rule we need not
worry about the type of the boxes below us, rather we focus on the
F quantifiers over those boxes.

Rtrle 3. Distinct Pushdown From/To
In this pair of rules (Table 5), a box informs the boxes under it

that it does not require them to eliminate duplicates. It does so by
“pushing” the distinct attribute ji-om itself to the boxes below it.
This may save the lower boxes below from needing a sort or hash
for duplicate elimination, and may also allow the lower boxes to be
subject to rules which can introduce duplicates (such as EtoF below.)

For the DISTINCT set operators (UNION, INTERSECT, andEX-
CEPT) the DISTPDFR rule is correct because of the semantics of
duplicate elimination in those operators. The DISTINCT set opera-
tors are defined as removing duplicates from all their inputs before
any further processing [1S091]. Thus these boxes will disregard any
duplicates produced by boxes below them, and can safely signal this
by pushing DISTINCT down along their quantifiers.

In the case of a SELECT box with body.distinct = PERMIT, we do
not worry about the issue of duplicates. To seethe correctness of the
DISTPDFR rule for a SELECT box with body.distinct = ENFORCE,
it suffices to notice that any tuple resulting from such a box is a
projection of the concatenation of tuples tl,....tnfiorn the n inputs
(under F quantifiers) to the box. Regardless of how many copies of
each t,there are in the corresponding input table i, no more than one
tuple projected from tl . . . . . tn will be in the output of the SELECT
DISTINCT box. Thus each input can safely remove or introduce
duplicates without affecting the output of the SELECT box above.

The DISTPDTO rule is quite simple — if all boxes ranging over
a given box indicate their indifference to the number of duplicates
produced by their inputs, then that box may introduce or remove du-
plicates at will, and hence can set its body’s distinct flag to PERMIT,
and its head’s distinct flag to FALSE.

Note the use of mle locality here: the task involves two boxes, and
thus is broken into two separate rules, with the information passed via
the quantifier between the boxes. Each operator need only concern
itself with its own behavior in the activity of pushing down the
DISTINCT attribute, and need not know anything about the other
operators involved in the activity. Note further that if processing
halts after DISTPDFR but before DISTPDTO (as can happen in our
rule engine, see below), the QGM is still consistent and valid.

Rule 4. E or A Distinct Pushdown From
This rule (Table 6) is a special case of distinct pushdown “from”,

which exploits the fact that existential and universal quantifications
are blind to duplicates. That is, the number of tuples in a subquery

if ( in a SELECT box
a quantifier has type = E or A)

{quantifier.distinct = PERMIT}

Table 6: Rule 4 — EorAPDFR

if ( in a SELECT box
more than one quantifier
ranges over the box)

{ Make a copy of the box;
Take one of the quantifiers

ranging over the original box
and change it to range over the new copy;}

Table 7: Rule 5 — BOXCOPY

which satisfy the existential predicate is insignifican~ existential
predicates merely require that one of the tuples of the subquery
match. Similarly the number of duplicates in a subquery has no
bearing on a universal predicate; either all tuples in the subquery
match the universal predicate, or not all do.

Example 2.
CREATE VIEW richemps AS
( SELECT DISTINCT empno, salary, workdept

FROM employee
WHERE salary > 50000);

SELECT mgrno FROM department dept
wHERE NOT (EXISTS (

SELECT * FROM richemps rich, project proj
WHERE proj.deptno = rich. workdept

AND rich.workdept = dept. deptno));

This example returns those managers who have no rich employees
in their department. By applying EorAPDFR and DISTPDTO, we
make the subquery have body. distinct = PERMIT, which results in
the view richemps being merged into the subquery. After rewrite,
the query is:

SELECT mgmo FROM department dept
WHERE NOT (EXISTS (

SELECT * FROM employee emp, project proj
WHERE proj.deptno = emp.workdept

AND emp,workdept = dept.deptno
AND emp.salary > 50000));

Rule 5. Common Sttbexpression Replication
This rule (Table 7) breaks common subexpressions in a QGM by

replicating them. Doing so can allow one or both of the resulting
boxes to merge.4

Rttle 6. Add Keys
Given two SELECT boxes upper and lower, such ttrat lower is

ranged over only by an F quantifier in upper, ADDKEYS (Table 8)
guarantees that upper and lower will be merged. It does so by
modifying any SELECT box which preserves duplicates to be able
to safely eliminate duplicates. We achieve this by adding “key”
columns (or unique tuple ID’s) to the inputs, which are passed up
into the SELECT box. Once this is done, we can eliminate duplicates
from the SELECT box without any effect since each tuple in the

41f queries are correlated, the copy logic is more complicated.
This issue is beyond the scope of this paper, but is treated correctly
in Starburst’s version of this rule.
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/“ DISTPDFR */
if ( in a box with type SELECT, UNION,

INTERSECT or EXCEPT,
body. distinct = PERMIT or ENFORCE)

{ for (each F quantifier in the body)
quantifier. distinct = PERMI~}

/* DISTPDT() */
if ( in a box with type SELECT, UNION,

INTERSECT or EXCEPT,
all quantifiers ranging over the box
have quantifier.distinct = PERMIT)

{body.distinct = PER~}

Table 5: Rule 3 — DISTPDFR/DISTPDTO

duplicates, and upper must remove them; if one of the two condi-
tions is true for each F quantifier in upper, then the projection of the
Cartesian product will have no duplicates.

Note the “locality” of this rule – in writing the rule we need not
worry about the type of the boxes below us, rather we focus on the
F quantifiers over those boxes.

Rtrle 3. Distinct Pushdown From/To
In this pair of rules (Table 5), a box informs the boxes under it

that it does not require them to eliminate duplicates. It does so by
“pushing” the distinct attribute ji-om itself to the boxes below it.
This may save the lower boxes below from needing a sort or hash
for duplicate elimination, and may also allow the lower boxes to be
subject to rules which can introduce duplicates (such as EtoF below.)

For the DISTINCT set operators (UNION, INTERSECT, andEX-
CEPT) the DISTPDFR rule is correct because of the semantics of
duplicate elimination in those operators. The DISTINCT set opera-
tors are defined as removing duplicates from all their inputs before
any further processing [1S091]. Thus these boxes will disregard any
duplicates produced by boxes below them, and can safely signal this
by pushing DISTINCT down along their quantifiers.

In the case of a SELECT box with body.distinct = PERMIT, we do
not worry about the issue of duplicates. To seethe correctness of the
DISTPDFR rule for a SELECT box with body.distinct = ENFORCE,
it suffices to notice that any tuple resulting from such a box is a
projection of the concatenation of tuples tl,....tnfiorn the n inputs
(under F quantifiers) to the box. Regardless of how many copies of
each t,there are in the corresponding input table i, no more than one
tuple projected from tl . . . . . tn will be in the output of the SELECT
DISTINCT box. Thus each input can safely remove or introduce
duplicates without affecting the output of the SELECT box above.

The DISTPDTO rule is quite simple — if all boxes ranging over
a given box indicate their indifference to the number of duplicates
produced by their inputs, then that box may introduce or remove du-
plicates at will, and hence can set its body’s distinct flag to PERMIT,
and its head’s distinct flag to FALSE.

Note the use of mle locality here: the task involves two boxes, and
thus is broken into two separate rules, with the information passed via
the quantifier between the boxes. Each operator need only concern
itself with its own behavior in the activity of pushing down the
DISTINCT attribute, and need not know anything about the other
operators involved in the activity. Note further that if processing
halts after DISTPDFR but before DISTPDTO (as can happen in our
rule engine, see below), the QGM is still consistent and valid.

Rule 4. E or A Distinct Pushdown From
This rule (Table 6) is a special case of distinct pushdown “from”,

which exploits the fact that existential and universal quantifications
are blind to duplicates. That is, the number of tuples in a subquery

if ( in a SELECT box
a quantifier has type = E or A)

{quantifier.distinct = PERMIT}

Table 6: Rule 4 — EorAPDFR

if ( in a SELECT box
more than one quantifier
ranges over the box)

{ Make a copy of the box;
Take one of the quantifiers

ranging over the original box
and change it to range over the new copy;}

Table 7: Rule 5 — BOXCOPY

which satisfy the existential predicate is insignifican~ existential
predicates merely require that one of the tuples of the subquery
match. Similarly the number of duplicates in a subquery has no
bearing on a universal predicate; either all tuples in the subquery
match the universal predicate, or not all do.

Example 2.
CREATE VIEW richemps AS
( SELECT DISTINCT empno, salary, workdept

FROM employee
WHERE salary > 50000);

SELECT mgrno FROM department dept
wHERE NOT (EXISTS (

SELECT * FROM richemps rich, project proj
WHERE proj.deptno = rich. workdept

AND rich.workdept = dept. deptno));

This example returns those managers who have no rich employees
in their department. By applying EorAPDFR and DISTPDTO, we
make the subquery have body. distinct = PERMIT, which results in
the view richemps being merged into the subquery. After rewrite,
the query is:

SELECT mgmo FROM department dept
WHERE NOT (EXISTS (

SELECT * FROM employee emp, project proj
WHERE proj.deptno = emp.workdept

AND emp,workdept = dept.deptno
AND emp.salary > 50000));

Rule 5. Common Sttbexpression Replication
This rule (Table 7) breaks common subexpressions in a QGM by

replicating them. Doing so can allow one or both of the resulting
boxes to merge.4

Rttle 6. Add Keys
Given two SELECT boxes upper and lower, such ttrat lower is

ranged over only by an F quantifier in upper, ADDKEYS (Table 8)
guarantees that upper and lower will be merged. It does so by
modifying any SELECT box which preserves duplicates to be able
to safely eliminate duplicates. We achieve this by adding “key”
columns (or unique tuple ID’s) to the inputs, which are passed up
into the SELECT box. Once this is done, we can eliminate duplicates
from the SELECT box without any effect since each tuple in the

41f queries are correlated, the copy logic is more complicated.
This issue is beyond the scope of this paper, but is treated correctly
in Starburst’s version of this rule.
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/“ DISTPDFR */
if ( in a box with type SELECT, UNION,

INTERSECT or EXCEPT,
body. distinct = PERMIT or ENFORCE)

{ for (each F quantifier in the body)
quantifier. distinct = PERMI~}

/* DISTPDT() */
if ( in a box with type SELECT, UNION,

INTERSECT or EXCEPT,
all quantifiers ranging over the box
have quantifier.distinct = PERMIT)

{body.distinct = PER~}

Table 5: Rule 3 — DISTPDFR/DISTPDTO

duplicates, and upper must remove them; if one of the two condi-
tions is true for each F quantifier in upper, then the projection of the
Cartesian product will have no duplicates.

Note the “locality” of this rule – in writing the rule we need not
worry about the type of the boxes below us, rather we focus on the
F quantifiers over those boxes.

Rtrle 3. Distinct Pushdown From/To
In this pair of rules (Table 5), a box informs the boxes under it

that it does not require them to eliminate duplicates. It does so by
“pushing” the distinct attribute ji-om itself to the boxes below it.
This may save the lower boxes below from needing a sort or hash
for duplicate elimination, and may also allow the lower boxes to be
subject to rules which can introduce duplicates (such as EtoF below.)

For the DISTINCT set operators (UNION, INTERSECT, andEX-
CEPT) the DISTPDFR rule is correct because of the semantics of
duplicate elimination in those operators. The DISTINCT set opera-
tors are defined as removing duplicates from all their inputs before
any further processing [1S091]. Thus these boxes will disregard any
duplicates produced by boxes below them, and can safely signal this
by pushing DISTINCT down along their quantifiers.

In the case of a SELECT box with body.distinct = PERMIT, we do
not worry about the issue of duplicates. To seethe correctness of the
DISTPDFR rule for a SELECT box with body.distinct = ENFORCE,
it suffices to notice that any tuple resulting from such a box is a
projection of the concatenation of tuples tl,....tnfiorn the n inputs
(under F quantifiers) to the box. Regardless of how many copies of
each t,there are in the corresponding input table i, no more than one
tuple projected from tl . . . . . tn will be in the output of the SELECT
DISTINCT box. Thus each input can safely remove or introduce
duplicates without affecting the output of the SELECT box above.

The DISTPDTO rule is quite simple — if all boxes ranging over
a given box indicate their indifference to the number of duplicates
produced by their inputs, then that box may introduce or remove du-
plicates at will, and hence can set its body’s distinct flag to PERMIT,
and its head’s distinct flag to FALSE.

Note the use of mle locality here: the task involves two boxes, and
thus is broken into two separate rules, with the information passed via
the quantifier between the boxes. Each operator need only concern
itself with its own behavior in the activity of pushing down the
DISTINCT attribute, and need not know anything about the other
operators involved in the activity. Note further that if processing
halts after DISTPDFR but before DISTPDTO (as can happen in our
rule engine, see below), the QGM is still consistent and valid.

Rule 4. E or A Distinct Pushdown From
This rule (Table 6) is a special case of distinct pushdown “from”,

which exploits the fact that existential and universal quantifications
are blind to duplicates. That is, the number of tuples in a subquery

if ( in a SELECT box
a quantifier has type = E or A)

{quantifier.distinct = PERMIT}

Table 6: Rule 4 — EorAPDFR

if ( in a SELECT box
more than one quantifier
ranges over the box)

{ Make a copy of the box;
Take one of the quantifiers

ranging over the original box
and change it to range over the new copy;}

Table 7: Rule 5 — BOXCOPY

which satisfy the existential predicate is insignifican~ existential
predicates merely require that one of the tuples of the subquery
match. Similarly the number of duplicates in a subquery has no
bearing on a universal predicate; either all tuples in the subquery
match the universal predicate, or not all do.

Example 2.
CREATE VIEW richemps AS
( SELECT DISTINCT empno, salary, workdept

FROM employee
WHERE salary > 50000);

SELECT mgrno FROM department dept
wHERE NOT (EXISTS (

SELECT * FROM richemps rich, project proj
WHERE proj.deptno = rich. workdept

AND rich.workdept = dept. deptno));

This example returns those managers who have no rich employees
in their department. By applying EorAPDFR and DISTPDTO, we
make the subquery have body. distinct = PERMIT, which results in
the view richemps being merged into the subquery. After rewrite,
the query is:

SELECT mgmo FROM department dept
WHERE NOT (EXISTS (

SELECT * FROM employee emp, project proj
WHERE proj.deptno = emp.workdept

AND emp,workdept = dept.deptno
AND emp.salary > 50000));

Rule 5. Common Sttbexpression Replication
This rule (Table 7) breaks common subexpressions in a QGM by

replicating them. Doing so can allow one or both of the resulting
boxes to merge.4

Rttle 6. Add Keys
Given two SELECT boxes upper and lower, such ttrat lower is

ranged over only by an F quantifier in upper, ADDKEYS (Table 8)
guarantees that upper and lower will be merged. It does so by
modifying any SELECT box which preserves duplicates to be able
to safely eliminate duplicates. We achieve this by adding “key”
columns (or unique tuple ID’s) to the inputs, which are passed up
into the SELECT box. Once this is done, we can eliminate duplicates
from the SELECT box without any effect since each tuple in the

41f queries are correlated, the copy logic is more complicated.
This issue is beyond the scope of this paper, but is treated correctly
in Starburst’s version of this rule.
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!=
But EXISTS è we don’t care about duplicates

Bad example? DISTINCT in the view doesn’t matter because of empno

Possible that:



} The one situation that SELMERGE doesn’t handle for F quantifiers
◦ upper.head.distinct = FALSE, upper.body.distinct = PRESERVE, and lower.body.distinct = ENFORCE

� The output of upper box has duplicates, Upper box ”maintains” duplicates, Lower box removes duplicates

◦ No way to reconcile if you merge

if ( in a SELECT box
head. distinct = FALSE)

{ for(each F quantifier)
if ( the key of the F quantifier

does not appear in the output)
{ Add the key to the head;
head.distinct = TRUE;} }

Table 8: Rule 6 — ADDKEYS

box has a unique key formed by the concatenation of the keys of the
inputs.

Again, note the “locality” of this rule-boxes below are referenced
by the F quantifiers which range over them, and thus the types of the
boxes below become insignificant.

In the following example, a view is declared, giving distinct nego-
tiated prices of ordered items. The query uses the view to calculate
the negotiated price for each item type.

Example 3.
CREATE VIEW itemprice AS
( SELECT DISTINCT itp.itemno, itp.NegotiatedPrice

FROM itp
WHERE NegotiatedPrice > 1000);

SELECT itempnce.NegotiatedPrice, itm.type
FROM itempnce, itm
WHERE itemprice.itemno = itm.itemno;

The ADDKEYS rule is applied to the (upper) SELECT box of
the query, allowing SELMERGE to merge the view item price into
the query. Note that SELMERGE changes the query’s body. disfincf
attribute to be ENFORCE, thus removing the duplicates originally
removed in the view. The resulting query is:

SELECT DISTINCT itp.NegotiatedPrice, itm.type, itm.itemno
FROM itp, itm
WHERE itp.NegotiatedPrice >1000 AND itp.itemno = itm.itemno;

This SQL representation of the rewritten query does not exactly
capture the semantics of the transformed QGM. In the actual rewrit-
ten query, the output column itm.itemno is used during duplicate
elimination, but its values are not delivered to the output of the
query.

3.2 Guaranteeing Existential Subquery Merge
The rules in the previous section guarantee that SELECT boxes
get merged whenever the only quantifiers over the lower box are
F quantifiers. The following rule attempts to facilitate merging by
creating this situation as often as possible. In particular, we shall
see that the next rule guarantees the merger of existential subquery
conjuncts and the SELECT boxes above them.

Rule 7. E to F Quantifier Conversion
In this rule (Table 9) we convert Boolean factor existential sub-

quenes to table expressions, by changing the type of quantifier over
the subquery from E to F. Note that the ADDKEYS rule guarantees
that the condition of this rule will eventually be satisfied for all such
subquenes. As noted above, converting a subquery to a table ex-
pression (and hence a member of a join) increases possible orders
of join execution. It may also allow for additional merging, if the
subquery is another SELECT box.

This rule is the QGM equivalent of a rule proven correct
in [Day87].5 We do not prove its correctness here, but an intuition of

5The exact rule is Semijoin ( R, S; J) = Deh-pmjecf(hin

if ( in a SELECT box
there is a quantifier of type E
forming a Boolean factor

AND
( head.distinct = TRUE

OR
body. distinct = PERMIT

OR
one-tuple-condition))

{ set quantifier type to R
if ( one-tuple-condition is FALSE

AND head.distinct = TRUE)
{body.distinct = ENFORCE;}}

Table 9: Rule 7 — EtoF

Query CPU Time Elapsed time

Before Rewrite 88 min 01.25 sec 91 min 49.20 sec
After Rewrite 2 min 42.97 sec 6 min 24.60 sec

Table 10: Example 4, Before and After Rewrite

the rule’s correctness can be seen by considering the two-quantifier
case. As an example, consider the following query, which gives the
order information for items built at certain locations and worked on
at certain workcenters. Note that the itp table has a key, and hence
contains no duplicates.

Example 4.
SELECT * FROM itp
WHERE itp.itemn IN

( SELECT itl.itemn FROM itl
WHERE itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’]

In order to execute this query we must output one copy of a tuple
from itp iff there is at least one tuple in itt. itemn which satisfies the
appropriate predicates. If we apply DISTPU to convert this subquery
to a table expression, and then apply SELMERGE, we get a single
SELECT query, i.e.

SELECT DISTINCT itp.* FROM itp, itl
WHERE itp.itemn = itl.itemn

AND itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’;

In the transformed query, we output one copy of a tuple from
itp x itl such that the appropriate predicates are satisfied (including
“itp.itemn = itl.itemn”, which was implied previously by the “IN”
construct). Since all columns from itl are projected away and du-
plicates are removed, this produces the same results as the original
query.

The above example is from the performance environment ex-
plained in Section 2. The results of the performance measurements
are shown in Table 10. After rewrite we get a 32x improvement
in CPU time and a 14x improvement in elapsed time. d During
transformation, the DISTPU rule recognizes that the result of the
query is distinct. Then the EtoF rule converts the subquery to a table
expression, without adding any extra keys to the outpu~ since it has
already recognized that the output is distinct. Then the SELMERGE
rule merges the table expression, greatly enhancing the performance
of the query.

We can now observe why Boolean factor existentird subqueries
over SELECT boxes are guaranteed to merge. Consider any SE-

(A?, ~ .7); R.*). We actually generalize slightly hereby isolating
the case where one-tuple-condition is satisfied.

‘Again, many RDBMS, including the commercial ones, are un-
able to perform this optimization.
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} Instead, add the KEY to the upper box output
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SELECT DISTINCT itp.NegotiatedPrice, itm.type, itm.itemno
FROM itp, itm
WHERE itp.NegotiatedPrice >1000 AND itp.itemno = itm.itemno;
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elimination, but its values are not delivered to the output of the
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get merged whenever the only quantifiers over the lower box are
F quantifiers. The following rule attempts to facilitate merging by
creating this situation as often as possible. In particular, we shall
see that the next rule guarantees the merger of existential subquery
conjuncts and the SELECT boxes above them.
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that the condition of this rule will eventually be satisfied for all such
subquenes. As noted above, converting a subquery to a table ex-
pression (and hence a member of a join) increases possible orders
of join execution. It may also allow for additional merging, if the
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This rule is the QGM equivalent of a rule proven correct
in [Day87].5 We do not prove its correctness here, but an intuition of
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the rule’s correctness can be seen by considering the two-quantifier
case. As an example, consider the following query, which gives the
order information for items built at certain locations and worked on
at certain workcenters. Note that the itp table has a key, and hence
contains no duplicates.

Example 4.
SELECT * FROM itp
WHERE itp.itemn IN

( SELECT itl.itemn FROM itl
WHERE itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’]

In order to execute this query we must output one copy of a tuple
from itp iff there is at least one tuple in itt. itemn which satisfies the
appropriate predicates. If we apply DISTPU to convert this subquery
to a table expression, and then apply SELMERGE, we get a single
SELECT query, i.e.

SELECT DISTINCT itp.* FROM itp, itl
WHERE itp.itemn = itl.itemn

AND itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’;

In the transformed query, we output one copy of a tuple from
itp x itl such that the appropriate predicates are satisfied (including
“itp.itemn = itl.itemn”, which was implied previously by the “IN”
construct). Since all columns from itl are projected away and du-
plicates are removed, this produces the same results as the original
query.

The above example is from the performance environment ex-
plained in Section 2. The results of the performance measurements
are shown in Table 10. After rewrite we get a 32x improvement
in CPU time and a 14x improvement in elapsed time. d During
transformation, the DISTPU rule recognizes that the result of the
query is distinct. Then the EtoF rule converts the subquery to a table
expression, without adding any extra keys to the outpu~ since it has
already recognized that the output is distinct. Then the SELMERGE
rule merges the table expression, greatly enhancing the performance
of the query.

We can now observe why Boolean factor existentird subqueries
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by the F quantifiers which range over them, and thus the types of the
boxes below become insignificant.

In the following example, a view is declared, giving distinct nego-
tiated prices of ordered items. The query uses the view to calculate
the negotiated price for each item type.
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WHERE NegotiatedPrice > 1000);
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The ADDKEYS rule is applied to the (upper) SELECT box of
the query, allowing SELMERGE to merge the view item price into
the query. Note that SELMERGE changes the query’s body. disfincf
attribute to be ENFORCE, thus removing the duplicates originally
removed in the view. The resulting query is:

SELECT DISTINCT itp.NegotiatedPrice, itm.type, itm.itemno
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This SQL representation of the rewritten query does not exactly
capture the semantics of the transformed QGM. In the actual rewrit-
ten query, the output column itm.itemno is used during duplicate
elimination, but its values are not delivered to the output of the
query.

3.2 Guaranteeing Existential Subquery Merge
The rules in the previous section guarantee that SELECT boxes
get merged whenever the only quantifiers over the lower box are
F quantifiers. The following rule attempts to facilitate merging by
creating this situation as often as possible. In particular, we shall
see that the next rule guarantees the merger of existential subquery
conjuncts and the SELECT boxes above them.

Rule 7. E to F Quantifier Conversion
In this rule (Table 9) we convert Boolean factor existential sub-

quenes to table expressions, by changing the type of quantifier over
the subquery from E to F. Note that the ADDKEYS rule guarantees
that the condition of this rule will eventually be satisfied for all such
subquenes. As noted above, converting a subquery to a table ex-
pression (and hence a member of a join) increases possible orders
of join execution. It may also allow for additional merging, if the
subquery is another SELECT box.

This rule is the QGM equivalent of a rule proven correct
in [Day87].5 We do not prove its correctness here, but an intuition of
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the rule’s correctness can be seen by considering the two-quantifier
case. As an example, consider the following query, which gives the
order information for items built at certain locations and worked on
at certain workcenters. Note that the itp table has a key, and hence
contains no duplicates.

Example 4.
SELECT * FROM itp
WHERE itp.itemn IN

( SELECT itl.itemn FROM itl
WHERE itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’]

In order to execute this query we must output one copy of a tuple
from itp iff there is at least one tuple in itt. itemn which satisfies the
appropriate predicates. If we apply DISTPU to convert this subquery
to a table expression, and then apply SELMERGE, we get a single
SELECT query, i.e.

SELECT DISTINCT itp.* FROM itp, itl
WHERE itp.itemn = itl.itemn

AND itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’;

In the transformed query, we output one copy of a tuple from
itp x itl such that the appropriate predicates are satisfied (including
“itp.itemn = itl.itemn”, which was implied previously by the “IN”
construct). Since all columns from itl are projected away and du-
plicates are removed, this produces the same results as the original
query.

The above example is from the performance environment ex-
plained in Section 2. The results of the performance measurements
are shown in Table 10. After rewrite we get a 32x improvement
in CPU time and a 14x improvement in elapsed time. d During
transformation, the DISTPU rule recognizes that the result of the
query is distinct. Then the EtoF rule converts the subquery to a table
expression, without adding any extra keys to the outpu~ since it has
already recognized that the output is distinct. Then the SELMERGE
rule merges the table expression, greatly enhancing the performance
of the query.

We can now observe why Boolean factor existentird subqueries
over SELECT boxes are guaranteed to merge. Consider any SE-

(A?, ~ .7); R.*). We actually generalize slightly hereby isolating
the case where one-tuple-condition is satisfied.

‘Again, many RDBMS, including the commercial ones, are un-
able to perform this optimization.
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} Under certain conditions, an quantifier of type E can be converted to F, and 
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box has a unique key formed by the concatenation of the keys of the
inputs.

Again, note the “locality” of this rule-boxes below are referenced
by the F quantifiers which range over them, and thus the types of the
boxes below become insignificant.

In the following example, a view is declared, giving distinct nego-
tiated prices of ordered items. The query uses the view to calculate
the negotiated price for each item type.

Example 3.
CREATE VIEW itemprice AS
( SELECT DISTINCT itp.itemno, itp.NegotiatedPrice

FROM itp
WHERE NegotiatedPrice > 1000);

SELECT itempnce.NegotiatedPrice, itm.type
FROM itempnce, itm
WHERE itemprice.itemno = itm.itemno;

The ADDKEYS rule is applied to the (upper) SELECT box of
the query, allowing SELMERGE to merge the view item price into
the query. Note that SELMERGE changes the query’s body. disfincf
attribute to be ENFORCE, thus removing the duplicates originally
removed in the view. The resulting query is:

SELECT DISTINCT itp.NegotiatedPrice, itm.type, itm.itemno
FROM itp, itm
WHERE itp.NegotiatedPrice >1000 AND itp.itemno = itm.itemno;

This SQL representation of the rewritten query does not exactly
capture the semantics of the transformed QGM. In the actual rewrit-
ten query, the output column itm.itemno is used during duplicate
elimination, but its values are not delivered to the output of the
query.

3.2 Guaranteeing Existential Subquery Merge
The rules in the previous section guarantee that SELECT boxes
get merged whenever the only quantifiers over the lower box are
F quantifiers. The following rule attempts to facilitate merging by
creating this situation as often as possible. In particular, we shall
see that the next rule guarantees the merger of existential subquery
conjuncts and the SELECT boxes above them.

Rule 7. E to F Quantifier Conversion
In this rule (Table 9) we convert Boolean factor existential sub-

quenes to table expressions, by changing the type of quantifier over
the subquery from E to F. Note that the ADDKEYS rule guarantees
that the condition of this rule will eventually be satisfied for all such
subquenes. As noted above, converting a subquery to a table ex-
pression (and hence a member of a join) increases possible orders
of join execution. It may also allow for additional merging, if the
subquery is another SELECT box.

This rule is the QGM equivalent of a rule proven correct
in [Day87].5 We do not prove its correctness here, but an intuition of
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the rule’s correctness can be seen by considering the two-quantifier
case. As an example, consider the following query, which gives the
order information for items built at certain locations and worked on
at certain workcenters. Note that the itp table has a key, and hence
contains no duplicates.

Example 4.
SELECT * FROM itp
WHERE itp.itemn IN

( SELECT itl.itemn FROM itl
WHERE itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’]

In order to execute this query we must output one copy of a tuple
from itp iff there is at least one tuple in itt. itemn which satisfies the
appropriate predicates. If we apply DISTPU to convert this subquery
to a table expression, and then apply SELMERGE, we get a single
SELECT query, i.e.

SELECT DISTINCT itp.* FROM itp, itl
WHERE itp.itemn = itl.itemn

AND itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’;

In the transformed query, we output one copy of a tuple from
itp x itl such that the appropriate predicates are satisfied (including
“itp.itemn = itl.itemn”, which was implied previously by the “IN”
construct). Since all columns from itl are projected away and du-
plicates are removed, this produces the same results as the original
query.

The above example is from the performance environment ex-
plained in Section 2. The results of the performance measurements
are shown in Table 10. After rewrite we get a 32x improvement
in CPU time and a 14x improvement in elapsed time. d During
transformation, the DISTPU rule recognizes that the result of the
query is distinct. Then the EtoF rule converts the subquery to a table
expression, without adding any extra keys to the outpu~ since it has
already recognized that the output is distinct. Then the SELMERGE
rule merges the table expression, greatly enhancing the performance
of the query.

We can now observe why Boolean factor existentird subqueries
over SELECT boxes are guaranteed to merge. Consider any SE-

(A?, ~ .7); R.*). We actually generalize slightly hereby isolating
the case where one-tuple-condition is satisfied.

‘Again, many RDBMS, including the commercial ones, are un-
able to perform this optimization.
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pression (and hence a member of a join) increases possible orders
of join execution. It may also allow for additional merging, if the
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itp x itl such that the appropriate predicates are satisfied (including
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construct). Since all columns from itl are projected away and du-
plicates are removed, this produces the same results as the original
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F quantifiers. The following rule attempts to facilitate merging by
creating this situation as often as possible. In particular, we shall
see that the next rule guarantees the merger of existential subquery
conjuncts and the SELECT boxes above them.

Rule 7. E to F Quantifier Conversion
In this rule (Table 9) we convert Boolean factor existential sub-

quenes to table expressions, by changing the type of quantifier over
the subquery from E to F. Note that the ADDKEYS rule guarantees
that the condition of this rule will eventually be satisfied for all such
subquenes. As noted above, converting a subquery to a table ex-
pression (and hence a member of a join) increases possible orders
of join execution. It may also allow for additional merging, if the
subquery is another SELECT box.

This rule is the QGM equivalent of a rule proven correct
in [Day87].5 We do not prove its correctness here, but an intuition of

5The exact rule is Semijoin ( R, S; J) = Deh-pmjecf(hin

if ( in a SELECT box
there is a quantifier of type E
forming a Boolean factor

AND
( head.distinct = TRUE

OR
body. distinct = PERMIT

OR
one-tuple-condition))

{ set quantifier type to R
if ( one-tuple-condition is FALSE

AND head.distinct = TRUE)
{body.distinct = ENFORCE;}}

Table 9: Rule 7 — EtoF

Query CPU Time Elapsed time

Before Rewrite 88 min 01.25 sec 91 min 49.20 sec
After Rewrite 2 min 42.97 sec 6 min 24.60 sec

Table 10: Example 4, Before and After Rewrite

the rule’s correctness can be seen by considering the two-quantifier
case. As an example, consider the following query, which gives the
order information for items built at certain locations and worked on
at certain workcenters. Note that the itp table has a key, and hence
contains no duplicates.

Example 4.
SELECT * FROM itp
WHERE itp.itemn IN

( SELECT itl.itemn FROM itl
WHERE itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’]

In order to execute this query we must output one copy of a tuple
from itp iff there is at least one tuple in itt. itemn which satisfies the
appropriate predicates. If we apply DISTPU to convert this subquery
to a table expression, and then apply SELMERGE, we get a single
SELECT query, i.e.

SELECT DISTINCT itp.* FROM itp, itl
WHERE itp.itemn = itl.itemn

AND itl.wkcen = ‘WK468’ AND itl.locan = ‘LOCAOOOIN’;

In the transformed query, we output one copy of a tuple from
itp x itl such that the appropriate predicates are satisfied (including
“itp.itemn = itl.itemn”, which was implied previously by the “IN”
construct). Since all columns from itl are projected away and du-
plicates are removed, this produces the same results as the original
query.

The above example is from the performance environment ex-
plained in Section 2. The results of the performance measurements
are shown in Table 10. After rewrite we get a 32x improvement
in CPU time and a 14x improvement in elapsed time. d During
transformation, the DISTPU rule recognizes that the result of the
query is distinct. Then the EtoF rule converts the subquery to a table
expression, without adding any extra keys to the outpu~ since it has
already recognized that the output is distinct. Then the SELMERGE
rule merges the table expression, greatly enhancing the performance
of the query.

We can now observe why Boolean factor existentird subqueries
over SELECT boxes are guaranteed to merge. Consider any SE-

(A?, ~ .7); R.*). We actually generalize slightly hereby isolating
the case where one-tuple-condition is satisfied.

‘Again, many RDBMS, including the commercial ones, are un-
able to perform this optimization.
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Without this distinct, we may
get duplicates in the output



} Replace an INTERSECT to an EXISTS, which can then be merged using 
SELMERGE

if ( in an INTERSECT box
body.distinct != PRESERVE)

{ set the box to be of type SELECT
choose an arbitrary quantifier Q1;
/* Q1 will keep type F *I
for ( each quantifier Q != Q1 in the box)

{ Q.type = E;
add the predicate
EXISTS(SELECT * FROM Q

WHERE
Q1.cl = Q.cl

AND Q1.c2 = Q.c2
AND ...
AND Q1.cn = Q.en);}}

Table 11: Rule 8 — INT2EXIST

LECT box upper with a Boolean factor SELECT subquery (i.e. a SE-
LECT box lower over which it ranges with an E quantifier). Because
of the EorAPDFR and DISTPDFRf10 rules, we can assume that the
subque~ has body. distinct = PERMIT. Now, we want to be able to
tire theEtoF rule, but we cannot do so if upper. head. distinct =FALSE,
uppe~ body. distinct = PRESERVE and the one-tuple-condition does
not hold for the quantifier between the two boxes. In this case, we can
apply the ADDKEYS rule to force upper. head. distinct = TRUE, and
at that point we can apply EtoF. After EtoF is applied, we have up-
per ranging over lower with an F quantifier, and lower. body. distinct
!= E~ORCE, so the conditions for sELMERGE are satisfied, and
lower can be merged into upper.

Rule 8. INTERSECT to Exists
This rule (Table 11)converts a set INTERSECT operator (which

may be n-ary) into an existential subquery, which can subsequently
be converted (via EtoF and SELMERGE) into a single SELECT box.
Typically, RDBMSS execute the INTERSECT operation by sorting
the operands and then merging them. This method of execution is a
variant of the sort merge join. We rewrite the INTERSECT operation
as a join, and therefore benefit from other join methods besides
sort-merge. This can improve the performance by many orders of
magnitude, and hence is an essential query transformation.7

Recall that the semantics of SQL’s INTERSECT operator are to
first remove duplicates from the inputs and then send to the output
one copy of every tuple that appears in all of the inputs. This is
equivalent to choosing any one input and sending to the output one
copy of each of its tuples which appears in all other inputs. This
rule simply captures that equivalence — it produces a SELECT
DISTINCT box with one F quantifier (the arbitrarily chosen input)
and E quantifiers over all other inputs, which filter out tuples of
the F-quantified input that do not have a match in all of the other
inputs. Note that matching tuples require the large conjunction in
the predicate of the subquery — tuples must match on all columns
to be equals

As an example, consider the following query which finds the
intersection of the items that employee 1279 works on and the items
that are scheduled to be worked on in workcenter WK195 on date
9773.

7A similti rule @xc2NEXIST) exists in Starburst for converting

an EXCEPT operator into a negated existential subquery, which can
subsequently be involved in SELECT merge.

8This can be simplified by including in the conjunction only the
key columns of the tables.

D Query CPU Time I Elapsed time 0
Before Rewrite I 9.65 sec I 13.92 sec ]]

II After Rewrite I .42 sec I 1.77 sec II
Table 12: Example 5, Before and After Rewrite

Example 5.
SELECT items FROM wor
WHERE empno = ‘EMPN1279’
INTERSECT
SELECT itemn FROM itl
WHERE entry.tirne = ‘9773’ AND wkctr = ‘WK195’;

The intersect rewrite rule converts the query to an existential
subque~, which in turn is converted to join by the EtoF rule, and
merged by the SELMERGE rule. The que~ after rewrite is:

SELECT DISTINCT itemn FROM itl, wor
WHERE empno = ‘EMPN1279’ AND entry-time= ‘9773’

AND wkctr = ‘WK195’ AND itl.itemn = wor.itemn;

The results of executing this query with and without rewrite are
shown in Table 12.9 After conversion to join, the plan optimizer
considers both merge join and nested loop join methods. Due to
the presence of an index on the join column, itemn, nested loop is
chosen, resulting in much better performance.10

4 The Rule Engine
In keeping with the extensibility goals of the Starburst project it
was decided that a rule system was the appropriate platform for
allowing query transformations to be easily added to the system,
and subsequently reordered or modified. Existing rule engines did
not appear to be appropriate for our needs, and thus we designed
our own. As will become apparent in the following discussion, we
required numerous capabilities not available in typical rule systems
(such as 0PS5 [BFKM85]). Starburst’s Query Rewrite rule engine
incorporates the following features:

1.

2.

—

Rules of Arbitrary Complexity: Rules in our engine are pairs
of functions in a procedural language such as C: a condition
function, which does an arbitrary check and sets a flag TRUE or
FALSE, and an action function, which, if the condition function
sets the flag TRUE, is invoked to take arbitrary action. The
fact that our rules are C functions is essential — we require
our rules to be able to manipulate QGM, which is represented
in Starburst as a network of C structures. Although rules are
written in a language such as C, they are compiled into native
machine language for efficient execution.

Contex( Facility: The data structure passed into any invocation
of the rule system includes a pointer for user information, which
is in turn passed into the rule functions themselves, where it can
be read and/or modified. For our purposes in Query Rewrite,
we use this pointer to store a current “context” in the QGM (a
box, quantifier, or predicate), and our rewrite rules are written
with reference to this context. This allows for the rule local-
ity discussed earlier, Special rules are added to the rule set to

9For this experiment we used the original benchmark database,
not the one scaled up by 10.

10DB2 does not suPPort INTERSECT. In the experirnen~ we chose

UNION instead, which can be executed by a nearly identical strategy.
Obviously, the number of output tuples for UNION is differen~
however, since this number is small in our experimen~ the error in
the cost difference is negligible. In fact DB2 chose abetter execution
strategy for UNION than the one sketched above, and therefore the
performance numbers for the original query are conservative.
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if ( in an INTERSECT box
body.distinct != PRESERVE)

{ set the box to be of type SELECT
choose an arbitrary quantifier Q1;
/* Q1 will keep type F *I
for ( each quantifier Q != Q1 in the box)

{ Q.type = E;
add the predicate
EXISTS(SELECT * FROM Q

WHERE
Q1.cl = Q.cl

AND Q1.c2 = Q.c2
AND ...
AND Q1.cn = Q.en);}}

Table 11: Rule 8 — INT2EXIST

LECT box upper with a Boolean factor SELECT subquery (i.e. a SE-
LECT box lower over which it ranges with an E quantifier). Because
of the EorAPDFR and DISTPDFRf10 rules, we can assume that the
subque~ has body. distinct = PERMIT. Now, we want to be able to
tire theEtoF rule, but we cannot do so if upper. head. distinct =FALSE,
uppe~ body. distinct = PRESERVE and the one-tuple-condition does
not hold for the quantifier between the two boxes. In this case, we can
apply the ADDKEYS rule to force upper. head. distinct = TRUE, and
at that point we can apply EtoF. After EtoF is applied, we have up-
per ranging over lower with an F quantifier, and lower. body. distinct
!= E~ORCE, so the conditions for sELMERGE are satisfied, and
lower can be merged into upper.

Rule 8. INTERSECT to Exists
This rule (Table 11)converts a set INTERSECT operator (which

may be n-ary) into an existential subquery, which can subsequently
be converted (via EtoF and SELMERGE) into a single SELECT box.
Typically, RDBMSS execute the INTERSECT operation by sorting
the operands and then merging them. This method of execution is a
variant of the sort merge join. We rewrite the INTERSECT operation
as a join, and therefore benefit from other join methods besides
sort-merge. This can improve the performance by many orders of
magnitude, and hence is an essential query transformation.7

Recall that the semantics of SQL’s INTERSECT operator are to
first remove duplicates from the inputs and then send to the output
one copy of every tuple that appears in all of the inputs. This is
equivalent to choosing any one input and sending to the output one
copy of each of its tuples which appears in all other inputs. This
rule simply captures that equivalence — it produces a SELECT
DISTINCT box with one F quantifier (the arbitrarily chosen input)
and E quantifiers over all other inputs, which filter out tuples of
the F-quantified input that do not have a match in all of the other
inputs. Note that matching tuples require the large conjunction in
the predicate of the subquery — tuples must match on all columns
to be equals

As an example, consider the following query which finds the
intersection of the items that employee 1279 works on and the items
that are scheduled to be worked on in workcenter WK195 on date
9773.

7A similti rule @xc2NEXIST) exists in Starburst for converting

an EXCEPT operator into a negated existential subquery, which can
subsequently be involved in SELECT merge.

8This can be simplified by including in the conjunction only the
key columns of the tables.

D Query CPU Time I Elapsed time 0
Before Rewrite I 9.65 sec I 13.92 sec ]]

II After Rewrite I .42 sec I 1.77 sec II
Table 12: Example 5, Before and After Rewrite

Example 5.
SELECT items FROM wor
WHERE empno = ‘EMPN1279’
INTERSECT
SELECT itemn FROM itl
WHERE entry.tirne = ‘9773’ AND wkctr = ‘WK195’;

The intersect rewrite rule converts the query to an existential
subque~, which in turn is converted to join by the EtoF rule, and
merged by the SELMERGE rule. The que~ after rewrite is:

SELECT DISTINCT itemn FROM itl, wor
WHERE empno = ‘EMPN1279’ AND entry-time= ‘9773’

AND wkctr = ‘WK195’ AND itl.itemn = wor.itemn;

The results of executing this query with and without rewrite are
shown in Table 12.9 After conversion to join, the plan optimizer
considers both merge join and nested loop join methods. Due to
the presence of an index on the join column, itemn, nested loop is
chosen, resulting in much better performance.10

4 The Rule Engine
In keeping with the extensibility goals of the Starburst project it
was decided that a rule system was the appropriate platform for
allowing query transformations to be easily added to the system,
and subsequently reordered or modified. Existing rule engines did
not appear to be appropriate for our needs, and thus we designed
our own. As will become apparent in the following discussion, we
required numerous capabilities not available in typical rule systems
(such as 0PS5 [BFKM85]). Starburst’s Query Rewrite rule engine
incorporates the following features:

1.

2.

—

Rules of Arbitrary Complexity: Rules in our engine are pairs
of functions in a procedural language such as C: a condition
function, which does an arbitrary check and sets a flag TRUE or
FALSE, and an action function, which, if the condition function
sets the flag TRUE, is invoked to take arbitrary action. The
fact that our rules are C functions is essential — we require
our rules to be able to manipulate QGM, which is represented
in Starburst as a network of C structures. Although rules are
written in a language such as C, they are compiled into native
machine language for efficient execution.

Contex( Facility: The data structure passed into any invocation
of the rule system includes a pointer for user information, which
is in turn passed into the rule functions themselves, where it can
be read and/or modified. For our purposes in Query Rewrite,
we use this pointer to store a current “context” in the QGM (a
box, quantifier, or predicate), and our rewrite rules are written
with reference to this context. This allows for the rule local-
ity discussed earlier, Special rules are added to the rule set to

9For this experiment we used the original benchmark database,
not the one scaled up by 10.

10DB2 does not suPPort INTERSECT. In the experirnen~ we chose

UNION instead, which can be executed by a nearly identical strategy.
Obviously, the number of output tuples for UNION is differen~
however, since this number is small in our experimen~ the error in
the cost difference is negligible. In fact DB2 chose abetter execution
strategy for UNION than the one sketched above, and therefore the
performance numbers for the original query are conservative.

46

SELECT DISTINCT itemn from wor
WHERE empno = ‘EMPN1279’ AND

EXISTS (SELECT * FROM itl
WHERE entry_time = ‘9773’ AND

wkctr = ‘WK195’ AND
wor.itemn = itl.itemn);

Should be itemn



} Each rule is a pair of functions in a procedural language like C

◦ a condition function that checks a condition

◦ a action function that takes an action

} All functions read/manipulate the QGM (a C object), so need to be written in C

} Need more logic to decide how to fire rules, when to stop etc.

} No discussion of “aggregates” or other types of joins

◦ The basic set of rules doesn’t cover those

uTable I Tuple Size #Tuples I #4K Pgs I #Indices u
Itm 34 170000 I 1850 1
itl 78 2550000 57980 2
itp 43 339440 4250 3
Dur 398 128000 11640 1

II wor 119 120000 \ 4000 1

Table 1: Benchmark Database

version of the IBM DB2 benchmark database described in ~oo86],
scaled up by a factor of 10.

The DB2 benchmark database is based on an inventory tracking
and stock control application. Workcenters have locations (Iocatn).
Items (itm) are worked on at locations within workcenters, and the
table itl captures this relationship. The record of the items worked
on by a particular employee is captured in table wor. Each item may
have orders (itp). Some physical characteristics of the database are
shown in Table 1.

Since Starburst’s Quety Rewrite system can produce SQL repre-
sentations of its output we can easily measure its effects on a widely-
used commercial DBMS. This allows us to demonstrate the general
applicability of Query Rewrite to typical DBMSS, not just Starburst.
Our performance measurements were done on the DB2 relational
DBMS. We measured the elapsed time (total time taken by system to
evaluate the query), and CPU time (the time for which CPU is busy)
of each query both before and after applying the rewrite roles. Both
representations of the query went through the usu al DB2 query com-
pilation process, including plan optimization. Performance figures
for several of the queries we measured are given in Section 3.

3 A Suite of Rewrite Rules for Guaranteeing
SELECT Merge

In designing our rewrite engine and rules, we attempted to abide by
the following:

Rewrite Philosophy
Whenever possible, a query should be conver~ed to a single

SELECT operator.

A single SELECT operator ranging over base tables represents
the prototypical relational query, involving straightforward restric-
tion, projection, and join. There are a variety of high-performance
algorithms for executing such queries, and methods for choosing
among these are well understood. Also, as noted above, more com-
plex queries often force the plan optimizer into choosing a particular
plan — for example subqueries force particular join methods and
orders, and views (as we shall see) unnecessarily restrict the possible
join orders for the query. Finally, plan optimizers typically can only
make decisions based on the environment of a single query block
(i.e. a single QGM box). As a resul~ multi-operator queries usually
do not result in optimal plans, and should be converted to single
SELECT operators whenever possible. There are, of course, many
optimization that can be applied to SELECT operators Memselves.
But we consider conversion to a single SELECT, when possible, to
be among the most important goals of query transformation.

As a result. we focus in this paper on those rewrite rules in Star-
burst which are used to guarantee that all views (table expressions)
and existential subqueries are merged whenever possible. The only
queries in Starburst which do not get rewritten as single SELECT
queries are those which contain non-existential or non-Boolean fac-
tor subqueries, set operators,2 aggregates, 01 user-defined extension
operators (such as OUTER JOIN). The system allows rewrite rules

aEven some of these get converted to a single SELECT, as we
shall see!

GE’
( DISTPDFR )

Figure 2: Triggering Interactions Between Rules

if@ a SELECT box (upper box)
a quantifier has type F

AND ranges over a SELECT box (lower box)
AND no other quantifier ranges over lower box
AND

( upper.head.distinct = TRUE
OR

upper.body.distinct = PERMIT
OR

lower.body.distinct != ENFORCE))
{merge the lower box into the upper box;
if ( lower.body.distinct = ENFORCE

AND upper.body.distinct != PERMIT)
{upper.body.distinct= ENFORCE;}}

Table 2: Rule 1 — SELMERGE

to be defined for such queries as well, so even though these are not
converted to a single SELECT, they are often subject to some useful
transformation. For example, Rosenthal [RGL90] defines a set of
such transformations for outer join.

In this section we will describe the set of rules in Starburst which
lead up to the merger of SELECT boxes. In Figure 2 we show the
dependencies among the roles, particularly when the execution of one
rule (at the tail of an arrow) can cause another (at the arrow’s head)
to have its condition satisfied. We make no claim to be exhaustive
in presenting these dependencies. The goal is rather to present the
most important dependencies as an illustration of the utility of each
rule in causing the merger of SELECT boxes. Since the goal of this
suite of rules is the merger of SELECT boxes, the “SELECT merge”
(SELMERGE) rule presented first will be transitively dependent
on each of the other rules here, and will form the focus of our
measurements.

Before proceeding it should be noted that the number of rules we
require is kept tractably low by enforcing locality of reference: each
rule is written with reference to a specific context (e.g. a box, or a
quantifier), and as a result rules which involve more than one box can
be written in a box-by-box tnanner, rather than a paired-box manner.
This keeps the number of rules on the order of the number of box
types, rather than the square of that number or worse. We shall see
many examples of rule locality in the suite of rules presented here,
and in the next section we will see how our rule engine supports it.

3.1 Rules to Guarantee View Merge

Rule 1. SELECT Merge
The SELMERGE rule (Table 2) takes two SELECT boxes con-

nected by an F quantifier (e.g. a query over a view) and merges them
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Abstract 
Complex queries used in decision support applications use multiple 

correlated subqueries and table expressions, possibly across several 
levels of nesting. It is usually inejicient to directly execute a correlated 
query; consequently, algorithms have been proposed to decorrelate 
the query, i.e. to eliminate the correlation by rewriting the quev. 
This paper explains the issues involved in decorrelation, and surveys 
existing algorithms. It presents an eficient and flexible algorithm 
called magic decorrelation which is superior to existing algonthms 
both in terms of the generality of application, and the eflciency of 
the rewritten quely. The algorithm is described in the context of its 
implementation in the Starburst Extensible Database System, and its 
performance is compawd with other decomlation techniques. The 
paper also explains why magic decorrelation is not merely applicable, 
but crucial in a parallel database system. 

1 Introduction 
The concept of correlation in SQL is similar to the use 

of non-local variables in block-structured programming lan- 
guages. The processing of correlated queries is important be- 
cause (a) many decision support applications use correlation, 
(b) correlation is a convenient programming idiom for many 
SQL programmers (closely mimicking a function invocation 
paradigm), and (c) correlated queries are often created “auto- 
matically” by application generators that translate queries from 
application domain-specific languages into SQL. The TPC-D 
decision support benchmark [TPC-D94] of seventeen queries 
includes two correlated queries, recognizing the importance of 
correlation. 

In an early relational DBMS like System R [SACLP79], a 
correlated sub-query was executed in a tuple-at-a-time fashion 
(nested iteration). The same approach is still used in current 
database systems. Since an equivalent set-oriented execution 
strategy might perform orders of magnitude better, there has 
been more than a decade of research that aims to “decorre- 
late” queries, i.e. to eliminate the correlations by rewriting the 
queries into a form that permits set-oriented execution. How- 
ever, existing decorrelation algorithms work only on specific 
kinds of correlated queries, and the rewritten queries are some- 
times inefficient. Some algorithms can even produce incorrect 
results. A practical decorrelation algorithm needs to work cor- 
rectly on arbitrarily complex queries, and the resulting query 
should be efficient to execute. To the best of our knowledge, 
ours is the first algorithm to satisfy these criteria. Such an algo- 
rithm has become all the more crucial due to the recent interest 
in using parallel database systems for complex decision support 
applications. In fact, processing correlated queries is consid- 
ered one of the most challenging current problems in parallel 
query processing[Gra95]. 

1.1 Contributions 
We explain the issues involved in decorrelation, and present 

a survey of other proposed decorrelation methods. We de- 
velop a query rewrite algorithm framework that decorrelates 

arbitrary SQL queries. The algorithm is similar to the magic 
sets rewriting transformation, as applied to non-recursive rela- 
tional queries [MFPR90]. Consequently, our algorithm is called 
magic decorrelation. The algorithm framework is extensible, 
and permits various implementations to provide various “de- 
grees” of decorrelation as required by different database system 
environments (especially parallel environments). We describe a 
specific implementation of magic decorrelation in the Starburst 
Extensible Database System [HCL+90]. We compare the per- 
formance of magic decorrelation with other known techniques 
for evaluating a correlated query. Finally, we discuss why our 
decorrelation algorithm is not merely applicable, but is crucial 
in a parallel database environment. 

2 Explaining Decorrelation 
In a correlated SQL query, values from an outer query block 

are accessed inside a nested subquery block. Consider various 
evaluation strategies for an example based on the familiar EMP 
and DEPT relations. Each employee is assigned to a building 
in which helshe works. Each department is situated in a build- 
ing, but may have employees in other buildings as well. The 
query finds those departments of low budget that have more 
employees than there are employees working in the building in 
which the department is located. Note that the correlated value 
DEPTbuilding is used inside its subquery. 
Select D.name From Dept D 
Where D.budget < 10000 and D.num-emps > 

(Select Count(*) From Emp E Where D.building = E.building) 
Nested Iteration: The subquery is invoked once for every 

DEPT tuple (whose budget is less than 10000) in the outer 
query block. The table EMP may not have an index on the 
building column; an entire table scan access will be required 
for every low-budget department tuple. Further, if there are 
duplicate values of DEPT.building, the subquery invocations 
will perform redundant work. 

A nested iteration execution is not set-oriented, because there 
is a “coupling” between each value from the outer block and 
the execution of the correlated subquery block. This strategy is 
efficient only in cases where there are few duplicates in the cor- 
relation attribute, and independent executions of the subquery 
perform little common work. The aim o f  decorrelation is to 
“decouple ” the execution of the subqueiy block f rom that of the 
outer block, by rewriting the guely. 

Kim’s Method: Kim’s method [Kim821 produces the follow- 
ing rewritten query: 
Select D.name From Dept D, Temp(empcount, bldg) AS 

Where D.budget < 10000 and D.num-emps > Temp.empcount 
(Select Count(*), E.bui1ding From Emp E GroupBy E.building) 

and D.building = Temp.bldg 
The subquery is converted into a table expression with a 

GROUPBY clause, and the correlation predicate is moved to the 
outer block. There are three problems with this approach 
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correlated subqueries and table expressions, possibly across several 
levels of nesting. It is usually inejicient to directly execute a correlated 
query; consequently, algorithms have been proposed to decorrelate 
the query, i.e. to eliminate the correlation by rewriting the quev. 
This paper explains the issues involved in decorrelation, and surveys 
existing algorithms. It presents an eficient and flexible algorithm 
called magic decorrelation which is superior to existing algonthms 
both in terms of the generality of application, and the eflciency of 
the rewritten quely. The algorithm is described in the context of its 
implementation in the Starburst Extensible Database System, and its 
performance is compawd with other decomlation techniques. The 
paper also explains why magic decorrelation is not merely applicable, 
but crucial in a parallel database system. 

1 Introduction 
The concept of correlation in SQL is similar to the use 

of non-local variables in block-structured programming lan- 
guages. The processing of correlated queries is important be- 
cause (a) many decision support applications use correlation, 
(b) correlation is a convenient programming idiom for many 
SQL programmers (closely mimicking a function invocation 
paradigm), and (c) correlated queries are often created “auto- 
matically” by application generators that translate queries from 
application domain-specific languages into SQL. The TPC-D 
decision support benchmark [TPC-D94] of seventeen queries 
includes two correlated queries, recognizing the importance of 
correlation. 

In an early relational DBMS like System R [SACLP79], a 
correlated sub-query was executed in a tuple-at-a-time fashion 
(nested iteration). The same approach is still used in current 
database systems. Since an equivalent set-oriented execution 
strategy might perform orders of magnitude better, there has 
been more than a decade of research that aims to “decorre- 
late” queries, i.e. to eliminate the correlations by rewriting the 
queries into a form that permits set-oriented execution. How- 
ever, existing decorrelation algorithms work only on specific 
kinds of correlated queries, and the rewritten queries are some- 
times inefficient. Some algorithms can even produce incorrect 
results. A practical decorrelation algorithm needs to work cor- 
rectly on arbitrarily complex queries, and the resulting query 
should be efficient to execute. To the best of our knowledge, 
ours is the first algorithm to satisfy these criteria. Such an algo- 
rithm has become all the more crucial due to the recent interest 
in using parallel database systems for complex decision support 
applications. In fact, processing correlated queries is consid- 
ered one of the most challenging current problems in parallel 
query processing[Gra95]. 

1.1 Contributions 
We explain the issues involved in decorrelation, and present 

a survey of other proposed decorrelation methods. We de- 
velop a query rewrite algorithm framework that decorrelates 

arbitrary SQL queries. The algorithm is similar to the magic 
sets rewriting transformation, as applied to non-recursive rela- 
tional queries [MFPR90]. Consequently, our algorithm is called 
magic decorrelation. The algorithm framework is extensible, 
and permits various implementations to provide various “de- 
grees” of decorrelation as required by different database system 
environments (especially parallel environments). We describe a 
specific implementation of magic decorrelation in the Starburst 
Extensible Database System [HCL+90]. We compare the per- 
formance of magic decorrelation with other known techniques 
for evaluating a correlated query. Finally, we discuss why our 
decorrelation algorithm is not merely applicable, but is crucial 
in a parallel database environment. 

2 Explaining Decorrelation 
In a correlated SQL query, values from an outer query block 

are accessed inside a nested subquery block. Consider various 
evaluation strategies for an example based on the familiar EMP 
and DEPT relations. Each employee is assigned to a building 
in which helshe works. Each department is situated in a build- 
ing, but may have employees in other buildings as well. The 
query finds those departments of low budget that have more 
employees than there are employees working in the building in 
which the department is located. Note that the correlated value 
DEPTbuilding is used inside its subquery. 
Select D.name From Dept D 
Where D.budget < 10000 and D.num-emps > 

(Select Count(*) From Emp E Where D.building = E.building) 
Nested Iteration: The subquery is invoked once for every 

DEPT tuple (whose budget is less than 10000) in the outer 
query block. The table EMP may not have an index on the 
building column; an entire table scan access will be required 
for every low-budget department tuple. Further, if there are 
duplicate values of DEPT.building, the subquery invocations 
will perform redundant work. 

A nested iteration execution is not set-oriented, because there 
is a “coupling” between each value from the outer block and 
the execution of the correlated subquery block. This strategy is 
efficient only in cases where there are few duplicates in the cor- 
relation attribute, and independent executions of the subquery 
perform little common work. The aim o f  decorrelation is to 
“decouple ” the execution of the subqueiy block f rom that of the 
outer block, by rewriting the guely. 

Kim’s Method: Kim’s method [Kim821 produces the follow- 
ing rewritten query: 
Select D.name From Dept D, Temp(empcount, bldg) AS 

Where D.budget < 10000 and D.num-emps > Temp.empcount 
(Select Count(*), E.bui1ding From Emp E GroupBy E.building) 

and D.building = Temp.bldg 
The subquery is converted into a table expression with a 

GROUPBY clause, and the correlation predicate is moved to the 
outer block. There are three problems with this approach 
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[Kim; 1982]

- Only works for simple equality correlated 
predicates

- COUNT computation must be done for all 
departments, whether or not they have budget < 
10000

- “Count bug”: doesn’t handle departments from a 
building with 0 employees
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Abstract 
Complex queries used in decision support applications use multiple 

correlated subqueries and table expressions, possibly across several 
levels of nesting. It is usually inejicient to directly execute a correlated 
query; consequently, algorithms have been proposed to decorrelate 
the query, i.e. to eliminate the correlation by rewriting the quev. 
This paper explains the issues involved in decorrelation, and surveys 
existing algorithms. It presents an eficient and flexible algorithm 
called magic decorrelation which is superior to existing algonthms 
both in terms of the generality of application, and the eflciency of 
the rewritten quely. The algorithm is described in the context of its 
implementation in the Starburst Extensible Database System, and its 
performance is compawd with other decomlation techniques. The 
paper also explains why magic decorrelation is not merely applicable, 
but crucial in a parallel database system. 

1 Introduction 
The concept of correlation in SQL is similar to the use 

of non-local variables in block-structured programming lan- 
guages. The processing of correlated queries is important be- 
cause (a) many decision support applications use correlation, 
(b) correlation is a convenient programming idiom for many 
SQL programmers (closely mimicking a function invocation 
paradigm), and (c) correlated queries are often created “auto- 
matically” by application generators that translate queries from 
application domain-specific languages into SQL. The TPC-D 
decision support benchmark [TPC-D94] of seventeen queries 
includes two correlated queries, recognizing the importance of 
correlation. 

In an early relational DBMS like System R [SACLP79], a 
correlated sub-query was executed in a tuple-at-a-time fashion 
(nested iteration). The same approach is still used in current 
database systems. Since an equivalent set-oriented execution 
strategy might perform orders of magnitude better, there has 
been more than a decade of research that aims to “decorre- 
late” queries, i.e. to eliminate the correlations by rewriting the 
queries into a form that permits set-oriented execution. How- 
ever, existing decorrelation algorithms work only on specific 
kinds of correlated queries, and the rewritten queries are some- 
times inefficient. Some algorithms can even produce incorrect 
results. A practical decorrelation algorithm needs to work cor- 
rectly on arbitrarily complex queries, and the resulting query 
should be efficient to execute. To the best of our knowledge, 
ours is the first algorithm to satisfy these criteria. Such an algo- 
rithm has become all the more crucial due to the recent interest 
in using parallel database systems for complex decision support 
applications. In fact, processing correlated queries is consid- 
ered one of the most challenging current problems in parallel 
query processing[Gra95]. 

1.1 Contributions 
We explain the issues involved in decorrelation, and present 

a survey of other proposed decorrelation methods. We de- 
velop a query rewrite algorithm framework that decorrelates 

arbitrary SQL queries. The algorithm is similar to the magic 
sets rewriting transformation, as applied to non-recursive rela- 
tional queries [MFPR90]. Consequently, our algorithm is called 
magic decorrelation. The algorithm framework is extensible, 
and permits various implementations to provide various “de- 
grees” of decorrelation as required by different database system 
environments (especially parallel environments). We describe a 
specific implementation of magic decorrelation in the Starburst 
Extensible Database System [HCL+90]. We compare the per- 
formance of magic decorrelation with other known techniques 
for evaluating a correlated query. Finally, we discuss why our 
decorrelation algorithm is not merely applicable, but is crucial 
in a parallel database environment. 

2 Explaining Decorrelation 
In a correlated SQL query, values from an outer query block 

are accessed inside a nested subquery block. Consider various 
evaluation strategies for an example based on the familiar EMP 
and DEPT relations. Each employee is assigned to a building 
in which helshe works. Each department is situated in a build- 
ing, but may have employees in other buildings as well. The 
query finds those departments of low budget that have more 
employees than there are employees working in the building in 
which the department is located. Note that the correlated value 
DEPTbuilding is used inside its subquery. 
Select D.name From Dept D 
Where D.budget < 10000 and D.num-emps > 

(Select Count(*) From Emp E Where D.building = E.building) 
Nested Iteration: The subquery is invoked once for every 

DEPT tuple (whose budget is less than 10000) in the outer 
query block. The table EMP may not have an index on the 
building column; an entire table scan access will be required 
for every low-budget department tuple. Further, if there are 
duplicate values of DEPT.building, the subquery invocations 
will perform redundant work. 

A nested iteration execution is not set-oriented, because there 
is a “coupling” between each value from the outer block and 
the execution of the correlated subquery block. This strategy is 
efficient only in cases where there are few duplicates in the cor- 
relation attribute, and independent executions of the subquery 
perform little common work. The aim o f  decorrelation is to 
“decouple ” the execution of the subqueiy block f rom that of the 
outer block, by rewriting the guely. 

Kim’s Method: Kim’s method [Kim821 produces the follow- 
ing rewritten query: 
Select D.name From Dept D, Temp(empcount, bldg) AS 

Where D.budget < 10000 and D.num-emps > Temp.empcount 
(Select Count(*), E.bui1ding From Emp E GroupBy E.building) 

and D.building = Temp.bldg 
The subquery is converted into a table expression with a 

GROUPBY clause, and the correlation predicate is moved to the 
outer block. There are three problems with this approach 
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[Dayal; 1987]

- Outerjoin takes care of buildings with 0 
employees

- Collapsed query -- better optimizations possible
- Still may lead to redundant work if multiple 

departments share a building
- Limited application

0 The transformation works only if the correlated predicate 
(on “building”) is a simple equality predicate. 
The computation in the subquery is no longer restricted by the 

correlated predicate, and this may lead to poor performance. 
The COUNT computation must be done for all buildings with 
employees, not just for those buildings assigned to low budget 
departments. 

0 The rewritten query may be semantically different from the 
original query! If a department D with budget = 500 and 
num-emps = 1 is located in a building B that has no em- 
ployees assigned to it, then department D’s name is a desired 
answer to the query. In the rewritten query, the Temp table 
expression will not have a tuple in it corresponding to (0, B); 
consequently, D’s name will not be generated as an answer 
to the query. This is called the COUNT bug [Kie84]. If the 
COUNT in the subquery were replaced by some other aggre- 
gate hnction like MAX, MIN, AVG, SUM, etc, the correlated 
subquery should retum a NULL value. If the subquery is 
involved in a predicate like IS NULL, then a similar problem 
arises. 

Dayal’s Method: The solution to the COUNT bug requires the 
introduction of an outer-join operator. Dayal’s method[Day87] 
merges the two query blocks using the left outer-join (LOJ) 
operator to produce a transformed query of the form: 
Select D.name 
From DEPT D LOJ EMP E On (D.building = E.building) 
Where D.budget < 10000 GroupBy D.[key] 
Having D.num-emps > Count(E.[key]) 

There are three problems with this transformation: 
To preserve the duplicate semantics of the query result, the 

transformed query is grouped by some key of the Dept relation. 
If there are several department tuples with the same value for 
the building column, there may be a repetition of aggregate 
computation. In other words, whenever the correlated column 
(in this case, Dept.building) is not a key, there may be repeated 
computation. 

0 Since the jodouter-join of all involved relations is per- 
formed first, the size of the set to be grouped might be much 
larger than in the case of Kim’s strategy, potentially leading 
to a significant performance degradation. 

0 The strategy works only for linearly structured queries with 
SELECT and GROUPBY constructs. 

GansWong’s  Method: Ganski and Wong proposed a 
method [GW87] that projects a unique collection of correlation 
values into a temporary relation. The temporary relation is then 
used to decorrelate the subquery using an outerjoin. However, 
many practical details were not considered, and the method is 
not applicable to non-linear correlated queries. This method is 
a special case of the magic decorrelation algorithm presented in 
this paper; consequently, we shall not elaborate further on it. 

2.1 Magic Decorrelation 
A general SQL decorrelation algorithm is difficult to de- 

sign because of the practical details that need to be handled. 
Complex queries could be hierarchical (for example, a sub- 
queryhiew with a UNION operator), or could involve common 
subexpressions. Correlations can occur not merely in simple 
predicates, but also within complex expressions involving mul- 
tiple correlated values. Correlations can also span multiple 

levels of query blocks. There are also factors that could make 
it difficult to decorrelate parts of a query. For example, if a 
subquery is existential or universal (corresponding to the SQL 
constructs ANY and ALL respectively), it is not possible to 
directly convert the subquery to a table expression with join 
operators (as is required by the existing decorrelation methods). 
All the same, it may be desirable to decorrelate the query “as 
much as possible”. Magic decorrelation deals with all these 
situations; some of the details have been omitted in this paper 
but are explained in [SPL94]). 

Any correlated subquery block can be modeled as a function 
CS(x) whose parameters x are the correlation values. The func- 
tion returns a table which is then processed at the outer block 
level. In our example, the correlated subquery is a hnction 
that uses the value Dept.buiZding as a parameter, and retums 
a table containing a single tuple. The outer query block can be 
represented by the following abstract pseudo-code: 
foreach (x E X) { 

SubQuery Result = CS(x); 
Process(SubQueryResu1t);) 

where X represents the set of values with which the corre- 
lated subquery is invoked. The primary aim of decorrela- 
tion is to decouple the execution of CS from the execution 
of the outer query block. Consider some set XI, such that 
X C XI. Obviously, (z E X) implies (z E Xl) .  Let us 
defme a new table DS (i.e. “Decou led Subquery”) such that 
DS = {(x,y)Iz E XlAy E CS(z)f. Inotherwords,DScom- 
putes CS(x) for all values x in X1. Now consider the following 
version of the pseudo-code of the outer block 
foreach (x in X) { 

SubQueryResult = (yll(z1,yl) E D S A  x = XI}; 
Process(SubQueryResu1t);) 

The computation of D S  is decoupled from that of the outer 
block. Note that it is important to maintain the correlating 
relationship between the value of x in each pass through the loop, 
and the values selected from DS during that pass; the condition 
x = zl enforces this relationship. At this abstract level, three 
questions remain: (1) how does one computexl?, (2) how does 
one compute DS using XI?, and (3) how does one enforce the 
correlating relationship?. The magic decorrelation algorithm is 
based on this abstraction. The actual set X is computed and 
used as X1; obviously, there will be no unnecessary subquery 
computations. It is used as the outer relation in a left outer-join 
to compute the decoupled subquery DS. The result of applying 
magic decorrelation to the example query is shown below. 

Create View Supp-Dept As (Select name, building, num-emps 

Create View Magic AS (Select Distinct building From Supp-Dept); 
Create View Decorr-SubQuery (building, count) AS 

From Dept Where budget < 10000); 

(Select M.building, Count(*) 
From Magic M, Emp E Where M.building = E.building 
GroupBy M.building ); 

Create View BugRemoval(building, count) AS 
(Select M.building, coalesce(E.count, 0) 
From Magic M LOJ Decorr-SubQuery D on (M.building = D.building) 

Select S.name From Supp-Dept S ,  BugRemoval B 
Where S.building = B.building and S.num-emps > B.count 
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Abstract 
Complex queries used in decision support applications use multiple 

correlated subqueries and table expressions, possibly across several 
levels of nesting. It is usually inejicient to directly execute a correlated 
query; consequently, algorithms have been proposed to decorrelate 
the query, i.e. to eliminate the correlation by rewriting the quev. 
This paper explains the issues involved in decorrelation, and surveys 
existing algorithms. It presents an eficient and flexible algorithm 
called magic decorrelation which is superior to existing algonthms 
both in terms of the generality of application, and the eflciency of 
the rewritten quely. The algorithm is described in the context of its 
implementation in the Starburst Extensible Database System, and its 
performance is compawd with other decomlation techniques. The 
paper also explains why magic decorrelation is not merely applicable, 
but crucial in a parallel database system. 

1 Introduction 
The concept of correlation in SQL is similar to the use 

of non-local variables in block-structured programming lan- 
guages. The processing of correlated queries is important be- 
cause (a) many decision support applications use correlation, 
(b) correlation is a convenient programming idiom for many 
SQL programmers (closely mimicking a function invocation 
paradigm), and (c) correlated queries are often created “auto- 
matically” by application generators that translate queries from 
application domain-specific languages into SQL. The TPC-D 
decision support benchmark [TPC-D94] of seventeen queries 
includes two correlated queries, recognizing the importance of 
correlation. 

In an early relational DBMS like System R [SACLP79], a 
correlated sub-query was executed in a tuple-at-a-time fashion 
(nested iteration). The same approach is still used in current 
database systems. Since an equivalent set-oriented execution 
strategy might perform orders of magnitude better, there has 
been more than a decade of research that aims to “decorre- 
late” queries, i.e. to eliminate the correlations by rewriting the 
queries into a form that permits set-oriented execution. How- 
ever, existing decorrelation algorithms work only on specific 
kinds of correlated queries, and the rewritten queries are some- 
times inefficient. Some algorithms can even produce incorrect 
results. A practical decorrelation algorithm needs to work cor- 
rectly on arbitrarily complex queries, and the resulting query 
should be efficient to execute. To the best of our knowledge, 
ours is the first algorithm to satisfy these criteria. Such an algo- 
rithm has become all the more crucial due to the recent interest 
in using parallel database systems for complex decision support 
applications. In fact, processing correlated queries is consid- 
ered one of the most challenging current problems in parallel 
query processing[Gra95]. 

1.1 Contributions 
We explain the issues involved in decorrelation, and present 

a survey of other proposed decorrelation methods. We de- 
velop a query rewrite algorithm framework that decorrelates 

arbitrary SQL queries. The algorithm is similar to the magic 
sets rewriting transformation, as applied to non-recursive rela- 
tional queries [MFPR90]. Consequently, our algorithm is called 
magic decorrelation. The algorithm framework is extensible, 
and permits various implementations to provide various “de- 
grees” of decorrelation as required by different database system 
environments (especially parallel environments). We describe a 
specific implementation of magic decorrelation in the Starburst 
Extensible Database System [HCL+90]. We compare the per- 
formance of magic decorrelation with other known techniques 
for evaluating a correlated query. Finally, we discuss why our 
decorrelation algorithm is not merely applicable, but is crucial 
in a parallel database environment. 

2 Explaining Decorrelation 
In a correlated SQL query, values from an outer query block 

are accessed inside a nested subquery block. Consider various 
evaluation strategies for an example based on the familiar EMP 
and DEPT relations. Each employee is assigned to a building 
in which helshe works. Each department is situated in a build- 
ing, but may have employees in other buildings as well. The 
query finds those departments of low budget that have more 
employees than there are employees working in the building in 
which the department is located. Note that the correlated value 
DEPTbuilding is used inside its subquery. 
Select D.name From Dept D 
Where D.budget < 10000 and D.num-emps > 

(Select Count(*) From Emp E Where D.building = E.building) 
Nested Iteration: The subquery is invoked once for every 

DEPT tuple (whose budget is less than 10000) in the outer 
query block. The table EMP may not have an index on the 
building column; an entire table scan access will be required 
for every low-budget department tuple. Further, if there are 
duplicate values of DEPT.building, the subquery invocations 
will perform redundant work. 

A nested iteration execution is not set-oriented, because there 
is a “coupling” between each value from the outer block and 
the execution of the correlated subquery block. This strategy is 
efficient only in cases where there are few duplicates in the cor- 
relation attribute, and independent executions of the subquery 
perform little common work. The aim o f  decorrelation is to 
“decouple ” the execution of the subqueiy block f rom that of the 
outer block, by rewriting the guely. 

Kim’s Method: Kim’s method [Kim821 produces the follow- 
ing rewritten query: 
Select D.name From Dept D, Temp(empcount, bldg) AS 

Where D.budget < 10000 and D.num-emps > Temp.empcount 
(Select Count(*), E.bui1ding From Emp E GroupBy E.building) 

and D.building = Temp.bldg 
The subquery is converted into a table expression with a 

GROUPBY clause, and the correlation predicate is moved to the 
outer block. There are three problems with this approach 
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Say we had a function CS(x)
- x is a building
- CS(x) returns the number of 

employees in that building

Further, let’s say the function is a “table”

TEMP(x, CS_of_x), with x as the key

Can write the query as:

select D.name from Dept D, TEMP
where D.budget < 1000 and 

D.num_emps > TEMP. CS_of_x and
D.building = TEMP.x

Just need to figure out how to compute TEMP
e.g.,
with TEMP as 

(select E.building, count(*) as CS_of_x
from Emp E
group by E.building)

Not efficient: computes the counts for
all buildings, not just the necessary one

Also: doesn’t handle buildings with 0 employees
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Abstract 
Complex queries used in decision support applications use multiple 

correlated subqueries and table expressions, possibly across several 
levels of nesting. It is usually inejicient to directly execute a correlated 
query; consequently, algorithms have been proposed to decorrelate 
the query, i.e. to eliminate the correlation by rewriting the quev. 
This paper explains the issues involved in decorrelation, and surveys 
existing algorithms. It presents an eficient and flexible algorithm 
called magic decorrelation which is superior to existing algonthms 
both in terms of the generality of application, and the eflciency of 
the rewritten quely. The algorithm is described in the context of its 
implementation in the Starburst Extensible Database System, and its 
performance is compawd with other decomlation techniques. The 
paper also explains why magic decorrelation is not merely applicable, 
but crucial in a parallel database system. 

1 Introduction 
The concept of correlation in SQL is similar to the use 

of non-local variables in block-structured programming lan- 
guages. The processing of correlated queries is important be- 
cause (a) many decision support applications use correlation, 
(b) correlation is a convenient programming idiom for many 
SQL programmers (closely mimicking a function invocation 
paradigm), and (c) correlated queries are often created “auto- 
matically” by application generators that translate queries from 
application domain-specific languages into SQL. The TPC-D 
decision support benchmark [TPC-D94] of seventeen queries 
includes two correlated queries, recognizing the importance of 
correlation. 

In an early relational DBMS like System R [SACLP79], a 
correlated sub-query was executed in a tuple-at-a-time fashion 
(nested iteration). The same approach is still used in current 
database systems. Since an equivalent set-oriented execution 
strategy might perform orders of magnitude better, there has 
been more than a decade of research that aims to “decorre- 
late” queries, i.e. to eliminate the correlations by rewriting the 
queries into a form that permits set-oriented execution. How- 
ever, existing decorrelation algorithms work only on specific 
kinds of correlated queries, and the rewritten queries are some- 
times inefficient. Some algorithms can even produce incorrect 
results. A practical decorrelation algorithm needs to work cor- 
rectly on arbitrarily complex queries, and the resulting query 
should be efficient to execute. To the best of our knowledge, 
ours is the first algorithm to satisfy these criteria. Such an algo- 
rithm has become all the more crucial due to the recent interest 
in using parallel database systems for complex decision support 
applications. In fact, processing correlated queries is consid- 
ered one of the most challenging current problems in parallel 
query processing[Gra95]. 

1.1 Contributions 
We explain the issues involved in decorrelation, and present 

a survey of other proposed decorrelation methods. We de- 
velop a query rewrite algorithm framework that decorrelates 

arbitrary SQL queries. The algorithm is similar to the magic 
sets rewriting transformation, as applied to non-recursive rela- 
tional queries [MFPR90]. Consequently, our algorithm is called 
magic decorrelation. The algorithm framework is extensible, 
and permits various implementations to provide various “de- 
grees” of decorrelation as required by different database system 
environments (especially parallel environments). We describe a 
specific implementation of magic decorrelation in the Starburst 
Extensible Database System [HCL+90]. We compare the per- 
formance of magic decorrelation with other known techniques 
for evaluating a correlated query. Finally, we discuss why our 
decorrelation algorithm is not merely applicable, but is crucial 
in a parallel database environment. 

2 Explaining Decorrelation 
In a correlated SQL query, values from an outer query block 

are accessed inside a nested subquery block. Consider various 
evaluation strategies for an example based on the familiar EMP 
and DEPT relations. Each employee is assigned to a building 
in which helshe works. Each department is situated in a build- 
ing, but may have employees in other buildings as well. The 
query finds those departments of low budget that have more 
employees than there are employees working in the building in 
which the department is located. Note that the correlated value 
DEPTbuilding is used inside its subquery. 
Select D.name From Dept D 
Where D.budget < 10000 and D.num-emps > 

(Select Count(*) From Emp E Where D.building = E.building) 
Nested Iteration: The subquery is invoked once for every 

DEPT tuple (whose budget is less than 10000) in the outer 
query block. The table EMP may not have an index on the 
building column; an entire table scan access will be required 
for every low-budget department tuple. Further, if there are 
duplicate values of DEPT.building, the subquery invocations 
will perform redundant work. 

A nested iteration execution is not set-oriented, because there 
is a “coupling” between each value from the outer block and 
the execution of the correlated subquery block. This strategy is 
efficient only in cases where there are few duplicates in the cor- 
relation attribute, and independent executions of the subquery 
perform little common work. The aim o f  decorrelation is to 
“decouple ” the execution of the subqueiy block f rom that of the 
outer block, by rewriting the guely. 

Kim’s Method: Kim’s method [Kim821 produces the follow- 
ing rewritten query: 
Select D.name From Dept D, Temp(empcount, bldg) AS 

Where D.budget < 10000 and D.num-emps > Temp.empcount 
(Select Count(*), E.bui1ding From Emp E GroupBy E.building) 

and D.building = Temp.bldg 
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0 The transformation works only if the correlated predicate 
(on “building”) is a simple equality predicate. 
The computation in the subquery is no longer restricted by the 

correlated predicate, and this may lead to poor performance. 
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Where S.building = B.building and S.num-emps > B.count 
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Abstract: SQL-99 allows for nested subqueries at nearly all places within a query.
From a user’s point of view, nested queries can greatly simplify the formulation of
complex queries. However, nested queries that are correlated with the outer queries
frequently lead to dependent joins with nested loops evaluations and thus poor perfor-
mance.

Existing systems therefore use a number of heuristics to unnest these queries, i.e.,
de-correlate them. These unnesting techniques can greatly speed up query processing,
but are usually limited to certain classes of queries. To the best of our knowledge
no existing system can de-correlate queries in the general case. We present a generic
approach for unnesting arbitrary queries. As a result, the de-correlated queries allow
for much simpler and much more efficient query evaluation.

1 Introduction

Subqueries are frequently used in SQL queries to simplify query formulation. Consider
for our running examples the following schema:

• students: {[id, name, major, year, . . . ]}

• exams: {[sid, course, curriculum, date, . . . ]}

Then the following is a nested query to find for each student the best exams (according to
the German grading system where lower numbers are better):

Q1: select s.name,e.course

from students s,exams e

where s.id=e.sid and

e.grade=(select min(e2.grade)

from exams e2

where s.id=e2.sid)

Conceptually, for each student, exam pair (s, e) it determines, in the subquery, whether or
not this particular exam e has the best grade of all exams of this particular student s.

From a performance point of view the query is not so nice, as the subquery has to be re-
evaluated for every student, exam pair. From a technical perspective the query contains a
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dependent join, i.e., a nested loop join where the evaluation of the right hand side depends
on the current value of the left-hand side. These joins are highly inefficient, and lead to (at
least) quadratic execution time.

Database management systems (DBMSs) therefore internally rewrite the query to elimi-
nate the correlation. A SQL representation of this rewrite would look like this:

Q1’: select s.name,e.course

from students s,exams e,

(select e2.sid as id, min(e2.grade) as best

from exams e2

group by e2.sid) m

where s.id=e.sid and m.id=s.id and

e.grade=m.best

Here, the evaluation of the subquery no longer depends on the values of s, and thus regular
joins can be used. This kind of unnesting is very important for good query performance,
but existing techniques cannot handle arbitrary queries. For example the subsequent SQL
query is very hard to de-correlate. It determines the exams that a CS or Games Engineering
student should repeat in the future because he or she underachieved in comparison to the
average grade of exams taken by him/her or taken by elder peers:

Q2:

select s.name, e.course

from students s, exams e

where s.id=e.sid and

(s.major = ’CS’ or s.major = ’Games Eng’) and

e.grade>=(select avg(e2.grade)+1 --one grade worse

from exams e2 --than the average grade

where s.id=e2.sid or --of exams taken by

(e2.curriculum=s.major and --him/her or taken

s.year>e2.date)) --by elder peers

To the best of our knowledge, no existing system can unnest such a query. And indeed,
unnesting this query is hard: Standard unnesting techniques rely upon the fact that at-
tributes available within the query can be used to substitute the free variables determined
by the outer query. This is not the case here, s.year for example cannot be substituted.

So clearly this kind of complicated correlated query will be more expensive to evaluate
than a more simple subquery. However, as we will show, it is indeed possible to unnest
even this query. We will have to spend extra effort to derive the value of s.year and
s.major, but we can do so without a dependent join. And the extra effort we will have
to spend is bound by the cost of the dependent join. Most queries will be dramatically
more efficient in the decorrelated form, in the worst case we will have the some join effort.
That is, our unnesting approach will definitely not incur higher costs than the straight-
forward nested loops evaluation – and in the majority of cases improve the performance
dramatically, often by several orders of magnitude. Furthermore, even the worst case is
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X.avg_grade_plus_1 
and X.s-id = s.id
and X.s-year = s.year
and X.s-major = s.major

This is a scalar function with three 
parameters: s.id, s.year, s.major

What if we had a table:
X(s-id, s-year, s-major, avg_grade_plus_1)
with primary key (s-id, s-year, s-major) ?

NOTE: In general, a scalar function
can be seen as a “lookup table” with 
the parameter(s) as the key
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joins can be used. This kind of unnesting is very important for good query performance,
but existing techniques cannot handle arbitrary queries. For example the subsequent SQL
query is very hard to de-correlate. It determines the exams that a CS or Games Engineering
student should repeat in the future because he or she underachieved in comparison to the
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from exams e2 --than the average grade
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s.year>e2.date)) --by elder peers

To the best of our knowledge, no existing system can unnest such a query. And indeed,
unnesting this query is hard: Standard unnesting techniques rely upon the fact that at-
tributes available within the query can be used to substitute the free variables determined
by the outer query. This is not the case here, s.year for example cannot be substituted.
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even this query. We will have to spend extra effort to derive the value of s.year and
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to spend is bound by the cost of the dependent join. Most queries will be dramatically
more efficient in the decorrelated form, in the worst case we will have the some join effort.
That is, our unnesting approach will definitely not incur higher costs than the straight-
forward nested loops evaluation – and in the majority of cases improve the performance
dramatically, often by several orders of magnitude. Furthermore, even the worst case is
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This is a scalar function with three 
parameters: s.id, s.year, s.major

What if we had a table:
X(s-id, s-year, s-major, avg_grade_plus_1)
with primary key (s-id, s-year, s-major) ?

NOTE: In general, a scalar function
can be seen as a “lookup table” with 
the parameter(s) as the key

How to compute X?

X 
==
select s.id, s.year, s.major, 

avg(e2.grade) + 1 as avg_grade_plus_1
from exams e2, students s
where s.id = e2.sid or 

(e2.curriculum = s.major and
s.year > e2.date))

group by s.id, s.year, s.major

Can optimize this further
Only need to do this for
students in CS or Games Eng, and
that have at least one exam



} Similar to “magic sets” or “sideways information passing”

} In essence, duplicate the input tables sufficiently

σe.grade=m

Bs.id=d.id

Bs.id=e.sid

students s exams e

Γd.id;m:min(e2.grade)

σd.id=e2.sid

χd.id:e2.sid

exams e2

Figure 8: Query Q1, Optional Transformation Step 6 (decoupling both sides)

Πs.name,e.course

Be.grade>m+1∧(d.id=s.id∨(d.year>e.date∧e.curriculum=d.major))

Bs.id=e.sid

σs.major=...

students s

exams e

Γd.id,d.year,d.major;m:avg(e2.grade)

Bd.id=e2.sid∨(d.year>e2.date∧e2.curriculum=

Πd.id:s.id,d.year:s.year,d.major:s.major exams e2

Figure 9: Query Q2, Optimized Form with Sideways Information Passing
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This seems wrong to me.
No reason why 
e.curriculum = d.major
or d.year > e.date

The only join conditions
there should be:
e.grade > m+1 and 
d.id = s.id and 
d.major = s.major and
d.year = s.year

students in CS or Games Eng, and
that have at least one exam



} Dependent Join Notation
◦ For every tuple t1 in T1, for every tuple t2 in T2(t1):

� Output (t1, t2), if p(t1, t2) is True

} Apply notation

◦ For every tuple r in R, compute E(r), and then “join” with {r} using JN

◦ If JN = Crossproduct: then produce a tuple each for each t in E(r) -- as (r, t)

� An inner join will have an additional predicate to check on (r, t)

◦ If JN = Outerjoin: then in addition, if E(r) = empty, produce (r, NULLs)

◦ If JN = Semijoin: produce just (r) if E(r) is NOT empty

◦ If JN = Antijoin: produce just (r) if E(r) is empty

most likely a win, as eliminating dependent joins allows for more efficient join implemen-
tations. Our contribution can thus be seen as a universally applicable technique for unnest-
ing any kind of nested subquery – in contrast to the special case treatments published and
implemented so far. The universal unnesting technique has been fully implemented in
our main-memory database system HyPer [KN11] and can be experienced via our web
interface hyper-db.de that visualizes the resulting query plans.

And the typical performance gains of query unnesting are immense: Depending on the
query, it replaces an O(n2) algorithm (nested loop join) with an O(n) algorithm (hash
join, joining keys). Furthermore the dependent side is executed for every outer tuple in
the nested case, but only once in the unnested case. On large data sets it is easy to get a
factor 10 or even 100 performance improvement by unnesting, which makes unnesting an
essential technique for query compilation. There are a few cases where nested evaluation
is actually beneficial, in particular if the outer side is very small and the inner side can be
evaluated using an index lookup, but that should be triggered by a conscious decision of
the query optimizer, not by the way the query is formulated. By default, queries should be
unnested completely.

The rest of this paper is structured as follows: We first define the notation used in this pa-
per in Section 2. Then, in Section 3 the algebraic unnesting transformations are specified.
Section 4 covers further optimisation rules that are applicable in special cases (e.g., when
functional dependencies can be inferred). Section 5 is devoted to a “cursory” performance
evaluation that analyses some other well-known DBMSs to our HyPer system which in-
corporates the unnesting described. Finally, we survey the related work and conclude the
paper.

2 Preliminaries

Before looking at the unnesting techniques, we briefly repeat some definitions for rela-
tional algebra, as the notation is not standardized beyond the basic operators.

First, we have the regular (inner) join, which is simply defined as cross product followed
by a selection:

T1 Bp T2 := σp(T1 A T2).

It computes the combination of all matching entries from T1 and T2. It is used in most
SQL queries, but its definition is not sufficient in the presence of correlated subqueries.
The subquery has to be evaluated for every tuple of the outer query, therefore we define
the dependent join as

T1 Cp T2 := {t1 ◦ t2|t1 ∈ T1 ∧ t2 ∈ T2(t1) ∧ p(t1 ◦ t2)}.
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selection (filter) and projection: GA,FR stands for a GROUP BY over 
relation R with a list A of grouping columns and a set F of aggregate 
functions that are applied to each group. π[S]R denotes a projection 
of relation R onto the set of columns in S. σ[p]R in turn represents a 
selection on relation R where p is used as a predicate to filter quali-
fying rows from R. For ease of presentation, we use CT(1) as a 
shorthand for a constant table which returns one row and no col-
umns.Our algebraic formulation of subqueries is based on the gen-
eral idea of a parameterized relational expression (PRE) and the 
Apply operator, as described in [9].  A PRE is simply a relational 
expression that has free variables or parameters, so it yields a rela-
tional result when values for those parameters are provided.  It is 
effectively a function.  The Apply operator repeatedly invokes a 
PRE with a series of parameters values and collects the results of 
these multiple invocations.  Formally, 

R ApplyJN E(r) = UAr ∈ R ({r} JN E(r)). 

Note that Apply does not take two relational inputs, but only one 
relational input R that provides the set of parameter values, on 
which PRE E(r) is applied.  Apply can use different logics to com-
bine each row r with the result of E(r), specified by JN above.  It 
supports the common join types such as inner, outer, and semijoins 
which we briefly review here: 

An inner join (R JNp S) is defined as the subset of the Cartesian 
product of R and S where all tuples that do not satisfy the predicate 
p are filtered out. 

A left outer join (R LOJp S) includes the result of an inner join be-
tween R and S with join condition p, plus all the unmatched tuples 
of R extended with NULL values for columns of S. A right outer 
join on the other hand contains the unmatched tuples of S along with 
the result of the inner join.  

A semijoin (R SJp S) is defined as all the tuples of R that match at 
least one tuple of S on the predicate p, while an antijoin (R ASJp S) 
is defined as the tuples of R that match no tuples of S on the predi-
cate p. Naturally, (R SJp S) UA (R ASJp S) = R.  

For example, an Apply operator can use antijoin logic if it wants to 
preserve row r when the result of E(r) is empty.   

The Apply operator maps well to the nested loops execution strategy 
with correlated parameters, but we treat it here as a logical operators 
with the semantic definition described above. 

We illustrate the use of Apply with a simple SQL subquery example.  
Say you want to list all your ORDERS, and include the CUS-
TOMER name.  It is convenient to have a function that takes a cus-
tomer key and returns the name of the CUSTOMER.  Such function 
can be written as follows 

(SELECT C_NAME FROM CUSTOMER  
WHERE C_CUSTKEY = O_CUSTKEY), 

where the free variable O_CUSTKEY is the argument of the func-
tion – there is no explicit syntax to bind free variables in SQL, so 
binding variables in subqueries is done simply by name.  Free vari-
ables will be shown in bold throughout the paper.  We can use this 
“name extraction function” to report all ORDERS with the name of 
the CUSTOMER as follows 

SELECT *, (SELECT C_NAME  
FROM CUSTOMER  

WHERE C_CUSTKEY = O_CUSTKEY) 
FROM ORDERS 

An additional issue to note here is that we are crossing a bridge 
between relational expressions and scalar domains.  The subquery is 
a relational expression, but it is used in a context that expects a sca-
lar value, i.e. the SQL SELECT clause.  The rules to bridge this 
relational/scalar divide are the following: 

• If the relational result of the subquery is empty, then its scalar 
value is NULL. 

• If the relational result is a single row {a}, then the scalar value 
is a. 

• If the relational result has more than one row, then its scalar 
value is undefined and a run-time error is raised. 

For the sake of this example, assume that C_CUSTKEY is a key of 
CUSTOMER, but O_CUSTKEY is nullable, or there is no declared 
foreign-key constraint.  Then the subquery can return at most one 
row.  We represent this query algebraically as: 

ORDERS ApplyOJ (π [C_NAME] σ [C_CUSTKEY = 
O_CUSTKEY] CUSTOMER) 

Note that this expression outputs exactly the rows from ORDERS, 
adding an extra column for each row, with the result of the scalar 
value of the subquery.  

2.2 Language surface 
In the early days, the SQL block with its SELECT, FROM, and 
WHERE clauses was central to the language and there were many 
syntactic restrictions around the use of multiple SQL blocks in a 
single query, including subqueries.  Current SQL implementations 
allow the use of “sub-selects” in a fully composable way.  There are 
two cases to distinguish: 

• A SQL block is used where a relational value such as a table is 
expected, in the FROM clause.  Such a “sub-select” is called a 
derived table.  This is simply about composability of relational 
expressions and we don’t consider it further in this paper. 

• A SQL block is used where a scalar expression is expected, 
such as the SELECT or the WHERE clause.  Such “sub-select” 
is called a subquery.  This subquery is called correlated if it 
has free variables that are provided by the enclosing query.  
Unlike derived tables, subqueries require going across rela-
tional and scalar domains. 

Subqueries are introduced in scalar expressions in SQL in the fol-
lowing ways: 

• Existential test.  These use keywords EXISTS and NOT EX-
ISTS and test whether the result of a subquery is empty.  The 
result is of type Boolean, either TRUE or FALSE.  For exam-
ple: 

EXISTS(SELECT * FROM ORDERS  
WHERE L_SHIPDATE < O_ORDERDATE). 

• Quantified comparison.  These test whether a particular com-
parison cmp holds for values returned by a subquery subq.  The 
forms are <cmp> ALL <subq>, and <cmp> ANY <subq>.  The 
result is again of type Boolean, but unlike existential subque-
ries, quantified comparisons can return TRUE, FALSE or 
UNKNOWN (when null values are involved in the compari-
son).  For example: 

 
L_SHIPDATE > ANY( 
SELECT O_ORDERDATE 
FROM ORDERS 
WHERE L_ORDERKEY = O_ORDERKEY). 
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} Dependent Join Notation
◦ For every tuple t1 in T1, for every tuple t2 in T2(t1):

� Output (t1, t2), if p(t1, t2) is True

} Dependent join notation can also be extended to handle the other types of 
joins

} Group by operator
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Here, the right hand side is evaluated for every tuple of the left hand side. We denote
the attributes produced by an expression T by A(T ), and free variables occurring in an
expression T by F(T ). To evaluate the dependent join, F(T2) ⊆ A(T1) must hold, i.e.,
the attributes required by T2 must be produced by T1.

Note that in this paper we sometimes explicitly mention natural join in the join predicate
to simplify the notation. We assume that all relations occuring in a query will have unique
attribute names, even if they reference the same physical table, thus A B B ≡ A A B.
However, if we explicitly reference the same relation name twice, and call for the natu-
ral join, then the attribute columns with the same name are compared, and the duplicate
columns are projected out. Consider, for example:

(AB C)Bp∧natural join C (B B C)

Here, the top-most join checks both the predicate p and compares the columns of C that
come from both sides (and eliminates one of the two copies of C’s columns).

For semi joins (N), anti joins (T), and outer joins (E, K) we define the dependent variants
accordingly (O, U,F,L), again the right-hand side is evaluated for every tuple of the left-
hand side.

Besides the join operators, we have the group by operator as additional important operator

ΓA;a:f (e) := {x ◦ (a : f(y))|x ∈ ΠA(e) ∧ y = {z|z ∈ e ∧ ∀a ∈ A : x.a = z.a}}

It groups its input e (i.e., a base relation or a relation computed from another algebra
expression) by A, and evaluates one (or more comma separated) aggregation function(s)
to compute aggregated attributes. If A is empty, just one aggregation tuple is produced –
as in SQL with a missing group by-clause.

We can evaluate functions (and thus construct new attributes) by evaluating the map oper-
ator

χa:f (e) := {x ◦ (a : f(x))|x ∈ e}.

Besides these, we need the regular relational algebra operators (σ,A,Π, ρ,∪,∩, \). Using
these operators, we can translate SQL queries into relational algebra.

In the following we will often have to compare sets of attributes. As a shorthand notation,
we define the attribute comparison operator =A as

t1 =A t2 := ∀a∈A : t1.a = t2.a.

Note that unless indicated otherwise this operator has is semantics, i.e., it compares NULL
values as equal.
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} Rules that allow removing the “dependence” in some cases
◦ The other paper has a list of rules like this

3 Unnesting

The algebraic representation of a query with correlated subqueries (initially) results in a
dependent join, i.e., an expression of the form

T1 Cp T2.

As already mentioned, these dependent joins are very unfortunate from a performance
perspective, and we want to eliminate them. Fundamentally, we manipulate the algebraic
expression until the right hand side no longer depends on the left hand side, and thus
the dependent join can be transformed into a regular join. We achieve this using two
techniques that we will discuss in the following. First, we try a simple unnesting, that
handles cases where dependencies are created just for syntactic reasons. If that is not
sufficient to unnest the query, we use the general unnesting framework that can handle
arbitrary complex queries.

3.1 Simple Unnesting

Sometimes queries contain correlated subqueries just because they are simpler to formulate
in SQL. An example for that is TPC-H Query 21, which contains a construct similar to the
fragment

select ...

from lineitem l1 ...

where exists (select *
from lineitem l2

where l2.l_orderkey = l1.l_orderkey)

...

This is translated into an algebra expression of the form

l1 O (σl1.okey=l2.okey(l2))

It is easy to see that this fragment can be unnested by moving the dependent predicate up
the tree, transforming the dependent join into a regular join:

l1 Nl1.okey=l2.okey (l2)

In general the simple unnesting phase moves all dependent predicates up the algebra tree as
far as possible, potentially beyond joins, selections, group by, etc., until it reaches a point
where all its attributes are available from the input. If this happens the dependent join can
be transformed into a regular join, as shown by the equivalence explained above. Note
that this predicate pull-up happens purely for decorreleation reasons. Further optimization
steps might push (parts of) the predicate back down again to filter tuples early on.
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Note: SQL doesn’t have SEMIJOIN so
SQL representation can’t be simplified



} Push dependent joins down into the query until it can be simplified

} Requires duplication of expressions

3.2 General Unnesting

Predicate movement is very easy to implement and already sufficient to handle frequently
occuring simply nested queries. Therefore we try it first, but for the general case we need
a more complex approach: First, we translate the dependent join into a “nicer” dependent
join (i.e., one that is easier to manipulate), and second, we will push the new dependent
join down into the query until we can transform it into a regular join.

Thus, in the first step, we use the following equivalence

T1 Cp T2 ≡ T1 Bp∧T1=A(D)D (D C T2)

where D := ΠF(T2)∩A(T1)(T1).

At a first glance this transformation did not improve the query plan much, as we have
replaced one dependent join by a regular join and another dependent join. However, at
a second glance this transformation is very helpful: In the original expression, we had
to evaluate T2 for every tuple of T1, which could be millions. Therefore, in the second
expression, we first compute the domain D of all variable bindings, evaluate T2 only once
for every distinct variable binding, and then use a regular join to match the results to the
original T1 value. If there are a lot of duplicates, this already greatly reduces the number
of invocations of T2.

This benefit can be illustrated by considering our first example query for determining the
best exam(s) for every student. The straightforward evaluation computes the student’s best
grade for every exam he or she has ever taken, i.e.:

σe.grade=m((students sBs.id=e.sid exams e)C
(Γ∅;m:min(e2.grade)(σs.id=e2.sid exams e2)))

The equivalence rule allows to restrict the computation of the best grades to each student
– instead of computing it redundantly for each (student, exam)-pair. Thus, the dependent
join is executed on the projection of the students’ id only, i.e.:

. . .Πd.id:s.id((students sBs.id=e.sid exams e)C
(Γ∅;m:min(e2.grade)(σd.id=e2.sid exams e2)))

The application of the “Push-Down”-rule for our example query is shown in Figure 1
where the entire query evaluation plan is graphically depicted. In a way, this constitutes
a side-ways information passing from the outer (left) join argument to the inner (right)
argument in order to eliminate redundancy in the evaluation. Therefore, it is important
to implement the projection in the true, duplicate-eliminating semantics and not in the
duplicate-preserving multi-set semantics of SQL.

Even more importantly, we have transformed a generic dependent join into a dependent
join of a set (i.e., a relation without duplicates). Knowing that D contains no duplicates
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helps in moving the dependent join further down into the query. In the following we will
assume that any relation named D is duplicate free, and in the following equivalences we
only consider dependent joins where the left hand side is a set. However, we emphasize
that this optimization technique for nested queries does preserve the SQL multi-set seman-
tics. All duplicates – contained in the base relations as well as generated by the query –
are retained in the optimized plans; only the set D that constrains the evaluation work of
the nested subquery is duplicate free. If duplicates are to be removed (because of a distinct
clause in the query) we can further exploit this by pushing duplicate elimination down into
the query evaluation plan.

The ultimate goal of our dependent join push-down is to reach a state where the right hand
side no longer depends on the left hand side, i.e.,

D C T ≡ D B T if F(T ) ∩A(D) = ∅.

In this case we still have to perform a join, but at least we can perform a regular join
instead of the highly inefficient dependent join. And, as we will see, we can always reach
this state. An even nicer goal would be to reach a state where the resulting regular join can
be substituted by existing attributes, eliminating the join altogether. We will discuss that
in Section 4.

Having explained the start and the goal of our dependent join push down, we now look at
individual operators. For selections, a push-down is very simple:

D C σp(T2) ≡ σp(D C T2).

This transformation might look unusual, as we usually want to push selections down, but
that is besides the point of our unnesting transformation: We first push the dependent join
down as far as possible, until it can either be eliminated completely due to substitution,
or until it can be transformed into a regular join. Once all dependent joins have been
eliminated we can use the regular techniques like selection push-down and join reordering
to re-optimize the transformed query.

Pushing a dependent join down another join is more complex, as potentially both sides
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could depend upon the dependent join

D C (T1 Bp T2) ≡







(D C T1)Bp T2 : F(T2) ∩A(D) = ∅
T1 Bp (D C T2) : F(T1) ∩A(D) = ∅
(D C T1)Bp∧natural join D (D C T2) : otherwise.

If the values provided by the dependent join are only required on one side we push it to
the corresponding side, otherwise we wave to replicate it in both sides. Note that this
push-down rule is overly pessimistic, we can often simplify the parts below the join (see
Section 4), but we stick to the basic push-down for now. If we pushed the dependent join
to both sides we have to augment the join predicate such that both sides are matched on
the D values. Note that the replication is not a performance penalty relative to the original
expression, in both cases T1 and T2 are evaluated |D| times.

For outer joins we always have to replicate the dependent join if the inner side depends on
it, as otherwise we cannot keep track of unmatched tuples from the outer side.

D C (T1 Ep T2) ≡

{

(D C T1)Ep T2 : F(T2) ∩A(D) = ∅
(D C T1)Ep∧natural join D (D C T2) : otherwise.

D C (T1 Kp T2) ≡ (D C T1)Kp∧natural join D (D C T2).

Similar for semi join and anti join:

D C (T1 Np T2) ≡

{

(D C T1)Np T2 : F(T2) ∩A(D) = ∅
(D C T1)Np∧natural join D (D C T2) : otherwise.

D C (T1 Tp T2) ≡

{

(D C T1) Tp T2 : F(T2) ∩A(D) = ∅
(D C T1) Tp∧natural join D (D C T2) : otherwise.

When pushing the dependent join down a group-by operator, the group-operator must
preserve all attributes produces by the dependent join

D C (ΓA;a:f (T )) ≡ ΓA∪A(D);a:f (D C T )

Again, this makes use of the fact that D is a set.

The projection behaves similar to the group by operator

D C (ΠA(T )) ≡ ΠA∪A(D)(D C T )

The only missing operators are the set operations
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eterized execution.  A nested loop language is likely to be parseable 
directly into this algebraic form. 
The apply removal process is covered in Section 4 of this paper.  It 
eliminates the use of parameterization, which we identify with 
decorrelating.  The result is a relational expression that uses differ-
ent types of joins. 
The optimizer then explores the decorrelated relational expression 
and generates various alternatives with identical query semantics. 
We call this the logical level of query optimization. This step aims 
at producing enough interesting plan alternatives such that a good 
query plan is among them. The optimizer computes cost estimates 
for plans and picks the most cost-effective one. A sufficiently broad 
search space obviously is a prerequisite for good performance. 
Logical optimizations for subqueries are covered by Section 5 to 7 
where we discuss strategies for logical exploration of semijoin and 
antijoin, techniques to deal with subqueries in disjunctions, and 
some Group By scenarios.  
After exploration of the relational expression is complete, additional 
optimizations at the physical level help to further improve perform-
ance. These techniques such as batch sort or prefetch are discussed 
in Section 8.  

1.3  Subquery Execution Strategies  
The query optimizer explores different physical execution strategies 
for the various logical query plan alternatives. This step generates 
execution plan alternatives with different performance characteris-
tics. In the context of subquery optimization, the following execu-
tion strategies are possible: (1) navigational strategies, or (2) set-
oriented strategies. Navigational strategies rely on nested loop joins 
for implementation while two interesting classes of navigational 
strategies are conceivable, namely forward lookup and reverse 
lookup. Forward lookup starts processing the outer query and, as 
outer rows are being generated, invokes the subquery one outer row 
at a time. Reverse lookup in turn starts with the subquery and proc-
esses the outer query one subquery row at a time. Set-oriented proc-
essing finally requires that the query could be successfully decorre-
lated. If this is the case, set operations such as hash and merge join 
can implement the query. 

1.4 Challenges and Contributions 
Depending on the cardinalities of the outer query and the subquery 
as well as the physical design of the database, different subquery 
execution strategies may differ greatly in their performance charac-
teristics. This makes it a challenging topic for query optimization. 
This is reflected by the attention the area has received in previous 
work, e.g., [3, 4, 5, 6, 7, 8]. While [9] has specifically focused on 
optimization of subqueries with grouping at the logical level, this 
current paper takes a broader perspective on the problem. We do not 
limit the discussion to grouping, and we cover both the logical level 
and the physical level of plan generation. In particular, we investi-
gate subqueries introduced by existential or universal quantification. 
Throughout the paper, we discuss rewrite strategies for subqueries at 
the logical level and explain how this facilitates finding a good exe-
cution plan among navigational and set-oriented alternatives at the 
physical level. In Section 10, our experimental evaluation of differ-
ent subquery execution strategies with Microsoft SQL Server 2005 
investigates the different plan choices in quantitative terms. The 
experiments also assess the effectiveness of a cost-based optimiza-
tion approach in the presence of subqueries. 

2. ALGEBRAIC REPRESENTATION  
OF SUBQUERIES 
In this section we describe the algebraic representation of SQL sub-
queries.  Having an algebraic representation is beneficial because it 
abstracts the semantics of operations, making them independent of 
query language, data structures or specific execution strategies.  It 
also allows algebraic analysis and reasoning, including capturing 
reordering properties in the form of algebraic identities.  Finally, it 
fits well into algebraic query processors like that of SQL Server. 

2.1 Terminology 
The basics of our algebraic model were discussed in [9].  Here, we 
briefly review this formulation and go over a number of optimiza-
tions and issues not covered in our earlier work. Since we deal with 
SQL, all operators in this paper are bag-oriented and we assume no 
automatic removal of duplicates.  In particular, the union operator 
for most of the remainder of the paper is UNION ALL and we repre-
sent it using UA. Distinct union in turn is denoted as U. Besides 
union, we rely on the standard relational operators for grouping, 
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selection (filter) and projection: GA,FR stands for a GROUP BY over 
relation R with a list A of grouping columns and a set F of aggregate 
functions that are applied to each group. π[S]R denotes a projection 
of relation R onto the set of columns in S. σ[p]R in turn represents a 
selection on relation R where p is used as a predicate to filter quali-
fying rows from R. For ease of presentation, we use CT(1) as a 
shorthand for a constant table which returns one row and no col-
umns.Our algebraic formulation of subqueries is based on the gen-
eral idea of a parameterized relational expression (PRE) and the 
Apply operator, as described in [9].  A PRE is simply a relational 
expression that has free variables or parameters, so it yields a rela-
tional result when values for those parameters are provided.  It is 
effectively a function.  The Apply operator repeatedly invokes a 
PRE with a series of parameters values and collects the results of 
these multiple invocations.  Formally, 

R ApplyJN E(r) = UAr ∈ R ({r} JN E(r)). 

Note that Apply does not take two relational inputs, but only one 
relational input R that provides the set of parameter values, on 
which PRE E(r) is applied.  Apply can use different logics to com-
bine each row r with the result of E(r), specified by JN above.  It 
supports the common join types such as inner, outer, and semijoins 
which we briefly review here: 

An inner join (R JNp S) is defined as the subset of the Cartesian 
product of R and S where all tuples that do not satisfy the predicate 
p are filtered out. 

A left outer join (R LOJp S) includes the result of an inner join be-
tween R and S with join condition p, plus all the unmatched tuples 
of R extended with NULL values for columns of S. A right outer 
join on the other hand contains the unmatched tuples of S along with 
the result of the inner join.  

A semijoin (R SJp S) is defined as all the tuples of R that match at 
least one tuple of S on the predicate p, while an antijoin (R ASJp S) 
is defined as the tuples of R that match no tuples of S on the predi-
cate p. Naturally, (R SJp S) UA (R ASJp S) = R.  

For example, an Apply operator can use antijoin logic if it wants to 
preserve row r when the result of E(r) is empty.   

The Apply operator maps well to the nested loops execution strategy 
with correlated parameters, but we treat it here as a logical operators 
with the semantic definition described above. 

We illustrate the use of Apply with a simple SQL subquery example.  
Say you want to list all your ORDERS, and include the CUS-
TOMER name.  It is convenient to have a function that takes a cus-
tomer key and returns the name of the CUSTOMER.  Such function 
can be written as follows 

(SELECT C_NAME FROM CUSTOMER  
WHERE C_CUSTKEY = O_CUSTKEY), 

where the free variable O_CUSTKEY is the argument of the func-
tion – there is no explicit syntax to bind free variables in SQL, so 
binding variables in subqueries is done simply by name.  Free vari-
ables will be shown in bold throughout the paper.  We can use this 
“name extraction function” to report all ORDERS with the name of 
the CUSTOMER as follows 

SELECT *, (SELECT C_NAME  
FROM CUSTOMER  

WHERE C_CUSTKEY = O_CUSTKEY) 
FROM ORDERS 

An additional issue to note here is that we are crossing a bridge 
between relational expressions and scalar domains.  The subquery is 
a relational expression, but it is used in a context that expects a sca-
lar value, i.e. the SQL SELECT clause.  The rules to bridge this 
relational/scalar divide are the following: 

• If the relational result of the subquery is empty, then its scalar 
value is NULL. 

• If the relational result is a single row {a}, then the scalar value 
is a. 

• If the relational result has more than one row, then its scalar 
value is undefined and a run-time error is raised. 

For the sake of this example, assume that C_CUSTKEY is a key of 
CUSTOMER, but O_CUSTKEY is nullable, or there is no declared 
foreign-key constraint.  Then the subquery can return at most one 
row.  We represent this query algebraically as: 

ORDERS ApplyOJ (π [C_NAME] σ [C_CUSTKEY = 
O_CUSTKEY] CUSTOMER) 

Note that this expression outputs exactly the rows from ORDERS, 
adding an extra column for each row, with the result of the scalar 
value of the subquery.  

2.2 Language surface 
In the early days, the SQL block with its SELECT, FROM, and 
WHERE clauses was central to the language and there were many 
syntactic restrictions around the use of multiple SQL blocks in a 
single query, including subqueries.  Current SQL implementations 
allow the use of “sub-selects” in a fully composable way.  There are 
two cases to distinguish: 

• A SQL block is used where a relational value such as a table is 
expected, in the FROM clause.  Such a “sub-select” is called a 
derived table.  This is simply about composability of relational 
expressions and we don’t consider it further in this paper. 

• A SQL block is used where a scalar expression is expected, 
such as the SELECT or the WHERE clause.  Such “sub-select” 
is called a subquery.  This subquery is called correlated if it 
has free variables that are provided by the enclosing query.  
Unlike derived tables, subqueries require going across rela-
tional and scalar domains. 

Subqueries are introduced in scalar expressions in SQL in the fol-
lowing ways: 

• Existential test.  These use keywords EXISTS and NOT EX-
ISTS and test whether the result of a subquery is empty.  The 
result is of type Boolean, either TRUE or FALSE.  For exam-
ple: 

EXISTS(SELECT * FROM ORDERS  
WHERE L_SHIPDATE < O_ORDERDATE). 

• Quantified comparison.  These test whether a particular com-
parison cmp holds for values returned by a subquery subq.  The 
forms are <cmp> ALL <subq>, and <cmp> ANY <subq>.  The 
result is again of type Boolean, but unlike existential subque-
ries, quantified comparisons can return TRUE, FALSE or 
UNKNOWN (when null values are involved in the compari-
son).  For example: 
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selection (filter) and projection: GA,FR stands for a GROUP BY over 
relation R with a list A of grouping columns and a set F of aggregate 
functions that are applied to each group. π[S]R denotes a projection 
of relation R onto the set of columns in S. σ[p]R in turn represents a 
selection on relation R where p is used as a predicate to filter quali-
fying rows from R. For ease of presentation, we use CT(1) as a 
shorthand for a constant table which returns one row and no col-
umns.Our algebraic formulation of subqueries is based on the gen-
eral idea of a parameterized relational expression (PRE) and the 
Apply operator, as described in [9].  A PRE is simply a relational 
expression that has free variables or parameters, so it yields a rela-
tional result when values for those parameters are provided.  It is 
effectively a function.  The Apply operator repeatedly invokes a 
PRE with a series of parameters values and collects the results of 
these multiple invocations.  Formally, 

R ApplyJN E(r) = UAr ∈ R ({r} JN E(r)). 

Note that Apply does not take two relational inputs, but only one 
relational input R that provides the set of parameter values, on 
which PRE E(r) is applied.  Apply can use different logics to com-
bine each row r with the result of E(r), specified by JN above.  It 
supports the common join types such as inner, outer, and semijoins 
which we briefly review here: 

An inner join (R JNp S) is defined as the subset of the Cartesian 
product of R and S where all tuples that do not satisfy the predicate 
p are filtered out. 

A left outer join (R LOJp S) includes the result of an inner join be-
tween R and S with join condition p, plus all the unmatched tuples 
of R extended with NULL values for columns of S. A right outer 
join on the other hand contains the unmatched tuples of S along with 
the result of the inner join.  

A semijoin (R SJp S) is defined as all the tuples of R that match at 
least one tuple of S on the predicate p, while an antijoin (R ASJp S) 
is defined as the tuples of R that match no tuples of S on the predi-
cate p. Naturally, (R SJp S) UA (R ASJp S) = R.  

For example, an Apply operator can use antijoin logic if it wants to 
preserve row r when the result of E(r) is empty.   

The Apply operator maps well to the nested loops execution strategy 
with correlated parameters, but we treat it here as a logical operators 
with the semantic definition described above. 

We illustrate the use of Apply with a simple SQL subquery example.  
Say you want to list all your ORDERS, and include the CUS-
TOMER name.  It is convenient to have a function that takes a cus-
tomer key and returns the name of the CUSTOMER.  Such function 
can be written as follows 

(SELECT C_NAME FROM CUSTOMER  
WHERE C_CUSTKEY = O_CUSTKEY), 

where the free variable O_CUSTKEY is the argument of the func-
tion – there is no explicit syntax to bind free variables in SQL, so 
binding variables in subqueries is done simply by name.  Free vari-
ables will be shown in bold throughout the paper.  We can use this 
“name extraction function” to report all ORDERS with the name of 
the CUSTOMER as follows 

SELECT *, (SELECT C_NAME  
FROM CUSTOMER  

WHERE C_CUSTKEY = O_CUSTKEY) 
FROM ORDERS 

An additional issue to note here is that we are crossing a bridge 
between relational expressions and scalar domains.  The subquery is 
a relational expression, but it is used in a context that expects a sca-
lar value, i.e. the SQL SELECT clause.  The rules to bridge this 
relational/scalar divide are the following: 

• If the relational result of the subquery is empty, then its scalar 
value is NULL. 

• If the relational result is a single row {a}, then the scalar value 
is a. 

• If the relational result has more than one row, then its scalar 
value is undefined and a run-time error is raised. 

For the sake of this example, assume that C_CUSTKEY is a key of 
CUSTOMER, but O_CUSTKEY is nullable, or there is no declared 
foreign-key constraint.  Then the subquery can return at most one 
row.  We represent this query algebraically as: 

ORDERS ApplyOJ (π [C_NAME] σ [C_CUSTKEY = 
O_CUSTKEY] CUSTOMER) 

Note that this expression outputs exactly the rows from ORDERS, 
adding an extra column for each row, with the result of the scalar 
value of the subquery.  

2.2 Language surface 
In the early days, the SQL block with its SELECT, FROM, and 
WHERE clauses was central to the language and there were many 
syntactic restrictions around the use of multiple SQL blocks in a 
single query, including subqueries.  Current SQL implementations 
allow the use of “sub-selects” in a fully composable way.  There are 
two cases to distinguish: 

• A SQL block is used where a relational value such as a table is 
expected, in the FROM clause.  Such a “sub-select” is called a 
derived table.  This is simply about composability of relational 
expressions and we don’t consider it further in this paper. 

• A SQL block is used where a scalar expression is expected, 
such as the SELECT or the WHERE clause.  Such “sub-select” 
is called a subquery.  This subquery is called correlated if it 
has free variables that are provided by the enclosing query.  
Unlike derived tables, subqueries require going across rela-
tional and scalar domains. 

Subqueries are introduced in scalar expressions in SQL in the fol-
lowing ways: 

• Existential test.  These use keywords EXISTS and NOT EX-
ISTS and test whether the result of a subquery is empty.  The 
result is of type Boolean, either TRUE or FALSE.  For exam-
ple: 

EXISTS(SELECT * FROM ORDERS  
WHERE L_SHIPDATE < O_ORDERDATE). 

• Quantified comparison.  These test whether a particular com-
parison cmp holds for values returned by a subquery subq.  The 
forms are <cmp> ALL <subq>, and <cmp> ANY <subq>.  The 
result is again of type Boolean, but unlike existential subque-
ries, quantified comparisons can return TRUE, FALSE or 
UNKNOWN (when null values are involved in the compari-
son).  For example: 
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binding variables in subqueries is done simply by name.  Free vari-
ables will be shown in bold throughout the paper.  We can use this 
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the CUSTOMER as follows 
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a relational expression, but it is used in a context that expects a sca-
lar value, i.e. the SQL SELECT clause.  The rules to bridge this 
relational/scalar divide are the following: 

• If the relational result of the subquery is empty, then its scalar 
value is NULL. 

• If the relational result is a single row {a}, then the scalar value 
is a. 

• If the relational result has more than one row, then its scalar 
value is undefined and a run-time error is raised. 

For the sake of this example, assume that C_CUSTKEY is a key of 
CUSTOMER, but O_CUSTKEY is nullable, or there is no declared 
foreign-key constraint.  Then the subquery can return at most one 
row.  We represent this query algebraically as: 
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Note that this expression outputs exactly the rows from ORDERS, 
adding an extra column for each row, with the result of the scalar 
value of the subquery.  

2.2 Language surface 
In the early days, the SQL block with its SELECT, FROM, and 
WHERE clauses was central to the language and there were many 
syntactic restrictions around the use of multiple SQL blocks in a 
single query, including subqueries.  Current SQL implementations 
allow the use of “sub-selects” in a fully composable way.  There are 
two cases to distinguish: 

• A SQL block is used where a relational value such as a table is 
expected, in the FROM clause.  Such a “sub-select” is called a 
derived table.  This is simply about composability of relational 
expressions and we don’t consider it further in this paper. 

• A SQL block is used where a scalar expression is expected, 
such as the SELECT or the WHERE clause.  Such “sub-select” 
is called a subquery.  This subquery is called correlated if it 
has free variables that are provided by the enclosing query.  
Unlike derived tables, subqueries require going across rela-
tional and scalar domains. 

Subqueries are introduced in scalar expressions in SQL in the fol-
lowing ways: 

• Existential test.  These use keywords EXISTS and NOT EX-
ISTS and test whether the result of a subquery is empty.  The 
result is of type Boolean, either TRUE or FALSE.  For exam-
ple: 

EXISTS(SELECT * FROM ORDERS  
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• Quantified comparison.  These test whether a particular com-
parison cmp holds for values returned by a subquery subq.  The 
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two cases to distinguish: 
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expected, in the FROM clause.  Such a “sub-select” is called a 
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result is of type Boolean, either TRUE or FALSE.  For exam-
ple: 

EXISTS(SELECT * FROM ORDERS  
WHERE L_SHIPDATE < O_ORDERDATE). 

• Quantified comparison.  These test whether a particular com-
parison cmp holds for values returned by a subquery subq.  The 
forms are <cmp> ALL <subq>, and <cmp> ANY <subq>.  The 
result is again of type Boolean, but unlike existential subque-
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• IN / NOT IN.  This is a shorthand for quantified comparison.  
<expr> IN <subq> is equivalent to <expr> =ANY <subq>.  
<expr> NOT IN <subq> is equivalent to <expr> <>ALL 
<subq>. 

• Scalar-valued.  These return non-Boolean scalar values.  For 
example: 

(SELECT C_NAME FROM CUSTOMER  
WHERE C_CUSTKEY = O_CUSTKEY). 

In addition to its internal use in query processing, the Apply operator 
is also available in the surface syntax of SQL Server.  The common 
usage scenario is the invocation of parameterized table-valued func-
tions, which are a particular case of PREs.  For example, suppose 
you have a table-valued function that takes a string and chops it up 
into words, outputting one row per word.  You can use the following 
to invoke this function on the values of column COL from MY-
TABLE: 

SELECT * 
FROM MYTABLE  
OUTER APPLY CHOP_WORDS(MYTABLE.COL) 

Each row of MYTABLE will be repeated as many times as rows 
returned by the function – but if the function result is empty then the 
row is still preserved, due to the use of OUTER. 
Some implementations of SQL incorporated the ability to pass pa-
rameters across the “comma operator” of the FROM clause.  We 
adopted explicit syntax for parameter passing for conceptual clarity, 
and also because “comma” doesn’t lend itself to clarifying what to 
do when the PRE returns an empty set, i.e. preserve or reject the row 
from the left relational input. 

3. SUBQUERY REMOVAL 
A straightforward implementation of subqueries requires tuple-at-a-
time processing in a very specific order – evaluate the PRE for each 
row that requires evaluation of the scalar expression.  It also intro-
duces mutual recursion between the scalar and relational execution 
sub-systems.  Conceptually, relational execution needs to make calls 
to some scalar evaluation sub-system for predicates and other scalar 
computations (there are multiple ways to implement scalar evalua-
tion, as they could be compiled in-place instead of having an actual 
separate component).  If scalar expressions contain subqueries, then 
the scalar subsystem needs to bind the free variables and make a 
recursive call back to relational execution.  Subquery removal is 
about eliminating this mutual recursion between the scalar and rela-
tional execution sub-components.   
The general subquery removal algorithm takes three arguments: a 
relational operator, a relational expressions and a scalar expression 
with subqueries; and it returns new expressions to compute the re-
sult without the need of subqueries.  For example, say you have a 
selection of the form σ[p]R, and predicate p has subqueries.  We 
invoke SQREM(σ,p,R) to get (p’, R’), p’ does not use subqueries 
and σ[p]R = σ[p’]R’. 
Algorithm SQREM is implemented through a simple tree traversal 
of scalar expression p, which moves all the subquery computation 
from p over to relational expression R.  For each subquery PRE(r) 
found in p, we add a computation Apply PRE(r) on R and replace 
the subquery in p by a scalar computation.  A more detailed exam-
ple is found in [9]. 
For a correct and efficient translation, there are a number of special 
cases to incorporate in the basic algorithm outlined above.  They are 
listed next. 

3.1 Mapping multi-row relational  
results to a single scalar value  
This issue was brought up already in the example query in Section 
2.  For a scalar-valued subquery E(r), the subquery is computed in 
general as 

R ApplyOJ max1row(E(r)). 
max1row is a special relational operator whose output is the same as 
its input, but it raises a run-time exception if its input has more than 
one row.  Through static analysis, it is sometimes possible to deter-
mine at compile time that E(r) will return at most one row, regard-
less of the parameter value and database content – no max1row 
operator is required then.  This is a common case in actual applica-
tions. 

3.2 Filtering through existential test 
If an existential test on E(r) is used in the context of directly filter-
ing rows, then we incorporate the filtering operation with the 
evaluation of the subquery.  The computation of EXISTS and NOT 
EXISTS subqueries is done as follows: 

R ApplySJ E(r) 

R ApplyASJ E(r) 
In terms of the general rewrite procedure described above, the sub-
query occurrence in the original scalar expression S is replaced by 
the constant TRUE and the result simplified to obtain S’.  This is the 
path followed when existential subqueries are ANDed together with 
other conditions in the SQL WHERE clause. 
Existential subqueries are also used in a context that does not di-
rectly filter rows.  In general, they need to be treated like scalar-
valued subqueries, as described in the next scenario. 

3.3 Conditional scalar execution 
SQL provides a construct for conditional evaluation of scalar ex-
pressions, and subqueries can be used there as well.  Implementing 
this semantics properly require the incorporation of probe and pass-
through functionality in the Apply operator.  Suppose your expres-
sion is of the form 

CASE WHEN EXISTS(E1(r))  
THEN E2(r) ELSE 0 END. 

Note that the EXISTS subquery here is not used to directly filter 
rows, but to determine the result of a scalar expression.  The sub-
queries will be computed by the following expression: 
(R Apply[semijoin, probe as b] E1(r)) Apply[outerjoin, pass-through 

b=1] max1row(E2(r)). 
Apply with probe preserves the rows from R and adds a new column 
b, which is 1 whenever E1(r) is non-empty.  Apply with pass-
through has a guard predicate and only executes its subquery if the 
guard is TRUE.  This implements the required conditional evalua-
tion. 
Assuming the result of the scalar-valued subquery E2(r) is left in 
column e2, the original scalar expression is replaced to be: 
 CASE WHEN p = 1 THEN e2 ELSE 0 END. 

3.4 Disjunctions of subqueries 
When subqueries are used in disjunctions, it is not possible to filter 
directly as we did in Sec. 3.2 with Apply-semijoin or Apply-antijoin.  
Apply with probe can be used to collect the subquery results and 
evaluate the entire disjunction afterwards, and pass-through can be 
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◦ Some implementation may allow correlations there, but semantics unclear
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selection (filter) and projection: GA,FR stands for a GROUP BY over 
relation R with a list A of grouping columns and a set F of aggregate 
functions that are applied to each group. π[S]R denotes a projection 
of relation R onto the set of columns in S. σ[p]R in turn represents a 
selection on relation R where p is used as a predicate to filter quali-
fying rows from R. For ease of presentation, we use CT(1) as a 
shorthand for a constant table which returns one row and no col-
umns.Our algebraic formulation of subqueries is based on the gen-
eral idea of a parameterized relational expression (PRE) and the 
Apply operator, as described in [9].  A PRE is simply a relational 
expression that has free variables or parameters, so it yields a rela-
tional result when values for those parameters are provided.  It is 
effectively a function.  The Apply operator repeatedly invokes a 
PRE with a series of parameters values and collects the results of 
these multiple invocations.  Formally, 

R ApplyJN E(r) = UAr ∈ R ({r} JN E(r)). 

Note that Apply does not take two relational inputs, but only one 
relational input R that provides the set of parameter values, on 
which PRE E(r) is applied.  Apply can use different logics to com-
bine each row r with the result of E(r), specified by JN above.  It 
supports the common join types such as inner, outer, and semijoins 
which we briefly review here: 

An inner join (R JNp S) is defined as the subset of the Cartesian 
product of R and S where all tuples that do not satisfy the predicate 
p are filtered out. 

A left outer join (R LOJp S) includes the result of an inner join be-
tween R and S with join condition p, plus all the unmatched tuples 
of R extended with NULL values for columns of S. A right outer 
join on the other hand contains the unmatched tuples of S along with 
the result of the inner join.  

A semijoin (R SJp S) is defined as all the tuples of R that match at 
least one tuple of S on the predicate p, while an antijoin (R ASJp S) 
is defined as the tuples of R that match no tuples of S on the predi-
cate p. Naturally, (R SJp S) UA (R ASJp S) = R.  

For example, an Apply operator can use antijoin logic if it wants to 
preserve row r when the result of E(r) is empty.   

The Apply operator maps well to the nested loops execution strategy 
with correlated parameters, but we treat it here as a logical operators 
with the semantic definition described above. 

We illustrate the use of Apply with a simple SQL subquery example.  
Say you want to list all your ORDERS, and include the CUS-
TOMER name.  It is convenient to have a function that takes a cus-
tomer key and returns the name of the CUSTOMER.  Such function 
can be written as follows 

(SELECT C_NAME FROM CUSTOMER  
WHERE C_CUSTKEY = O_CUSTKEY), 

where the free variable O_CUSTKEY is the argument of the func-
tion – there is no explicit syntax to bind free variables in SQL, so 
binding variables in subqueries is done simply by name.  Free vari-
ables will be shown in bold throughout the paper.  We can use this 
“name extraction function” to report all ORDERS with the name of 
the CUSTOMER as follows 

SELECT *, (SELECT C_NAME  
FROM CUSTOMER  

WHERE C_CUSTKEY = O_CUSTKEY) 
FROM ORDERS 

An additional issue to note here is that we are crossing a bridge 
between relational expressions and scalar domains.  The subquery is 
a relational expression, but it is used in a context that expects a sca-
lar value, i.e. the SQL SELECT clause.  The rules to bridge this 
relational/scalar divide are the following: 

• If the relational result of the subquery is empty, then its scalar 
value is NULL. 

• If the relational result is a single row {a}, then the scalar value 
is a. 

• If the relational result has more than one row, then its scalar 
value is undefined and a run-time error is raised. 

For the sake of this example, assume that C_CUSTKEY is a key of 
CUSTOMER, but O_CUSTKEY is nullable, or there is no declared 
foreign-key constraint.  Then the subquery can return at most one 
row.  We represent this query algebraically as: 

ORDERS ApplyOJ (π [C_NAME] σ [C_CUSTKEY = 
O_CUSTKEY] CUSTOMER) 

Note that this expression outputs exactly the rows from ORDERS, 
adding an extra column for each row, with the result of the scalar 
value of the subquery.  

2.2 Language surface 
In the early days, the SQL block with its SELECT, FROM, and 
WHERE clauses was central to the language and there were many 
syntactic restrictions around the use of multiple SQL blocks in a 
single query, including subqueries.  Current SQL implementations 
allow the use of “sub-selects” in a fully composable way.  There are 
two cases to distinguish: 

• A SQL block is used where a relational value such as a table is 
expected, in the FROM clause.  Such a “sub-select” is called a 
derived table.  This is simply about composability of relational 
expressions and we don’t consider it further in this paper. 

• A SQL block is used where a scalar expression is expected, 
such as the SELECT or the WHERE clause.  Such “sub-select” 
is called a subquery.  This subquery is called correlated if it 
has free variables that are provided by the enclosing query.  
Unlike derived tables, subqueries require going across rela-
tional and scalar domains. 

Subqueries are introduced in scalar expressions in SQL in the fol-
lowing ways: 

• Existential test.  These use keywords EXISTS and NOT EX-
ISTS and test whether the result of a subquery is empty.  The 
result is of type Boolean, either TRUE or FALSE.  For exam-
ple: 

EXISTS(SELECT * FROM ORDERS  
WHERE L_SHIPDATE < O_ORDERDATE). 

• Quantified comparison.  These test whether a particular com-
parison cmp holds for values returned by a subquery subq.  The 
forms are <cmp> ALL <subq>, and <cmp> ANY <subq>.  The 
result is again of type Boolean, but unlike existential subque-
ries, quantified comparisons can return TRUE, FALSE or 
UNKNOWN (when null values are involved in the compari-
son).  For example: 

 
L_SHIPDATE > ANY( 
SELECT O_ORDERDATE 
FROM ORDERS 
WHERE L_ORDERKEY = O_ORDERKEY). 

995

 

 

selection (filter) and projection: GA,FR stands for a GROUP BY over 
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functions that are applied to each group. π[S]R denotes a projection 
of relation R onto the set of columns in S. σ[p]R in turn represents a 
selection on relation R where p is used as a predicate to filter quali-
fying rows from R. For ease of presentation, we use CT(1) as a 
shorthand for a constant table which returns one row and no col-
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Apply operator, as described in [9].  A PRE is simply a relational 
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tional result when values for those parameters are provided.  It is 
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For example, an Apply operator can use antijoin logic if it wants to 
preserve row r when the result of E(r) is empty.   

The Apply operator maps well to the nested loops execution strategy 
with correlated parameters, but we treat it here as a logical operators 
with the semantic definition described above. 
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• IN / NOT IN.  This is a shorthand for quantified comparison.  
<expr> IN <subq> is equivalent to <expr> =ANY <subq>.  
<expr> NOT IN <subq> is equivalent to <expr> <>ALL 
<subq>. 

• Scalar-valued.  These return non-Boolean scalar values.  For 
example: 

(SELECT C_NAME FROM CUSTOMER  
WHERE C_CUSTKEY = O_CUSTKEY). 

In addition to its internal use in query processing, the Apply operator 
is also available in the surface syntax of SQL Server.  The common 
usage scenario is the invocation of parameterized table-valued func-
tions, which are a particular case of PREs.  For example, suppose 
you have a table-valued function that takes a string and chops it up 
into words, outputting one row per word.  You can use the following 
to invoke this function on the values of column COL from MY-
TABLE: 

SELECT * 
FROM MYTABLE  
OUTER APPLY CHOP_WORDS(MYTABLE.COL) 

Each row of MYTABLE will be repeated as many times as rows 
returned by the function – but if the function result is empty then the 
row is still preserved, due to the use of OUTER. 
Some implementations of SQL incorporated the ability to pass pa-
rameters across the “comma operator” of the FROM clause.  We 
adopted explicit syntax for parameter passing for conceptual clarity, 
and also because “comma” doesn’t lend itself to clarifying what to 
do when the PRE returns an empty set, i.e. preserve or reject the row 
from the left relational input. 

3. SUBQUERY REMOVAL 
A straightforward implementation of subqueries requires tuple-at-a-
time processing in a very specific order – evaluate the PRE for each 
row that requires evaluation of the scalar expression.  It also intro-
duces mutual recursion between the scalar and relational execution 
sub-systems.  Conceptually, relational execution needs to make calls 
to some scalar evaluation sub-system for predicates and other scalar 
computations (there are multiple ways to implement scalar evalua-
tion, as they could be compiled in-place instead of having an actual 
separate component).  If scalar expressions contain subqueries, then 
the scalar subsystem needs to bind the free variables and make a 
recursive call back to relational execution.  Subquery removal is 
about eliminating this mutual recursion between the scalar and rela-
tional execution sub-components.   
The general subquery removal algorithm takes three arguments: a 
relational operator, a relational expressions and a scalar expression 
with subqueries; and it returns new expressions to compute the re-
sult without the need of subqueries.  For example, say you have a 
selection of the form σ[p]R, and predicate p has subqueries.  We 
invoke SQREM(σ,p,R) to get (p’, R’), p’ does not use subqueries 
and σ[p]R = σ[p’]R’. 
Algorithm SQREM is implemented through a simple tree traversal 
of scalar expression p, which moves all the subquery computation 
from p over to relational expression R.  For each subquery PRE(r) 
found in p, we add a computation Apply PRE(r) on R and replace 
the subquery in p by a scalar computation.  A more detailed exam-
ple is found in [9]. 
For a correct and efficient translation, there are a number of special 
cases to incorporate in the basic algorithm outlined above.  They are 
listed next. 

3.1 Mapping multi-row relational  
results to a single scalar value  
This issue was brought up already in the example query in Section 
2.  For a scalar-valued subquery E(r), the subquery is computed in 
general as 

R ApplyOJ max1row(E(r)). 
max1row is a special relational operator whose output is the same as 
its input, but it raises a run-time exception if its input has more than 
one row.  Through static analysis, it is sometimes possible to deter-
mine at compile time that E(r) will return at most one row, regard-
less of the parameter value and database content – no max1row 
operator is required then.  This is a common case in actual applica-
tions. 

3.2 Filtering through existential test 
If an existential test on E(r) is used in the context of directly filter-
ing rows, then we incorporate the filtering operation with the 
evaluation of the subquery.  The computation of EXISTS and NOT 
EXISTS subqueries is done as follows: 

R ApplySJ E(r) 

R ApplyASJ E(r) 
In terms of the general rewrite procedure described above, the sub-
query occurrence in the original scalar expression S is replaced by 
the constant TRUE and the result simplified to obtain S’.  This is the 
path followed when existential subqueries are ANDed together with 
other conditions in the SQL WHERE clause. 
Existential subqueries are also used in a context that does not di-
rectly filter rows.  In general, they need to be treated like scalar-
valued subqueries, as described in the next scenario. 

3.3 Conditional scalar execution 
SQL provides a construct for conditional evaluation of scalar ex-
pressions, and subqueries can be used there as well.  Implementing 
this semantics properly require the incorporation of probe and pass-
through functionality in the Apply operator.  Suppose your expres-
sion is of the form 

CASE WHEN EXISTS(E1(r))  
THEN E2(r) ELSE 0 END. 

Note that the EXISTS subquery here is not used to directly filter 
rows, but to determine the result of a scalar expression.  The sub-
queries will be computed by the following expression: 
(R Apply[semijoin, probe as b] E1(r)) Apply[outerjoin, pass-through 

b=1] max1row(E2(r)). 
Apply with probe preserves the rows from R and adds a new column 
b, which is 1 whenever E1(r) is non-empty.  Apply with pass-
through has a guard predicate and only executes its subquery if the 
guard is TRUE.  This implements the required conditional evalua-
tion. 
Assuming the result of the scalar-valued subquery E2(r) is left in 
column e2, the original scalar expression is replaced to be: 
 CASE WHEN p = 1 THEN e2 ELSE 0 END. 

3.4 Disjunctions of subqueries 
When subqueries are used in disjunctions, it is not possible to filter 
directly as we did in Sec. 3.2 with Apply-semijoin or Apply-antijoin.  
Apply with probe can be used to collect the subquery results and 
evaluate the entire disjunction afterwards, and pass-through can be 
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} Basic algorithm (SQREM) relatively straightforward
◦ Look for subqueries with correlated variables, and replace with an APPLY and appropriate 

parameterized expression

} A few special cases to deal with:
◦ Queries that may return an exception

� Need a special Max1Row operator

◦ EXISTS and NOT EXISTS replaced with APPLY with Semijoins or Antijoins

◦ Conditional execution:

� CASE WHEN EXISTS(E1(r)) THEN E2(r) ELSE 0 END. 

� Apply-semijoin-probe adds the result as a Boolean to the rows, and pass-through only executes if b = 1

 

 

selection (filter) and projection: GA,FR stands for a GROUP BY over 
relation R with a list A of grouping columns and a set F of aggregate 
functions that are applied to each group. π[S]R denotes a projection 
of relation R onto the set of columns in S. σ[p]R in turn represents a 
selection on relation R where p is used as a predicate to filter quali-
fying rows from R. For ease of presentation, we use CT(1) as a 
shorthand for a constant table which returns one row and no col-
umns.Our algebraic formulation of subqueries is based on the gen-
eral idea of a parameterized relational expression (PRE) and the 
Apply operator, as described in [9].  A PRE is simply a relational 
expression that has free variables or parameters, so it yields a rela-
tional result when values for those parameters are provided.  It is 
effectively a function.  The Apply operator repeatedly invokes a 
PRE with a series of parameters values and collects the results of 
these multiple invocations.  Formally, 

R ApplyJN E(r) = UAr ∈ R ({r} JN E(r)). 

Note that Apply does not take two relational inputs, but only one 
relational input R that provides the set of parameter values, on 
which PRE E(r) is applied.  Apply can use different logics to com-
bine each row r with the result of E(r), specified by JN above.  It 
supports the common join types such as inner, outer, and semijoins 
which we briefly review here: 

An inner join (R JNp S) is defined as the subset of the Cartesian 
product of R and S where all tuples that do not satisfy the predicate 
p are filtered out. 

A left outer join (R LOJp S) includes the result of an inner join be-
tween R and S with join condition p, plus all the unmatched tuples 
of R extended with NULL values for columns of S. A right outer 
join on the other hand contains the unmatched tuples of S along with 
the result of the inner join.  

A semijoin (R SJp S) is defined as all the tuples of R that match at 
least one tuple of S on the predicate p, while an antijoin (R ASJp S) 
is defined as the tuples of R that match no tuples of S on the predi-
cate p. Naturally, (R SJp S) UA (R ASJp S) = R.  

For example, an Apply operator can use antijoin logic if it wants to 
preserve row r when the result of E(r) is empty.   

The Apply operator maps well to the nested loops execution strategy 
with correlated parameters, but we treat it here as a logical operators 
with the semantic definition described above. 

We illustrate the use of Apply with a simple SQL subquery example.  
Say you want to list all your ORDERS, and include the CUS-
TOMER name.  It is convenient to have a function that takes a cus-
tomer key and returns the name of the CUSTOMER.  Such function 
can be written as follows 

(SELECT C_NAME FROM CUSTOMER  
WHERE C_CUSTKEY = O_CUSTKEY), 

where the free variable O_CUSTKEY is the argument of the func-
tion – there is no explicit syntax to bind free variables in SQL, so 
binding variables in subqueries is done simply by name.  Free vari-
ables will be shown in bold throughout the paper.  We can use this 
“name extraction function” to report all ORDERS with the name of 
the CUSTOMER as follows 

SELECT *, (SELECT C_NAME  
FROM CUSTOMER  

WHERE C_CUSTKEY = O_CUSTKEY) 
FROM ORDERS 

An additional issue to note here is that we are crossing a bridge 
between relational expressions and scalar domains.  The subquery is 
a relational expression, but it is used in a context that expects a sca-
lar value, i.e. the SQL SELECT clause.  The rules to bridge this 
relational/scalar divide are the following: 

• If the relational result of the subquery is empty, then its scalar 
value is NULL. 

• If the relational result is a single row {a}, then the scalar value 
is a. 

• If the relational result has more than one row, then its scalar 
value is undefined and a run-time error is raised. 

For the sake of this example, assume that C_CUSTKEY is a key of 
CUSTOMER, but O_CUSTKEY is nullable, or there is no declared 
foreign-key constraint.  Then the subquery can return at most one 
row.  We represent this query algebraically as: 

ORDERS ApplyOJ (π [C_NAME] σ [C_CUSTKEY = 
O_CUSTKEY] CUSTOMER) 

Note that this expression outputs exactly the rows from ORDERS, 
adding an extra column for each row, with the result of the scalar 
value of the subquery.  

2.2 Language surface 
In the early days, the SQL block with its SELECT, FROM, and 
WHERE clauses was central to the language and there were many 
syntactic restrictions around the use of multiple SQL blocks in a 
single query, including subqueries.  Current SQL implementations 
allow the use of “sub-selects” in a fully composable way.  There are 
two cases to distinguish: 

• A SQL block is used where a relational value such as a table is 
expected, in the FROM clause.  Such a “sub-select” is called a 
derived table.  This is simply about composability of relational 
expressions and we don’t consider it further in this paper. 

• A SQL block is used where a scalar expression is expected, 
such as the SELECT or the WHERE clause.  Such “sub-select” 
is called a subquery.  This subquery is called correlated if it 
has free variables that are provided by the enclosing query.  
Unlike derived tables, subqueries require going across rela-
tional and scalar domains. 

Subqueries are introduced in scalar expressions in SQL in the fol-
lowing ways: 

• Existential test.  These use keywords EXISTS and NOT EX-
ISTS and test whether the result of a subquery is empty.  The 
result is of type Boolean, either TRUE or FALSE.  For exam-
ple: 

EXISTS(SELECT * FROM ORDERS  
WHERE L_SHIPDATE < O_ORDERDATE). 

• Quantified comparison.  These test whether a particular com-
parison cmp holds for values returned by a subquery subq.  The 
forms are <cmp> ALL <subq>, and <cmp> ANY <subq>.  The 
result is again of type Boolean, but unlike existential subque-
ries, quantified comparisons can return TRUE, FALSE or 
UNKNOWN (when null values are involved in the compari-
son).  For example: 

 
L_SHIPDATE > ANY( 
SELECT O_ORDERDATE 
FROM ORDERS 
WHERE L_ORDERKEY = O_ORDERKEY). 
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selection (filter) and projection: GA,FR stands for a GROUP BY over 
relation R with a list A of grouping columns and a set F of aggregate 
functions that are applied to each group. π[S]R denotes a projection 
of relation R onto the set of columns in S. σ[p]R in turn represents a 
selection on relation R where p is used as a predicate to filter quali-
fying rows from R. For ease of presentation, we use CT(1) as a 
shorthand for a constant table which returns one row and no col-
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these multiple invocations.  Formally, 
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relational input R that provides the set of parameter values, on 
which PRE E(r) is applied.  Apply can use different logics to com-
bine each row r with the result of E(r), specified by JN above.  It 
supports the common join types such as inner, outer, and semijoins 
which we briefly review here: 

An inner join (R JNp S) is defined as the subset of the Cartesian 
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p are filtered out. 
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“name extraction function” to report all ORDERS with the name of 
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relational/scalar divide are the following: 

• If the relational result of the subquery is empty, then its scalar 
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• If the relational result is a single row {a}, then the scalar value 
is a. 

• If the relational result has more than one row, then its scalar 
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For the sake of this example, assume that C_CUSTKEY is a key of 
CUSTOMER, but O_CUSTKEY is nullable, or there is no declared 
foreign-key constraint.  Then the subquery can return at most one 
row.  We represent this query algebraically as: 
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Note that this expression outputs exactly the rows from ORDERS, 
adding an extra column for each row, with the result of the scalar 
value of the subquery.  

2.2 Language surface 
In the early days, the SQL block with its SELECT, FROM, and 
WHERE clauses was central to the language and there were many 
syntactic restrictions around the use of multiple SQL blocks in a 
single query, including subqueries.  Current SQL implementations 
allow the use of “sub-selects” in a fully composable way.  There are 
two cases to distinguish: 

• A SQL block is used where a relational value such as a table is 
expected, in the FROM clause.  Such a “sub-select” is called a 
derived table.  This is simply about composability of relational 
expressions and we don’t consider it further in this paper. 

• A SQL block is used where a scalar expression is expected, 
such as the SELECT or the WHERE clause.  Such “sub-select” 
is called a subquery.  This subquery is called correlated if it 
has free variables that are provided by the enclosing query.  
Unlike derived tables, subqueries require going across rela-
tional and scalar domains. 

Subqueries are introduced in scalar expressions in SQL in the fol-
lowing ways: 

• Existential test.  These use keywords EXISTS and NOT EX-
ISTS and test whether the result of a subquery is empty.  The 
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ple: 
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• IN / NOT IN.  This is a shorthand for quantified comparison.  
<expr> IN <subq> is equivalent to <expr> =ANY <subq>.  
<expr> NOT IN <subq> is equivalent to <expr> <>ALL 
<subq>. 

• Scalar-valued.  These return non-Boolean scalar values.  For 
example: 

(SELECT C_NAME FROM CUSTOMER  
WHERE C_CUSTKEY = O_CUSTKEY). 

In addition to its internal use in query processing, the Apply operator 
is also available in the surface syntax of SQL Server.  The common 
usage scenario is the invocation of parameterized table-valued func-
tions, which are a particular case of PREs.  For example, suppose 
you have a table-valued function that takes a string and chops it up 
into words, outputting one row per word.  You can use the following 
to invoke this function on the values of column COL from MY-
TABLE: 

SELECT * 
FROM MYTABLE  
OUTER APPLY CHOP_WORDS(MYTABLE.COL) 

Each row of MYTABLE will be repeated as many times as rows 
returned by the function – but if the function result is empty then the 
row is still preserved, due to the use of OUTER. 
Some implementations of SQL incorporated the ability to pass pa-
rameters across the “comma operator” of the FROM clause.  We 
adopted explicit syntax for parameter passing for conceptual clarity, 
and also because “comma” doesn’t lend itself to clarifying what to 
do when the PRE returns an empty set, i.e. preserve or reject the row 
from the left relational input. 

3. SUBQUERY REMOVAL 
A straightforward implementation of subqueries requires tuple-at-a-
time processing in a very specific order – evaluate the PRE for each 
row that requires evaluation of the scalar expression.  It also intro-
duces mutual recursion between the scalar and relational execution 
sub-systems.  Conceptually, relational execution needs to make calls 
to some scalar evaluation sub-system for predicates and other scalar 
computations (there are multiple ways to implement scalar evalua-
tion, as they could be compiled in-place instead of having an actual 
separate component).  If scalar expressions contain subqueries, then 
the scalar subsystem needs to bind the free variables and make a 
recursive call back to relational execution.  Subquery removal is 
about eliminating this mutual recursion between the scalar and rela-
tional execution sub-components.   
The general subquery removal algorithm takes three arguments: a 
relational operator, a relational expressions and a scalar expression 
with subqueries; and it returns new expressions to compute the re-
sult without the need of subqueries.  For example, say you have a 
selection of the form σ[p]R, and predicate p has subqueries.  We 
invoke SQREM(σ,p,R) to get (p’, R’), p’ does not use subqueries 
and σ[p]R = σ[p’]R’. 
Algorithm SQREM is implemented through a simple tree traversal 
of scalar expression p, which moves all the subquery computation 
from p over to relational expression R.  For each subquery PRE(r) 
found in p, we add a computation Apply PRE(r) on R and replace 
the subquery in p by a scalar computation.  A more detailed exam-
ple is found in [9]. 
For a correct and efficient translation, there are a number of special 
cases to incorporate in the basic algorithm outlined above.  They are 
listed next. 

3.1 Mapping multi-row relational  
results to a single scalar value  
This issue was brought up already in the example query in Section 
2.  For a scalar-valued subquery E(r), the subquery is computed in 
general as 

R ApplyOJ max1row(E(r)). 
max1row is a special relational operator whose output is the same as 
its input, but it raises a run-time exception if its input has more than 
one row.  Through static analysis, it is sometimes possible to deter-
mine at compile time that E(r) will return at most one row, regard-
less of the parameter value and database content – no max1row 
operator is required then.  This is a common case in actual applica-
tions. 

3.2 Filtering through existential test 
If an existential test on E(r) is used in the context of directly filter-
ing rows, then we incorporate the filtering operation with the 
evaluation of the subquery.  The computation of EXISTS and NOT 
EXISTS subqueries is done as follows: 

R ApplySJ E(r) 

R ApplyASJ E(r) 
In terms of the general rewrite procedure described above, the sub-
query occurrence in the original scalar expression S is replaced by 
the constant TRUE and the result simplified to obtain S’.  This is the 
path followed when existential subqueries are ANDed together with 
other conditions in the SQL WHERE clause. 
Existential subqueries are also used in a context that does not di-
rectly filter rows.  In general, they need to be treated like scalar-
valued subqueries, as described in the next scenario. 

3.3 Conditional scalar execution 
SQL provides a construct for conditional evaluation of scalar ex-
pressions, and subqueries can be used there as well.  Implementing 
this semantics properly require the incorporation of probe and pass-
through functionality in the Apply operator.  Suppose your expres-
sion is of the form 

CASE WHEN EXISTS(E1(r))  
THEN E2(r) ELSE 0 END. 

Note that the EXISTS subquery here is not used to directly filter 
rows, but to determine the result of a scalar expression.  The sub-
queries will be computed by the following expression: 
(R Apply[semijoin, probe as b] E1(r)) Apply[outerjoin, pass-through 

b=1] max1row(E2(r)). 
Apply with probe preserves the rows from R and adds a new column 
b, which is 1 whenever E1(r) is non-empty.  Apply with pass-
through has a guard predicate and only executes its subquery if the 
guard is TRUE.  This implements the required conditional evalua-
tion. 
Assuming the result of the scalar-valued subquery E2(r) is left in 
column e2, the original scalar expression is replaced to be: 
 CASE WHEN p = 1 THEN e2 ELSE 0 END. 

3.4 Disjunctions of subqueries 
When subqueries are used in disjunctions, it is not possible to filter 
directly as we did in Sec. 3.2 with Apply-semijoin or Apply-antijoin.  
Apply with probe can be used to collect the subquery results and 
evaluate the entire disjunction afterwards, and pass-through can be 
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used to implement OR-shortcircuiting.  But then it is difficult to 
convert Apply into join, which, as we shall see later, is a major tool 
for efficient execution. 

Our mapping of subqueries in disjunctions is based on unions.  Sup-
pose you have a scalar filter condition of the form p(r) OR EX-
ISTS(E1(r)) OR EXISTS(E2(r)), where p(r) is a scalar predicate over 
r without subqueries.  We map to a filtering relational expression of 
the form: 

R ApplySJ ((σp(r) CT(1) UA E1(r) UA E2(r)) 
The scalar predicate p is evaluated on top of the constant table 
CT(1) (which returns one row and no columns).  A row from R is 
output when any of the relational expressions underneath the Un-
ionAll returns a non-empty result. 

3.5 Dealing with quantified comparisons 
Semantics.  We deal with quantified comparisons by mapping them 
to existential subqueries, which we have already discussed.  But we 
need to be particularly careful with universal quantification, whose 
semantics in the presence of NULL values is illustrated through an 
example.  Say you have a predicate p of the form 5 NOT IN S, 
which is equivalent to <>ALL.  The result of this predicate is as 
follows, for various cases of set S: 

1. If S = {} then p is TRUE. 

2. If S = {1} then p is TRUE. 

3. If S = {5} then p is FALSE. 

4. If S = {NULL, 5} then p is FALSE. 

5. If S = {NULL, 1} then p is UNKNOWN. 

Also, NULL NOT IN S is UNKNOWN for any S <> {}.  Case 5 is 
particularly counter-intuitive (for database implementers as well as 
users), but it results from the rules of three-valued logic in SQL: 
value <cmp> NULL is UNKNOWN; UNKNOWN AND TRUE is 
UNKNOWN. 

This quantified comparison can return values TRUE, FALSE and 
UNKNOWN, and we want to transform it into an existential test, 
which only returns values TRUE and FALSE.  How can we do this 
mapping? 

Utilization context.  We should note that FALSE and UNKNOWN 
are undistinguishable for the purpose of selecting rows – i.e. if we 
filter rows on predicate p, then we discard any rows for which p is 
either FALSE or UNKNOWN.  FALSE and UNKNOWN are also 
undistinguishable in the predicate of conditional CASE WHEN 
expressions. 

Also, suppose you have a Boolean expression P(X1, X2, …) = Y, 
using only logical connectives AND and OR.  The impact of chang-
ing the value of any Xi from UNKNOWN to FALSE, is either Y 
remains unchanged, or else Y changes from UNKNOWN to 
FALSE. 

From the above, it is valid to change the result of quantified com-
parisons from three-valued to two-valued, for Boolean expressions 
used to filter rows or in CASE WHEN. 

The mapping.  To compute universal quantification we use anti-
join, which evaluates a NOT EXISTS predicate.  We map through 
the conventional equation: 

(FOR ALL s ∈ S: p) = (NOT EXISTS s ∈ S: NOT p) 

However, this equation holds only in two-valued logic, not in the 
three-valued logic of SQL (the basic reason is that NOT UN-
KNOWN is UNKNOWN).  So, we complete the mapping in two 
steps: (1) change the universal quantification σ expression so it does 
not involve UNKNOWN values; (2) negate the predicate. 
A universal quantification predicate of the form p = A <cmp> B can 
return UNKNOWN when either A or B are NULL.  So we replace it 
by a two-value predicate p’ = A <cmp> B AND A IS NOT NULL 
AND B IS NOT NULL.  Predicate p’ returns TRUE whenever p 
returns TRUE, and p’ returns FALSE whenever p returns either 
FALSE or UNKNOWN.  As argued earlier, this mapping preserves 
correctness under filtering and CASE WHEN contexts. 

We then negate p’ to create the NOT EXISTS predicate, to obtain: 

A <cmp’> B OR A IS NULL OR B IS NULL, 

where <cmp’> is the comparison opposite <cmp>.  Of course, if A 
or B are not nullable, the expression can be simplified at compila-
tion time. 

Example.  Suppose you start out with a subquery of the form A 
NOT IN S.  This is first mapped to universal quantification A 
<>ALL S.  Then it gets mapped to a NOT EXISTS subquery of the 
form 

NOT EXISTS(σ[A = s OR A IS NULL OR s IS NULL] S). 

This will then get mapped to an antijoin with a predicate that has 
disjuctions.  This is a common form in antijoin predicates, and its 
efficient execution is considered in section 6.2. 

An alternative to the above is to introduce a new, special aggregate 
that has a Boolean input and it computes universal quantification 
with three-valued logic.  This provides a faithful implementation of 
quantified comparisons in SQL (and a requirement if three-valued 
Boolean results are allowed as parameters to opaque functions).  But 
this aggregate approach limits the set of execution strategies.  Map-
ping to existential tests allows efficient use of index lookups and 
navigational plans. 

4. REMOVING APPLY 
In the previous section we outline subquery removal, i.e. eliminating 
the use of relational expressions in scalar expressions.  The result is, 
in general, a relational expression with Apply operators and param-
eterized expressions (PREs).  In many cases, it is possible to do 
further transformations and eliminate the use of Apply and parame-
terization.  This is commonly known as a decorrelated form of the 
query and it enables the use of a choice of join algorithms.  It was 
the main intuition behind efficient subquery processing in the first 
papers on the subject, e.g., [3]. 

We don’t view the decorrelated form of subqueries as a preferable 
execution strategy, but rather as a useful normal form.  Different 
surface formulations can end up in the same normal form, including 
queries originally written with or without subqueries.  Starting from 
this normal form, cost-based optimization will consider multiple 
execution strategies, including different evaluation orders and (re-
)introduction of Apply. 

4.1 Categories for Apply Removal 
Apply (without pass-through, which implement conditional execu-
tion and is foreign to relational algebra) does not add expressive 
power to the five basic relational operators (select, project, cross 
product, union, difference) [9, 13].  However, it does add concise-
ness.  Removing Apply from some relational expression E may yield 
an expression E’ that is exponentially larger than E.  This is an im-
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used to implement OR-shortcircuiting.  But then it is difficult to 
convert Apply into join, which, as we shall see later, is a major tool 
for efficient execution. 

Our mapping of subqueries in disjunctions is based on unions.  Sup-
pose you have a scalar filter condition of the form p(r) OR EX-
ISTS(E1(r)) OR EXISTS(E2(r)), where p(r) is a scalar predicate over 
r without subqueries.  We map to a filtering relational expression of 
the form: 

R ApplySJ ((σp(r) CT(1) UA E1(r) UA E2(r)) 
The scalar predicate p is evaluated on top of the constant table 
CT(1) (which returns one row and no columns).  A row from R is 
output when any of the relational expressions underneath the Un-
ionAll returns a non-empty result. 
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to existential subqueries, which we have already discussed.  But we 
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semantics in the presence of NULL values is illustrated through an 
example.  Say you have a predicate p of the form 5 NOT IN S, 
which is equivalent to <>ALL.  The result of this predicate is as 
follows, for various cases of set S: 

1. If S = {} then p is TRUE. 

2. If S = {1} then p is TRUE. 

3. If S = {5} then p is FALSE. 

4. If S = {NULL, 5} then p is FALSE. 

5. If S = {NULL, 1} then p is UNKNOWN. 

Also, NULL NOT IN S is UNKNOWN for any S <> {}.  Case 5 is 
particularly counter-intuitive (for database implementers as well as 
users), but it results from the rules of three-valued logic in SQL: 
value <cmp> NULL is UNKNOWN; UNKNOWN AND TRUE is 
UNKNOWN. 

This quantified comparison can return values TRUE, FALSE and 
UNKNOWN, and we want to transform it into an existential test, 
which only returns values TRUE and FALSE.  How can we do this 
mapping? 

Utilization context.  We should note that FALSE and UNKNOWN 
are undistinguishable for the purpose of selecting rows – i.e. if we 
filter rows on predicate p, then we discard any rows for which p is 
either FALSE or UNKNOWN.  FALSE and UNKNOWN are also 
undistinguishable in the predicate of conditional CASE WHEN 
expressions. 

Also, suppose you have a Boolean expression P(X1, X2, …) = Y, 
using only logical connectives AND and OR.  The impact of chang-
ing the value of any Xi from UNKNOWN to FALSE, is either Y 
remains unchanged, or else Y changes from UNKNOWN to 
FALSE. 

From the above, it is valid to change the result of quantified com-
parisons from three-valued to two-valued, for Boolean expressions 
used to filter rows or in CASE WHEN. 

The mapping.  To compute universal quantification we use anti-
join, which evaluates a NOT EXISTS predicate.  We map through 
the conventional equation: 

(FOR ALL s ∈ S: p) = (NOT EXISTS s ∈ S: NOT p) 

However, this equation holds only in two-valued logic, not in the 
three-valued logic of SQL (the basic reason is that NOT UN-
KNOWN is UNKNOWN).  So, we complete the mapping in two 
steps: (1) change the universal quantification σ expression so it does 
not involve UNKNOWN values; (2) negate the predicate. 
A universal quantification predicate of the form p = A <cmp> B can 
return UNKNOWN when either A or B are NULL.  So we replace it 
by a two-value predicate p’ = A <cmp> B AND A IS NOT NULL 
AND B IS NOT NULL.  Predicate p’ returns TRUE whenever p 
returns TRUE, and p’ returns FALSE whenever p returns either 
FALSE or UNKNOWN.  As argued earlier, this mapping preserves 
correctness under filtering and CASE WHEN contexts. 

We then negate p’ to create the NOT EXISTS predicate, to obtain: 

A <cmp’> B OR A IS NULL OR B IS NULL, 

where <cmp’> is the comparison opposite <cmp>.  Of course, if A 
or B are not nullable, the expression can be simplified at compila-
tion time. 

Example.  Suppose you start out with a subquery of the form A 
NOT IN S.  This is first mapped to universal quantification A 
<>ALL S.  Then it gets mapped to a NOT EXISTS subquery of the 
form 

NOT EXISTS(σ[A = s OR A IS NULL OR s IS NULL] S). 

This will then get mapped to an antijoin with a predicate that has 
disjuctions.  This is a common form in antijoin predicates, and its 
efficient execution is considered in section 6.2. 

An alternative to the above is to introduce a new, special aggregate 
that has a Boolean input and it computes universal quantification 
with three-valued logic.  This provides a faithful implementation of 
quantified comparisons in SQL (and a requirement if three-valued 
Boolean results are allowed as parameters to opaque functions).  But 
this aggregate approach limits the set of execution strategies.  Map-
ping to existential tests allows efficient use of index lookups and 
navigational plans. 

4. REMOVING APPLY 
In the previous section we outline subquery removal, i.e. eliminating 
the use of relational expressions in scalar expressions.  The result is, 
in general, a relational expression with Apply operators and param-
eterized expressions (PREs).  In many cases, it is possible to do 
further transformations and eliminate the use of Apply and parame-
terization.  This is commonly known as a decorrelated form of the 
query and it enables the use of a choice of join algorithms.  It was 
the main intuition behind efficient subquery processing in the first 
papers on the subject, e.g., [3]. 

We don’t view the decorrelated form of subqueries as a preferable 
execution strategy, but rather as a useful normal form.  Different 
surface formulations can end up in the same normal form, including 
queries originally written with or without subqueries.  Starting from 
this normal form, cost-based optimization will consider multiple 
execution strategies, including different evaluation orders and (re-
)introduction of Apply. 

4.1 Categories for Apply Removal 
Apply (without pass-through, which implement conditional execu-
tion and is foreign to relational algebra) does not add expressive 
power to the five basic relational operators (select, project, cross 
product, union, difference) [9, 13].  However, it does add concise-
ness.  Removing Apply from some relational expression E may yield 
an expression E’ that is exponentially larger than E.  This is an im-
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used to implement OR-shortcircuiting.  But then it is difficult to 
convert Apply into join, which, as we shall see later, is a major tool 
for efficient execution. 

Our mapping of subqueries in disjunctions is based on unions.  Sup-
pose you have a scalar filter condition of the form p(r) OR EX-
ISTS(E1(r)) OR EXISTS(E2(r)), where p(r) is a scalar predicate over 
r without subqueries.  We map to a filtering relational expression of 
the form: 
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CT(1) (which returns one row and no columns).  A row from R is 
output when any of the relational expressions underneath the Un-
ionAll returns a non-empty result. 

3.5 Dealing with quantified comparisons 
Semantics.  We deal with quantified comparisons by mapping them 
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semantics in the presence of NULL values is illustrated through an 
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5. If S = {NULL, 1} then p is UNKNOWN. 
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UNKNOWN. 
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filter rows on predicate p, then we discard any rows for which p is 
either FALSE or UNKNOWN.  FALSE and UNKNOWN are also 
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Also, suppose you have a Boolean expression P(X1, X2, …) = Y, 
using only logical connectives AND and OR.  The impact of chang-
ing the value of any Xi from UNKNOWN to FALSE, is either Y 
remains unchanged, or else Y changes from UNKNOWN to 
FALSE. 

From the above, it is valid to change the result of quantified com-
parisons from three-valued to two-valued, for Boolean expressions 
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The mapping.  To compute universal quantification we use anti-
join, which evaluates a NOT EXISTS predicate.  We map through 
the conventional equation: 

(FOR ALL s ∈ S: p) = (NOT EXISTS s ∈ S: NOT p) 

However, this equation holds only in two-valued logic, not in the 
three-valued logic of SQL (the basic reason is that NOT UN-
KNOWN is UNKNOWN).  So, we complete the mapping in two 
steps: (1) change the universal quantification σ expression so it does 
not involve UNKNOWN values; (2) negate the predicate. 
A universal quantification predicate of the form p = A <cmp> B can 
return UNKNOWN when either A or B are NULL.  So we replace it 
by a two-value predicate p’ = A <cmp> B AND A IS NOT NULL 
AND B IS NOT NULL.  Predicate p’ returns TRUE whenever p 
returns TRUE, and p’ returns FALSE whenever p returns either 
FALSE or UNKNOWN.  As argued earlier, this mapping preserves 
correctness under filtering and CASE WHEN contexts. 

We then negate p’ to create the NOT EXISTS predicate, to obtain: 

A <cmp’> B OR A IS NULL OR B IS NULL, 

where <cmp’> is the comparison opposite <cmp>.  Of course, if A 
or B are not nullable, the expression can be simplified at compila-
tion time. 

Example.  Suppose you start out with a subquery of the form A 
NOT IN S.  This is first mapped to universal quantification A 
<>ALL S.  Then it gets mapped to a NOT EXISTS subquery of the 
form 

NOT EXISTS(σ[A = s OR A IS NULL OR s IS NULL] S). 

This will then get mapped to an antijoin with a predicate that has 
disjuctions.  This is a common form in antijoin predicates, and its 
efficient execution is considered in section 6.2. 

An alternative to the above is to introduce a new, special aggregate 
that has a Boolean input and it computes universal quantification 
with three-valued logic.  This provides a faithful implementation of 
quantified comparisons in SQL (and a requirement if three-valued 
Boolean results are allowed as parameters to opaque functions).  But 
this aggregate approach limits the set of execution strategies.  Map-
ping to existential tests allows efficient use of index lookups and 
navigational plans. 

4. REMOVING APPLY 
In the previous section we outline subquery removal, i.e. eliminating 
the use of relational expressions in scalar expressions.  The result is, 
in general, a relational expression with Apply operators and param-
eterized expressions (PREs).  In many cases, it is possible to do 
further transformations and eliminate the use of Apply and parame-
terization.  This is commonly known as a decorrelated form of the 
query and it enables the use of a choice of join algorithms.  It was 
the main intuition behind efficient subquery processing in the first 
papers on the subject, e.g., [3]. 

We don’t view the decorrelated form of subqueries as a preferable 
execution strategy, but rather as a useful normal form.  Different 
surface formulations can end up in the same normal form, including 
queries originally written with or without subqueries.  Starting from 
this normal form, cost-based optimization will consider multiple 
execution strategies, including different evaluation orders and (re-
)introduction of Apply. 

4.1 Categories for Apply Removal 
Apply (without pass-through, which implement conditional execu-
tion and is foreign to relational algebra) does not add expressive 
power to the five basic relational operators (select, project, cross 
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ness.  Removing Apply from some relational expression E may yield 
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portant distinction for the three subquery removal categories pre-
sented in [9].  We briefly review those categories here and add a 
fourth: 
1. Apply removal that preserves the size of the expression.  

For example, the Apply expression from the example query in 
Section 2 can be rewritten as: 
ORDERS ApplyOJ (σ[C_CUSTKEY = O_CUSTKEY] CUS-
TOMER) = ORDERS OJ [C_CUSTKEY = O_CUSTKEY] 
CUSTOMER 

2. Apply removal that duplicates subexpressions.  The size of 
an expression can be increased exponentially as a result of Ap-
ply removal, in particular when dealing with parameterized un-
ion and difference. For example, the following expression can 
result from the use of subqueries in disjunctions, and its decor-
related form duplicates R: 

R ApplyJN (σR.a = S.a S) UA σR.b = T.b T) 

= R JNR.a = S.a S UA R JN R.b = T.b T 

One could also write the above as a join with a complex OR 
condition, on top of a union of S and T with a column that tags 
the source of each union output row, thus preserving the size of 
the original expression.  However, we find little use in such 
representation from a query processing perspective. 
Note that if the same free variable, say R.a, were used in both 
branches of the union, then the predicate can be factored out to 
remove Apply without duplication.  SQL Server identifies and 
handles this case as category 1.  In general, pulling up predi-
cates with free variables is part of the normalization process 
that removes Apply for expressions in category 1.  

3. Apply removal unfeasible due to special scalar-relational 
bridge semantics.  There are two cases here: (1) checking for 
max1row for scalar-valued subqueries and (2) conditional 
evaluation using pass-through predicates for CASE WHEN 
expressions.  SQL Server does not remove Apply for these 
cases. 

4. Opaque functions.  This category was not called out in [9], 
but it is a distinct case.  Apply is not removed when dealing 
with opaque functions like our earlier example of table-valued 
function CHOP_WORDS: 
MYTABLE Apply CHOP_WORDS(MYTABLE.COL) 

Table-valued functions written in languages such as C++ are 
always opaque.  For functions defined through the SQL lan-
guage, we also support inlininig, in which case the function 
definition simply gets expanded, as a view with parameters.  
This brings back the expression to one of the three earlier cate-
gories. 

4.2 Tradeoffs and Query Processing Strategy 
All the categories outlined above are found in practice, and their 
effective processing requires slightly different approaches.  To de-
scribe the differences, we need to take into account the processing 
flow of the optimizer in SQL Server: 

• The compiler front-end parses the query text and resolves sym-
bolic references.  It produces a tree representation of the state-
ment based on logical data operators. 

• This operator tree is simplified and normalized, including con-
tradiction detection and removal of redundant operations.  The 
output is a simplified logical operator tree representing the 
query. 

• The simplified operator tree goes into cost-based optimization, 
where an execution plan is selected based on available access 
paths, data volume and distribution. 

Query simplification / normalization is done using the same infra-
structure of tree transformations, so it is possible to utilize a particu-
lar tree transformation either as simplification or as a cost-based 
alternative. 
For expressions that fall in categories 3 and 4 above, Apply cannot 
be removed.  There is basically a single physical execution strategy 
for the logical Apply operator: Use nested loops joins to repeatedly 
execute the parameterized expression, in a straightforward imple-
mentation of the Apply definition.  SQL Server considers a number 
of optimizations on these parameterized nested loops, which are 
discussed later in this paper. 
For expressions that fall in category 1, the query is normalized to 
the decorrelated form, which is fed to the cost-based optimization.  
This process considers a number of logical execution orders and 
implementation algorithms off of this decorrelated form.  Going 
through a normal form provides syntax independence to our optimi-
zation process.  There are many cases of subqueries that can also be 
written naturally without those in SQL, and the query optimizer has 
the same behavior for both forms.  For example, it is easy to see that 
our example query in Section 2 could have been written using outer-
join directly – both the subquery or the outerjoin formulation will 
map to the same normal form. 
Particular optimizations for these decorrelated forms are covered 
later in this paper, but it is worth pointing out here that one of the 
alternatives considered during cost-based optimization is the intro-
duction (or re-introduction) of Apply, to target navigation strategies 
that are very efficient in some cases. 
For expressions that fall in category 2, we have a tradeoff to make: 
Remove Apply but duplicate sub-expressions (as in category 1), or 
else keep the original (as in category 3).  We do not normalize to the 
decorrelated form in this case for two reasons: (1) The explosion on 
the size of the expression; (2) the added complication faced when 
re-introducing Apply in cost-based optimization, which now requires 
common subexpression detection to eliminate the redundancy intro-
duced. 
We are still interested in resolving this tradeoff effectively in a cost-
based way, because there are instances where the decorrelated form 
can perform much more efficiently, even with the duplicate subex-
pression.  For this reason, we consider Apply removal for this cate-
gory of queries during cost-based optimization, for a number of 
important special cases.  Further details of this are covered later in 
this paper. 

5. OPTIMIZING SUBQUERIES USING 
MAGIC SETS 
In this section we briefly review the “complex query decorrelation” 
approach presented in [8], and reformulate it using our framework, 
to the best of our understanding. 

5.1 The magic set technique 
Magic set optimization in [8] starts out with a presentation of sub-
queries as functions, as we do in this paper with the Apply operator.  
A key observation is that a function can be represented extension-
ally as a table, for a finite set of argument values.  This extensional 
representation has additional columns that hold the argument values 
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portant distinction for the three subquery removal categories pre-
sented in [9].  We briefly review those categories here and add a 
fourth: 
1. Apply removal that preserves the size of the expression.  

For example, the Apply expression from the example query in 
Section 2 can be rewritten as: 
ORDERS ApplyOJ (σ[C_CUSTKEY = O_CUSTKEY] CUS-
TOMER) = ORDERS OJ [C_CUSTKEY = O_CUSTKEY] 
CUSTOMER 

2. Apply removal that duplicates subexpressions.  The size of 
an expression can be increased exponentially as a result of Ap-
ply removal, in particular when dealing with parameterized un-
ion and difference. For example, the following expression can 
result from the use of subqueries in disjunctions, and its decor-
related form duplicates R: 

R ApplyJN (σR.a = S.a S) UA σR.b = T.b T) 

= R JNR.a = S.a S UA R JN R.b = T.b T 

One could also write the above as a join with a complex OR 
condition, on top of a union of S and T with a column that tags 
the source of each union output row, thus preserving the size of 
the original expression.  However, we find little use in such 
representation from a query processing perspective. 
Note that if the same free variable, say R.a, were used in both 
branches of the union, then the predicate can be factored out to 
remove Apply without duplication.  SQL Server identifies and 
handles this case as category 1.  In general, pulling up predi-
cates with free variables is part of the normalization process 
that removes Apply for expressions in category 1.  

3. Apply removal unfeasible due to special scalar-relational 
bridge semantics.  There are two cases here: (1) checking for 
max1row for scalar-valued subqueries and (2) conditional 
evaluation using pass-through predicates for CASE WHEN 
expressions.  SQL Server does not remove Apply for these 
cases. 

4. Opaque functions.  This category was not called out in [9], 
but it is a distinct case.  Apply is not removed when dealing 
with opaque functions like our earlier example of table-valued 
function CHOP_WORDS: 
MYTABLE Apply CHOP_WORDS(MYTABLE.COL) 

Table-valued functions written in languages such as C++ are 
always opaque.  For functions defined through the SQL lan-
guage, we also support inlininig, in which case the function 
definition simply gets expanded, as a view with parameters.  
This brings back the expression to one of the three earlier cate-
gories. 

4.2 Tradeoffs and Query Processing Strategy 
All the categories outlined above are found in practice, and their 
effective processing requires slightly different approaches.  To de-
scribe the differences, we need to take into account the processing 
flow of the optimizer in SQL Server: 

• The compiler front-end parses the query text and resolves sym-
bolic references.  It produces a tree representation of the state-
ment based on logical data operators. 

• This operator tree is simplified and normalized, including con-
tradiction detection and removal of redundant operations.  The 
output is a simplified logical operator tree representing the 
query. 

• The simplified operator tree goes into cost-based optimization, 
where an execution plan is selected based on available access 
paths, data volume and distribution. 

Query simplification / normalization is done using the same infra-
structure of tree transformations, so it is possible to utilize a particu-
lar tree transformation either as simplification or as a cost-based 
alternative. 
For expressions that fall in categories 3 and 4 above, Apply cannot 
be removed.  There is basically a single physical execution strategy 
for the logical Apply operator: Use nested loops joins to repeatedly 
execute the parameterized expression, in a straightforward imple-
mentation of the Apply definition.  SQL Server considers a number 
of optimizations on these parameterized nested loops, which are 
discussed later in this paper. 
For expressions that fall in category 1, the query is normalized to 
the decorrelated form, which is fed to the cost-based optimization.  
This process considers a number of logical execution orders and 
implementation algorithms off of this decorrelated form.  Going 
through a normal form provides syntax independence to our optimi-
zation process.  There are many cases of subqueries that can also be 
written naturally without those in SQL, and the query optimizer has 
the same behavior for both forms.  For example, it is easy to see that 
our example query in Section 2 could have been written using outer-
join directly – both the subquery or the outerjoin formulation will 
map to the same normal form. 
Particular optimizations for these decorrelated forms are covered 
later in this paper, but it is worth pointing out here that one of the 
alternatives considered during cost-based optimization is the intro-
duction (or re-introduction) of Apply, to target navigation strategies 
that are very efficient in some cases. 
For expressions that fall in category 2, we have a tradeoff to make: 
Remove Apply but duplicate sub-expressions (as in category 1), or 
else keep the original (as in category 3).  We do not normalize to the 
decorrelated form in this case for two reasons: (1) The explosion on 
the size of the expression; (2) the added complication faced when 
re-introducing Apply in cost-based optimization, which now requires 
common subexpression detection to eliminate the redundancy intro-
duced. 
We are still interested in resolving this tradeoff effectively in a cost-
based way, because there are instances where the decorrelated form 
can perform much more efficiently, even with the duplicate subex-
pression.  For this reason, we consider Apply removal for this cate-
gory of queries during cost-based optimization, for a number of 
important special cases.  Further details of this are covered later in 
this paper. 
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In this section we briefly review the “complex query decorrelation” 
approach presented in [8], and reformulate it using our framework, 
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One could also write the above as a join with a complex OR 
condition, on top of a union of S and T with a column that tags 
the source of each union output row, thus preserving the size of 
the original expression.  However, we find little use in such 
representation from a query processing perspective. 
Note that if the same free variable, say R.a, were used in both 
branches of the union, then the predicate can be factored out to 
remove Apply without duplication.  SQL Server identifies and 
handles this case as category 1.  In general, pulling up predi-
cates with free variables is part of the normalization process 
that removes Apply for expressions in category 1.  

3. Apply removal unfeasible due to special scalar-relational 
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evaluation using pass-through predicates for CASE WHEN 
expressions.  SQL Server does not remove Apply for these 
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always opaque.  For functions defined through the SQL lan-
guage, we also support inlininig, in which case the function 
definition simply gets expanded, as a view with parameters.  
This brings back the expression to one of the three earlier cate-
gories. 

4.2 Tradeoffs and Query Processing Strategy 
All the categories outlined above are found in practice, and their 
effective processing requires slightly different approaches.  To de-
scribe the differences, we need to take into account the processing 
flow of the optimizer in SQL Server: 

• The compiler front-end parses the query text and resolves sym-
bolic references.  It produces a tree representation of the state-
ment based on logical data operators. 

• This operator tree is simplified and normalized, including con-
tradiction detection and removal of redundant operations.  The 
output is a simplified logical operator tree representing the 
query. 

• The simplified operator tree goes into cost-based optimization, 
where an execution plan is selected based on available access 
paths, data volume and distribution. 

Query simplification / normalization is done using the same infra-
structure of tree transformations, so it is possible to utilize a particu-
lar tree transformation either as simplification or as a cost-based 
alternative. 
For expressions that fall in categories 3 and 4 above, Apply cannot 
be removed.  There is basically a single physical execution strategy 
for the logical Apply operator: Use nested loops joins to repeatedly 
execute the parameterized expression, in a straightforward imple-
mentation of the Apply definition.  SQL Server considers a number 
of optimizations on these parameterized nested loops, which are 
discussed later in this paper. 
For expressions that fall in category 1, the query is normalized to 
the decorrelated form, which is fed to the cost-based optimization.  
This process considers a number of logical execution orders and 
implementation algorithms off of this decorrelated form.  Going 
through a normal form provides syntax independence to our optimi-
zation process.  There are many cases of subqueries that can also be 
written naturally without those in SQL, and the query optimizer has 
the same behavior for both forms.  For example, it is easy to see that 
our example query in Section 2 could have been written using outer-
join directly – both the subquery or the outerjoin formulation will 
map to the same normal form. 
Particular optimizations for these decorrelated forms are covered 
later in this paper, but it is worth pointing out here that one of the 
alternatives considered during cost-based optimization is the intro-
duction (or re-introduction) of Apply, to target navigation strategies 
that are very efficient in some cases. 
For expressions that fall in category 2, we have a tradeoff to make: 
Remove Apply but duplicate sub-expressions (as in category 1), or 
else keep the original (as in category 3).  We do not normalize to the 
decorrelated form in this case for two reasons: (1) The explosion on 
the size of the expression; (2) the added complication faced when 
re-introducing Apply in cost-based optimization, which now requires 
common subexpression detection to eliminate the redundancy intro-
duced. 
We are still interested in resolving this tradeoff effectively in a cost-
based way, because there are instances where the decorrelated form 
can perform much more efficiently, even with the duplicate subex-
pression.  For this reason, we consider Apply removal for this cate-
gory of queries during cost-based optimization, for a number of 
important special cases.  Further details of this are covered later in 
this paper. 

5. OPTIMIZING SUBQUERIES USING 
MAGIC SETS 
In this section we briefly review the “complex query decorrelation” 
approach presented in [8], and reformulate it using our framework, 
to the best of our understanding. 

5.1 The magic set technique 
Magic set optimization in [8] starts out with a presentation of sub-
queries as functions, as we do in this paper with the Apply operator.  
A key observation is that a function can be represented extension-
ally as a table, for a finite set of argument values.  This extensional 
representation has additional columns that hold the argument values 
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portant distinction for the three subquery removal categories pre-
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remove Apply without duplication.  SQL Server identifies and 
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definition simply gets expanded, as a view with parameters.  
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flow of the optimizer in SQL Server: 

• The compiler front-end parses the query text and resolves sym-
bolic references.  It produces a tree representation of the state-
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structure of tree transformations, so it is possible to utilize a particu-
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alternative. 
For expressions that fall in categories 3 and 4 above, Apply cannot 
be removed.  There is basically a single physical execution strategy 
for the logical Apply operator: Use nested loops joins to repeatedly 
execute the parameterized expression, in a straightforward imple-
mentation of the Apply definition.  SQL Server considers a number 
of optimizations on these parameterized nested loops, which are 
discussed later in this paper. 
For expressions that fall in category 1, the query is normalized to 
the decorrelated form, which is fed to the cost-based optimization.  
This process considers a number of logical execution orders and 
implementation algorithms off of this decorrelated form.  Going 
through a normal form provides syntax independence to our optimi-
zation process.  There are many cases of subqueries that can also be 
written naturally without those in SQL, and the query optimizer has 
the same behavior for both forms.  For example, it is easy to see that 
our example query in Section 2 could have been written using outer-
join directly – both the subquery or the outerjoin formulation will 
map to the same normal form. 
Particular optimizations for these decorrelated forms are covered 
later in this paper, but it is worth pointing out here that one of the 
alternatives considered during cost-based optimization is the intro-
duction (or re-introduction) of Apply, to target navigation strategies 
that are very efficient in some cases. 
For expressions that fall in category 2, we have a tradeoff to make: 
Remove Apply but duplicate sub-expressions (as in category 1), or 
else keep the original (as in category 3).  We do not normalize to the 
decorrelated form in this case for two reasons: (1) The explosion on 
the size of the expression; (2) the added complication faced when 
re-introducing Apply in cost-based optimization, which now requires 
common subexpression detection to eliminate the redundancy intro-
duced. 
We are still interested in resolving this tradeoff effectively in a cost-
based way, because there are instances where the decorrelated form 
can perform much more efficiently, even with the duplicate subex-
pression.  For this reason, we consider Apply removal for this cate-
gory of queries during cost-based optimization, for a number of 
important special cases.  Further details of this are covered later in 
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In this section we briefly review the “complex query decorrelation” 
approach presented in [8], and reformulate it using our framework, 
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Magic set optimization in [8] starts out with a presentation of sub-
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Figure 3: Direct algebraic representation of sub-

query.

2.2 Algebraic representation with Apply
Mutual recursion between scalar and relation nodes in the

algebrizer output is removed by introducing Apply opera-
tors. The general scheme is to evaluate the subquery explic-
itly before the operator whose scalar expressions requires
the subquery result. Say there is a relational operator å on
input R, with a scalar argument e using a subquery Q. We
execute the subquery first using Apply, such that the sub-
query result is available as a (new) column q; then replace
the subquery utilization by such variable:

åe(Q)R ; åe(q)(R Aä Q).

As an example, removing mutual recursion from the op-
erator tree in Figure 3 results in the tree shown in Figure 2.
An operator AÇ is introduced below the relational select
to compute the subquery, whose result is stored in column
X. Figure 2 no longer shows the expanded operator trees
for scalar expressions.

We showed how to remove one subquery from a scalar
expression, but the technique naturally applies to multi-
ple subqueries, in which case a sequence of Apply operators
compute the various subqueries over the relational input.

Straightforward execution at this point is still based on
nested loops. However, recursive calls between scalar and re-
lational execution are removed, since scalar evaluation never
needs to call back into the relational engine. Removing mu-
tual recursion not only can have an impact on performance,
but it also simplifies implementation.

2.3 Removal of Apply
Given a relational expression with Apply operators, it is

R Aä E = Rätrue E, (1)

if no parameters in E resolved from R

R Aä (õpE) = Räp E, (2)

if no parameters in E resolved from R

R AÇ (õpE) = õp(R AÇ E) (3)

R AÇ (ôvE) = ôv [ columns(R)(R AÇ E) (4)

R AÇ (E1 [ E2) = (R AÇ E1) [ (R AÇ E2) (5)

R AÇ (E1 Ä E2) = (R AÇ E1)Ä (R AÇ E2) (6)

R AÇ (E1 Ç E2) = (R AÇ E1) ./R.key (R AÇ E2) (7)

R AÇ (GA,F E) = GA [ columns(R),F (R AÇ E) (8)

R AÇ (G1
F E) = Gcolumns(R),F 0(R ALOJ E) (9)

Identities 7 through 9 require that R contain a key R.key.
In identity (7), Join on R.key is used as a shorthand for the
obvious predicate. In identity (9), F 0 contains aggregates
in F expressed over a single-column —for example, if F
is count(*), then F 0 is count(c) for some not-nullable
column c from E. Identity (9) is valid for all aggregates such
that agg(;) = agg({null}), which is true for SQL aggregates.

Figure 4: Rules to remove correlations.

possible to obtain an equivalent expression that does not
use Apply. The process consists of pushing down Apply in
the operator tree, towards the leaves, until the right child of
Apply is no longer parameterized oã the left child. Figure
4 describes the properties that allow this pushing —see [17,
6] for additional details, and discussion on these properties.

For example, consider the expression shown in Figure 2.
On the right child of Apply there is a scalar aggregation,
then a select, and below that point there are no more outer
references. Apply removal is shown in Fig 5. Identity (9)
is used to push Apply below Scalar GroupBy; then Identity
(2) is used to absorb the last parameterized select and re-
move the Apply. This results in the strategy of outerjoin
followed by aggregate. In addition, due to the predicate on
the aggregate result, the left outerjoin (denoted LOJ) can
be simplified to join.

2.4 All SQL subqueries
So far we have described transformations that normalize

subqueries into standard relational operators, and exempli-
fied the procedure using a scalar aggregate subquery. We
now describe additional SQL subquery scenarios, and how
our scheme is aãected on those.

For boolean-valued subqueries, i. e. exists, not exists,
in subquery, and quantified comparisons, the subquery can
be rewritten as a scalar count aggregate. From the utiliza-
tion context of the aggregate result, either equal to zero or
greater than zero, it is possible for the aggregate operator
to stop requesting rows as soon as one has been found, since
additional rows do not aãect the result of the comparison.

A common case that is further optimized is when a re-
lational select has an existential subquery as its only pred-
icate (or when such select can be created by splitting an-
other that ANDs an existential subquery with other condi-
tions). In this case, the complete select operator is turned
into Apply-semijoin for exists, or Apply-antisemijoin for not
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for which the function has been pre-computed.  Function application 
then turns into join: 

R Apply E(r) = R JNR.r=R’.r’ DS, 

assuming that DS stores the result of E(r) for all values of r from R.  
The table DS is called the “decoupled query.”  To obtain DS, you 
need to compute the function for enough parameter values: 

DS = R’ Apply E(r’), 

where R’ is called the “magic set,” and it consists of (a superset of) 
the set of parameter values to be used from R.  A possible choice is 
R’ =distinct[R.r] R.  Of course, the two equations can be put to-
gether and there is no need to explicitly store the value of DS.  The 
result can be seen as a generalization of the semijoin reduction strat-
egy used in distributed systems. 
The intent of [8] is that DS has a decorrelated form, which when 
plugged above yields a fully decorrelated expression.  However, this 
does not really address decorrelation, in the sense we use in this 
paper.  Removing Apply in the original expression is the same alge-
braic problem as removing it in the computation of DS. 

5.2 Magic on join / group by scenarios 
In addition to the general definition of magic set reduction, [8] also 
shows a specific strategy that can be very efficient to deal with some 
Join and GroupBy queries.  It transforms expression A below to an 
expression M with magic-set reduction: 

 A: R JNp(r,s) and p(r,x) Gs,x=agg S 

 M: R JNr = r’ and p(r,x) (Gs,x=agg R’ JNp(r’,s) S) 

with R’ being the distinct values of R used in the join with S.  There 
are at least two other possible expressions to execute A [9]: Call B 
the result of moving up the GroupBy operation above the Join; call 
C the segmented execution over R, which is possible when R and S 
are common subexpressions.  Magic set strategy M can be much 
better than the other alternatives when all the following conditions 
hold (which is not a very common scenario, in practice): 

• Many of the values in R.r do not appear in S.s.  Otherwise, A is 
probably quite effective, as it is not computing unnecessary 
groups. 

• R.r is a low selectivity column (i.e. there are relatively few 
distinct values of r in R) and also S.s is a low selectivity col-
umn. Otherwise, B is probably quite effective, since the early 
join will filter out any unnecessary rows and no extra work is 
created for the final aggregation. 

• R and S are not common subexpressions. Otherwise, strategy 
C requires a single pass and can be very efficient. 

From the point of view of our framework, the magic set strategy is 
an alternative for queries with Join and GroupBy, and it needs to be 
considered in a cost-based way along with other choices. 
As with Apply removal over parameterized unions, magic set reduc-
tion requires the duplication of subexpressions, which introduces 
additional complications during optimization. 

6. OPTIMIZING SEMIJOIN  
AND ANTIJOIN 
The process of removing correlation generates trees which contain 
semijoins, antijoins and outer joins. Optimization of semijoins, anti-
joins and outer joins is therefore an important part of handling 

subqueries. The paper [11] discusses outer join optimization in de-
tail. In this section we will concentrate on semijoins and antijoins. 
Note that SQL does not expose semijoins and antijoins as language 
constructs. Therefore for SQL, subquery removal is the only way 
these operators make an appearance in the query tree. 

6.1 Reordering semijoins and antijoins 
From the reordering perspective, semijoins and antijoin are very 
similar to filters. They can be pushed or pulled through an operator 
whenever a filter can be pushed or pulled. E.g. a filter can be pushed 
through a GroupBy operator whenever the predicate does not use 
the results of the aggregate expressions. Similarly a semijoin or an 
antijoin can be pushed through a GroupBy as long as the join predi-
cate does not use the results of the aggregate expression. i.e. 

(GA,FR) SJp(A,S) S = GA,F (R SJp(A, S) S) 

(GA,FR) ASJp(A, S) S = GA,F (R ASJp(A, S) S) 

Reordering semijoins and antijoins as though they were filters is a 
powerful tool but it still keeps the tables in relation S together as a 
block. If we want to reorder individual tables of S, we have to be 
careful about the number of duplicate rows in the result and the 
columns that are visible. An identity which gives us a simple and 
general solution for this problem is: 

R SJp(R,S) S = Gkey(R),Any(R) (R Joinp(R, S) S) 

This transformation converts a semijoin into a join. Reordering of 
tables around a join is a well understood problem.  
Here is an example that illustrates the benefits of this ability to 
freely reorder tables. Consider the query that tries to find the num-
ber of orders placed on the New Year’s Day in 1995 for which at 
least one of the suppliers is in the same country as the customer and 
the item was shipped within seven days of the order. The SQL for 
this query looks something like this: 
SELECT COUNT(*) 
FROM ORDERS 
WHERE O_ORDERDATE = '1995-01-01' 
 AND EXISTS(SELECT *  
 FROM CUSTOMER, SUPPLIER, LINEITEM 
 WHERE  
  L_ORDERKEY = O_ORDERKEY  
  AND S_SUPPKEY = L_SUPPKEY  
  AND C_CUSTKEY = O_CUSTKEY 

AND C_NATIONKEY = S_NATIONKEY 
AND L_SHIPDATE BETWEEN '1995-01-01' 
AND dateadd(dd, 7, '1995-01-01') 

The EXISTS clause of the subquery is transformed into a semijoin. 
The transformed query looks like: 
ORDERS SJ (CUSTOMER JN  SUPPLIER JN  LINEITEM) 

The inner side of the semijoin contains an inner join of three tables. 
These three tables cannot be reordered freely with the ORDERS 
table as otherwise the count(*) may see incorrect number of rows. 
We are therefore forced to do one of the following. Either join the 
CUSTOMER, SUPPLIER and LINEITEM table before we join the 
result with ORDERS (if we choose to do the semijoin as a hash or 
merge join) or join the three tables for every row of ORDERS that 
qualifies the date predicate (if we choose to do the semijoin as a 
nested loop or an index lookup join). Both these alternatives are 
quite slow. Since the predicates on both ORDERS and LINEITEMS 
are quite selective, it is better to join the two tables first and then 
join the small result with the remaining tables. This is exactly what 
converting a semijoin to a join lets us do. 
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for which the function has been pre-computed.  Function application 
then turns into join: 

R Apply E(r) = R JNR.r=R’.r’ DS, 

assuming that DS stores the result of E(r) for all values of r from R.  
The table DS is called the “decoupled query.”  To obtain DS, you 
need to compute the function for enough parameter values: 

DS = R’ Apply E(r’), 

where R’ is called the “magic set,” and it consists of (a superset of) 
the set of parameter values to be used from R.  A possible choice is 
R’ =distinct[R.r] R.  Of course, the two equations can be put to-
gether and there is no need to explicitly store the value of DS.  The 
result can be seen as a generalization of the semijoin reduction strat-
egy used in distributed systems. 
The intent of [8] is that DS has a decorrelated form, which when 
plugged above yields a fully decorrelated expression.  However, this 
does not really address decorrelation, in the sense we use in this 
paper.  Removing Apply in the original expression is the same alge-
braic problem as removing it in the computation of DS. 

5.2 Magic on join / group by scenarios 
In addition to the general definition of magic set reduction, [8] also 
shows a specific strategy that can be very efficient to deal with some 
Join and GroupBy queries.  It transforms expression A below to an 
expression M with magic-set reduction: 

 A: R JNp(r,s) and p(r,x) Gs,x=agg S 

 M: R JNr = r’ and p(r,x) (Gs,x=agg R’ JNp(r’,s) S) 

with R’ being the distinct values of R used in the join with S.  There 
are at least two other possible expressions to execute A [9]: Call B 
the result of moving up the GroupBy operation above the Join; call 
C the segmented execution over R, which is possible when R and S 
are common subexpressions.  Magic set strategy M can be much 
better than the other alternatives when all the following conditions 
hold (which is not a very common scenario, in practice): 

• Many of the values in R.r do not appear in S.s.  Otherwise, A is 
probably quite effective, as it is not computing unnecessary 
groups. 

• R.r is a low selectivity column (i.e. there are relatively few 
distinct values of r in R) and also S.s is a low selectivity col-
umn. Otherwise, B is probably quite effective, since the early 
join will filter out any unnecessary rows and no extra work is 
created for the final aggregation. 

• R and S are not common subexpressions. Otherwise, strategy 
C requires a single pass and can be very efficient. 

From the point of view of our framework, the magic set strategy is 
an alternative for queries with Join and GroupBy, and it needs to be 
considered in a cost-based way along with other choices. 
As with Apply removal over parameterized unions, magic set reduc-
tion requires the duplication of subexpressions, which introduces 
additional complications during optimization. 

6. OPTIMIZING SEMIJOIN  
AND ANTIJOIN 
The process of removing correlation generates trees which contain 
semijoins, antijoins and outer joins. Optimization of semijoins, anti-
joins and outer joins is therefore an important part of handling 

subqueries. The paper [11] discusses outer join optimization in de-
tail. In this section we will concentrate on semijoins and antijoins. 
Note that SQL does not expose semijoins and antijoins as language 
constructs. Therefore for SQL, subquery removal is the only way 
these operators make an appearance in the query tree. 

6.1 Reordering semijoins and antijoins 
From the reordering perspective, semijoins and antijoin are very 
similar to filters. They can be pushed or pulled through an operator 
whenever a filter can be pushed or pulled. E.g. a filter can be pushed 
through a GroupBy operator whenever the predicate does not use 
the results of the aggregate expressions. Similarly a semijoin or an 
antijoin can be pushed through a GroupBy as long as the join predi-
cate does not use the results of the aggregate expression. i.e. 

(GA,FR) SJp(A,S) S = GA,F (R SJp(A, S) S) 

(GA,FR) ASJp(A, S) S = GA,F (R ASJp(A, S) S) 

Reordering semijoins and antijoins as though they were filters is a 
powerful tool but it still keeps the tables in relation S together as a 
block. If we want to reorder individual tables of S, we have to be 
careful about the number of duplicate rows in the result and the 
columns that are visible. An identity which gives us a simple and 
general solution for this problem is: 

R SJp(R,S) S = Gkey(R),Any(R) (R Joinp(R, S) S) 

This transformation converts a semijoin into a join. Reordering of 
tables around a join is a well understood problem.  
Here is an example that illustrates the benefits of this ability to 
freely reorder tables. Consider the query that tries to find the num-
ber of orders placed on the New Year’s Day in 1995 for which at 
least one of the suppliers is in the same country as the customer and 
the item was shipped within seven days of the order. The SQL for 
this query looks something like this: 
SELECT COUNT(*) 
FROM ORDERS 
WHERE O_ORDERDATE = '1995-01-01' 
 AND EXISTS(SELECT *  
 FROM CUSTOMER, SUPPLIER, LINEITEM 
 WHERE  
  L_ORDERKEY = O_ORDERKEY  
  AND S_SUPPKEY = L_SUPPKEY  
  AND C_CUSTKEY = O_CUSTKEY 

AND C_NATIONKEY = S_NATIONKEY 
AND L_SHIPDATE BETWEEN '1995-01-01' 
AND dateadd(dd, 7, '1995-01-01') 

The EXISTS clause of the subquery is transformed into a semijoin. 
The transformed query looks like: 
ORDERS SJ (CUSTOMER JN  SUPPLIER JN  LINEITEM) 

The inner side of the semijoin contains an inner join of three tables. 
These three tables cannot be reordered freely with the ORDERS 
table as otherwise the count(*) may see incorrect number of rows. 
We are therefore forced to do one of the following. Either join the 
CUSTOMER, SUPPLIER and LINEITEM table before we join the 
result with ORDERS (if we choose to do the semijoin as a hash or 
merge join) or join the three tables for every row of ORDERS that 
qualifies the date predicate (if we choose to do the semijoin as a 
nested loop or an index lookup join). Both these alternatives are 
quite slow. Since the predicates on both ORDERS and LINEITEMS 
are quite selective, it is better to join the two tables first and then 
join the small result with the remaining tables. This is exactly what 
converting a semijoin to a join lets us do. 
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Option 1: Evaluate “EXISTS” for each Order (nested-
loops)

-- obviously a bad idea

Option 2: Do the join between the three relations first
-- those three tables may be large

Option 3: Convert the semijoin to a JOIN

This allows doing the join between the four tables 
arbitrarily
Only works in some cases

Option 4???: Magic sets
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C requires a single pass and can be very efficient. 
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Note that SQL does not expose semijoins and antijoins as language 
constructs. Therefore for SQL, subquery removal is the only way 
these operators make an appearance in the query tree. 

6.1 Reordering semijoins and antijoins 
From the reordering perspective, semijoins and antijoin are very 
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through a GroupBy operator whenever the predicate does not use 
the results of the aggregate expressions. Similarly a semijoin or an 
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Reordering semijoins and antijoins as though they were filters is a 
powerful tool but it still keeps the tables in relation S together as a 
block. If we want to reorder individual tables of S, we have to be 
careful about the number of duplicate rows in the result and the 
columns that are visible. An identity which gives us a simple and 
general solution for this problem is: 

R SJp(R,S) S = Gkey(R),Any(R) (R Joinp(R, S) S) 

This transformation converts a semijoin into a join. Reordering of 
tables around a join is a well understood problem.  
Here is an example that illustrates the benefits of this ability to 
freely reorder tables. Consider the query that tries to find the num-
ber of orders placed on the New Year’s Day in 1995 for which at 
least one of the suppliers is in the same country as the customer and 
the item was shipped within seven days of the order. The SQL for 
this query looks something like this: 
SELECT COUNT(*) 
FROM ORDERS 
WHERE O_ORDERDATE = '1995-01-01' 
 AND EXISTS(SELECT *  
 FROM CUSTOMER, SUPPLIER, LINEITEM 
 WHERE  
  L_ORDERKEY = O_ORDERKEY  
  AND S_SUPPKEY = L_SUPPKEY  
  AND C_CUSTKEY = O_CUSTKEY 

AND C_NATIONKEY = S_NATIONKEY 
AND L_SHIPDATE BETWEEN '1995-01-01' 
AND dateadd(dd, 7, '1995-01-01') 

The EXISTS clause of the subquery is transformed into a semijoin. 
The transformed query looks like: 
ORDERS SJ (CUSTOMER JN  SUPPLIER JN  LINEITEM) 

The inner side of the semijoin contains an inner join of three tables. 
These three tables cannot be reordered freely with the ORDERS 
table as otherwise the count(*) may see incorrect number of rows. 
We are therefore forced to do one of the following. Either join the 
CUSTOMER, SUPPLIER and LINEITEM table before we join the 
result with ORDERS (if we choose to do the semijoin as a hash or 
merge join) or join the three tables for every row of ORDERS that 
qualifies the date predicate (if we choose to do the semijoin as a 
nested loop or an index lookup join). Both these alternatives are 
quite slow. Since the predicates on both ORDERS and LINEITEMS 
are quite selective, it is better to join the two tables first and then 
join the small result with the remaining tables. This is exactly what 
converting a semijoin to a join lets us do. 
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} Caching
◦ If the result is small of the inner loop is small enough, just cache it and 

reuse it
◦ If parameterized, then can build an index using the parameters as the key

} Asynchronous pre-fetch
◦ Start retrieving the required rows for the “next” outer tuple

} Sort the outer relation, and execute APPLY in that order
◦ Can give some benefits because of natural temporal correlations



} Query evaluation techniques for large databases, Skew 
Avoidance, Query compilation/vectorization

} Query Optimization: Overview, How good are the query 
optimizers, really?, Reordering for Outerjoins, Query Rewriting

} Adaptive Query Processing
◦ Eddies

◦ Progressive Query Optimization

◦ Compilation and adaptivity



} In traditional settings: 

◦ Queries over many tables

◦ Unreliability of traditional cost estimation

◦ Success, maturity make problems more apparent, critical 

} In new environments:

◦ e.g. data integration, web services, streams, P2P... 

◦ Unknown dynamic characteristics for data and runtime 

◦ Increasingly aggressive sharing of resources and computation

◦ Interactivity in query processing 

} Note two distinct themes lead to the same conclusion:

◦ Unknowns: even static properties often unknown in new environments and often 
unknowable a priori 

◦ Dynamics: environment changes can be very high 

} Motivates intra-query adaptivity 



} Autonomic/self-tuning optimization
◦ Chen and Roussoupolous: Adaptive selectivity estimation [SIGMOD 1994]
◦ LEO (@IBM), SITS (@MSR): Learning from previous executions 

} Robust/least-expected cost optimization 
} Parametric optimization 
◦ Choose a collection of plans, each optimal for a different setting of 

parameters
◦ Select one at the beginning of execution 

} Competitive optimization
◦ Start off multiple plans... kill all but one after a while 

} Adaptive operators
More details in our survey: “Adaptive Query Processing”; FnT
2007 



} Low-overhead, evolutionary approaches
◦ Typically apply to non-pipelined execution
◦ Late binding: Don’t instatntiate the entire plan at start 
◦ Mid-query reoptimization: At “materialization” points, review 

the remaining plan and possibly re-optimize 
} Pipelined execution
◦ No materialization points, so the above doesn’t apply 
◦ The operators may contain complex states, raising correctness 

issues
◦ Eddies 
� Always guarantee correct execution, but allows reordering during 

execution 

} Lot of work in 1998-2008 timeframe -- not much since



} We will start with a general overview of AQP as 
presented in a later survey and tutorial

} Then go through the three papers (first two quickly,
and the last one in more detail)
◦ First two will be covered in the tutorial



Amol Deshpande, University of Maryland

Zachary G. Ives, University of Pennsylvania

Vijayshankar Raman, IBM Almaden Research Center

Thanks to Joseph M. Hellerstein, University of California, Berkeley

Adaptive Query Processing Tutorial
VLDB 2008

Slides Adapted From:



Query Processing:  Adapting to the World

Data independence facilitates modern DBMS technology
– Separates specification (“what”) from implementation (“how”)
– Optimizer maps declarative query à algebraic operations

Platforms, conditions are constantly changing:

Query processing adapts implementation to runtime 
conditions
– Static applications à dynamic environments

dapp
dt

<<
denv
dt



Dynamic Programming + Pruning Heuristics

Query Optimization and Processing
(As Established in System R [SAC+’79])

> UPDATE STATISTICS 
❚

cardinalities
index lo/hi key

> SELECT *
FROM Professor P, 
Course C, Student S
WHERE P.pid = C.pid
AND S.sid = C.sid

❚

Professor Course Student



Traditional Optimization Is Breaking

In traditional settings:
– Queries over many tables
– Unreliability of traditional cost estimation
– Success & maturity make problems more apparent, critical

In new environments:
– e.g. data integration, web services, streams, P2P, sensor nets, hosting
– Unknown and dynamic characteristics for data and runtime
– Increasingly aggressive sharing of resources and computation
– Interactivity in query processing

Note two distinct themes lead to the same conclusion:
– Unknowns: even static properties often unknown in new environments

and often unknowable a priori
– Dynamics:             can be very high

Motivates intra-query adaptivity

denv
dt



A Call for Greater Adaptivity

System R adapted query processing as stats were updated
– Measurement/analysis: periodic 
– Planning/actuation: once per query
– Improved thru the late 90s (see [Graefe ’93] [Chaudhuri ’98])

Better measurement, models, search strategies

INGRES adapted execution many times per query
– Each tuple could join with relations in a different order
– Different plan space, overheads, frequency of adaptivity

Didn’t match applications & performance at that time

Recent work considers adaptivity in new contexts



Tutorial Focus

By necessity, we will cover only a piece of the picture here
– Intra-query adaptivity:

• autonomic / self-tuning optimization [CR’94,  CN’97, BC’02, …]

• robust / least expected cost optimization [CHG’02, MRS+’04, 
BC’05, ...]

• parametric or competitive optimization [A’93, INSS’92, CG’94, …]

• adaptive operators, e.g., memory adaptive sort & hash join 
[NKT’88, KNT’89, PCL’93a, PCL’93b,…]

– Conventional relations, rather than streams
– Single-site, single query computation

§ For more depth, see our survey in now Publishers’ Foundations 
and Trends in Databases, Vol. 1 No. 1



Tutorial Outline

§Motivation
§Non-pipelined execution
§Pipelined execution

– Selection ordering
– Multi-way join queries

§Putting it all in context
§Recap/open problems



Low-Overhead Adaptivity: 
Non-pipelined Execution



Late Binding; Staged Execution

Materialization points make natural decision points where 
the next stage can be changed with little cost:

– Re-run optimizer at each point to get the next stage
– Choose among precomputed set of plans – parametric query 

optimization [INSS’92, CG’94, …]

AR

NLJ

sort

C

B

MJ

MJ

sort
Normal execution: pipelines separated 
by materialization points

e.g., at a sort, GROUP BY, etc.

materialization 
point



Mid-query Reoptimization
[KD’98,MRS+04]

Choose checkpoints at which to monitor cardinalities
Balance overhead and opportunities for switching plans

If actual cardinality is too different from estimated,
Avoid unnecessary plan re-optimization (where the plan doesn’t change)

Re-optimize to switch to a new plan
Try to maintain previous computation during plan switching

§ Most widely studied technique:
-- Federated systems (InterViso 90, MOOD 96), Red Brick, 

Query scrambling (96), Mid-query re-optimization (98),  
Progressive Optimization (04), Proactive Reoptimization (05), …

Where?

How?

When?

AR

NLJ

B

C

HJ

MJ

sort

C

B

MJ

MJ

sort



Mid-query Reoptimization

§ At materialization points, re-evaluate the rest of the query 
plan

§ Example:

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3Materialize

R1

Initial query plan chosen

Estimated 
selectivities

0.05 0.1 0.2

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result



Mid-query Reoptimization

§ At materialization points, re-evaluate the rest of the query 
plan

§ Example:

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3Materialize

R1; build
1-d hists

Initial query plan chosen

Estimated 
selectivities

0.05 0.1 0.2

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result



Mid-query Reoptimization

§ At materialization points, re-evaluate the rest of the query 
plan

§ Example:

R.b < 20 R.c like …
R2 R3

R.a = 10R
R1 Materialize

R1

Initial query plan chosen

Estimated 
selectivities

0.05 0.1 0.2

Re-estimated
selectivities

0.5 0.01

Significantly different è original plan probably sub-optimal
Reoptimize the remaining part of the query

Materialize
R1; build
1-d hists



Where to Place Checkpoints?

Lazy checkpoints: placed above materialization points 
– No work need be wasted if we switch plans here

Eager checkpoints: can be placed anywhere
– May have to discard some partially computed results
– Useful where optimizer estimates have high uncertainty

A

C

B

R

MJ

NLJ

MJ

sort

More checkpoints è more opportunities for 
switching plans

Overhead of (simple) monitoring is small 
[SLMK’01]

Consideration:  it is easier to switch plans at 
some checkpoints than others

sort
Lazy

Eager



When to Re-optimize?
§ Suppose actual cardinality is different from estimates:

how high a difference should trigger a re-optimization?

§ Idea: do not re-optimize if current plan is still the best

1. Heuristics-based [KD’98]:
e.g., re-optimize < time to finish execution

2. Validity range [MRS+04]: precomputed range of a parameter 
(e.g., a cardinality) within which plan is optimal 

– Place eager checkpoints where the validity range is narrow
– Re-optimize if value falls outside this range
– Variation:  bounding boxes [BBD’05]



How to Reoptimize

Getting a better plan:
– Plug in actual cardinality information acquired during this 

query (as possibly histograms), and re-run the optimizer

Reusing work when switching to the better plan:
– Treat fully computed intermediate results as materialized 

views
• Everything that is under a materialization point

– Note: It is optional for the optimizer to use these in the 
new plan

ØOther approaches are possible (e.g., query scrambling 
[UFA’98])



Pipelined Execution



Adapting Pipelined Queries

Adapting pipelined execution is often necessary:
– Too few materializations in today’s systems 
– Long-running queries
– Wide-area data sources
– Potentially endless data streams

The tricky issues:
– Some results may have been delivered to the user

• Ensuring correctness non-trivial
– Database operators build up state

• Must reason about it during adaptation
• May need to manipulate state



Adapting Pipelined Queries

We discuss three subclasses of the problem:
– Selection ordering (stateless)

• Very good analytical and theoretical results
• Increasingly important in web querying, streams, sensornets
• Certain classes of join queries reduce to them

– Select-project-join queries (stateful)

• History-independent execution
– Operator state largely independent of execution history
à Execution decisions for a tuple independent of prior tuples

• History-dependent execution
– Operator state depends on execution history
– Must reason about the state during adaptation



Pipelined Execution Part I:
Adaptive Selection Ordering



Adaptive Selection Ordering

Complex predicates on single relations common
– e.g., on an employee relation:

((salary > 120000) AND (status = 2)) OR 
((salary between 90000 and 120000) AND (age < 30) AND (status = 1)) OR …

Selection ordering problem:
Decide the order in which to evaluate the individual 
predicates against the tuples

We focus on conjunctive predicates (containing only AND’s)
Example Query

select * from R
where R.a = 10 and R.b < 20 
and R.c like ‘%name%’;



Basics: Static Optimization

Find a single order of the selections to be used for all tuples 

Query

Query plans considered

R.a = 10 R.b < 20R resultR.c like …

R.b < 20 R.c like …R resultR.a = 10 3! = 6 distinct
plans possible

select * from R
where R.a = 10 and R.b < 20 
and R.c like ‘%name%’;



Static Optimization

Cost metric: CPU instructions
Computing the cost of a plan

– Need to know the costs and the selectivities of the predicates

R.a = 10 R.b < 20R resultR.c like …

cost(plan) = |R| * (c1 + s1 * c2 + s1 * s2 * c3)

R1 R2 R3

costs                    c1                    c2                      c3
selectivities          s1                    s2                      s3

cost per               c1         +        s1 c2       +          s1 s2 c3
tuple

Independence assumption



Static Optimization

Rank ordering algorithm for independent selections [IK’84]
– Apply the predicates in the decreasing order of rank:

(1 – s) / c 
where s = selectivity, c = cost

For correlated selections:
– NP-hard under several different formulations

• e.g. when given a random sample of the relation

– Greedy algorithm, shown to be 4-approximate [BMMNW’04]:
• Apply the selection with the highest (1 - s)/c
• Compute the selectivities of remaining selections over the result

– Conditional selectivities
• Repeat



Eddies [AH’00]

Query processing as routing of tuples through operators

Pipelined query execution using an eddy

An eddy operator
• Intercepts tuples from sources

and output tuples from operators
• Executes query by routing source         

tuples through operators

A traditional pipelined query plan

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3

EddyR
result

R.a = 10

R.c like …

R.b < 20

Encapsulates all aspects of 
adaptivity in a “standard” 

dataflow operator: 
measure, model, plan and 

actuate.



Eddies [AH’00]

a b c …
15 10 AnameA …

An R Tuple:  r1

r1

r1

EddyR

result

R.a = 10

R.c like …

R.b < 20



ready bit i :
1 à operator i can be applied
0 à operator i can’t be applied

Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



done bit i :
1 à operator i has been applied
0 à operator i hasn’t been applied

Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

Used to decide validity and need
of applying operators

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

satisfied
r1

r1

a b c … ready done
15 10 AnameA … 101 010

r1

not satisfied

eddy looks at the
next tuple

For a query with only selections,
ready = complement(done)

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c …
10 15 AnameA …

An R Tuple:  r2

Operator 1

Operator 2

Operator 3

r2
EddyR

result

R.a = 10

R.c like …

R.b < 20

satisfied

satisfied

satisfied



Eddies [AH’00]

a b c … ready done
10 15 AnameA … 000 111

An R Tuple:  r2

Operator 1

Operator 2

Operator 3

r2

if done = 111,
send to output 

r2

EddyR

result

R.a = 10

R.c like …

R.b < 20

satisfied

satisfied

satisfied



Eddies [AH’00]

Adapting order is easy
– Just change the operators to which tuples are sent
– Can be done on a per-tuple basis
– Can be done in the middle of tuple’s “pipeline”

How are the routing decisions made?
Using a routing policy

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Routing Policies that Have Been Studied

Deterministic [D03]
– Monitor costs & selectivities continuously
– Re-optimize periodically using rank ordering

(or A-Greedy for correlated predicates)

Lottery scheduling [AH00]
– Each operator runs in thread with an input queue
– “Tickets” assigned according to tuples input / output
– Route tuple to next eligible operator with room in queue, 

based on number of “tickets” and “backpressure”

Content-based routing [BBDW05]
– Different routes for different plans based on attribute values



Routing Policy 1: Non-adaptive

§ Simulating a single static order
– E.g. operator 1, then operator 2, then operator 3

Routing policy:
if done = 

000 à route to 1
100 à route to 2
110 à route to 3

table lookups à very efficient

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Overhead of Routing
§ PostgreSQL implementation of eddies using bitset lookups [Telegraph Project]
§ Queries with 3 selections, of varying cost

– Routing policy uses a single static order, i.e., no adaptation
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Routing Policy 2: Deterministic

§ Monitor costs and selectivities continuously
§ Reoptimize periodically using KBZ

Statistics Maintained:
Costs of operators
Selectivities of operators

Routing policy:
Use a single order for a 

batch of tuples
Periodically apply KBZ

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

Can use specialized 
policies for correlated 
predicates



Overhead of Routing and Reoptimization

§ Adaptation using batching
– Reoptimized every X tuples using monitored selectivities
– Identical selectivities throughout è experiment measures 

only the overhead
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Routing Policy 3: Lottery Scheduling

§ Originally suggested routing policy [AH’00]
§ Applicable only if each operator runs in a separate thread
§ Uses two easily obtainable pieces of information for making 

routing decisions:
– Busy/idle status of operators
– Tickets per operator

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on busy/idle status of operators

Rule:
IF operator busy,
THEN do not route more  

tuples to it

Rationale:
Every thread gets equal time
SO IF an operator is busy,
THEN its cost is perhaps very

high

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

BUSY

IDLE

IDLE



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

Will be routed to:
O1   w.p.   0.1
O2   w.p.   0.7
O3   w.p.   0.2

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

r



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

r

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++; Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 11
tickets(O2) = 70
tickets(O3) = 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

r

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++;

3. Oi returns a tuple to eddy
tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 11
tickets(O2) = 70
tickets(O3) = 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

r

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++;

3. Oi returns a tuple to eddy
tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

Will be routed to:
O2   w.p.   0.777
O3   w.p.   0.222



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rationale:
Tickets(Oi) roughly corresponds to

(1 - selectivity(Oi))
So more tuples are routed to

highly selective operators

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++;

3. Oi returns a tuple to eddy
tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20



Routing Policy 3: Lottery Scheduling

§ Effect of the combined lottery scheduling policy:
– Low cost operators get more tuples
– Highly selective operators get more tuples
– Some tuples are knowingly routed according to sub-optimal orders

• To explore
• Necessary to detect selectivity changes over time



Eddies: Post-Mortem

§ Plan Space explored
– Allows arbitrary “horizontal partitioning”
– Not necessarily correlated with order of arrival

..

R.a = 10 R.b < 20 R.c like …

R.b < 20 R.a= 10 R.c like …

.

.

order
of 
arrival

In a later paper, we looked at optimizing for horizontal partitioning directly



Pipelined Execution Part II:
Adaptive Join Processing



Adaptive Join Processing: Outline

§ Single streaming relation
– Left-deep pipelined plans

§ Multiple streaming relations
– Execution strategies for multi-way joins
– History-independent execution
– History-dependent execution



Left-Deep Pipelined Plans

Simplest method of joining tables
– Pick a driver table (R). Call the rest driven tables
– Pick access methods (AMs) on the driven tables (scan, hash, or index)
– Order the driven tables
– Flow R tuples through the driven tables

For each r Î R do:
look for matches for r in A;
for each match a do:

look for matches for <r,a> in B;
…

R
B

NLJ

C

NLJ

A

NLJ



Adapting a Left-deep Pipelined Plan

Simplest method of joining tables
– Pick a driver table (R). Call the rest driven tables
– Pick access methods (AMs) on the driven tables
– Order the driven tables
– Flow R tuples through the driven tables

For each r Î R do:
look for matches for r in A;
for each match a do:

look for matches for <r,a> in B;
…

Almost identical 
to selection 

ordering

R
B

NLJ

C

NLJ

A

NLJ



Adapting the Join Order

§ Let ci = cost/lookup into i’th driven table, 
si = fanout of the lookup

§ As with selection, cost =  |R| x (c1 + s1c2 + s1s2c3)
§ Caveats:

– Fanouts s1,s2,…  can be > 1
– Precedence constraints
– Caching issues 

§ Can use rank ordering, A-greedy for adaptation (subject to the caveats)

R
B

NLJ

C

NLJ

A

NLJ

R
C

NLJ

B

NLJ

A

NLJ

(c1, s1) (c2, s2) (c3, s3)



Adapting a Left-deep Pipelined Plan

Simplest method of joining tables
– Pick a driver table (R). Call the rest driven tables
– Pick access methods (AMs) on the driven tables
– Order the driven tables
– Flow R tuples through the driven tables

For each r Î R do:
look for matches for r in A;
for each match a do:

look for matches for <r,a> in B;
…

R
B

NLJ

C

NLJ

A

NLJ

?



Adapting a Left-deep Pipelined Plan

Key issue: Duplicates
Adapting the choice of driver table

[L+07] Carefully use indexes to achieve this
Adapting the choice of access methods

– Static optimization: explore all possibilities and pick best
– Adaptive: Run multiple plans in parallel for a while, 

and then pick one and discard the rest  [Antoshenkov’ 96]
• Cannot easily explore combinatorial options

R
B

NLJ

C

NLJ

A

NLJ



Adaptive Join Processing: Outline

§ Single streaming relation
– Left-deep pipelined plans

§ Multiple streaming relations 
– Execution strategies for multi-way joins
– History-independent execution

• MJoins
– History-dependent execution

• Eddies with joins
• Corrective query processing



Example Join Query & Database

Name Level

Joe Junior

Jen Senior

Name Course

Joe CS1

Jen CS2

Course Instructor

CS2 Smith

select *
from students, enrolled, courses
where students.name = enrolled.name 

and enrolled.course = courses.course

Students Enrolled

Name Level Course

Joe Junior CS1

Jen Senior CS2

Enrolled Courses

Students Enrolled

Courses

Name Level Course Instructor

Jen Senior CS2 Smith



Symmetric/Pipelined Hash Join 
[RS86, WA91]

Name Level

Jen Senior

Joe Junior

Name Course

Joe CS1

Jen CS2

Joe CS2

select * from students, enrolled where students.name = enrolled.name

Name Level Course
Jen Senior CS2

Joe Junior CS1

Joe Senior CS2

StudentsEnrolled

§ Simultaneously builds and probes 
hash tables on both sides

§ Widely used: 
– adaptive query processing
– stream joins
– online aggregation 
– …

§ Naïve version degrades to NLJ 
once memory runs out
– Quadratic time complexity
– memory needed = sum of inputs

§ Improved by XJoins [UF 00], 
Tukwila DPJ [IFFLW 99]



Multi-way Pipelined Joins 
over Streaming Relations

Alternatives
– Using binary join operators

– Using a single n-ary join operator (MJoin) [VNB’03]

– Some other options explored in the literature



Name Level

Jen Senior

Joe Junior

Name Course

Joe CS1

Jen CS2

Enrolled

HashTable
E.Name

HashTable
S.Name

Students

Course Instructor

CS2 Smith

HashTable
E.Course

HashTable
C.course

Courses

Name Level Course
Jen Senior CS2

Joe Junior CS1

Name Level Course Instructor

Jen Senior CS2 Smith
Materialized state 
that depends on the 
query plan used

History-dependent !

Jen Senior CS2



Multi-way Pipelined Joins 
over Streaming Relations

Three alternatives
– Using binary join operators

ØHistory-dependent execution
ØHard to reason about the impact of adaptation
ØMay need to migrate the state when changing plans

– Using a single n-ary join operator (MJoin) [VNB’03]



Name Course

Joe CS1

Jen CS2

Name Level

Joe Junior

Jen Senior

Students

HashTable
S.Name

HashTable
E.Name

Enrolled

Name Level Course Instructor

Jen Senior CS2 Smith

Name Course

Joe CS1

Jen CS2

HashTable
E.Course

HashTable
C.course

Courses

Probing Sequences
Students tuple: Enrolled, then Courses
Enrolled tuple: Students, then Courses
Courses tuple: Enrolled, then Students

ProbeProbe Probe

Hash tables contain all tuples 
that arrived so far

Irrespective of the probing 
sequences used

History-independent execution !

Course Instructor

CS2 Smith

Jen CS2 Smith
Jen CS2 Senior



MJoins [VNB’03]

Choosing probing sequences
– For each relation, use a left-deep pipelined plan 

(based on hash indexes)
– Can use selection ordering algorithms

Independently for each relation

Adapting MJoins
– Adapt each probing sequence independently 

e.g., StreaMon [BW’01] used A-Greedy for this purpose

A-Caching [BMWM’05]
– Maintain intermediate caches to avoid recomputation
– Alleviates some of the performance concerns



Adaptive Join Processing: Outline

§ Single streaming relation
– Left-deep pipelined plans

§ Multiple streaming relations
– Execution strategies for multi-way joins
– History-independent execution

• MJoins
• SteMs

– History-dependent execution
• Eddies with binary joins



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”
s1

For correctness, must obey routing constraints !!



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”
e1

For correctness, must obey routing constraints !!



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”

e1c1

For correctness, must obey routing constraints !!
Use some form of tuple-lineage



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”

Can use any join algorithms
But, pipelined operators preferred

Provide quick feedback



Eddies with Symmetric Hash Joins

Eddy
S
E
C

Output

S E
HashTable
S.Name

HashTable
E.Name

E C

HashTable
E.Course

HashTable
C.Course

Joe Jr

Jen Sr

CS2 Smith

Joe CS1

Joe Jr CS1

Jen CS2

Jen CS2 Smith



Burden of Routing History [DH’04]

Eddy
S
E
C

Output

S E
HashTable
S.Name

HashTable
E.Name

E C

HashTable
E.Course

HashTable
C.Course

Joe Jr

Jen Sr

CS2 Smith

Joe CS1

Joe Jr CS1

Jen CS2

Jen CS2 Smith

As a result of routing decisions,
state gets embedded inside 
the operators

History-dependent execution !!



Recap: Eddies with Binary Joins

Routing constraints enforced using tuple-level lineage

Must choose access methods, join spanning tree beforehand
– SteMs relax this restriction [RDH’03]

The operator state makes the behavior unpredictable
– Unless only one streaming relation

Routing policies explored are same as for selections
– Can tune policy for interactivity metric [RH’02]



} Query evaluation techniques for large databases, Skew 
Avoidance, Query compilation/vectorization

} Query Optimization: Overview, How good are the query 
optimizers, really?, Reordering for Outerjoins, Query Rewriting

} Adaptive Query Processing
◦ Eddies

◦ Progressive Query Optimization

◦ Compilation and adaptivity



} Continuously ”reorder” operators as the query is executing
◦ By changing the “order” in which tuples visit operators

◦ Obviate the need for selectivity estimation and optimization entirely

◦ Naturally handles situations where the selectivities change over time (for long-
running queries)

Eddies: Continuously Adaptive Query Processing

Ron Avnur Joseph M. Hellerstein
University of California, Berkeley
avnur@cohera.com, jmh@cs.berkeley.edu

In large federated and shared-nothing databases, resources can
exhibit widely fluctuating characteristics. Assumptions made
at the time a query is submitted will rarely hold throughout
the duration of query processing. As a result, traditional static
query optimization and execution techniques are ineffective in
these environments.
In this paper we introduce a query processing mechanism

called an eddy, which continuously reorders operators in a
query plan as it runs. We characterize the moments of sym-
metry during which pipelined joins can be easily reordered,
and the synchronization barriers that require inputs from dif-
ferent sources to be coordinated. By combining eddies with
appropriate join algorithms, we merge the optimization and
execution phases of query processing, allowing each tuple to
have a flexible ordering of the query operators. This flexibility
is controlled by a combination of fluid dynamics and a simple
learning algorithm. Our initial implementation demonstrates
promising results, with eddies performing nearly as well as
a static optimizer/executor in static scenarios, and providing
dramatic improvements in dynamic execution environments.

There is increasing interest in query engines that run at un-
precedented scale, both for widely-distributed information re-
sources, and for massively parallel database systems. We are
building a system called Telegraph, which is intended to run
queries over all the data available on line. A key requirement
of a large-scale system like Telegraph is that it function ro-
bustly in an unpredictable and constantly fluctuating environ-
ment. This unpredictability is endemic in large-scale systems,
because of increased complexity in a number of dimensions:
Hardware and Workload Complexity: In wide-area envi-
ronments, variabilities are commonly observable in the bursty
performance of servers and networks [UFA98]. These systems
often serve large communities of users whose aggregate be-
havior can be hard to predict, and the hardware mix in the wide
area is quite heterogeneous. Large clusters of computers can
exhibit similar performance variations, due to a mix of user
requests and heterogeneous hardware evolution. Even in to-
tally homogeneous environments, hardware performance can
be unpredictable: for example, the outer tracks of a disk can
exhibit almost twice the bandwidth of inner tracks [Met97].
Data Complexity: Selectivity estimation for static alphanu-

Figure 1: An eddy in a pipeline. Data flows into the eddy from
input relations and . The eddy routes tuples to opera-
tors; the operators run as independent threads, returning tuples
to the eddy. The eddy sends a tuple to the output only when
it has been handled by all the operators. The eddy adaptively
chooses an order to route each tuple through the operators.

meric data sets is fairly well understood, and there has been
initial work on estimating statistical properties of static sets of
data with complex types [Aok99] and methods [BO99]. But
federated data often comes without any statistical summaries,
and complex non-alphanumeric data types are now widely in
use both in object-relational databases and on the web. In these
scenarios – and even in traditional static relational databases –
selectivity estimates are often quite inaccurate.
User Interface Complexity: In large-scale systems, many
queries can run for a very long time. As a result, there is in-
terest in Online Aggregation and other techniques that allow
users to “Control” properties of queries while they execute,
based on refining approximate results [HAC 99].
For all of these reasons, we expect query processing param-

eters to change significantly over time in Telegraph, typically
many times during a single query. As a result, it is not appro-
priate to use the traditional architecture of optimizing a query
and then executing a static query plan: this approach does
not adapt to intra-query fluctuations. Instead, for these en-
vironments we want query execution plans to be reoptimized
regularly during the course of query processing, allowing the
system to adapt dynamically to fluctuations in computing re-
sources, data characteristics, and user preferences.
In this paper we present a query processing operator called

an eddy, which continuously reorders the application of pipe-



} Selections are arbitrarily reorderable

} What about joins?Eddies: Continuously Adaptive Query Processing

Ron Avnur Joseph M. Hellerstein
University of California, Berkeley
avnur@cohera.com, jmh@cs.berkeley.edu

In large federated and shared-nothing databases, resources can
exhibit widely fluctuating characteristics. Assumptions made
at the time a query is submitted will rarely hold throughout
the duration of query processing. As a result, traditional static
query optimization and execution techniques are ineffective in
these environments.
In this paper we introduce a query processing mechanism

called an eddy, which continuously reorders operators in a
query plan as it runs. We characterize the moments of sym-
metry during which pipelined joins can be easily reordered,
and the synchronization barriers that require inputs from dif-
ferent sources to be coordinated. By combining eddies with
appropriate join algorithms, we merge the optimization and
execution phases of query processing, allowing each tuple to
have a flexible ordering of the query operators. This flexibility
is controlled by a combination of fluid dynamics and a simple
learning algorithm. Our initial implementation demonstrates
promising results, with eddies performing nearly as well as
a static optimizer/executor in static scenarios, and providing
dramatic improvements in dynamic execution environments.

There is increasing interest in query engines that run at un-
precedented scale, both for widely-distributed information re-
sources, and for massively parallel database systems. We are
building a system called Telegraph, which is intended to run
queries over all the data available on line. A key requirement
of a large-scale system like Telegraph is that it function ro-
bustly in an unpredictable and constantly fluctuating environ-
ment. This unpredictability is endemic in large-scale systems,
because of increased complexity in a number of dimensions:
Hardware and Workload Complexity: In wide-area envi-
ronments, variabilities are commonly observable in the bursty
performance of servers and networks [UFA98]. These systems
often serve large communities of users whose aggregate be-
havior can be hard to predict, and the hardware mix in the wide
area is quite heterogeneous. Large clusters of computers can
exhibit similar performance variations, due to a mix of user
requests and heterogeneous hardware evolution. Even in to-
tally homogeneous environments, hardware performance can
be unpredictable: for example, the outer tracks of a disk can
exhibit almost twice the bandwidth of inner tracks [Met97].
Data Complexity: Selectivity estimation for static alphanu-

Figure 1: An eddy in a pipeline. Data flows into the eddy from
input relations and . The eddy routes tuples to opera-
tors; the operators run as independent threads, returning tuples
to the eddy. The eddy sends a tuple to the output only when
it has been handled by all the operators. The eddy adaptively
chooses an order to route each tuple through the operators.

meric data sets is fairly well understood, and there has been
initial work on estimating statistical properties of static sets of
data with complex types [Aok99] and methods [BO99]. But
federated data often comes without any statistical summaries,
and complex non-alphanumeric data types are now widely in
use both in object-relational databases and on the web. In these
scenarios – and even in traditional static relational databases –
selectivity estimates are often quite inaccurate.
User Interface Complexity: In large-scale systems, many
queries can run for a very long time. As a result, there is in-
terest in Online Aggregation and other techniques that allow
users to “Control” properties of queries while they execute,
based on refining approximate results [HAC 99].
For all of these reasons, we expect query processing param-

eters to change significantly over time in Telegraph, typically
many times during a single query. As a result, it is not appro-
priate to use the traditional architecture of optimizing a query
and then executing a static query plan: this approach does
not adapt to intra-query fluctuations. Instead, for these en-
vironments we want query execution plans to be reoptimized
regularly during the course of query processing, allowing the
system to adapt dynamically to fluctuations in computing re-
sources, data characteristics, and user preferences.
In this paper we present a query processing operator called

an eddy, which continuously reorders the application of pipe-

- An index lookup can be 
treated as a “selection”
- Send an S tuple, get back
augmented tuples
- Note: decision to use the 
index cannot be “adapted”

- These two are tricky
- Nested loops requires 

iterating over all of inner
- Hash join requires building a 

hash table on inner



} Synchronization Barriers
◦ Many operators explicitly enforce an order in which tuples must be read 

from the inputs

◦ e.g., Sort-merge joins: at most points, the next tuple to read must be read
from a specific input

◦ Hash joins: need to read all of ”inner” before outer tuples can be read

} Moments of Symmetry
◦ Sort-merge join is symmetric

◦ But Nested-loops is not

� However, can change the outer/inner at specific points 

} Join operators with more moments of symmetric preferred
◦ e.g., Symmetric Hash Join Operator



Figure 3: Tuples generated by block, index, and hash ripple join. In block ripple, all tuples are generated by the join, but some may
be eliminated by the join predicate. The arrows for index and hash ripple join represent the logical portion of the cross-product
space checked so far; these joins only expend work on tuples satisfying the join predicate (black dots). In the hash ripple diagram,
one relation arrives 3 faster than the other.

namically adapts to fluctuations in performance and workload.
River has been used to robustly produce near-record perfor-
mance on I/O-intensive benchmarks like parallel sorting and
hash joins, despite heterogeneities and dynamic variability in
hardware and workloads across machines in a cluster. For
more details on River’s adaptivity and parallelism features, the
interested reader is referred to the original paper on the topic
[AAT 99]. In Telegraph, we intend to leverage the adaptabil-
ity of River to allow for dynamic shifting of load (both query
processing and data delivery) in a shared-nothing parallel en-
vironment. But in this paper we restrict ourselves to basic
(single-site) features of eddies; discussions of eddies in par-
allel rivers are deferred to Section 6.
Since we do not discuss parallelism here, a very simple

overview of the River framework suffices. River is a dataflow
query engine, analogous in many ways to Gamma [DGS 90],
Volcano [Gra90] and commercial parallel database engines,
in which “iterator”-style modules (query operators) commu-
nicate via a fixed dataflow graph (a query plan). Each mod-
ule runs as an independent thread, and the edges in the graph
correspond to finite message queues. When a producer and
consumer run at differing rates, the faster thread may block
on the queue waiting for the slower thread to catch up. As
in [UFA98], River is multi-threaded and can exploit barrier-
free algorithms by reading from various inputs at indepen-
dent rates. The River implementation we used derives from
the work on Now-Sort [AAC 97], and features efficient I/O
mechanisms including pre-fetching scans, avoidance of oper-
ating system buffering, and high-performance user-level net-
working.

Although we will use eddies to reorder tables among joins,
a heuristic pre-optimizer must choose how to initially pair off
relations into joins, with the constraint that each relation par-
ticipates in only one join. This corresponds to choosing a span-
ning tree of a query graph, in which nodes represent relations
and edges represent binary joins [KBZ86]. One reasonable
heuristic for picking a spanning tree forms a chain of cartesian
products across any tables known to be very small (to handle
“star schemas” when base-table cardinality statistics are avail-
able); it then picks arbitrary equijoin edges (on the assumption

that they are relatively low selectivity), followed by as many
arbitrary non-equijoin edges as required to complete a span-
ning tree.
Given a spanning tree of the query graph, the pre-optimizer

needs to choose join algorithms for each edge. Along each
equijoin edge it can use either an index join if an index is avail-
able, or a hash ripple join. Along each non-equijoin edge it can
use a block ripple join.
These are simple heuristics that we use to allow us to focus

on our initial eddy design; in Section 6 we present initial ideas
on making spanning tree and algorithm decisions adaptively.

An eddy is implemented via a module in a river containing
an arbitrary number of input relations, a number of partici-
pating unary and binary modules, and a single output relation
(Figure 1)3. An eddy encapsulates the scheduling of its par-
ticipating operators; tuples entering the eddy can flow through
its operators in a variety of orders.
In essence, an eddy explicitly merges multiple unary and

binary operators into a single -ary operator within a query
plan, based on the intuition from Section 2.2 that symmetries
can be easily captured in an -ary operator. An eddy module
maintains a fixed-sized buffer of tuples that are to be processed
by one or more operators. Each operator participating in the
eddy has one or two inputs that are fed tuples by the eddy, and
an output stream that returns tuples to the eddy. Eddies are so
named because of this circular data flow within a river.
A tuple entering an eddy is associated with a tuple descrip-

tor containing a vector of Ready bits and Done bits, which
indicate respectively those operators that are elgibile to pro-
cess the tuple, and those that have already processed the tuple.
The eddy module ships a tuple only to operators for which the
corresponding Ready bit turned on. After processing the tuple,
the operator returns it to the eddy, and the corresponding Done
bit is turned on. If all the Done bits are on, the tuple is sent
to the eddy’s output; otherwise it is sent to another eligible
operator for continued processing.

Nothing prevents the use of -ary operators with in an eddy, but
since implementations of these are atypical in database query processing we do
not discuss them here.



} Implemented in the context of River project

} Eddy is a separate module that talks to all other operators
◦ Uses “ready” and “done” bitsets to direct traffic

} Lottery scheduling-based routing policy
◦ Promising initial results, but bunch of caveats
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} Through use of CHECK operators inserted into the query plan
◦ Succeeds if the observed values within a range around the estimates

} If optimizer estimates accurate, the only overhead is the
“couting” done by CHECK

 

  

execution cost. While this works fine for Telegraph’s interac-
tive processing metric, a regular optimizer is needed to handle 
the more common completion time or total work metrics.  
Integrating Eddies with a traditional query optimizer remains 
a challenge for future work. 
Among commercial systems, the DEC RDB system [AZ96] 
ran multiple access methods competitively before picking 
one. To the best of our knowledge, the only commercial 
DBMS currently shipping with a form of POP is the Redbrick 
DBMS, which specializes in processing queries over star 
schemas. The specific star schema plan used is not fully 
determined until execution time. Intermediate results of all 
dimension table accesses are first computed. The cardinality 
of those intermediate results is then used to select the appro-
priate method for accessing the fact tables. While this product 
uses progressive re-optimization, it does so only for a very 
specific query execution strategy. The issues of arbitrary 
CHECK placement, join re-ordering, and intermediate result 
re-use are not addressed.  
The closest analogy to our validity range computation method 
is the work on parametric optimization (e.g. [CG94, HS02]) 
where different plans are generated for different intervals of 
the optimization parameters. The main problem here is the 
combinatorial explosion of the number of plans that need to 
be generated, stored, loaded, and decided among at runtime. 
We avoid this explosion by embedding validity range compu-
tation into the optimizer pruning phase (Section 2.2).  

2 Progressive Query Optimization 
Progressive Query Optimization (POP) is comprised of sev-
eral key aspects for protecting against query processing disas-
ter due to the choice of a suboptimal QEP.  
1. POP can detect a suboptimal QEP in the midst of execu-

tion and cause it to be re-optimized. Alternating optimiza-
tion and execution steps can occur any number of times. 
Partial result records can be pipelined to the application at 
each execution step using techniques to prevent duplicate 
rows from being returned to the application. 

2. During each execution step, POP monitors the actual 
values of key estimated parameters used to select the QEP 
and feeds this information back into a re-optimization step. 
This aspect of POP improves the likelihood that an opti-
mal plan will be selected for the next execution step. 

3. POP also makes materialized partial results available for 
reuse during the next execution step. Rather than force the 
optimizer to reuse these partial results by rewriting the 
query or some other means, they are packaged as material-
ized views in order to take advantage of the optimizer’s 
ability to make a cost-based decision with regard to their 
reuse (see section 2.3 for more details). 

Checkpoints are the POP points of control. A checkpoint 
inserted into a QEP is effectively an assertion to ensure that 
optimization parameter estimates agree with the actual values 
for those parameters as measured during query execution. Our 
current research focuses on the monitoring of cardinality 
estimates; however, a checkpoint could monitor other proper-
ties as well. A checkpoint monitors the number of rows flow-
ing from a producer to a consumer during query execution. It 
may also buffers rows that it sees. A checkpoint suspends 

query execution and triggers re-optimization if the number of 
rows it sees violates the check condition. In our prototype of 
POP a check condition defines the cardinality range (or check 
range) for which the check condition is true. Determining 
check ranges depends on the ability to compute the validity 
range for each subplan P rooted with plan operator o, which 
defines for each input stream into o the range of cardinalities 
for which o is the optimal root operator for P as discussed in 
more detail in section 2.2. Our system implements various 
flavors of checkpoints (as discussed in section 3), 
Checkpoints are manifested in POP plans by CHECK opera-
tors. CHECK has no relational semantics. Each CHECK has a 
check range parameter defining a range of cardinalities [l, u]. 
The check range is dependent on the cardinality estimate as 
well as the remainder of the QEP above the CHECK. CHECK 
is successful when the actual cardinality a is within the check 
range, i.e., a ∈ [l, u]. If CHECK succeeds, query processing 
will continue normally; otherwise, query execution is termi-
nated and re-optimization is triggered. Actual cardinality 
estimates measured during the partial execution of the query, 
occurring up to the point where the check range was violated, 
are fed back into the re-optimization phase. Moreover, mate-
rialized intermediate results are made available for re-use 
during the re-optimization phase. The decision as to whether 
or not intermediate results are reused during re-optimization is 
based upon cost analysis. As described later, it may under 
certain circumstances be preferable to avoid reusing these 
results. 

NLJN

CHECKPOINT 

NLJN
Add checkpoint

Re-optimization

O I

R R

I

O

HSJN

O I

R

 
Figure 2: Adding CHECK to the outer of a NLJN 

An example of POP is given in Figure 2. The QEP in the left 
part of the figure joins the outer (O) and inner (I) sub-plans 
using the (index) nested-loop join (NLJN) method before 
processing the remainder of the plan (R). The choice of the 
operator joining O and I depends heavily on the cardinality 
estimate for the result of the sub-plan O. Usually the opti-
mizer will prefer NLJN for joining O and I, when the cardi-
nality of O is small relative to I and there is an index on I to 
apply the join predicate. If the cardinality of O is much larger 
than estimated, another join method, such as hash-join 
(HSJN) or merge-join (MGJN), might be more efficient, and 
thus preferred by the optimizer.  
Since the choice of an inappropriate join method can result in 
performance degradations of orders of magnitude, adding 
CHECK to the outer sub-plan of an NLJN helps to prevent the 
execution of sub-optimal plans and thus bad query response 
times. CHECK added above O in the middle part of Figure 2 
ensures that the NLJN method is optimal not only for the 
cardinalities estimated at optimization time, but also for the 
actual cardinalities measured at runtime, thus making this 
plan more robust. When the check range is violated, re-
optimization of the query is triggered, which might result in a 
significant change in the QEP such as replacing NLJN in 



} Trigger re-optimization during query execution if errors too high

} Through use of CHECK operators inserted into the query plan
◦ Succeeds if the observed values within a range around the estimates

} If optimizer estimates accurate, the only overhead is the 
“couting” done by CHECK

} If CHECK detects significant error, then “reoptimize”
◦ Partial results made available to the optimizer to use if it wants (in the form of a 

materialized view)



 

  

Figure 2 with a more suitable join method such as hash join 
(HSJN).  

2.1 Architecture of POP 
Extending a DBMS with POP capability involves: 

a) Adding logic to the plan generator of the query 
optimizer to determine the check range by deter-
mining the cardinality range for which any given 
operator is optimal in the current plan. 

b) Adding logic to the post-pass of the optimizer for 
deciding the most judicious location of CHECKs  

c) Adding code generator logic for translating CHECK 
into executable code 

d) Adding logic to the runtime system for interpreting 
CHECK. 

e) Adding logic to exploit intermediate results when 
CHECK fails, so that work already done can be re-
used during re-optimization.  

To illustrate those enhancements to the architecture of a 
DMBS, Figure 1 distinguishes the initial run (first query 
execution until the violation of the check range triggered re-
optimization) and the re-optimization run of a query for ex-
planatory purposes. Actually, the re-optimization run could 
again add CHECKs to the new QEP and become the initial 
run for a second re-optimization. 
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Figure 1: Progressive Optimization architecture 

During the initial optimization of a query, the post-pass of the 
optimizer adds CHECK operators to the QEP based on the 
reliability of an estimate as well as the potential harm of an 
estimation error. When CHECK is executed, the check range 
is compared to the actual cardinality observed by the runtime 
system. If the check range is violated, the runtime system 
retains intermediate results together with their actual cardinal-
ity values and triggers re-optimization of the query. Actual 
cardinalities measured during the initial run help the re-
optimization step avoid the same mistake. After optimization 
and execution of the query in the re-optimization run, cleanup 
actions are necessary to remove the intermediate results and 
free locks on tables and indexes used during the initial run.  

2.2 Computation of Validity Ranges 
It is crucial to minimize risk of POP by re-optimizing only 
when we are sure that the plan will change. In general, this is 

the parametric query optimization problem, computing the 
optimal plan for every possible combination of parameter 
values [CG94, HS02]. For POP we avoid this exponential 
explosion of parameters by forming a validity range for each 
edge of the QEP.  
Definition: Consider a plan edge e that flows rows into opera-
tor o, and let P be the subplan rooted at o. The validity range 
for e is an upper and lower bound on the number of rows 
flowing through e, such that if the range is violated at run-
time, we can guarantee P is suboptimal with respect to the 
optimizer’s cost model. This range is defined conservatively, 
i.e., even within the validity range P may become suboptimal 
with respect to alternative QEP we do consider. This conser-
vative definition is fine, since we only want to avoid needless 
re-optimization. 
The main advantage of validity ranges over parametric opti-
mization is that we need not enumerate beforehand all possi-
ble optimal plans under all possible parameter values – we 
only need the cardinality ranges within which the chosen plan 
remains optimal.  However we cannot use ad hoc thresholds 
on cardinality errors because the effect of cardinalities on 
query optimality is very complex. A 100x error in cardinality 
of the NATION table of a TPC-H schema may make no 
difference to plan optimality, whereas a 10 percent increase in 
ORDERS may turn a two-stage hash join into a three-stage 
hash join, making the query plan highly suboptimal. 
POP computes validity ranges during the plan enumeration 
and pruning phases of the optimizer through a plan sensitivity 
analysis. It iteratively narrows the validity range for each 
input to an operator of the currently optimal plans, when 
pruning alternative plans during optimization. 
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Figure 4: Computing the Upper Bound of a Validity Range 

Suppose that during dynamic programming, plan Popt with 
root operator oopt is being compared with another plan Palt 
having the same properties (joined tables, applied predicates, 
sort order, projected columns) and different only in the root 
operator oalt. Suppose that Popt dominates, and we prune Palt 
due to its higher cost.  
The cost for Popt and Palt is a function of the cardinalities of 
the input edges of the root operator. Consider one edge with 
estimated cardinality e. Figure 4 illustrates how we can nar-
row the upper bound of the validity range of this edge. As we 
prune plan Palt, we determine if there exists an input cardinal-
ity c > e such that the cost functions cost(Palt, c) and cost(Popt, 
c) intersect. We do this by solving for the root of cost(Palt , c) 
– cost(Popt , c) = 0. When a root operator has multiple input 
edges (e.g., joins), we need to find the roots by treating the 
cost functions of Poptand Palt as multi-variate functions of the 
input cardinalities. 



} Helps only re-optimize when necessary

} The general problem is that of “parametric” optimization
◦ i.e., find the best plan for each combination of parameters

◦ Too expensive

} Instead:
◦ Consider P1 and P2 -- two identical plans except for the top operator

◦ Let cost(P1) < cost(P2) per the estimates à we would choose P1 over P2

◦ Let “x” denote an edge into the top operator, and let “result(x) = e” denote the result flowing 
along “x”

◦ Figure out: at what value of |result(x)|, we would have chosen P2 instead

 

  

Figure 2 with a more suitable join method such as hash join 
(HSJN).  

2.1 Architecture of POP 
Extending a DBMS with POP capability involves: 

a) Adding logic to the plan generator of the query 
optimizer to determine the check range by deter-
mining the cardinality range for which any given 
operator is optimal in the current plan. 

b) Adding logic to the post-pass of the optimizer for 
deciding the most judicious location of CHECKs  

c) Adding code generator logic for translating CHECK 
into executable code 

d) Adding logic to the runtime system for interpreting 
CHECK. 

e) Adding logic to exploit intermediate results when 
CHECK fails, so that work already done can be re-
used during re-optimization.  

To illustrate those enhancements to the architecture of a 
DMBS, Figure 1 distinguishes the initial run (first query 
execution until the violation of the check range triggered re-
optimization) and the re-optimization run of a query for ex-
planatory purposes. Actually, the re-optimization run could 
again add CHECKs to the new QEP and become the initial 
run for a second re-optimization. 
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Figure 1: Progressive Optimization architecture 

During the initial optimization of a query, the post-pass of the 
optimizer adds CHECK operators to the QEP based on the 
reliability of an estimate as well as the potential harm of an 
estimation error. When CHECK is executed, the check range 
is compared to the actual cardinality observed by the runtime 
system. If the check range is violated, the runtime system 
retains intermediate results together with their actual cardinal-
ity values and triggers re-optimization of the query. Actual 
cardinalities measured during the initial run help the re-
optimization step avoid the same mistake. After optimization 
and execution of the query in the re-optimization run, cleanup 
actions are necessary to remove the intermediate results and 
free locks on tables and indexes used during the initial run.  

2.2 Computation of Validity Ranges 
It is crucial to minimize risk of POP by re-optimizing only 
when we are sure that the plan will change. In general, this is 

the parametric query optimization problem, computing the 
optimal plan for every possible combination of parameter 
values [CG94, HS02]. For POP we avoid this exponential 
explosion of parameters by forming a validity range for each 
edge of the QEP.  
Definition: Consider a plan edge e that flows rows into opera-
tor o, and let P be the subplan rooted at o. The validity range 
for e is an upper and lower bound on the number of rows 
flowing through e, such that if the range is violated at run-
time, we can guarantee P is suboptimal with respect to the 
optimizer’s cost model. This range is defined conservatively, 
i.e., even within the validity range P may become suboptimal 
with respect to alternative QEP we do consider. This conser-
vative definition is fine, since we only want to avoid needless 
re-optimization. 
The main advantage of validity ranges over parametric opti-
mization is that we need not enumerate beforehand all possi-
ble optimal plans under all possible parameter values – we 
only need the cardinality ranges within which the chosen plan 
remains optimal.  However we cannot use ad hoc thresholds 
on cardinality errors because the effect of cardinalities on 
query optimality is very complex. A 100x error in cardinality 
of the NATION table of a TPC-H schema may make no 
difference to plan optimality, whereas a 10 percent increase in 
ORDERS may turn a two-stage hash join into a three-stage 
hash join, making the query plan highly suboptimal. 
POP computes validity ranges during the plan enumeration 
and pruning phases of the optimizer through a plan sensitivity 
analysis. It iteratively narrows the validity range for each 
input to an operator of the currently optimal plans, when 
pruning alternative plans during optimization. 
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Figure 4: Computing the Upper Bound of a Validity Range 

Suppose that during dynamic programming, plan Popt with 
root operator oopt is being compared with another plan Palt 
having the same properties (joined tables, applied predicates, 
sort order, projected columns) and different only in the root 
operator oalt. Suppose that Popt dominates, and we prune Palt 
due to its higher cost.  
The cost for Popt and Palt is a function of the cardinalities of 
the input edges of the root operator. Consider one edge with 
estimated cardinality e. Figure 4 illustrates how we can nar-
row the upper bound of the validity range of this edge. As we 
prune plan Palt, we determine if there exists an input cardinal-
ity c > e such that the cost functions cost(Palt, c) and cost(Popt, 
c) intersect. We do this by solving for the root of cost(Palt , c) 
– cost(Popt , c) = 0. When a root operator has multiple input 
edges (e.g., joins), we need to find the roots by treating the 
cost functions of Poptand Palt as multi-variate functions of the 
input cardinalities. 



} Helps only re-optimize when necessary

} The general problem is that of “parametric” optimization
◦ i.e., find the best plan for each combination of parameters

◦ Too expensive

} Instead: 
◦ Consider P1 and P2 -- two identical plans except for the top operator

◦ Let cost(P1) < cost(P2) per the estimates à we would choose P1 over P2

◦ Let “x” denote an edge into the top operator, and let “result(x) = e” denote the result flowing 
along “x”

◦ Figure out: at what value of |result(x)|, we would have chosen P2 instead

} Use numerical techniques to find these validity ranges
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} In many cases, better not to use the partial result

 

  

that re-create intermediate result from scratch. The optimizer 
could even create an index on the materialized view before re-
using it if worthwhile.  
Re-optimization takes place in the same transaction as the 
initial partial execution and holds all locks acquired previ-
ously. Therefore it is guaranteed that all persisted results are 
still transactionally correct when re-execution takes place. 
To minimize the overhead and thereby the risk of re-opti-
mization, these intermediate results are not necessarily written 
out to disk. Rather the temporarily MV has a pointer to the 
actual runtime object for the scan from the current execution. 
If this view is reused, the fields of this in-memory object are 
modified to satisfy the new plan (e.g., the internal id’s for 
each column of this scan may change when the plan changes). 
The standard mechanisms for matching MVs to a query is 
used to determine if the MV created from the intermediate 
result can be used for some part of the query. Once the inter-
mediate results have been matched to the query, the query 
optimizer will construct plans that exploit each matched MV 
in addition to the original plans, using the known cardinality 
for the subplan corresponding to that MV in all cases, and 
then choose the cheapest plan as usual. In most cases, a plan 
that re-uses the MV representing the intermediate result 
should win. Unlike regular MVs, however, the runtime sys-
tem has to remember to remove any of these temporarily 
materialized views after completing query execution. 
If the plan under CHECK performs a side-effect (in-
sert/delete/update), the intermediate results must always be 
matched and reused – otherwise the side-effect would be 
applied twice. 
Intuitively it seems that intermediate results should always be 
reused rather than be thrown away. But this is not always true. 
A wrong initial choice of join order, for instance, might create 
a prohibitively large intermediate result that would have been 
avoided with a different join order. Moreover, we have found 
that many cardinality estimation errors are due to violations of 
the independence assumption between predicates, and are 
therefore underestimates, leading to larger-than-expected 
intermediate results. Using this intermediate result could incur 
a much higher cost than restarting from scratch. Instead of 
always using intermediate results, POP gives the optimizer 
the choice whether or not to use the intermediate results. This 
choice is based on the optimizer’s cost model, which is en-
hanced by better cardinality and statistics information ob-
tained from the previous partial execution of the query. 
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Figure 6: Two alternatives considered in re-optimization  

The right part of Figure 6 shows two alternatives QEPs 
among other alternatives that the query optimizer will con-
sider when re-optimizing the QEP in the left part of the figure 
at the CHECK. Alternative 1 reuses the materialized view 
created from the intermediate result at the materialization 
point below CHECK, whereas Alternative 2 uses a different 
join order and does not reuse the previous work. The opti-
mizer’s cost model will decide which alternative to choose for 
the re- optimized query.  

3 Variants of CHECK 
The main metrics to evaluate CHECK are the risk and oppor-
tunity of re-optimization at the checkpoint. An additional 
metric is its usability in pipelined plans, i.e., QEPs that do not 
have any operators that block row processing, but stream all 
rows directly to the user in order to reduce the time that that 
user has to wait before seeing the query’s first results. Re-
optimization in this case might be triggered after some results 
have already been returned. Without buffering or compensat-
ing for those rows, re-optimization will result in unexpected 
duplicates, which is inconsistent with the semantics of the 
original query. 
We now present five flavors of CHECK to meet these chal-
lenges: lazy checking (LC), lazy checking with eager materi-
alization (LCEM), eager checking without compensation 
(ECWC), eager checking with buffering (ECB), and eager 
checking with deferred compensation (ECDC). The first three 
apply only to non-pipelined plans, and the last two apply to all 
plans. 

3.1 Lazy Checking 
Lazy checking (LC) piggybacks on materialization points, 
i.e., points in a QEP where an entire intermediate result is 
materialized before proceeding with further operators of the 
plan. Examples for such materialization points are a) the 
SORT operator (which sorts its input, e.g. for a sort-merge 
join or group-by), b) the TEMP operator (which creates a 
temporary table, e.g., for caching subquery results), and c) the 
build side of the hash join operator. Placing CHECK above a 
materialization point means that the cardinality of the mate-
rialization point will be checked exactly once, that is, after the 
materialization has been completed. Materialization points are 
ideal checkpoints for two reasons. First, LC needs no com-
pensation, because no results could have been output before 
re-optimization. Second, the materialization creates interme-
diate results that can be reused by the re-optimized query.  
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Figure 7: Lazy checking (LC) and eager checking without 

compensation (ECWC) 



} If there is already a materialization point, can add CHECK there for free (lazy)

} Can add explicit materialization along with a CHECK
◦ Extra overhead in doing that

} Eager CHECKs don’t wait for materialization

} ECWC (Eager without compensation)
◦ There is a materialization afterwards à no results will be output to the user

◦ So can easily reoptimize without worrying about compensation

 

  

that re-create intermediate result from scratch. The optimizer 
could even create an index on the materialized view before re-
using it if worthwhile.  
Re-optimization takes place in the same transaction as the 
initial partial execution and holds all locks acquired previ-
ously. Therefore it is guaranteed that all persisted results are 
still transactionally correct when re-execution takes place. 
To minimize the overhead and thereby the risk of re-opti-
mization, these intermediate results are not necessarily written 
out to disk. Rather the temporarily MV has a pointer to the 
actual runtime object for the scan from the current execution. 
If this view is reused, the fields of this in-memory object are 
modified to satisfy the new plan (e.g., the internal id’s for 
each column of this scan may change when the plan changes). 
The standard mechanisms for matching MVs to a query is 
used to determine if the MV created from the intermediate 
result can be used for some part of the query. Once the inter-
mediate results have been matched to the query, the query 
optimizer will construct plans that exploit each matched MV 
in addition to the original plans, using the known cardinality 
for the subplan corresponding to that MV in all cases, and 
then choose the cheapest plan as usual. In most cases, a plan 
that re-uses the MV representing the intermediate result 
should win. Unlike regular MVs, however, the runtime sys-
tem has to remember to remove any of these temporarily 
materialized views after completing query execution. 
If the plan under CHECK performs a side-effect (in-
sert/delete/update), the intermediate results must always be 
matched and reused – otherwise the side-effect would be 
applied twice. 
Intuitively it seems that intermediate results should always be 
reused rather than be thrown away. But this is not always true. 
A wrong initial choice of join order, for instance, might create 
a prohibitively large intermediate result that would have been 
avoided with a different join order. Moreover, we have found 
that many cardinality estimation errors are due to violations of 
the independence assumption between predicates, and are 
therefore underestimates, leading to larger-than-expected 
intermediate results. Using this intermediate result could incur 
a much higher cost than restarting from scratch. Instead of 
always using intermediate results, POP gives the optimizer 
the choice whether or not to use the intermediate results. This 
choice is based on the optimizer’s cost model, which is en-
hanced by better cardinality and statistics information ob-
tained from the previous partial execution of the query. 
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Figure 6: Two alternatives considered in re-optimization  

The right part of Figure 6 shows two alternatives QEPs 
among other alternatives that the query optimizer will con-
sider when re-optimizing the QEP in the left part of the figure 
at the CHECK. Alternative 1 reuses the materialized view 
created from the intermediate result at the materialization 
point below CHECK, whereas Alternative 2 uses a different 
join order and does not reuse the previous work. The opti-
mizer’s cost model will decide which alternative to choose for 
the re- optimized query.  

3 Variants of CHECK 
The main metrics to evaluate CHECK are the risk and oppor-
tunity of re-optimization at the checkpoint. An additional 
metric is its usability in pipelined plans, i.e., QEPs that do not 
have any operators that block row processing, but stream all 
rows directly to the user in order to reduce the time that that 
user has to wait before seeing the query’s first results. Re-
optimization in this case might be triggered after some results 
have already been returned. Without buffering or compensat-
ing for those rows, re-optimization will result in unexpected 
duplicates, which is inconsistent with the semantics of the 
original query. 
We now present five flavors of CHECK to meet these chal-
lenges: lazy checking (LC), lazy checking with eager materi-
alization (LCEM), eager checking without compensation 
(ECWC), eager checking with buffering (ECB), and eager 
checking with deferred compensation (ECDC). The first three 
apply only to non-pipelined plans, and the last two apply to all 
plans. 

3.1 Lazy Checking 
Lazy checking (LC) piggybacks on materialization points, 
i.e., points in a QEP where an entire intermediate result is 
materialized before proceeding with further operators of the 
plan. Examples for such materialization points are a) the 
SORT operator (which sorts its input, e.g. for a sort-merge 
join or group-by), b) the TEMP operator (which creates a 
temporary table, e.g., for caching subquery results), and c) the 
build side of the hash join operator. Placing CHECK above a 
materialization point means that the cardinality of the mate-
rialization point will be checked exactly once, that is, after the 
materialization has been completed. Materialization points are 
ideal checkpoints for two reasons. First, LC needs no com-
pensation, because no results could have been output before 
re-optimization. Second, the materialization creates interme-
diate results that can be reused by the re-optimized query.  
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Figure 7: Lazy checking (LC) and eager checking without 

compensation (ECWC) 
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Lazy checking is depicted in the left half of Figure 7, where 
the QEP in the middle of the figure processes its sub-plan P 
and materializes the result of P at a materialization point.  
After materialization, the result is further processed by sub-
plan R. The left part of the figure shows how POP adds LC 
above the materialization point.  

3.2 Lazy Check with Eager Materialization 
Although materialization points allow very efficient re-
optimization, they may not occur frequently. If we want to 
check above a QEP node and there is no materialization, an 
alternative is to explicitly add a MATERIALIZATION-
CHECK pair that first materializes the result and blocks any 
pipelining. Upon complete construction of the materialized 
intermediate result, the check range is evaluated. We call this 
flavor of checkpoint Lazy Checks with Eager Materialization 
(LCEMs).  
We cannot add LCEMs recklessly because of the extra over-
head of materialization. Instead we use the following heuris-
tic. Among the various join operators in the plan, merge joins 
typically have naturally-occurring materializations on both 
inputs, and hash joins have materialization on the build side. 
So it is mainly the various varieties of NLJN that may have no 
materialized inputs and therefore need LCEMs. Therefore our 
heuristic is to add LCEMs on the outer side of every NLJN 
(unless the outer stream already has a materialization opera-
tor).  
For the common case of equi-joins, the fact that the optimizer 
picked NLJN over HSJN or MGJN suggests that the cardinal-
ity of the outer is small (because the cost of NLJN is roughly 
the outer cardinality times the cost of probing or scanning the 
inner). If the optimizer’s cardinality estimate was correct, 
materializing the outer will not be too expensive, as we verify 
experimentally in Section 5. If not, it will be worth the over-
head to avoid such a mistake. 

3.3 Eager Checking (ECWC, ECDC, ECB) 
A main weakness of lazy checking is that the materialized 
result may be too large, and it may be suboptimal to compute 
them at all. Sometimes this can have serious implications: if 
the intermediate result cardinality was badly underestimated, 
there may not be enough temporary space to hold the materi-
alized result! Eager Checking is an aggressive alternative that 
re-optimizes without waiting for materialization, thereby 
reacting faster to cardinality errors. Clearly, results could have 
been output to the user by that time, in which case we must 
compensate for this. Furthermore, eager checking may result 
in throwing away work, and thus are of higher risk than lazy 
checking. There are 3 flavors of eager checking: 

Eager Checking without Compensation 
An Eager Check without Compensation (ECWC) is a check-
point that has a materialization point as its ancestor, i.e., 
which is executed later, and therefore needs no compensation. 
The right half of Figure 7 shows how CHECK is pushed 
down below a materialization point, breaking the sub-plan P 
into two sub-plans P1 and P2 and performing eager checking 
on P1. 
Eager CHECK operators can also be placed in pipelined 
(sub)plans, and thus may require compensation in order to 

avoid false duplicates. We distinguish the following two kinds 
of eager CHECK operators: 

Eager Check with Buffering 
An Eager Check with Buffering (ECB) is a combination of 
CHECK and a buffer, testing if the actual cardinality is above 
or below a certain threshold. ECB buffers the rows passing 
through it until it is confident that ECB will either fail or 
succeed. It thus supports pipelining, though with a delay. 
Specifically, an ECB with a threshold range [0, b) or [b, ∞] 
accepts and buffers up to b rows like a valve. An ECB with 
range [0, b) ([b, ∞]) will succeed (fail), when its child in the 
QEP returns no more rows and the buffer contains less than b 
rows at this time. An ECB with range [0, b) ([b, ∞]) will fail 
(succeed), when the bth row is inserted into the buffer. If ECB 
fails, re-optimization is triggered. If ECB succeeds, pipelined 
execution continues. The parent operator above ECB will first 
process the rows from the buffer. If the buffer is exhausted for 
a [b, ∞] ECB, further rows are requested from the operator 
below the ECB.  
ECBs can be implemented with a buffered check (BUF-
CHECK) operator. Figure 8 illustrates a BUFCHECK with 
buffer B on the outer sub-plan O of a NLJN. This buffer 
blocks the join until either the buffer has been filled or O 
finishes. ECB can be used instead of LCEM for checking the 
outer cardinality of a NLJN, because pipelining can be 
blocked for a short while in order to ensure that NLJN is the 
proper join method. An ECB can also help SORT or HSJN 
builds, if these run out of temporary space when creating their 
results, by re-optimizing instead of signaling an error. 
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Figure 8: Eager checking with Buffering  

ECB and LCEM 
Note that an ECB can easily morph into an LCEM by simply 
waiting to re-optimize (on a check failure) until its input is 
exhausted.  

Eager Check with Deferred Compensation 
For queries only containing select, project and join (SPJ) 
operators we can avoid delaying pipelining by using another 
flavor of Eager Check called Eager checking with deferred 
compensation (ECDC) that transfers each row to its parent 
operator in a pipelined manner. To allow for compensation in 
case of re-optimization, the identifiers of all rows (rids) re-
turned to the user are stored in a side table S. The new plan of 
the query needs to compensate for these prior results by doing 
an anti join between S and the new result stream.  
ECDC is depicted in Figure 9. In the middle part of the figure, 
the pipelined plan P has been broken up at compile time into 
the sub-plans P1 and P2, and a checkpoint has been inserted 
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between the two sub-plans. The RETURN plan operator in the 
figure denotes the operation that returns rows to the user. 
Because of deferred compensation, ECDC neither delays 
pipelining nor buffers any rows. However, in order to enable 
deferred compensation, an INSERT operator is inserted just 
below the return operator. INSERT uses a temporary table S 
to remember the rids of all rows that have been returned to the 
user. These rids may need to be constructed if the row has 
been derived from a base table. If re-optimization is triggered, 
the optimizer adds an anti join (set difference) plan operator 
on top of the re-optimized QEP P* to compensate for already 
returned rows from the initial run of the query.  

CHECK

INSERT S

RETURN

P P2

P1

P*

ANTI-JOIN
(not exists)

S

RETURNRETURN

Re-optimization

Eager checkingEager checking

deferred compensation  
Figure 9 Eager checking with deferred compensation 

Figure 10 shows the implementation of the check (CHECK) 
and buffered check (BUFCHECK) operators via an 
open/next/close model. The implementation of check can be 
simplified if the DBMS maintains counters for each plan 
operator. In this case, the check operator can directly refer to 
the counters of the operator below CHECK. Similarly, if 
CHECK is only placed above a materialization point, check-
ing can be optimized to be only executed once (i.e., after the 
materialization has completed) and refer to the counter of the 
materialized intermediate result.  
Figure 10: Check implementation for check range [low,high] 

CHECK.OPEN: 
   count = 0; 
CHECK.NEXT: 
   count++; 
   r = childStream.next(); 
   if count > high 
      call re-optimization; 
   if count < low and r = EOF 
      call re-optimization; 
   else  
      return r; 
CHECK.CLOSE: 

   ∅ 

BUFCHECK.OPEN: 
  count = 0; 
  allocate B of size b;  // buffer
  for i = 0 to b do 
     B[i] = childStream.next();
     if childStream.EOF()  
        and i < low 
      call re-optimization; 
BUFCHECK.NEXT: 
  count++; 
  if high < count 
      call re-optimization;  
   if count < b  
      return B[count]; 
   else 
      return childStream.next(); 
 BUFCHECK.CLOSE: 
   free B; 

3.4 Risks and Opportunities for each flavor of 
Checkpoint 

Lazy checks (LCs) impose the least risk during query process-
ing because their input is materialized and can be reused. But 
their opportunity is limited to materialization points in the 
plan.  
Lazy checks with Eager Materialization (LCEMs) impose the 
additional overhead of materializing results, and could thus be 
more risky. So we choose to place LCEMs only on the outer 

side of NLJN, where cardinalities are likely to be small. By 
introducing these artificial materialization points, LCEMs 
provide greater re-optimization opportunities.  
The main problem with LCs and LCEMs is that they wait for 
full materialization before re-optimizing. This can  be bad if 
the result is much larger than expected -- LCEMs are espe-
cially affected, because there the materialization is artificially 
introduced. 
Eager checks with Buffering (ECBs) avoid this problem by 
checking before materialization is completed. The penalty is 
that the sub-plan being materialized has to be completely re-
run, modulo other materialization points within it. In general 
we want to couple both approaches, placing an LCEM above 
an ECB so that the ECB can prevent the materialization from 
growing beyond bounds. The relative risk of inserting the 
ECBs vs. the LCEM depends on the relative costs of re-
running the outer and materializing the results. Also, like any 
eager CHECK, ECBs terminate early and thus will not enable 
the optimizer to use the correct cardinality for the subplan 
during re-optimization. They merely give the optimizer a 
lower bound for the correct cardinality that is higher than the 
previous estimate, ensuring that a different plan will chosen, 
but there is no guarantee that the new plan will be optimal. 
ECWC and ECDC give much greater opportunities for re-
optimization. ECWC can be placed anywhere below materi-
alization points. ECDC works even in pipelined plans and 
requires only one buffer for the entire query, regardless of 
how many checkpoints exist in the QEP.  Because of the anti-
join post-processing of the re-optimized query, ECDC reduces 
the overhead of the initial run of the query and puts more of 
the cost upon re-optimization, which can be good if re-
optimization is rare. As a penalty for this virtually unlimited 
opportunity for re-optimization, ECWC and ECDC have high 
risk, because they fail to retain work done. 

4 CHECK Placement 
Table 1 summarizes the 5 flavors of checkpoints. 
LCEM and ECB checkpoints are placed on the outer side of 
nested loop joins during plan enumeration. After the optimal 
plan has been chosen, LC checkpoints are placed above mate-
rialization operators.  ECWC and ECDC checkpoints can be 
placed arbitrarily. 
In our current implementation, the materialization points we 
consider are SORTs and TEMPs. The two other kinds of 
reusable results that arise during query processing are: (a) the 
build side of hash joins, and (b) rid-lists generated from in-
dexes. We have found SORT and TEMP reuse alone to pro-
vide for significant performance improvements, but plan to 
enhance our prototype to reuse further intermediate results in 
order to make re-optimization even more efficient. 
Our validity range estimation ensures that checkpoints will 
not trigger re-optimization unless an alternative better plan is 
available. However, LCEM and ECB checkpoints induce the 
overhead of an extra materialization even with no re-
optimization. Moreover, even if a better plan is available, we 
might throw away so much additional work using eager 
checking (with ECB, ECWC and ECDC checkpoints) that the 
overall execution is slower. As we intend to be conservative, 
the default behavior of our prototype is to only place LC and 
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overhead is that we must redo the fraction of the query that is 
already completed – this ranges from 0 to about 60% in the 
figure. Many re-optimization opportunities are closely clus-
tered together, especially in the early stages of query execu-
tion. This is because joins over the smaller tables typically 
separate materialization points. 

6 POP in Action 
In this section we apply POP to a real-world database and 
customer workload, using an 8-way PowerPC with 1.4 GHz 
Power4 CPUs, 32 GB RAM, 56 FASTT managed disks with a 
total of 36 GB net storage space. The database holds data of a 
department of motor vehicles (DMV), consisting of more than 
30 tables and more than 100 indexes. The major tables of the 
database are the CAR and OWNER table storing 8 million 
respectively 6 million records. The overall size of the data-
base is 7.4 GB. The CAR table contains major correlations, 
like a correlation between the columns MAKE, MODEL, 
COLOR, and MODEL, WEIGHT. There are also correlations 
when joining CAR and OWNER, like correlations between 
ZIP, MAKE and AGE, MAKE. We use 39 real-world queries 
obtained from the DMV to evaluate POP. The queries are 
very complex decision support queries, joining more than 10 
tables in average.  
Although the DMV workload did not use any parameter 
markers, it contained many other pitfalls that caused the 
optimizer to use wrong estimates: Many of the queries restrict 
several correlated columns, thus creating major cardinality 
estimation errors as the optimizer uses independence to com-
bine the selectivities of these columns. Moreover, many of the 
queries uses complex predicates like substring comparisons, 
LIKE-predicates, and complex IN-lists and disjunctions. All 
of these predicates are additional sources of estimation errors. 
The largest cardinality estimation errors we have observed in 
the DMV queries exceed six orders of magnitude! For these 
complex real-world queries it is hardly possible for the opti-
mizer to determine the right query plan based on its basic 
statistics and assumptions. 
With POP no query runs longer than 5 minutes, whereas 
without POP the longest query took more than 20 minutes.  
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Figure 15: Scatter Plot of Response Times with and without 

POP on the DMV database 
The scatter plot of the response times in Figure 15 shows that 
while 22 queries receive an improvement with POP, we notice 
a slight to moderate performance degradation in 17 queries. 

This performance degradation is due to two facts: In some 
circumstances the better cardinality information available to 
the optimizer during re-optimization resulted in the choice of 
a worse plan (!) because two estimation errors had canceled 
each other out during the initial run of the query, and no 
longer did so after re-optimization. In addition, we use a 
simplistic cost model for the cost for re-using an intermediate 
result, and this model leads to over-eager re-optimizations. 
Improving the optimizer’s cost functions can solve the first 
problem. The second problem arises because we wanted to 
study re-optimizations extensively in this prototype and so 
used a generous cost model for reoptimization. So we are 
confident we can avoid this performance degradation when 
transferring this work into the product. 
Figure 16 shows the speedup or regression experienced by 
each individual query. While POP reaches impressive speed-
ups of almost two orders of magnitude, the maximum regres-
sion due to a wrong optimizer decision during re-optimization 
was a factor of 5.  
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Figure 16: Speedup and Regression of each Query 

Overall, POP adds significant robustness to the processing of 
the DMV queries, impressively speeding up several long-
running queries. 

7 Future Work 
Synchronization in Parallel DBMSs 
While implementing CHECK is relatively simple and 
straightforward for serial uni-processor environments, the 
cardinality counters it uses must be globally synchronized in 
symmetric multi-processor and shared nothing environments. 
Such synchronization can be a costly operation that can sub-
stantially delay query processing, and must be viewed as 
another risk of checkpointing in multi-processor environ-
ments. Alternatively, one can locally re-optimize a partial 
QEP executed on one node if the check range for this node 
alone is violated. Local checking in multi-processor environ-
ments would require that between global synchronization 
points (exchange operators in Volcano [GM93]) each node 
may change its plan, thus giving each node the chance to 
execute a different partial QEP. 
Checking Opportunities 
POP can be considered to be a more conservative mode of 
query execution, which is useful for complex ad-hoc queries 
or queries with parameter makers where statistics or the opti-
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COLOR, and MODEL, WEIGHT. There are also correlations 
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bine the selectivities of these columns. Moreover, many of the 
queries uses complex predicates like substring comparisons, 
LIKE-predicates, and complex IN-lists and disjunctions. All 
of these predicates are additional sources of estimation errors. 
The largest cardinality estimation errors we have observed in 
the DMV queries exceed six orders of magnitude! For these 
complex real-world queries it is hardly possible for the opti-
mizer to determine the right query plan based on its basic 
statistics and assumptions. 
With POP no query runs longer than 5 minutes, whereas 
without POP the longest query took more than 20 minutes.  
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POP on the DMV database 
The scatter plot of the response times in Figure 15 shows that 
while 22 queries receive an improvement with POP, we notice 
a slight to moderate performance degradation in 17 queries. 

This performance degradation is due to two facts: In some 
circumstances the better cardinality information available to 
the optimizer during re-optimization resulted in the choice of 
a worse plan (!) because two estimation errors had canceled 
each other out during the initial run of the query, and no 
longer did so after re-optimization. In addition, we use a 
simplistic cost model for the cost for re-using an intermediate 
result, and this model leads to over-eager re-optimizations. 
Improving the optimizer’s cost functions can solve the first 
problem. The second problem arises because we wanted to 
study re-optimizations extensively in this prototype and so 
used a generous cost model for reoptimization. So we are 
confident we can avoid this performance degradation when 
transferring this work into the product. 
Figure 16 shows the speedup or regression experienced by 
each individual query. While POP reaches impressive speed-
ups of almost two orders of magnitude, the maximum regres-
sion due to a wrong optimizer decision during re-optimization 
was a factor of 5.  
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Overall, POP adds significant robustness to the processing of 
the DMV queries, impressively speeding up several long-
running queries. 

7 Future Work 
Synchronization in Parallel DBMSs 
While implementing CHECK is relatively simple and 
straightforward for serial uni-processor environments, the 
cardinality counters it uses must be globally synchronized in 
symmetric multi-processor and shared nothing environments. 
Such synchronization can be a costly operation that can sub-
stantially delay query processing, and must be viewed as 
another risk of checkpointing in multi-processor environ-
ments. Alternatively, one can locally re-optimize a partial 
QEP executed on one node if the check range for this node 
alone is violated. Local checking in multi-processor environ-
ments would require that between global synchronization 
points (exchange operators in Volcano [GM93]) each node 
may change its plan, thus giving each node the chance to 
execute a different partial QEP. 
Checking Opportunities 
POP can be considered to be a more conservative mode of 
query execution, which is useful for complex ad-hoc queries 
or queries with parameter makers where statistics or the opti-
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} Adaptive query processing (POP-style) works well with 
interpretable query plans, but not as well with compilation
◦ Compiling a new query plan too expensive

(a) Execution Time

(b) Code-Generation Time
Figure 1: Reoptimizing Compiled Queries – PCQ enables near-
optimal execution through adaptivity with minimal compilation
overhead.

is expensive. But even if the DBMS’s optimizer pre-computed all
variations of a pipeline before compiling the query, including extra
pipelines in a plan increases the compilation time. The DBMS could
compile these pipelines in the background [20], but then it is using
CPU resources for compilation instead of query execution.

There are also �ne-grained optimizations where it is infeasible
to use either of the two above AQP methods. For example, suppose
the DBMS wants to �nd an ordering of predicates in a table scan
such that the most selective predicates are evaluated �rst. Since the
number of possible orderings is combinatorial, the DBMS has to
generate a separate scan pipeline for each ordering. The number of
pipelines is so high that the computation requirements to compile
them would dominate the system. Even if the DBMS compiled
alternative plans on-the-�y, it still may not adapt quickly enough if
both the data and operating environment change during execution.

To help motivate the need for low-overhead AQP in compilation-
based DBMSs, we present an experiment that measures the perfor-
mance of evaluating a WHERE clause during a sequential scan on a
single table (A) composed of six 64-bit integer columns (col1–col6)
that has 10m tuples. The workload is comprised of a single query:
SELECT * FROM A
WHERE col1 = X1 AND col2 = X2 AND . . . AND col6 = X6
We generate each column’s data and choose each �ltering con-

stant (X8 ) so that the overall selectivity is �xed, but each predicate
term’s selectivity changes for di�erent blocks of the table. We defer
the description of our experimental setup to sec. 5.

We �rst measure the time the DBMS takes to execute the above
query using the best “static” plan (i.e., one with a �xed evaluation
order chosen by the DBMS optimizer). We also execute an “optimal”
plan that is provided the best �lter ordering for each data block
a priori. The optimal plan is as if the DBMS compiled all possible
pipelines for the query and represents the theoretical lower bound
execution time. Lastly, we also execute the query using permutable
�lters that the DBMS reorders based on selectivities.

The results in �g. 1a show that the static plan is up to 4.4⇥
slower than the optimal plan when selectivity is low. As selectiv-
ity increases, the performance gap gradually reduces since more
tuples must be processed. Our second observation is that PCQ is

consistently within 10% of the optimal execution time across all
selectivities. This is because it periodically reorders the predicate
terms based on real-time data distributions.

Next, we measure the code-generation time for each of the three
approaches as we vary the number of �lter terms. In this exper-
iment, we add an additional �lter term on col1 to form a range
predicate. The results in �g. 1b reveal that when there are fewer
than three �lter terms, the code-generation time for all approaches
is similar. However, beyond three terms, the optimal approach be-
comes impractical as there are $ (=!) possible plans to generate.
In contrast, the code-generation time for the permutable query
increases by ⇠20% from one to seven terms.

Given these results, what is needed is the ability for a compilation-
basedDBMS to dynamically permute and adapt a query planwithout
having to recompile it, or eagerly generate alternative plans.

3 PCQ OVERVIEW
The goal of PCQ is to enable a JIT-based DBMS to modify a com-
piled query’s execution strategy while it is running without (1)
restarting the query, (2) performing redundant work, or (3) pre-
compiling alternative pipelines. A key insight behind PCQ is to
compile once in such a way that the query can be permuted later
while retaining compiled performance. At a high-level, PCQ is sim-
ilar to proactive reoptimization [7] as both approaches modify the
execution behavior of a query without returning to the optimizer
for a new plan or processing tuples multiple times. The key dif-
ference, however, is that PCQ facilitates these modi�cations for
compiled queries without pre-computing every possible alternative
sub-plan or pre-de�ning thresholds for switching sub-plans. PCQ
is a dynamic approach where the DBMS explores alternative sub-
plans at runtime to discover execution strategies that improve a
target objective function (e.g., latency, resource utilization). This
adaptivity enables �ne-grained modi�cations to plans based on data
distribution, hardware characteristics, and system performance.

In this section, we present an overview of PCQ using the example
query shown in �g. 2. As we discuss below, the life-cycle of a query
is broken up into three stages. Althoughwe designed the framework
for NoisePage’s LLVM-based environment, it works with any DBMS
execution engine that supports query compilation.

3.1 Stage #1 – Translation
After the DBMS’s optimizer generates a physical query plan, the
Translator converts the plan into a domain-speci�c language (DSL),
called TPL, that decomposes the it into pipelines. TPL combines
Vectorwise-style pre-compiled primitives [9] with HyPer’s data-
centric code generation [28]. Using TPL enables the DBMS to apply
database-speci�c optimizations more easily than a general-purpose
language (e.g., C/C++). Moreover, as we describe below, TPL enjoys
low-latency compilation time.

Additionally, the Translator augments the query’s TPL program
with additional PCQ constructs to facilitate permutations. The �rst
is hooks for collecting runtime performance metrics for low-level
operations in a pipeline. For example, the DBMS adds hooks to the
generated program in �g. 2 to collect metrics for evaluating WHERE
clause predicates. The DBMS can toggle this collection on and o�
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SELECT * FROM foo
WHERE A=1 AND B=2 AND C=3 
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fun a_eq_1() { ... }
fun b_eq_2() { ... }
fun c_eq_3() { ... }
fun query() {
  var filters = {[
    a_eq_1, 
    b_eq_2,
    c_eq_3]}
  for (v in foo) {
    filters.Run(v)
  }}
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Figure 2: System Overview – The DBMS translates the SQL query into a DSL that contains indirection layers to enable permutability. Next, the
system compiles the DSL into a compact bytecode representation. Lastly, an interpreter executes the bytecode. During execution, the DBMS
collects statistics for each predicate, analyzes this information, and permutes the ordering to improve performance.

depending on whether it needs data to guide its decision-making
policies on how to optimize the query’s program.

The second type of PCQ constructs are parameterized runtime
structures in the program that use indirection to enable the substitu-
tion of execution strategies within a pipeline. The DBMS parameter-
izes all relational operators in this way. This design choice follows
naturally from the observation that operator logic is comprised
of query-agnostic and query-speci�c sections. Since the DBMS
generates the query-speci�c sections, it is able to generate di�er-
ent versions uses indirection to switch at runtime. We de�ne two
classi�cations of indirection. The �rst level is when operators are
unaware or unconcerned with the speci�c implementation of query-
speci�c code. The second level of indirection requires coordination
between the runtime and the code-generator.

In the example in �g. 2, the Translator organizes the predicates
in an array that allows the DBMS to rearrange their order. For
example, the DBMS could switch the �rst predicate it evaluates to
be on attribute foo.C if it is the most selective. Each entry in the
indirection array is a pointer to the generated code. Thus, permuting
this part of the query only involves lightweight pointer swapping.

3.2 Stage #2 – Compilation
In the second stage, the Compiler converts the DSL program (includ-
ing both its hooks for collecting runtime performance metrics and
its use of indirection to support dynamic permutation) into a com-
pact bytecode representation. This bytecode is a CISC instruction
set composed of arithmetic, memory, and branching instructions,
as well as database-level instructions, such as for comparing SQL
values with NULL semantics, constructing iterators over tables and
indexes, building hash tables, and spawning parallel tasks.

In �g. 2, the query’s bytecode contains instructions to construct
a permutable �lter to evaluate the WHERE clause. The permutable
�lter stores an array of function pointers to implementations of the
�lter’s component. The order the functions appear in the array is
the order that the DBMS executes them when it evaluates the �lter.

3.3 Stage #3 – Execution
After converting the query plan to bytecode, the DBMS uses adap-
tive execution modes to achieve low-latency query processing [20].
The DBMS begins execution using a bytecode interpreter and asyn-
chronously compiles the bytecode into native machine code using
LLVM. Once the background compilation task completes, native
function implementations are automatically executed by the DBMS.

During execution, the plan’s runtime data structures use poli-
cies to selectively enable lightweight metric sampling. In �g. 2,
the DBMS collects selectivity and timing data for each �ltering
term periodically with a �xed probability. It uses this information
to construct a ranking metric that orders the �lters to minimize
execution time given the current data distribution. Each execution
thread makes an independent decision since they operate on dis-
joint segments of the table and potentially observe di�erent data
distributions. All permutable components use a library of policies
to decide (1) when to enable metric collection and (2) what adaptive
policy to apply given new runtime metric data. The execution en-
gine continuously performs this cyclic behavior over the course of
a query. All policies account for the fact that execution threads may
be concurrently executing native and bytecode implementations of
query functions and observe varying runtimes.

NoisePage uses a push-based batch-oriented engine that com-
bines vectorized and tuple-at-a-time execution in the same spirit as
Relaxed Operator Fusion (ROF) [27]. Batch-based execution allows
the DBMS to amortize overhead of PCQ indirection while retaining
the performance bene�ts of JIT code. It also provides LLVM an
opportunity to auto-vectorize generated code.

4 SUPPORTED QUERY OPTIMIZATIONS
We now present the optimization categories that are possible with
PCQ. As described above, the DBMS generates execution code for a
query in a manner that allows it to modify its behavior at runtime.
The core idea underlying PCQ is that the generated code supports
the ability to permute or selectively enable operations within a
pipeline whenever there could be a di�erence in performance of
those operations. These operations can be either short-running, �ne-
grained steps (e.g., a single predicate) or more expensive relational
operators (e.g., joins). These optimizations are independent of each
other and do not in�uence the behavior of other optimizations in
either the same pipeline or other pipelines for the query.

For each category, we describe what changes (if any) the DBMS’s
optimizer makes to a query’s plan and how the Translator organizes
the code to support runtime permutations. We also discuss how the
DBMS collects metrics about that it uses for policy decisions.

4.1 Filter Reordering
The �rst optimization is the ability to modify the evaluation order
of predicates during a scan operation. The optimal ordering strikes
a balance between selectivity and evaluation time: applying a more
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SELECT * FROM A WHERE col1 * 3 = col2 + col3 AND col4 < 44

(a) Example Input SQL Query

 6 fun p1(v:*Vec) {
 7   @selectLT(v.col4,44)}

 8 fun p2(v:*Vec) {
 9   for (t in v) {
10     if (t.col1*3 == 
11         t.col2+t.col3){
12       v[t]=true}}}

 1 fun query() {
 2   var filters={[p1,p2]}
 3   for (v in A) {
 4     filters.Run(v)
 5   }}

Execute 
p1
p2

Permute
p2
p1

Profile

Sel. Cost
10
4

0.5
0.7

p1
p2

Rank
0.05
0.75

Stats

Policies

(b) Generated Code and Execution of Permutable Filter
Figure 3: Filter Reordering – The Translator converts the query in
(a) into the TPL on the left side of (b). This program uses a data struc-
ture template with query-speci�c �lter logic for each �lter clause.
The right side of (b) shows how the policy collects metrics and then
permutes the ordering.

selective �lter �rst will discard more tuples, but it may be expen-
sive to run. Likewise, the fastest �lter may discard too few tuples,
causing the DBMS to waste cycles applying subsequent �lters.

Preparation / Code-Gen: The �rst step is to prepare the phys-
ical plan to support reordering. The DBMS normalizes �lter expres-
sions into their disjunctive normal form (DNF). An expression in
DNF is composed of a disjunction of summands, B1 _ B2 _ . . . B" .
Each summand, B8 , is a conjunction of factors, 51 ^ 52 ^ . . . 5# . Each
factor constitutes a single predicate in the larger �lter expression
(e.g., col4 < 44). The DBMS can reorder factors within a summand,
as well as summands within a DNF expression. Thus, there are
' = "!# ! possible overall orderings of a �lter in DNF.

Decomposing and structuring �lters as functions has two bene-
�ts. First, it allows the DBMS to explore di�erent orderings without
having to recompile the query. Re-arranging two factors incurs neg-
ligible overhead as it involves a function pointer swap. The second
bene�t is that the DBMS utilizes both code-generation and vector-
ization where each is best suited. The system implements complex
arithmetic expressions in generated code to remove the overhead
of materializing intermediate results, while simpler predicates fall
back to a library of ⇠250 vectorized primitives.

Since the WHERE clause in �g. 3a is in DNF, the query requires
no further modi�cation. Next, the Translator generates a function
for each factor in the �lter that accepts a tuple vector as input. In
�g. 3b, p1 (lines 6–7) and p2 (lines 8–12) are generated functions
for the query’s conjunctive �lter. p1 calls on a builtin vectorized
selection primitive, while p2 uses fused tuple-at-a-time logic.

Lastly, line 2 in �g. 3b initializes a runtime data structure with
a list of �lter functions. This structure encapsulates the �ltering
and permutation logic. A sequential scan is generated over A on
line 3 using a batch-oriented iteration loop, and the �lter is applied
to each tuple batch in the table on line 4.

Runtime Permutation: Given the array of �lter functions cre-
ated previously during code-generation, this optimization seeks to
order them to minimize the �lter’s evaluation time. This process is
illustrated in �g. 3b. When the DBMS invokes the permutable �lter
on an input batch, it decides whether to recollect statistics on each
�lter component. The frequency of collection and precisely what
data to collect are con�gurable policies. A simple approach that we

SELECT col1, COUNT(*) FROM A GROUP BY col1

(a) Example Input SQL Query

Policies

Hash 
Hot Set?

17 fun aggregateMerge(
 ↪     hot:[*]Agg,ht:*HashTable){
18   ht[hot[0].col1]=hot[0]
19   ht[hot[1].col1]=hot[1]}

 1 fun query() {
 2   var aggregator = {[
 3     ..., // Normal funcs
 4     aggregateHot,
 5     aggregateMerge
 6   ]} 
 7   for (v in foo) {
 8     aggregator.Run(v)
 9   }}

Count
≈5#Keys

Profile

Probe

Create + Initialize

Update
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Initialize Hot

Aggregate Hot

Merge Hot

Yes

Hot Cold
10 fun aggregateHot(
 ↪     v:*Vec, hot:[*]Agg){
11   for(t in v) {
12     if(t.col1==hot[0].col1){
13       hot[0].c++}
14     elif(t.col1==hot[1].col1){
15       hot[1].c++}   
16   }}

(b) Generated Code and Execution of Adaptive Aggregation
Figure 4: Adaptive Aggregations – The input query in (a) is trans-
lated into TPL on the left side of (b). The right side of (b) steps
through one execution of PCQ aggregation.

use is to sample selectivities and runtimes randomly with a �xed
probability ? . We explore the e�ect of ? in sec. 5.

If the policy chooses not to sample selectivities, the DBMS in-
vokes the �ltering functions in their current order on the tuple
batch. Functions within a summand incrementally �lter tuples out,
and each summand’s results are combined together to produce the
result of the �lter. If the policy chooses to re-sample statistics, the
DBMS executes each predicate on all input tuples and tracks their
selectivity and invocation time to construct a pro�le. The DBMS
uses a predicate’s A0=: as the metric by which to order predicate
terms. The rank of a predicate accounts for both its selectivity and
its evaluation costs, and is computed as 1�B

2 , where B speci�es the
selectivity of the factor, and 2 speci�es the per-tuple evaluation cost.
After rank computation, the DBMS stores the refreshed statistics in
an in-memory statistics table. It then reorders the predicates using
both their new rank values and the �lter’s permutation policy.

When the policy recollects statistics, the DBMS evaluates all
�lters to capture their true selectivities (i.e., no short-circuiting).
This means the DBMS performs redundant work that impacts query
performance. Therefore, policies must balance unnecessary work
with the ability to respond to shifting data skew quickly.

4.2 Adaptive Aggregations
The next optimization is to extract “hot” group-by keys in hash-
based aggregations and generate a separate code path for maintain-
ing their values that do no probe the hash table. Hash aggregations
are composed of �ve batch-oriented steps: (1) hashing, (2) probing,
(3) key-equality check, (4) initialization, and (5) update. Parallel
aggregations require an additional sixth step to merge thread-local
partial aggregates into a global aggregation hash table. The Trans-
lator generates custom code for aggregate initialization, update,
and merging because these are often computationally heavy and
query-speci�c. The other steps rely on vectorized primitives.

We now present PCQ adaptive aggregations that exploit skew
in the grouping keys.

Preparation / Code-Gen: The Translator �rst creates a special-
ized function to handle the hot keys. This function, aggregateHot
on lines 10–16 in �g. 4, takes a batch of input tuples and an ar-
ray of # aggregate payload structures for the extracted hot keys.
Each element in the array stores both the grouping key and the
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(a) Example Input SQL Query

 6 fun p1(v:*Vec) {
 7   @selectLT(v.col4,44)}

 8 fun p2(v:*Vec) {
 9   for (t in v) {
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Figure 3: Filter Reordering – The Translator converts the query in
(a) into the TPL on the left side of (b). This program uses a data struc-
ture template with query-speci�c �lter logic for each �lter clause.
The right side of (b) shows how the policy collects metrics and then
permutes the ordering.

selective �lter �rst will discard more tuples, but it may be expen-
sive to run. Likewise, the fastest �lter may discard too few tuples,
causing the DBMS to waste cycles applying subsequent �lters.

Preparation / Code-Gen: The �rst step is to prepare the phys-
ical plan to support reordering. The DBMS normalizes �lter expres-
sions into their disjunctive normal form (DNF). An expression in
DNF is composed of a disjunction of summands, B1 _ B2 _ . . . B" .
Each summand, B8 , is a conjunction of factors, 51 ^ 52 ^ . . . 5# . Each
factor constitutes a single predicate in the larger �lter expression
(e.g., col4 < 44). The DBMS can reorder factors within a summand,
as well as summands within a DNF expression. Thus, there are
' = "!# ! possible overall orderings of a �lter in DNF.

Decomposing and structuring �lters as functions has two bene-
�ts. First, it allows the DBMS to explore di�erent orderings without
having to recompile the query. Re-arranging two factors incurs neg-
ligible overhead as it involves a function pointer swap. The second
bene�t is that the DBMS utilizes both code-generation and vector-
ization where each is best suited. The system implements complex
arithmetic expressions in generated code to remove the overhead
of materializing intermediate results, while simpler predicates fall
back to a library of ⇠250 vectorized primitives.

Since the WHERE clause in �g. 3a is in DNF, the query requires
no further modi�cation. Next, the Translator generates a function
for each factor in the �lter that accepts a tuple vector as input. In
�g. 3b, p1 (lines 6–7) and p2 (lines 8–12) are generated functions
for the query’s conjunctive �lter. p1 calls on a builtin vectorized
selection primitive, while p2 uses fused tuple-at-a-time logic.

Lastly, line 2 in �g. 3b initializes a runtime data structure with
a list of �lter functions. This structure encapsulates the �ltering
and permutation logic. A sequential scan is generated over A on
line 3 using a batch-oriented iteration loop, and the �lter is applied
to each tuple batch in the table on line 4.

Runtime Permutation: Given the array of �lter functions cre-
ated previously during code-generation, this optimization seeks to
order them to minimize the �lter’s evaluation time. This process is
illustrated in �g. 3b. When the DBMS invokes the permutable �lter
on an input batch, it decides whether to recollect statistics on each
�lter component. The frequency of collection and precisely what
data to collect are con�gurable policies. A simple approach that we
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Figure 4: Adaptive Aggregations – The input query in (a) is trans-
lated into TPL on the left side of (b). The right side of (b) steps
through one execution of PCQ aggregation.

use is to sample selectivities and runtimes randomly with a �xed
probability ? . We explore the e�ect of ? in sec. 5.

If the policy chooses not to sample selectivities, the DBMS in-
vokes the �ltering functions in their current order on the tuple
batch. Functions within a summand incrementally �lter tuples out,
and each summand’s results are combined together to produce the
result of the �lter. If the policy chooses to re-sample statistics, the
DBMS executes each predicate on all input tuples and tracks their
selectivity and invocation time to construct a pro�le. The DBMS
uses a predicate’s A0=: as the metric by which to order predicate
terms. The rank of a predicate accounts for both its selectivity and
its evaluation costs, and is computed as 1�B

2 , where B speci�es the
selectivity of the factor, and 2 speci�es the per-tuple evaluation cost.
After rank computation, the DBMS stores the refreshed statistics in
an in-memory statistics table. It then reorders the predicates using
both their new rank values and the �lter’s permutation policy.

When the policy recollects statistics, the DBMS evaluates all
�lters to capture their true selectivities (i.e., no short-circuiting).
This means the DBMS performs redundant work that impacts query
performance. Therefore, policies must balance unnecessary work
with the ability to respond to shifting data skew quickly.

4.2 Adaptive Aggregations
The next optimization is to extract “hot” group-by keys in hash-
based aggregations and generate a separate code path for maintain-
ing their values that do no probe the hash table. Hash aggregations
are composed of �ve batch-oriented steps: (1) hashing, (2) probing,
(3) key-equality check, (4) initialization, and (5) update. Parallel
aggregations require an additional sixth step to merge thread-local
partial aggregates into a global aggregation hash table. The Trans-
lator generates custom code for aggregate initialization, update,
and merging because these are often computationally heavy and
query-speci�c. The other steps rely on vectorized primitives.

We now present PCQ adaptive aggregations that exploit skew
in the grouping keys.

Preparation / Code-Gen: The Translator �rst creates a special-
ized function to handle the hot keys. This function, aggregateHot
on lines 10–16 in �g. 4, takes a batch of input tuples and an ar-
ray of # aggregate payload structures for the extracted hot keys.
Each element in the array stores both the grouping key and the
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running aggregate value. The policy determines the size of # . For
east of illustration, we choose to extract two heavy-hitter keys. The
Translator generates a loop to iterate over each tuple in the batch
and checks for a key-equality match against one of the keys in the
hot array. As # is a query compile-time constant, the Translator
generates # conditional branches. Tuples that �nd a match update
their aggregates according to the query; others fall through to the
“cold” key code path.

Next, the Translator generates amerge function, aggregateMerge
on lines 17–19, that takes a list of partially computed aggregates
and merges them into the hash table. As before, because # is a
compile-time constant, the Translator unrolls and inlines the merge
logic for the # aggregates into the function.

Finally, in the main query processing function, the Translator
creates the data structure (aggregator) on lines 2–6 and injects it
with pointers to generated functions encapsulating each step in the
aggregation, including the new functions to exploit key skew.

Runtime Permutation: Aggregation proceeds similarly as it
would without any optimization, but with one adjustment. While
computing the hash values of grouping keys in a batch, the DBMS
also tracks an approximate distinct key count using HyperLogLog
(HLL) [15]. Collecting this metric is inexpensive since HLLs have a
compact representation and incur minimal computational overhead
in comparison to the more complex aggregation processing logic.
After hashing all tuples, if the HLL estimates fewer than # unique
grouping keys in the input batch, we follow the optimized pipeline.

In the optimized �ow, the DBMS �rst allocates an array of ag-
gregate values. It initializes this array with the hottest keys in the
current batch. The method for identifying these keys is de�ned
by the system’s con�gured policy. A simple policy is to use the
�rst # unique keys in the batch. A more sophisticated option is
to randomly sample from within the current batch until # unique
keys are found. In this work, we use the former as we found it o�ers
the best performance versus cost trade-o�.

After initializing the hot aggregates array, the DBMS invokes
the optimized aggregation function. On return, partially aggregated
data is merged back into the hash table using the merging function.
Since HLL estimations have errors, it is possible for some tuples to
not �nd a match in the hot set. In this case, the batch is processed
using the cold path as well. Thus, there is a risk of an additional pass,
but the DBMS mitigates this by tuning the HLL estimation error.
Supporting parallel aggregation requires neither a modi�cation to
the algorithm described earlier, or the generation of additional code.
Each execution thread performs thread-local aggregation as before.

4.3 Adaptive Joins
A PCQ DBMS optimizes hash joins by (1) tailoring the hash table
implementation based on runtime information and (2) reordering
the application of joins in right- or left-deep query plans.We discuss
data structure specialization before describing the steps required
during code-generation and runtime to implement join reordering.
We use the convention that the left input to a hash join is the build
side, and the right input is the probe side.

Hash table construction proceeds in two phases. First, the DBMS
materializes the tuples from the left join input into a thread-local
memory bu�er in row-wise format along with the computed hash

SELECT * FROM A
INNER JOIN B ON A.col1 = B.col1
INNER JOIN C ON A.col2 = C.col1
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 1 fun query() {
 2   // HT on B, C built.
 3   var joinExec = {[
 4     {ht_B, joinB},
 5     {ht_C, joinC}]} 
 6   for (v in A) {
 7    joinExec.Run(v)
 8   }}

 9 fun joinB(
 ↪     v:*Vec,m:[*]Entry){
10   for (t in v){
11     if (t.col1==m[t].col1){
12       v[t]=true}}}  

13 fun joinC(
 ↪     v:*Vec,m:[*]Entry) {
14   @gatherSelectEq(v.col2,
 ↪                   m,0)}
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Stats
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(c) Generated Code and Execution of Permutable Joins
Figure 5: Adaptive Joins – The DBMS translates the query in (a) to
the program in (c). The right side of (c) illustrates one execution of
a permutable join that includes a metric collection step.

of the join columns. The DBMS also tracks an approximate count
of unique keys using an HLL estimator. Once the left join input
is exhausted, the DBMS uses HLL to estimate the hash table size.
If the estimated size is smaller than the CPU’s L3 cache capacity,
the DBMS constructs a concise hash table (CHT [31]); otherwise, it
constructs a bucket-chained hash table with pointer-tagging [22].
With this, the DBMS is able to perfectly size the hash table, thereby
eliminating the need to resize during construction. Furthermore,
deferring the choice of table implementation to runtime allows
the DBMS to tune itself according to the data distribution. In the
second phase, each execution thread scans its memory bu�ers to
build a global hash table. If a bucket-chained hash table was selected,
pointers to thread-local tuples are inserted using atomic compare-
and-swap instructions. If a CHT was selected, a partitioned build is
performed as described in [31]. We now describe how to implement
permutable joins using �g. 5 as the running example.

Preparation / Code-Gen: The DBMS’s optimizer supports per-
mutable joins in right-deep query plans containing consecutive
joins, as in �g. 5a. The system designates one table as the “driver”
that it joins with one or more tables (i.e., one per join). The DBMS
may use either hash or index joins depending on the selected access
method. The DBMS applies the joins in any order regardless of the
join type (i.e., inner vs. outer) since each driver tuple is independent
of other tuples in the table and intermediate iteration state is tran-
sient for a batch of tuples. In �g. 5b, the DBMS can join the tuples in
A either against C or B �rst. The best ordering may change over the
duration of a query on a per-block basis due to variations in data
distributions. Our implementation in NoisePage has an additional
requirement that the driver table contains all key columns required
across all joins.

During code generation, the Translator �rst generates one key-
check function per join. In �g. 5c, joinB (lines 9–12) and joinC
(lines 13–14) are the key-check functions for joining tuples from A
against tables B and C, respectively. These functions take in a vector
of input tuples and a vector of potential join candidates, and then
evaluates the join predicate for each tuple. As described earlier,
the DBMS may implement these functions either by dispatching
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to vectorized primitives or using tuple-at-a-time logic directly in
bytecode. In the example, joinC uses a built-in primitive to perform
a fused gather and select operation with SIMD instructions.

Next, the Translator constructs a data structure (joinExec on
lines 3–5) in the pipeline to manage the join and permutation logic.
This structure requires three inputs for each join: (1) a pointer to
the hash table to probe, (2) a list of attribute indexes forming the
join key, and (3) a pointer to the join’s key-check function. Finally,
the Translator generates the scan code for A on lines 6–8 and the
invocation of the join executor for each tuple batch on line 7.

Runtime Permutation:During execution, the DBMS �rst com-
putes a hash value for each tuple in the input batch. Next, a policy
decision is made whether to recollect statistics on each join. As-
suming the a�rmative, the DBMS then probes each hash table.

The probing process is decomposed into two steps. Since hash ta-
bles embed Bloom �lters, the DBMS performs the combined lookup
and �lter operation using only the hash values computed in the
previous step. The second step invokes each join’s key-equality
function to resolve false positives from the �rst step. The DBMS
ensures that only tuples that pass previous joins are processed in
the remaining joins. After completion, the system creates a pro�le
that captures selectivity and timing information for each join step.
Similar to �lters, the DBMS saves the pro�le to its internal catalog
and then permutes the join according to the policy.

5 EVALUATION
We now present an analysis of the PCQ method and correspond-
ing system architecture. We implemented our PCQ framework
and execution engine in the NoisePage DBMS [4]. NoisePage is a
PostgreSQL-compatible HTAPDBMS that usesHyPer-styleMVCC [29]
over the Apache Arrow in-memory columnar data [25]. It uses
LLVM (v9) to JIT compile our bytecode into machine code.

We performed our evaluation on machine with 2 ⇥ 10-core Intel
Xeon Silver 4114 CPUs (2.2GHz, 25 MB L3 cache per-core, with
AVX512) and 128 GB of DRAM. We ensure that the DBMS loads
the entire database into the same NUMA region using numactl.
We implemented our microbenchmarks using the Google Bench-
mark [2] library which runs each experiment a su�cient number
of iterations to get a statistically stable execution times.

We begin by describing the workloads that we use in our evalu-
ation. We then measure PCQ’s ability to improve the performance
of compiled queries. We execute these �rst experiments using a sin-
gle thread to minimize scheduling interference. Lastly, we present
a comparison of NoisePage on multi-threaded queries with PCQ
against two state-of-the-art OLAP DBMSs.

5.1 Workloads
We �rst describe the three workloads that we use in our evaluation:

Microbenchmark:We created a synthetic benchmark to isolate
and measure aspects of the DBMS’s runtime behavior. The database
contains six tables (A–F) that each contain six 64-bit signed integer
columns (col1–col6). Each table contains 3m tuples and occupies
144 MB of memory. For each experiment that uses this benchmark,
we vary the distributions and correlations of the database’s columns’
values to highlight a speci�c component. The workload contains
three query types that each target a separate optimization from

Figure 6: Performance Over Time – Execution time of three static
�lter orderings and our PCQ �lter during a sequential table scan.

sec. 4: (1) a scan query with three predicates, (2) an aggregation
query with groupings, and (3) a multi-way join query.

TPC-H: This is a decision support system workload that sim-
ulates an OLAP environment [37]. It contains eight tables in 3NF
schema. We use a scale factor of 10 (⇠10 GB). To better represent
real-world applications, we use a skewed version of the TPC-H gen-
erator [5]. We select nine queries that cover the TPC-H choke-point
categories [8] that vary from compute- to memory/join-intensive
queries. Thus, we expect our results to generalize and extend to the
remaining queries in the benchmark.

Star Schema Benchmark (SSB): This workload simulates a
data warehousing environment [30]. It is based on TPC-H, but
with three di�erences: (1) it denormalizes the two largest tables (i.e.,
LINEITEM and ORDERS) into a single new fact table (i.e., LINEORDER),
(2) it drops the PARTSUPP table, and (3) it creates a new DATE dimen-
sion table. SSB consists of thirteen queries and is characterized by
its join complexity. We use a scale factor of 10 (⇠10 GB) using the
default uniformly random data generator.

5.2 Filter Adaptivity
We begin with evaluating PCQ’s ability to optimize and permute
�lter ordering in response to shifting data distributions. We use the
microbenchmark workload with a SELECT query that performs a
sequential scan over a single table:
SELECT * FROM A
WHERE col1 < 1000 AND col3 < 1000 AND col3 < 3000
The constant values in the WHERE clause’s predicates enable the

data generators in each experiment to target a speci�c selectivity.
Performance Over Time: The �rst experiment evaluates the

performance of PCQ �lters during a table scan as we vary the selec-
tivity of individual predicates. We populate each column such that
one of the predicates has a selectivity of ⇠2% while the remaining
two have 98% selectivity each. We alternate which predicate is the
most selective over disjoint sections of the table. That is, for the
�rst 500 blocks of tuples, the predicate on col1 is the most selective.
Then for the next 500 blocks, the predicate on col2 is the most
selective. Thus, each predicate is optimal for only 1

3 of the table.
We execute this query with PCQ’s permutable �lters con�gured

using a 10% sampling rate policy (i.e., the DBMS will collect metrics
per block with a 10% probability). We also execute the query using
three “static” orderings that each evaluate a di�erent predicate �rst.
These static orderings represent how existing JIT compilation-based
DBMSs execute queries without permutability.

The results in �g. 6 show the processing time per block during
the scan. Each of the static orderings is only optimal for a por-
tion of the table, while PCQ discovers new optimal orderings after
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Figure 12: Varying Number of Joins – Execution time to perform a
multi-step join while keeping the overall join selectivity at 10%.

auto-vectorization of the key-equality check function. Although
the overall selectivity is constant, as the number of joins increase,
PCQ outperforms the static plan by discovering the most selective
joins and dynamically reordering them earlier in processing. PCQ
is 3⇥ faster than static when performing two joins, and 2.5⇥ faster
when performing greater than three joins.

5.5 System Comparison
Lastly, we compare NoisePage with and without PCQ against two
state-of-the-art in-memory databases: Actian Vector (v9.2) and
Tableau HyPer (v5.1). Vector [1] is a columnar DBMS based on Mon-
etDB/x100 [9] that uses a vectorized execution engine comprised of
SIMD-optimized primitives. We modi�ed Vector’s con�guration to
fully utilize system memory and CPU threads for parallel execution.
HyPer [3] is a columnar DBMS that uses the LLVM to generate
tuple-at-a-time query plans that are either interpreted or JIT com-
piled. The version of HyPer we use also supports SIMD predicate
evaluation. After consulting with Tableau’s engineers, we did not
modify any con�guration options for HyPer.

In this section we evaluate the TPC-H and SSB benchmarks.
After loading the data into each system, we run their requisite
statistics collection and optimization operations. We warm each
DBMS by running the workload queries once before reporting the
average execution time over �ve consecutive runs. We make a
good faith e�ort to ensure the DBMSs execute equivalent query
plans by manually inspecting them. We note, however, that the
DBMSs include additional optimizations that are not present in
all systems. For NoisePage, we use the query plan generated by
HyPer’s optimizer.

5.5.1 Skewed TPC-H. We �rst evaluate the TPC-H benchmark
using Microsoft’s skewed data generator [5], using a skew of 2.0
(i.e., high-skew). The results are shown �g. 13. We also show the
e�ect of each optimization in table 1. Each cell shows the relative
speedup of enabling the associated optimization atop all previous
optimizations. Numbers close to 1.0 mean the optimization had
little impact, while large numbers indicate greater impact. Gray
(i.e., blank) entries signify that the optimization was not applied.

Q1: This query computes �ve aggregates over four group-by
keys in a single table. Increased skew a�ects the distribution among
the four grouping keys. The hottest grouping key pair receives 49%
of the updates when there is no skew, and 86% with signi�cant skew.
NoisePage’s PCQ aggregation optimization is triggered resulting
in a 1.7⇥ improvement since the bulk of processing time is spent
performing the aggregation. Although NoisePage with PCQ is 4.8⇥
faster than Vector, it is 1.2⇥ slower than HyPer. We believe this is

due to HyPer’s use of �xed-point arithmetic which is faster than
the �oating-point math used in NoisePage.

Q4: This query computes a single aggregate over �ve group-by
keys (triggering the PCQ aggregation optimization), and contains a
permutable �lter on ORDERS. The selectivity of the range predicate
on o_orderdate is 0.08% with high skew. NoisePage with PCQ
�ips the range predicate and applies the aggregation optimization
resulting in a 2⇥ improvement over both NoisePage without PCQ
and commercial systems. table 1 shows that the bulk of the bene�t
is attributed to the optimized aggregation.

Q5: This query joins six tables, but contains only two permutable
joins. The �nal aggregation computes one summation on two group-
by keys, which triggers the PCQ aggregation optimization. This
query also contains vectorizable predicates that are supported by
all DBMSs. In NoisePage, the bene�t of permutable �lters is modest,
while the optimized aggregation leads to a 1.33⇥ improvement over
the baseline. The two permutable joins are never rearranged, hence
there is no improvement from PCQ joins. Overall, NoisePage with
PCQ is 3⇥ faster than HyPer and 5⇥ faster than Vector.

Q6: The performance of Q6 depends on the DBMS’s implemen-
tation of the highly selective (0.05%) �lter over LINEITEM. We note
that increased skew does not a�ect the ordering of the LINEITEM
predicate. Thus, NoisePage’s PCQ permutable �lter adds minor
overhead resulting in 4% slowdown over the baseline. This is a
direct result of resampling with a �xed probability, and can be
remedied by using a more advanced sampling policy. All systems
leverage SIMD �lter evaluation with comparable performance.

Q7: This is a join-heavy query where HyPer chooses a bushy join
plan that is 4⇥ slower than a right-deep plan. Although no tuples
reach the �nal aggregation, PCQ �ips the application order of the
range predicate on l_shipdate resulting in a 1.2⇥ improvement.

Q11: This query also contains �ve joins, but none are permutable.
It also contains two separate aggregations, but whose cardinalities
never trigger the PCQ optimizations. Finally, it contains multiple
vectorizable predicates, but all have single terms making permu-
tation unnecessary. Thus, Q11 represents a query where none of
the PCQ optimizations are tripped. We include it to show that PCQ
incurs negligible overhead, and to serve as an example of where
an optimizer can assist in identifying better plans in the presence
of data skew. NoisePage (with an without PCQ) o�ers comparable
performance to HyPer, and is 4⇥ faster than Vector.

Q16: This query has a right-deep join pipeline using PARTSUPP
as the driver, a multi-part �lter on PART and a hash aggregation.
The cardinality of the aggregation exceeds the optimization thresh-
old (i.e., �ve). PCQ reorders the PART �lters, yielding a boost of
almost 1.2⇥. Next, PCQ reorders the join to use SIMD gathers due
to the size of the build table, which improves performance by 1.2⇥.
NoisePage with PCQ is 7.4⇥ and 3⇥ faster than HyPer and Vector,
respectively. HyPer chooses a worse plan at high-skew: it decides
on a left anti-join rather than a right anti-join. We believe that
HyPer’s performance would improve with a better plan.

Q18: Like Q16, this query also contains a right-deep join pipeline
using ORDERS as the driver. Additionally, there is an aggregation,
but whose cardinality exceeds the optimization’s threshold. PCQ
reorders the joins in order to utilize SIMD gathers on the smaller
table resulting in a 1.19⇥ improvement over the baseline. Inter-
estingly, HyPer chooses a worse query plan at high skew, using

110



Adaptivity Loop

Measure what ? 
Cardinalities/selectivities, operator costs, resource utilization

Measure when ?
Continuously (eddies); using a random sample (A-greedy); 
at materialization points (mid-query reoptimization)

Measurement overhead ?
Simple counter increments (mid-query) to very high

Actuate

PlanAnalyze

Measure



Adaptivity Loop

Analyze/replan what decisions ?
(Analyze actual vs. estimated selectivities)
Evaluate costs of alternatives and switching (keep state in mind)

Analyze / replan when ?
Periodically; at materializations (mid-query); at conditions (A-greedy)

Plan how far ahead ?
Next tuple; batch; next stage (staged); possible remainder of plan (CQP)

Planning overhead ?
Switch stmt (parametric) to dynamic programming (CQP, mid-query)

ActuateMeasure

PlanAnalyze



Adaptivity Loop

Actuation:  How do they switch to the new plan/new routing strategy ?

Actuation overhead ?
At the end of pipelines à free (mid-query)
During pipelines:

History-independent à Essentially free (selections, MJoins)
History-dependent à May need to migrate state (STAIRs, CAPE)

Measure

PlanAnalyze

Actuate



} Not much work on adaptive query processing in the last 10 
years
◦ SkinnerDB [2019] another relevant work

} More work on adapting the execution of a single operator 
◦ e.g., changing things based on available resources

} Likely to re-emerge as an important topic in the next few years
◦ As QP in many systems becomes more mature…

◦ As SQL starts becoming more and more common as the query language 
(e.g., in Spark, Pandas, etc).


