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} Book Chapters (6th Edition)
◦ 1.1, 1.2

} Key Topics
◦ Data-driven world and Big Data

◦ Why managing large volumes of data is difficult

◦ Drawbacks of using File Systems to store data

◦ What we will cover in this course
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} Explosion of data, in pretty much every domain
◦ Sensing devices and sensor networks that can monitor everything 

24/7 from temperature to pollution to vital signs
◦ Increasingly sophisticated smart phones
◦ Internet, social networks makes it easy to publish data
◦ Scientific experiments and simulations produce astronomical 

volumes of data
◦ Internet of Things
◦ Dataification: taking all aspects of life and turning them into data 

(e.g., what you like/enjoy turned into a stream of your "likes”)
} How to handle that data? How to extract interesting 

actionable insights and scientific knowledge?
} Data volumes expected to get much worse
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} Increasing data Volumes 
◦ Scientific data: 1.5GB/genome -- can be sequenced in .5 hrs; LHC 

generates 100TB of data a day
◦ 500M tweets per day 
◦ As of 2012: 2.5 Exabytes of data created every day
◦ EBay: Two data warehouses with 7.5PB and 40PB
◦ Walmart: 583 terabytes of sales and inventory data
◦ FICO monitors 2.5 billion active accounts worldwide

} Variety:
◦ Structured data, spreadsheets, photos, videos, natural text, ...

} Velocity
} Veracity
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http://www.foreignaffairs.com/articles/139104/kenneth-neil-cukier-and-viktor-mayer-schoenberger/the-rise-of-big-data
http://www.wired.com/2014/08/sciences-big-data-problem/


} Increasing data Volumes 
} Variety
} Velocity
◦ Sensors, smart watches, etc., everywhere -- can generate 

tremendous volumes of "data streams"
◦ Real-time analytics requires data to be consumed as fast as it is 

generated
} Veracity
◦ How do you decide what to trust? How to remove noise? How to 

fill in missing values?
◦ By various accounts, 90% or so of the time is spent in data cleaning 

and preparation, vs 10% or so on the machine learning/data 
science
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} Terms increasingly used synonymously: also data analytics, 
data mining, business intelligence
◦ Loosely used for any process where interesting things are inferred 

from data
◦ Google search: “How Big Data Will Change”

} Data scientist called the sexiest job of the 21st century
◦ The term has becoming very muddled at this point
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} No: Extracting insights and knowledge from data very important, 
and will continue to increase in importance 
◦ Big data techniques are revolutionizing things in many domains like 

Education, Food Supply, Disease Epidemics, ...
} But: it is not much different from what we, especially statisticians, 

have been doing for many years
} What is different?
◦ Much more data is digitally available than was before
◦ Inexpensive computing + Cloud + Easy-to-use programming frameworks = 

Much easier to analyze it
◦ Often: large-scale data + simple algorithms > small data + complex algorithms
� Changes how you do analysis dramatically
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} How do we do anything with this data?

} Where and how do we store it ?
◦ Disks are doubling every 18 months or so -- not enough
◦ In many cases, the data is not actually recorded as it is; summarized first

} What if the disks crash ?
◦ Very common, especially with 10,000’s of disks

} How do we ensure “correctness” ?
◦ What if the system crashes in the middle of an ATM transaction ?

� Can’t have money disappearing
◦ What happens when a million people try to buy tickets to <your favorite 

artist>’s concert at the same time ?
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} What to do with the data ? How to process/analyze it ?
◦ text search ?

� Very limited 
◦ “find the stores with the maximum increase in sales in last month”

� We can’t expect the users to write Java programs
◦ “how much time from here to Pittsburgh if I start at 2pm ?”
� Data is there; more will be soon (GPS, live traffic data)
� Requires predictive capabilities
◦ Increasing need to convert “information” to “knowledge”: Data 

mining/Machine Learning
� “How many DVDs should we order?” (Netflix)
� Find videos with this type of an event (say car break-ins)
� Mine the “blogs” to detect “buzz” 
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} Speed !! 
◦ With TB’s of data, just finding something (even if you know what), is not easy
� Reading a file with TB of data can take hours
◦ Imagine a bank and millions of ATMs
� How much time does it take you to do a withdrawal ?
� The data is not local

} How do we guarantee the data will be there 10 years from now ?

} Privacy and security !!!
◦ Every other day we see some database leaked on the web

◦ How to make sure different users’ data is protected from each other 
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} Drawbacks of using file systems to store data:
◦ Data redundancy and inconsistency

� Multiple file formats, duplication of information in different files

◦ Difficulty in accessing data 

� Need to write a new program to carry out each new task

◦ Data isolation — multiple files and formats

◦ Integrity problems
� Integrity constraints  (e.g., account balance > 0) become “buried” in 

program code rather than being stated explicitly

� Hard to add new constraints or change existing ones
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} Drawbacks of using file systems to store data:
◦ Atomicity of updates
� Failures may leave database in an inconsistent state with partial 

updates carried out
� Example: Transfer of funds from one account to another should either 

complete or not happen at all

◦ Concurrent access by multiple users
� Concurrent access needed for performance
� Uncontrolled concurrent accesses can lead to inconsistencies

� Example: Two people reading a balance (say 100) and updating it by 
withdrawing money (say 50 each) at the same time

◦ Security problems
� Hard to provide user access to some, but not all, data
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} We will mainly discuss structured data
◦ That can be represented in tabular forms (called Relational data)
◦ We will spend some time on JSON/Document Data Model (MongoDB)
◦ We will also spend some time on Mapreduce-like stuff (Apache Spark)

} Still the biggest and most important business (?)
◦ Well defined problem with really good solutions that work
� Contrast XQuery for XML vs SQL for relational 
◦ Solid technological foundations

} Many of the basic techniques however are directly applicable
◦ E.g. reliable data storage etc.
◦ Cf. Many recent attempts to add SQL-like capabilities, transactions to 

Mapreduce and related technologies
� E.g., Spark DataFrames
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} Introduction 
◦ Motivation, data abstraction, common data systems architectures today

} Relational Model + SQL (Two programming assignments)
} Schema Design: Entity-relationship Models and Normalization (Long-form Assgn)
◦ How to create a database schema, and how to ensure it is “good”

} Implementation Issues (Programming assignment)
◦ Different types of storage, and how to ensure reliability in presence of failures
◦ Indexes for faster retrieval of data
◦ How an SQL query is processed and optimized

} NoSQL (somewhat of a misnomer) (Programming assignment)
◦ Document, key-value, and graph data models
◦ MongoDB and its Query Language
◦ Map-reduce Model and Apache Spark

} Transactions (Long-form Assignment)
◦ How to do concurrent updates correctly
◦ How to ensure consistency in presence of failures

Programming assignments may have 
small non-programming component, 
and vice versa
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} Why study databases ?
◦ Shift from computation to information
� Always true in corporate domains
� Increasing true for personal and scientific domains
◦ Need has exploded in recent years
� Data is growing at a very fast rate
◦ Solving the data management problems is going to be a key

} Database Management Systems provide 
◦ Data abstraction: Key in evolving systems
◦ Guarantees about data integrity
� In presence of concurrent access, failures…
◦ Speed !!
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Instructor: Amol Deshpande
amol@cs.umd.edu

Data Models and Data Abstraction
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} Book Chapters (6th Edition)
◦ 1.3

} Key Topics
◦ Data Models and Why Capturing “Structure” is Important

◦ Data Abstraction, and Views

◦ Logical and Physical Data Independence
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} Provide a systematic way to solve data management issues
} Aim is to allow easy management of high volumes of data
◦ Storing , Updating, Querying, Analyzing ….

} What is a Database ?
◦ A large, integrated collection of (mostly structured) data
◦ Typically models and captures information about a real-world enterprise 
� Entities (e.g. courses, students)
� Relationships (e.g. John is taking CMSC 424)

� Usually also contains:
� Knowledge of constraints on the data (e.g. course capacities)
� Business logic (e.g. pre-requisite rules)
� Encoded as part of the data model (preferable) or through external programs
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} Massively successful for highly structured data

◦ Why ? Structure in the data (if any) can be exploited for ease 
of use and efficiency
� If there is no structure in the data, hard to do much
� Contrast managing emails vs managing photos

◦ Much of the data we need to deal with is highly structured
◦ Some data is semi-structured
� E.g.: Resumes, Webpages, Blogs etc.
◦ Some has complicated structure
� E.g.: Social networks
◦ Some has no structure
� E.g.: Text data, Video/Image data etc.
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} A lot of the data we encounter is structured
◦ Some have very simple structures 
� E.g. Data that can be represented in tabular forms
◦ Significantly easier to deal with
◦ We will focus on such data for much of the class

Account
bname acct_no balance
Downtown

Mianus
Perry
R.H

A-101
A-215
A-102
A-305

500
700
400
350

Customer
cname cstreet ccity

Jones
Smith
Hayes
Curry

Lindsay

Main
North
Main
North
Park

Harrison
Rye

Harrison
Rye

Pittsfield
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} Some data has a little more complicated structure

◦ E.g graph structures

� Map data, social networks data, the web link 
structure etc

◦ Can convert to tabular forms for storage, but 
may not be optimal

◦ Queries often reason about graph structure

� Find my “Erdos number”

� Suggest friends based on current friends

◦ Growing importance in recent years in a variety 
of domains: Biological, social networks, web…
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} Increasing amount of data in a semi-structured format
◦ XML – Self-describing tags (HTML ?)
◦ Complicates a lot of things
◦ We will discuss this toward the end

} A huge amount of data is unfortunately unstructured
◦ Books, WWW 
◦ Amenable to pretty much only text search… so far

� Information Retreival research deals with this topic
◦ What about Google search ?

� Google search is mainly successful because it uses the 
structure (in its original incarnation)

} Video ? Music ?
◦ Can represent in DBMS’s, but can’t really operate on them

circle size == page importance == pagerank 
more incoming links à higher pagerank

incoming links from important pages à higher pagerank
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} Massively successful for highly structured data
◦ Why ? Structure in the data (if any) can be exploited for ease 

of use and efficiency

◦ How ?

◦ Two Key Concepts:
� Data Modeling: Allows reasoning about the data at a high level

� e.g. “emails” have “sender”, “receiver”, “…”
� Once we can describe the data, we can start “querying” it

� Data Abstraction/Independence:
� Layer the system so that the users/applications are insulated from 

the low-level details
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} Data modeling
◦ Data model: A collection of concepts that describes how data is represented 

and accessed
◦ Schema: A description of a specific collection of data, using a given data 

model

◦ Some examples of data models that we will see
� Relational, Entity-relationship model, XML, JSON…
� Object-oriented, object-relational, semantic data model, RDF…

◦ Why so many models ?
� Tension between descriptive power and ease of use/efficiency
� More powerful models à more data can be represented
� More powerful models à harder to use, to query, and less efficient
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} Probably the most important purpose of a DBMS
} Goal: Hiding low-level details from the users of the 

system
◦ Alternatively: the principle that
� applications and users should be insulated from how data is 

structured and stored
◦ Also called data independence

} Through use of logical abstractions
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Logical
Level

Physical 
Level

View Level

View 1 View 2 View n…

How data is actually stored ?
e.g. are we using disks ? Which
file system ?

What data is stored ?
describe data properties such as 
data semantics, data relationships

What data users and 
application programs  
see ? 
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Logical
Level

Physical 
Level

View Level

View 1 View 2 View n…
Logical Data Independence
Protection from logical changes
to the schema

Physical Data Independence
Protection from changes to the
physical structure of the data
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Logical
Level

Physical 
Level

View Level

View 1 View 2 View n…
Logical Schema
students(sid, name, major, …)
courses(cid, name, …)
enrolled(sid, cid, …)

A View Schema
course_info(#registered,…)

Physical Schema
all students in one file ordered by sid
courses split into multiple files by colleges
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Instructor: Amol Deshpande
amol@umd.edu

DBMS Architectures; Industry Outlook
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} Book Chapters (6th Edition)
◦ 1.4, 1.9 (to some extent)

} Key Topics
◦ Data Definition and Data Manipulation Languages

◦ Typical Database Architecture

◦ Current Industry Outlook
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} A DBMS is a software system designed to store, manage, facilitate access to 
databases
◦ Typically uses a specific data model, and 
◦ Supports some level of physical and logical data independence

} Provides:
◦ Data Definition Language (DDL)

� For defining and modifying the schemas
◦ Data Manipulation Language (DML)

� For retrieving, modifying, analyzing the data itself
◦ Guarantees about correctness in presence of failures and concurrency, data 

semantics etc.

} Common use patterns
◦ Handling transactions (e.g. ATM Transactions, flight reservations)
◦ Archival (storing historical data)
◦ Analytics (e.g. identifying trends, Data Mining)
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} SQL (sequel): Structured Query Language

} Data definition (DDL)
◦ create table instructor (

ID char(5),
name           varchar(20),
dept_name varchar(20),
salary numeric(8,2))

} Data manipulation (DML)
◦ Example: Find the name of the instructor with ID 22222

select name
from instructor
where instructor.ID = ‘22222’
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} All data was typically in hard disks or arrays of hard disks
} RAM (Memory) was never enough
◦ So always had to worry about what was in memory vs not

} Almost no real “distributed” execution 
◦ Different from “parallel”, i.e., on co-located clusters of 

computers
} Relatively well-understood use cases
◦ Report generation
◦ Interactive data analysis and exploration
◦ Supporting transactions

lock 
manager
processlock tablelog buffer

shared
memory 

database
 writer
process

log writer
process

checkpoint
process

process
monitor
process

server
process

server
process

user
process

user
process

server
process

user
process

ODBC JDBC

log disks data disks

query plan cache

buffer pool

From Chapter 20
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lock 
manager
processlock tablelog buffer

shared
memory 

database
 writer
process

log writer
process

checkpoint
process

process
monitor
process

server
process

server
process

user
process

user
process

server
process

user
process

ODBC JDBC

log disks data disks

query plan cache

buffer pool

Clients may be anywhere – e.g., ATMs, 
desktops, laptops, web apps etc.

Talk to the database using standard protocols 
like JDBC/ODBC, SOAP, or REST (today), or 

proprietary protocols

Typical components in a database system: 
some for queries, some for transactions

Maybe on a single physical computer or a 
cluster connected by a fast network

Data Storage Systems:
(1) Punch cards (long time ago)
(2) Hard disks (still prevalent)
(3) SSDs

Need “redundancy” and “fault-tolerance” 
Data once stored should always be there

RAID = Redundant Array of Independent 
Disks

Some sort of load balancer 
or intake mechanism
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} Much more diversity in the architectures that we see
◦ More modern hardware architectures 

� Massively parallel computers
� SSDs
� Massive amounts of RAM – often don’t need to worry about data fitting in memory
� Much faster networks, even over a wide area
� Virtualization and Containerization
� Cloud Computing

◦ As a result: Data and execution typically distributed all over the place

} Much more diversity in data processing applications
◦ Much more non-relational data (images, text, video)
◦ Data Analytics/Machine learning more common use-cases

} Much more diversity in “data models” 
◦ Document data models (JSON, XML), Key-value data model, Graph data model, RDF
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} Relational DBMSs
◦ Oracle, IBM DB2, Microsoft SQL Server, Sybase, Amazon RDS/Aurora

} Open source alternatives
◦ MySQL, PostgreSQL, BerkeleyDB (mainly a storage engine – no SQL) …

} Other Data Models
◦ Neo4j (Graph), MongoDB (Document), CosmosDB (many)

} Data Warehousing Solutions
◦ Geared towards very large volumes of data and on analyzing them
◦ Long list: Teradata, Oracle Exadata, Netezza (based on FPGAs), Aster Data 

(founded 2005), Vertica (column-based), Kickfire, Xtremedata..
◦ Usually sell package/services and charge per TB of managed data
◦ Many (especially recent ones) start with MySQL or PostgreSQL and make 

them parallel/faster etc..
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} Ongoing debate/issue 
◦ Cloud computing seems to eschew DBMSs in favor of homegrown solutions
◦ E.g. Google, Facebook, Amazon etc…

} MapReduce: A paradigm for large-scale data analysis
◦ Hadoop: An open source implementation
◦ Apache Spark: a better open source implementation

} Why ? 
◦ DBMSs can’t scale to the needs, not fault-tolerant enough

� These apps don’t need things like transactions, that complicate DBMSs (???)
◦ Mapreduce favors Unix-style programming, doesn’t require SQL
� Try writing SVMs or decision trees in SQL
◦ Cost
� Companies like Teradata may charge $100,000                                            

per TB of data managed

37

} Bigtable-like
◦ Called “key-value stores”
◦ Think highly distributed hash tables
◦ Allow some transactional capabilities – still evolving area
◦ PNUTS (Yahoo), Apache Cassandra (Facebook), Dynamo (Amazon), and many 

many others

} Mapreduce-like
◦ Hadoop (open source), Pig (@Yahoo), Dryad (@Microsoft), Spark
◦ Amazon EC2 Framework
◦ Not really a database – but increasing declarative SQL-like capabilities are being 

added (e.g. HIVE at Facebook)

} Much ongoing research in industry and academia
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} We have to limit the scope drastically

} Focus on: 
◦ Single-server Relational Databases
◦ Assume hard disks are still important and memory is limited
◦ Go deep into different ways to execute queries, and find the best queries

} Will briefly discuss:
◦ Parallel architectures and query processing there
◦ Map-reduce architectures and considerations there-in

} Most of the key concepts valid in modern databases (including 
NoSQL) and Big Data Frameworks
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From: https://blogs.oracle.com/timesten/the-evolution-of-db-
architectures

(Oracle-focused)
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https://blogs.oracle.com/timesten/the-evolution-of-db-architectures


Data Warehouses
For: Large-scale data processing (TBs to PBs)
Parallel architectures (lots of co-located computers)
SQL and Reporting 
No transactions

In-memory OLTP (on-line transaction processing)
For: Extremely fast transactions
Many-core or parallel architectures
Very limited SQL – mostly focused on “writes”
Typically assume data fits in memory across servers

Highly available, distributed OLTP
For: Distributed scenarios where clients are all over the world
Focus on “consistency” – how to make sure all users see the same 
data
Limited SQL – mostly focused on “writes”
Considerations of memory vs disk less important
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Extract-Transform-Load 
Systems, or Map-Reduce, or Big 
Data Frameworks

For: Large-scale, “ad hoc” data analysis

Mix of parallel and distributed architectures
Data usually coming from many different 
sources
Mix of SQL, Machine Learning, and ad hoc 
tasks (e.g., do image analysis, followed by 
SQL)

AWS Glue

Apache Spark
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} Key takeaway: Modern data architectures are a mess
◦ We haven’t talked about NoSQL (MongoDB, etc.), Machine Learning, “Streaming”…

} Fundamentals haven’t changed that much though
◦ We are still either:

� Going from some “input datasets” to an “output dataset” (queries/analytics)
� Modifying data (transactions)

◦ SQL is still very common, albeit often disguised 
� Spark RDD operations map nicely to SQL joins and aggregates (unified now)
� MongoDB lookups, filters, and aggregates map to joins, selects, and aggregates in SQL

} But “performance trade-offs” are all over the place now
◦ 30 years ago, we worried a lot about hard disks and things fitting in memory
◦ Today, focus more on networks 

} Focus has shifted to other aspects of data processing pipelines
◦ Analytics/Machine learning, data cleaning, statistics
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SQL ”Query Plan”

Apache Hive ”Query Plan”
(Hive is an SQL layer on top of Hadoop)
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Machine Learning Pipeline

Data Preparation and Visualization Pipeline
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} Many similarities across different ways to process and analyze data
} At its simplest: 

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Binary 
Operation 1

Unary 
Operation 1

Binary 
Operation 2

Ternary 
Operation 1

Unary 
Operation 1

Output 
Dataset 1

Maybe Tables in an RDBMS, Files in HDFS, 
or Images in a key-value store

Maybe Joins, or Aggregates, or Machine 
Learning Tasks, or Data Cleaning Tasks, 

or…

Maybe Another RDBMS Table, a New File, 
or a Machine Learning Model
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} Many similarities across different ways to process and analyze data

} Some considerations that we see repeated:
◦ Are there multiple ways to accomplish the goals? 

� i.e., are there multiple pipelines or SQL Query Plans that will accomplish the same task
◦ How to “enumerate” all of them?

� i.e., how to automatically come up with all the different options?
◦ How to decide which is the ”best”?

� Ideally based on some consideration of total cost (e.g., total CPU time)
◦ How to ”find” the best plan?

� Called “query optimization” in databases

} RDBMSs have been doing this for 4-5 decades now
◦ The classic paper on SQL query optimization is from 1979

� Outlined the approach still in use today

} Same ideas re-discovered repeatedly in other contexts (e.g., Hadoop)
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} Trade-offs shifted drastically over last 10-15 years
◦ Especially with fast network, SSDs, and high memories
◦ However, the volume of data is also growing quite rapidly

} Some observations:
◦ Cheaper to access another computer’s memory than accessing 

your own disk
◦ Cache is playing more and more important role 
◦ Enough memory around that data often fits in memory of a 

single machine, or a cluster of machines
◦ “Disk” considerations less important
� Still: Disks are where most of the data lives today
◦ Similar reasoning/algorithms required though
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Instructor: Amol Deshpande
amol@umd.edu
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Instructor: Amol Deshpande
amol@cs.umd.edu

Relational Model
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} Book Chapters (6th Edition)
◦ 2.1, 2.2, 2.4

} Key Topics
◦ Relational Model Key Concepts

◦ Domains of Table Attributes

◦ Null Values

◦ Schema Diagrams
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• Before = “Network Data Model” (Cobol as DDL, DML)
• Very contentious:  Database Wars (Charlie Bachman vs. Ted Codd)

Introduced by Ted Codd (late 60’s – early 70’s)

1. Separation of logical, physical data models (data independence)
2. Declarative query languages
3. Formal semantics
4. Query optimization (key to commercial success)

Relational data model contributes:

• Ingres à CA 
• Postgres à Illustra à Informix à IBM
• System R à Oracle, DB2

1st prototypes:
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bname acct_no balance
Downtown
Brighton
Brighton

A-101
A-201
A-217

500
900
500

Account  =

Terms:

• Tables  (aka: Relations)

Why called Relations?
Closely correspond to mathematical concept of a relation
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bname acct_no balance
Downtown
Brighton
Brighton

A-101
A-201
A-217

500
900
500

Account  =

Relational database semantics defined in 
terms of mathematical relations

{ (Downtown, A-101, 500), 
(Brighton, A-201, 900), 
(Brighton, A-217, 500) }

Considered equivalent to…
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bname acct_no balance
Downtown
Brighton
Brighton

A-101
A-201
A-217

500
900
500

• Rows (aka: tuples)

Account  =

Terms:

• Columns (aka: attributes)

{ (Downtown, A-101, 500), 
(Brighton, A-201, 900), 
(Brighton, A-217, 500) }

Considered equivalent to…

• Tables (aka: Relations)

• Schema (e.g.: Acct_Schema = (bname, acct_no, balance))
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Relation Schema (or Schema)
A list of attributes and their domains
E.g. account(account-number, branch-name, balance)

Relation Instance
A particular instantiation of a relation with actual values
Will change with time

bname acct_no balance

Downtown
Brighton
Brighton

A-101
A-201
A-217

500
900
500

Programming language equivalent: A variable (e.g. x)

Programming language equivalent: Value of a variable
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Domains of an attribute/column
The set of permitted values
e.g., bname must be String, balance must be a positive real number
We typically assume domains are atomic, i.e., the values are treated as 

indivisible (specifically: you can’t store lists or arrays in them)

Null value
A special value used if the value of an attribute for a row is: 

unknown (e.g., don’t know address of a customer)
inapplicable (e.g., “spouse name” attribute for a customer)
withheld/hidden 

Different interpretations all captured by a single concept – leads to 
major headaches and problems
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classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
section(course_id, sec_id, semester, year, building, 

room_number, time_slot_id)
teaches(ID, course_id, sec_id, semester, year)
student(ID, name, dept_name, tot_cred)
takes(Id, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID)
time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)
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Instructor: Amol Deshpande
amol@cs.umd.edu

SQL: Basics and DDL
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} Book Chapters (6th Edition)
◦ 3.1, 3.2

} Key Topics
◦ SQL Overview

◦ How to create relations using SQL

◦ How to insert/delete/update tuples

61

} IBM Sequel language developed as part of System R project at the 
IBM San Jose Research Laboratory

} Renamed Structured Query Language (SQL)
} ANSI and ISO standard SQL:
◦ SQL-86, SQL-89, SQL-92
◦ SQL:1999, SQL:2003, SQL:2008

} Commercial systems offer most, if not all, SQL-92 features, plus 
varying feature sets from later standards and special proprietary 
features.
◦ Not all examples here may work on your particular system.

} Several alternative syntaxes to write the same queries
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} Data definition language (DDL): Defining/modifying schemas
◦ Integrity constraints: Specifying conditions the data must satisfy
◦ View definition: Defining views over data
◦ Authorization: Who can access what

} Data-manipulation language (DML): Insert/delete/update 
tuples, queries

} Transaction control: 
} Embedded SQL: Calling SQL from within programming 

languages
} Creating indexes, Query Optimization control…
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} The schema for each relation.
} The domain of values associated with each attribute.
} Integrity constraints
} Also: other information such as 
◦ The set of indices to be maintained for each relations.
◦ Security and authorization information for each relation.
◦ The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the 
specification of information about relations, including:
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} CREATE TABLE <name> ( <field> <domain>, … )

create table instructor (
ID char(5),
name   varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department

)

create table department
(dept_name varchar(20),
building varchar(15),
budget numeric(12,2) check (budget > 0),
primary key (dept_name)

);
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} CREATE TABLE <name> ( <field> <domain>, … )

create table instructor (
ID char(5) primary key,
name   varchar(20) not null,
d_name varchar(20),
salary numeric(8,2), 
foreign key (d_name) references department

)

create table department
(dept_name varchar(20) primary key,
building varchar(15),
budget numeric(12,2) check (budget > 0)

);
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} INSERT INTO <name> (<field names>) VALUES (<field values>)
insert into instructor  values (‘10211’, ’Smith’, ’Biology’, 66000);
insert into instructor (name, ID) values (‘Smith’, ‘10211’); 

-- NULL for other two
insert into instructor (ID) values (‘10211’); 

-- FAIL

} DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

◦ Syntax is fine, but this command may be rejected because of 
referential integrity constraints.
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} DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;2.2 Database Schema 43

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)
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ID name salary dept name building budget

10101 Srinivasan 65000 Comp. Sci. Taylor 100000
12121 Wu 90000 Finance Painter 120000
15151 Mozart 40000 Music Packard 80000
22222 Einstein 95000 Physics Watson 70000
32343 El Said 60000 History Painter 50000
33456 Gold 87000 Physics Watson 70000
45565 Katz 75000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
76543 Singh 80000 Finance Painter 120000
76766 Crick 72000 Biology Watson 90000
83821 Brandt 92000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

of their dept name attributes are the same. All such matching pairs of tuples are
present in the join result. In general, the natural join operation on two relations
matches tuples whose values are the same on all attribute names that are common
to both relations.

The Cartesian product operation combines tuples from two relations, but unlike
the join operation, its result contains all pairs of tuples from the two relations,
regardless of whether their attribute values match.

Because relations are sets, we can perform normal set operations on relations.
The union operation performs a set union of two “similarly structured” tables
(say a table of all graduate students and a table of all undergraduate students).
For example, one can obtain the set of all students in a department. Other set
operations, such as intersection and set difference can be performed as well.

As we noted earlier, we can perform operations on the results of queries. For
example, if we want to find the ID and salary for those instructors who have salary
greater than $85,000, we would perform the first two operations in our example
above. First we select those tuples from the instructor relation where the salary
value is greater than $85,000 and then, from that result, select the two attributes
ID and salary, resulting in the relation shown in Figure 2.13 consisting of the ID

ID salary

12121 90000
22222 95000
33456 87000
83821 92000

Figure 2.13 Result of selecting attributes ID and salary of instructors with salary greater
than $85,000.

Instructor relationWe can choose what happens:
(1) Reject the delete, or
(2) Delete the rows in Instructor (may be a cascade), or
(3) Set the appropriate values in Instructor to NULL
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} DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

We can choose what happens:
(1) Reject the delete (nothing), or
(2) Delete the rows in Instructor (on delete cascade), or
(3) Set the appropriate values in Instructor to NULL (on delete set null)

create table instructor
(ID         varchar(5),
name           varchar(20) not null,
dept_name varchar(20),
salary         numeric(8,2) check (salary > 29000),
primary key (ID),
foreign key (dept_name) references department

on delete set null
);
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} DELETE FROM <name> WHERE <condition>
◦ Delete all classrooms with capacity below average

delete from classroom where capacity < 
(select avg(capacity) from classroom);

◦ Problem:  as we delete tuples, the average capacity changes

◦ Solution used in SQL:
� First, compute avg capacity and find all tuples to delete
� Next, delete all tuples found above (without recomputing avg or 

retesting the tuples)

◦ E.g. consider the query: delete the smallest classroom
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} UPDATE <name> SET <field name> = <value> WHERE <condition>
◦ Increase all salaries’s over $100,000 by 6%, all other receive 5%.
◦ Write two update statements:

update instructor
set salary = salary * 1.06
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary £ 10000;

◦ The order is important
◦ Can be done better using the case statement
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} UPDATE <name> SET <field name> = <value> WHERE <condition>
◦ Increase all salaries’s over $100,000 by 6%, all other receive 5%.
◦ Can be done better using the case statement

update instructor
set salary =

case 
when salary > 100000 

then salary * 1.06
when salary <= 100000 

then salary * 1.05
end;
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Instructor: Amol Deshpande
amol@cs.umd.edu

SQL: Querying Basics
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} Book Chapters (6th Edition)
◦ 3.3

} Key Topics
◦ Single-table Queries in SQL

◦ Multi-table Queries using Cartesian Product

◦ Difference between Cartesian Product and “Natural Join”

◦ Careful with using “natural join” keyword
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select A1, A2, ..., An
from r1, r2, ..., rm
where P

Attributes or expressions

Relations (or queries returning tables)
Predicates

Find the names of all instructors:
select name
from instructor

64 Chapter 3 Introduction to SQL

name

Srinivasan
Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim

Figure 3.2 Result of “select name from instructor”.

put that relation in the from clause. The instructor’s name appears in the name
attribute, so we put that in the select clause.

select name
from instructor;

The result is a relation consisting of a single attribute with the heading name. If
the instructor relation is as shown in Figure 2.1, then the relation that results from
the preceding query is shown in Figure 3.2.

Now consider another query, “Find the department names of all instructors,”
which can be written as:

select dept name
from instructor;

Since more than one instructor can belong to a department, a department name
could appear more than once in the instructor relation. The result of the above
query is a relation containing the department names, shown in Figure 3.3.

In the formal, mathematical definition of the relational model, a relation is a
set. Thus, duplicate tuples would never appear in relations. In practice, duplicate
elimination is time-consuming. Therefore, SQL allows duplicates in relations as
well as in the results of SQL expressions. Thus, the preceding SQL query lists
each department name once for every tuple in which it appears in the instructor
relation.

In those cases where we want to force the elimination of duplicates, we insert
the keyword distinct after select. We can rewrite the preceding query as:

select distinct dept name
from instructor;
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select A1, A2, ..., An
from r1, r2, ..., rm
where P

Attributes or expressions

Relations (or queries returning tables)
Predicates

Find the names of all instructor 
departments:
select dept_name
from instructor

3.3 Basic Structure of SQL Queries 65

dept name

Comp. Sci.
Finance
Music
Physics
History
Physics
Comp. Sci.
History
Finance
Biology
Comp. Sci.
Elec. Eng.

Figure 3.3 Result of “select dept name from instructor”.

if we want duplicates removed. The result of the above query would contain each
department name at most once.

SQL allows us to use the keyword all to specify explicitly that duplicates are
not removed:

select all dept name
from instructor;

Since duplicate retention is the default, we shall not use all in our examples. To
ensure the elimination of duplicates in the results of our example queries, we
shall use distinct whenever it is necessary.

The select clause may also contain arithmetic expressions involving the op-
erators +,−, ∗, and / operating on constants or attributes of tuples. For example,
the query:

select ID, name, dept name, salary * 1.1
from instructor;

returns a relation that is the same as the instructor relation, except that the attribute
salary is multiplied by 1.1. This shows what would result if we gave a 10% raise
to each instructor; note, however, that it does not result in any change to the
instructor relation.

SQL also provides special data types, such as various forms of the date type,
and allows several arithmetic functions to operate on these types. We discuss this
further in Section 4.5.1.

The where clause allows us to select only those rows in the result relation of
the from clause that satisfy a specified predicate. Consider the query “Find the
names of all instructors in the Computer Science department who have salary
greater than $70,000.” This query can be written in SQL as:

76



select A1, A2, ..., An
from r1, r2, ..., rm
where P

Attributes or expressions

Relations (or queries returning tables)
Predicates

Find the names of all instructors:
select name
from instructor

Apply some filters (predicates): 
select name
from instructor
where salary > 80000 and dept_name = ‘Finance’;

Remove duplicates:
select distinct name
from instructor

Order the output:
select distinct name
from instructor
order by name asc

77

Find the names of all instructors:
select name
from instructor

Select all attributes:
select *
from instructor Expressions in the select clause:

select name, salary < 100000
from instructor

More complex filters: 
select name
from instructor
where (dept_name != ‘Finance’ and salary > 75000) 
or (dept_name = ‘Finance’ and salary > 85000);

A filter with a subquery:
select name
from instructor
where dept_name in (select dept_name from

department where budget < 100000);
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Find the names of all instructors:
select name
from instructor

Renaming tables or output column names:
select i.name, i.salary * 2 as double_salary
from instructor i
where i.salary < 80000 and i.name like ‘%g_’;

More complex expressions: 
select concat(name, concat(‘, ’, dept_name))
from instructor;

Careful with NULLs:
select name
from instructor
where salary < 100000 or salary >= 100000;

Wouldn’t return the instructor with NULL salary (if any)
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Cartesian product:
select *
from instructor, teaches

3.3 Basic Structure of SQL Queries 69

inst.ID name dept name salary teaches.ID course id sec id semester year

10101 Srinivasan Physics 95000 10101 CS-101 1 Fall 2009
10101 Srinivasan Physics 95000 10101 CS-315 1 Spring 2010
10101 Srinivasan Physics 95000 10101 CS-347 1 Fall 2009
10101 Srinivasan Physics 95000 10101 FIN-201 1 Spring 2010
10101 Srinivasan Physics 95000 15151 MU-199 1 Spring 2010
10101 Srinivasan Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
12121 Wu Physics 95000 10101 CS-101 1 Fall 2009
12121 Wu Physics 95000 10101 CS-315 1 Spring 2010
12121 Wu Physics 95000 10101 CS-347 1 Fall 2009
12121 Wu Physics 95000 10101 FIN-201 1 Spring 2010
12121 Wu Physics 95000 15151 MU-199 1 Spring 2010
12121 Wu Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
15151 Mozart Physics 95000 10101 CS-101 1 Fall 2009
15151 Mozart Physics 95000 10101 CS-315 1 Spring 2010
15151 Mozart Physics 95000 10101 CS-347 1 Fall 2009
15151 Mozart Physics 95000 10101 FIN-201 1 Spring 2010
15151 Mozart Physics 95000 15151 MU-199 1 Spring 2010
15151 Mozart Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...
22222 Einstein Physics 95000 10101 CS-101 1 Fall 2009
22222 Einstein Physics 95000 10101 CS-315 1 Spring 2010
22222 Einstein Physics 95000 10101 CS-347 1 Fall 2009
22222 Einstein Physics 95000 10101 FIN-201 1 Spring 2010
22222 Einstein Physics 95000 15151 MU-199 1 Spring 2010
22222 Einstein Physics 95000 22222 PHY-101 1 Fall 2009

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

Figure 3.6 The Cartesian product of the instructor relation with the teaches relation.

Instead, the predicate in the where clause is used to restrict the combinations
created by the Cartesian product to those that are meaningful for the desired
answer. We would expect a query involving instructor and teaches to combine a
particular tuple t in instructor with only those tuples in teaches that refer to the
same instructor to which t refers. That is, we wish only to match teaches tuples with
instructor tuples that have the same ID value. The following SQL query ensures
this condition, and outputs the instructor name and course identifiers from such
matching tuples.

80



Cartesian product:
select *
from instructor, teaches

Use predicates to only select “matching” pairs:
select * 
from instructor i, teaches t 
where i.ID = t.ID;

Identical (in this case) to using a natural join: 
select *
from instructor natural join teaches;
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Cartesian product:
select *
from instructor natural join teaches72 Chapter 3 Introduction to SQL

ID name dept name salary course id sec id semester year

10101 Srinivasan Comp. Sci. 65000 CS-101 1 Fall 2009
10101 Srinivasan Comp. Sci. 65000 CS-315 1 Spring 2010
10101 Srinivasan Comp. Sci. 65000 CS-347 1 Fall 2009
12121 Wu Finance 90000 FIN-201 1 Spring 2010
15151 Mozart Music 40000 MU-199 1 Spring 2010
22222 Einstein Physics 95000 PHY-101 1 Fall 2009
32343 El Said History 60000 HIS-351 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-101 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-319 1 Spring 2010
76766 Crick Biology 72000 BIO-101 1 Summer 2009
76766 Crick Biology 72000 BIO-301 1 Summer 2010
83821 Brandt Comp. Sci. 92000 CS-190 1 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-190 2 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-319 2 Spring 2010
98345 Kim Elec. Eng. 80000 EE-181 1 Spring 2009

Figure 3.8 The natural join of the instructor relation with the teaches relation.

The result relation, shown in Figure 3.8, has only 13 tuples, the ones that
give information about an instructor and a course that that instructor actually
teaches. Notice that we do not repeat those attributes that appear in the schemas
of both relations; rather they appear only once. Notice also the order in which the
attributes are listed: first the attributes common to the schemas of both relations,
second those attributes unique to the schema of the first relation, and finally, those
attributes unique to the schema of the second relation.

Consider the query “For all instructors in the university who have taught
some course, find their names and the course ID of all courses they taught”,
which we wrote earlier as:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

This query can be written more concisely using the natural-join operation in
SQL as:

select name, course id
from instructor natural join teaches;

Both of the above queries generate the same result.
As we saw earlier, the result of the natural join operation is a relation. Concep-

tually, expression “instructor natural join teaches” in the from clause is replaced
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Cartesian product:
select *
from instructor, teaches

Use predicates to only select “matching” pairs:
select * 
from instructor i, teaches t
where i.ID = t.ID;

Identical (in this case) to using a natural join: 
select *
from instructor natural join teaches;

Natural join does an equality on common attributes –
doesn’t work here:
select *
from instructor natural join advisor;

Instead can use “on” construct (or where clause as above):
select *
from instructor join advisor on (i_id = id);
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3-Table Query to get a list of instructor-teaches-course information:

select i.name as instructor_name, c.title as course_name
from instructor i, course c, teaches
where i.ID = teaches.ID and c.course_id = teaches.course_id;

Beware of unintended common names (happens often) 
You may think the following query has the same result as above – it doesn’t 

select name, title
from instructor natural join course natural join teaches;

I prefer avoiding “natural joins” for that reason
Note: On the small dataset, the above two have 
the same answer, but not on the large dataset.
Large dataset has cases where an instructor 
teaches a course from a different department.
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Instructor: Amol Deshpande
amol@cs.umd.edu

Keys

85

} Book Chapters (6th Edition)
◦ 2.3

} Key Topics
◦ Keys as a mechanism to uniquely identify tuples in a relation

◦ Super key vs Candidate key vs Primary key

◦ Foreign keys and Referential Integrity

◦ How to identify keys of a relation
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} Let K Í R
} K is a superkey of R if values for K are sufficient to identify a 

unique tuple of any possible relation r(R) 
◦ Example:  {ID} and {ID,name} are both superkeys of instructor.

} Superkey K is a candidate key if K is minimal (i.e., no subset 
of it is a superkey)
◦ Example:  {ID} is a candidate key for Instructor

} One of the candidate keys is selected to be the primary key
◦ Typically one that is small and immutable (doesn’t change often)

} Primary key typically highlighted (e.g., underlined) 
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classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
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takes(ID, course_id, sec_id, semester, year, grade)

What about ID, course_id?
No. May repeat:

(“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “102”, “Fall”, 2015, null)

What about ID, course_id, sec_id?
May repeat:

(“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “101”, “Fall”, 2015, null)

What about ID, course_id, sec_id, semester?
Still no:     (“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)

(“1011049”, “CMSC424”, “101”, “Spring”, 2015, null)
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classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
section(course_id, sec_id, semester, year, building, 

room_number, time_slot_id)
teaches(ID, course_id, sec_id, semester, year)
student(ID, name, dept_name, tot_cred)
takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID)
time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)
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} Foreign key: Primary key of a relation that appears in 
another relation
◦ {ID} from student appears in takes, advisor
◦ student called referenced relation
◦ takes is the referencing relation 
◦ Typically shown by an arrow from referencing to referenced

} Foreign key constraint: the tuple corresponding to that 
primary key must exist
◦ Imagine:
� Tuple: (‘student101’, ‘CMSC424’) in takes
� But no tuple corresponding to ‘student101’ in student
◦ Also called referential integrity constraint
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} Married(person1_ssn, person2_ssn, date_married, date_divorced)

} Account(cust_ssn, account_number, cust_name, balance, cust_address)

} RA(student_id, project_id, superviser_id, appt_time, appt_start_date, 
appt_end_date)

} Person(Name, DOB, Born, Education, Religion, …)
◦ Information typically found on Wikipedia Pages
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} Married(person1_ssn, person2_ssn, date_married, date_divorced)

} Account(cust_ssn, account_number, cust_name, balance, cust_address)
◦ If a single account per customer, then: cust_ssn
◦ Else: (cust_ssn, account_number) 

� In the latter case, this is not a good schema because it requires repeating information

} RA(student_id, project_id, superviser_id, appt_time, appt_start_date, 
appt_end_date)
◦ Could be smaller if there are some restrictions – requires some domain knowledge of the 

data being stored

} Person(Name, DOB, Born, Education, Religion, …)
◦ Information typically found on Wikipedia Pages
◦ Unclear what could be a primary key here: you could in theory have two people who match 

on all of those
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Instructor: Amol Deshpande
amol@cs.umd.edu

SQL: Aggregates
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} Book Chapters (6th Edition)
◦ 3.7.1-3.7.3

} Key Topics
◦ Basic aggregates 

◦ Aggregation with “grouping”

◦ “Having” clause to select among groups
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Find the average salary of instructors 
in the Computer Science 
select avg(salary)
from instructor
where dept_name = ‘Comp. Sci’;

Other common aggregates:
max, min, sum, count, stdev, …

select count (distinct ID)
from teaches
where semester = ’Spring’ and year = 2010

Can specify aggregates in any query.

Find max salary over instructors teaching in S’10.
select max(salary)
from teaches natural join instructor 
where semester = ’Spring’ and year = 2010;

Aggregate result can be used as a scalar.
Find instructors with max salary:
select *
from instructor 
where salary = (select max(salary) from instructor);
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Aggregate result can be used as a scalar.
Find instructors with max salary:
select *
from instructor 
where salary = (select max(salary) from instructor);

Following doesn’t work:

select *
from instructor 
where salary = max(salary);

select name, max(salary)
from instructor 
where salary = max(salary);
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Split the tuples into groups, and computer the aggregate for each group
select dept_name, avg (salary)
from instructor
group by dept_name;
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Find the number of instructors in each department who 
teach a course in the Spring 2010 semester.

Partial Query 1: 
select 
from instructor natural join teaches 
where semester = ‘Spring’ and year = 2010

72 Chapter 3 Introduction to SQL

ID name dept name salary course id sec id semester year

10101 Srinivasan Comp. Sci. 65000 CS-101 1 Fall 2009
10101 Srinivasan Comp. Sci. 65000 CS-315 1 Spring 2010
10101 Srinivasan Comp. Sci. 65000 CS-347 1 Fall 2009
12121 Wu Finance 90000 FIN-201 1 Spring 2010
15151 Mozart Music 40000 MU-199 1 Spring 2010
22222 Einstein Physics 95000 PHY-101 1 Fall 2009
32343 El Said History 60000 HIS-351 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-101 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-319 1 Spring 2010
76766 Crick Biology 72000 BIO-101 1 Summer 2009
76766 Crick Biology 72000 BIO-301 1 Summer 2010
83821 Brandt Comp. Sci. 92000 CS-190 1 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-190 2 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-319 2 Spring 2010
98345 Kim Elec. Eng. 80000 EE-181 1 Spring 2009

Figure 3.8 The natural join of the instructor relation with the teaches relation.

The result relation, shown in Figure 3.8, has only 13 tuples, the ones that
give information about an instructor and a course that that instructor actually
teaches. Notice that we do not repeat those attributes that appear in the schemas
of both relations; rather they appear only once. Notice also the order in which the
attributes are listed: first the attributes common to the schemas of both relations,
second those attributes unique to the schema of the first relation, and finally, those
attributes unique to the schema of the second relation.

Consider the query “For all instructors in the university who have taught
some course, find their names and the course ID of all courses they taught”,
which we wrote earlier as:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

This query can be written more concisely using the natural-join operation in
SQL as:

select name, course id
from instructor natural join teaches;

Both of the above queries generate the same result.
As we saw earlier, the result of the natural join operation is a relation. Concep-

tually, expression “instructor natural join teaches” in the from clause is replaced
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Find the number of instructors in each department who 
teach a course in the Spring 2010 semester.

Partial Query 2: 
select dept_name, count(*)
from instructor natural join teaches 
where semester = ‘Spring’ and year = 2010
group by dept_name

Doesn’t work – double counts “Katz” who teaches twice in Spring 
2010

Final: 
select dept_name, count(distinct ID)
from instructor natural join teaches 
where semester = ‘Spring’ and year = 2010
group by dept_name
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Attributes in the select clause must be aggregates, or must appear in the 
group by clause. Following wouldn’t work
select dept_name, ID, avg (salary)
from instructor
group by dept_name;

“having” can be used to select only some of the groups.

select dept_name, ID, avg (salary)
from instructor
group by dept_name
having avg(salary) > 42000;
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Instructor: Amol Deshpande
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SQL: Different Types of Joins, 
and Set Operations
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} Book Chapters (6th Edition)
◦ 4.1, 3.5

} Key Topics
◦ Outer Joins

◦ Anti-joins, Semi-joins

◦ Set Operations
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R.A R.B S.B S.C
a 1 1 x
a 1 3 y
a 1 4 z
b 1 1 x
b 1 3 y
b 1 1 x
c 2 3 y
c 2 1 x
c 2 3 y

Cartesian product:
select *
from R, S

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

R S

× =
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R.A B S.C
a 1 x
b 1 x

Natural Join:
select *
from R natural join S

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

R S

⋈ =

Equivalent to:
select R.A, R.B, S.C
from R, S
where R.B = S.B

Equivalent to:
select R.A, R.B, S.C
from R join S on (R.B = S.B)

Equivalent to:
select R.A, R.B, S.C
from R join S on (B)
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R.A B S.C
a 1 x
b 1 x

Natural Join:
select *
from R natural join S

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

R S

⋈ =

Often need the ”non-matching” tuples in the result
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R.A B S.C
a 1 x
b 1 x
c 2 NULL

select *
from R natural left outer join S

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

R S

⟕ =

select *
from R left outer join S on (R.B = S.B)
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R.A B S.C
a 1 x
b 1 x

NULL 3 y
NULL 4 z

select *
from R right natural outer join S

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

R S

⟖ =

select *
from R right outer join S on (R.B = S.B)
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R.A B S.C
a 1 x
b 1 x
c 2 NULL

NULL 3 y
NULL 4 z

select *
from R natural full outer join S

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

R S

⟗ =

select *
from R full outer join S on (R.B = S.B)
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R.A R.B
a 1
b 1

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

=

R SEMI-JOIN S = tuples of R that do have a “match” in S

Not an SQL keyword, but useful concept to understand – often implemented in 
database systems as an operator

Can be written in SQL as:

select *
from R
where B in (select B from S);
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R.A R.B
a 1
b 1

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

=

R SEMI-JOIN S = tuples of R that do have a “match” in S

Not an SQL keyword, but useful concept to understand – often implemented in 
database systems as an operator

S.B S.C
1 x

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

=
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R.A R.B
c 2

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

▷ =

R ANTI-JOIN S = tuples of R that do NOT have a “match” in S

Not an SQL keyword, but useful concept to understand – often implemented in 
database systems as an operator

Can be written in SQL as:

select *
from R
where B not in (select B from S);
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R.A R.B
c 2

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

▷ =

R ANTI-JOIN S = tuples of R that do NOT have a “match” in S

Not an SQL keyword, but useful concept to understand – often implemented in 
database systems as an operator

S.B S.C
3 y
4 z

A B
a 1
b 1
c 2

B C
1 x
3 y
4 z

▷ =
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Find courses that ran in Fall 2009 or Spring 2010
(select course_id from section where semester = ‘Fall’ and year = 2009)
union

(select course_id from section where semester = ‘Spring’ and year = 2010);

In both:
(select course_id from section where semester = ‘Fall’ and year = 2009)
intersect

(select course_id from section where semester = ‘Spring’ and year = 2010);

In Fall 2009, but not in Spring 2010:
(select course_id from section where semester = ‘Fall’ and year = 2009)
except

(select course_id from section where semester = ‘Spring’ and year = 2010);
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Union/Intersection/Except eliminate duplicates in the answer (the other SQL 
commands don’t) (e.g., try ‘select dept_name from instructor’).

Can use “union all” to retain duplicates.

NOTE: The duplicates are retained in a systematic fashion (for all SQL operations)

Suppose a tuple occurs m times in r and n times in s, then, it occurs:
! m + n times in r union all s
! min(m,n) times in r intersect all s
! max(0, m – n) times in r except all s
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return a value of null when applied on an empty collection. The effect of null
values on some of the more complicated SQL constructs can be subtle.

A Boolean data type that can take values true, false, and unknown, was
introduced in SQL:1999. The aggregate functions some and every, which mean
exactly what you would intuitively expect, can be applied on a collection of
Boolean values.

3.8 Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of sub-
queries is to perform tests for set membership, make set comparisons, and deter-
mine set cardinality, by nesting subqueries in the where clause. We study such
uses of nested subqueries in the where clause in Sections 3.8.1 through 3.8.4. In
Section 3.8.5, we study nesting of subqueries in the from clause. In Section 3.8.7,
we see how a class of subqueries called scalar subqueries can appear wherever
an expression returning a value can occur.

3.8.1 Set Membership

SQL allows testing tuples for membership in a relation. The in connective tests
for set membership, where the set is a collection of values produced by a select
clause. The not in connective tests for the absence of set membership.

As an illustration, reconsider the query “Find all the courses taught in the
both the Fall 2009 and Spring 2010 semesters.” Earlier, we wrote such a query by
intersecting two sets: the set of courses taught in Fall 2009 and the set of courses
taught in Spring 2010. We can take the alternative approach of finding all courses
that were taught in Fall 2009 and that are also members of the set of courses
taught in Spring 2010. Clearly, this formulation generates the same results as the
previous one did, but it leads us to write our query using the in connective of SQL.
We begin by finding all courses taught in Spring 2010, and we write the subquery

(select course id
from section
where semester = ’Spring’ and year= 2010)

We then need to find those courses that were taught in the Fall 2009 and that
appear in the set of courses obtained in the subquery. We do so by nesting the
subquery in the where clause of an outer query. The resulting query is

select distinct course id
from section
where semester = ’Fall’ and year= 2009 and

course id in (select course id
from section
where semester = ’Spring’ and year= 2010);

3.8 Nested Subqueries 95

select T.course id
from course as T
where 1 <= (select count(R.course id)

from section as R
where T.course id= R.course id and

R.year = 2009);

We can test for the existence of duplicate tuples in a subquery by using the
not unique construct. To illustrate this construct, consider the query “Find all
courses that were offered at least twice in 2009” as follows:

select T.course id
from course as T
where not unique (select R.course id

from section as R
where T.course id= R.course id and

R.year = 2009);

Formally, the unique test on a relation is defined to fail if and only if the
relation contains two tuples t1 and t2 such that t1 = t2. Since the test t1 = t2 fails
if any of the fields of t1 or t2 are null, it is possible for unique to be true even if
there are multiple copies of a tuple, as long as at least one of the attributes of the
tuple is null.

3.8.5 Subqueries in the From Clause

SQL allows a subquery expression to be used in the from clause. The key concept
applied here is that any select-from-where expression returns a relation as a result
and, therefore, can be inserted into another select-from-where anywhere that a
relation can appear.

Consider the query “Find the average instructors’ salaries of those depart-
ments where the average salary is greater than $42,000.” We wrote this query in
Section 3.7 by using the having clause. We can now rewrite this query, without
using the having clause, by using a subquery in the from clause, as follows:

select dept name, avg salary
from (select dept name, avg (salary) as avg salary

from instructor
group by dept name)

where avg salary > 42000;

The subquery generates a relation consisting of the names of all departments and
their corresponding average instructors’ salaries. The attributes of the subquery
result can be used in the outer query, as can be seen in the above example.
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can be used in the select clause as illustrated in the following example that lists
all departments along with the number of instructors in each department:

select dept name,
(select count(*)
from instructor
where department.dept name = instructor.dept name)

as num instructors
from department;

The subquery in the above example is guaranteed to return only a single value
since it has a count(*) aggregate without a group by. The example also illustrates
the usage of correlation variables, that is, attributes of relations in the from clause
of the outer query, such as department.dept name in the above example.

Scalar subqueries can occur in select, where, and having clauses. Scalar sub-
queries may also be defined without aggregates. It is not always possible to figure
out at compile time if a subquery can return more than one tuple in its result;
if the result has more than one tuple when the subquery is executed, a run-time
error occurs.

Note that technically the type of a scalar subquery result is still a relation,
even if it contains a single tuple. However, when a scalar subquery is used in an
expression where a value is expected, SQL implicitly extracts the value from the
single attribute of the single tuple in the relation, and returns that value.

3.9 Modification of the Database

We have restricted our attention until now to the extraction of information from
the database. Now, we show how to add, remove, or change information with SQL.

3.9.1 Deletion

A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses
a deletion by

delete from r
where P;

where P represents a predicate and r represents a relation. The delete statement
first finds all tuples t in r for which P(t) is true, and then deletes them from r. The
where clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates on only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation.
The predicate in the where clause may be as complex as a select command’s
where clause. At the other extreme, the where clause may be empty. The request
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return a value of null when applied on an empty collection. The effect of null
values on some of the more complicated SQL constructs can be subtle.

A Boolean data type that can take values true, false, and unknown, was
introduced in SQL:1999. The aggregate functions some and every, which mean
exactly what you would intuitively expect, can be applied on a collection of
Boolean values.

3.8 Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of sub-
queries is to perform tests for set membership, make set comparisons, and deter-
mine set cardinality, by nesting subqueries in the where clause. We study such
uses of nested subqueries in the where clause in Sections 3.8.1 through 3.8.4. In
Section 3.8.5, we study nesting of subqueries in the from clause. In Section 3.8.7,
we see how a class of subqueries called scalar subqueries can appear wherever
an expression returning a value can occur.

3.8.1 Set Membership

SQL allows testing tuples for membership in a relation. The in connective tests
for set membership, where the set is a collection of values produced by a select
clause. The not in connective tests for the absence of set membership.

As an illustration, reconsider the query “Find all the courses taught in the
both the Fall 2009 and Spring 2010 semesters.” Earlier, we wrote such a query by
intersecting two sets: the set of courses taught in Fall 2009 and the set of courses
taught in Spring 2010. We can take the alternative approach of finding all courses
that were taught in Fall 2009 and that are also members of the set of courses
taught in Spring 2010. Clearly, this formulation generates the same results as the
previous one did, but it leads us to write our query using the in connective of SQL.
We begin by finding all courses taught in Spring 2010, and we write the subquery

(select course id
from section
where semester = ’Spring’ and year= 2010)

We then need to find those courses that were taught in the Fall 2009 and that
appear in the set of courses obtained in the subquery. We do so by nesting the
subquery in the where clause of an outer query. The resulting query is

select distinct course id
from section
where semester = ’Fall’ and year= 2009 and

course id in (select course id
from section
where semester = ’Spring’ and year= 2010);
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can be used in the select clause as illustrated in the following example that lists
all departments along with the number of instructors in each department:

select dept name,
(select count(*)
from instructor
where department.dept name = instructor.dept name)

as num instructors
from department;

The subquery in the above example is guaranteed to return only a single value
since it has a count(*) aggregate without a group by. The example also illustrates
the usage of correlation variables, that is, attributes of relations in the from clause
of the outer query, such as department.dept name in the above example.

Scalar subqueries can occur in select, where, and having clauses. Scalar sub-
queries may also be defined without aggregates. It is not always possible to figure
out at compile time if a subquery can return more than one tuple in its result;
if the result has more than one tuple when the subquery is executed, a run-time
error occurs.

Note that technically the type of a scalar subquery result is still a relation,
even if it contains a single tuple. However, when a scalar subquery is used in an
expression where a value is expected, SQL implicitly extracts the value from the
single attribute of the single tuple in the relation, and returns that value.

3.9 Modification of the Database

We have restricted our attention until now to the extraction of information from
the database. Now, we show how to add, remove, or change information with SQL.

3.9.1 Deletion

A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses
a deletion by

delete from r
where P;

where P represents a predicate and r represents a relation. The delete statement
first finds all tuples t in r for which P(t) is true, and then deletes them from r. The
where clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates on only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation.
The predicate in the where clause may be as complex as a select command’s
where clause. At the other extreme, the where clause may be empty. The request

Uncorrelated subquery – the subquery 
makes no reference to the enclosing 

queries, and can be evaluated by itself 

* Correlated subquery – the subquery 
has a reference to the enclosing query
* For every tuple of department, the 
subquery returns a different result 
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return a value of null when applied on an empty collection. The effect of null
values on some of the more complicated SQL constructs can be subtle.

A Boolean data type that can take values true, false, and unknown, was
introduced in SQL:1999. The aggregate functions some and every, which mean
exactly what you would intuitively expect, can be applied on a collection of
Boolean values.

3.8 Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of sub-
queries is to perform tests for set membership, make set comparisons, and deter-
mine set cardinality, by nesting subqueries in the where clause. We study such
uses of nested subqueries in the where clause in Sections 3.8.1 through 3.8.4. In
Section 3.8.5, we study nesting of subqueries in the from clause. In Section 3.8.7,
we see how a class of subqueries called scalar subqueries can appear wherever
an expression returning a value can occur.

3.8.1 Set Membership

SQL allows testing tuples for membership in a relation. The in connective tests
for set membership, where the set is a collection of values produced by a select
clause. The not in connective tests for the absence of set membership.

As an illustration, reconsider the query “Find all the courses taught in the
both the Fall 2009 and Spring 2010 semesters.” Earlier, we wrote such a query by
intersecting two sets: the set of courses taught in Fall 2009 and the set of courses
taught in Spring 2010. We can take the alternative approach of finding all courses
that were taught in Fall 2009 and that are also members of the set of courses
taught in Spring 2010. Clearly, this formulation generates the same results as the
previous one did, but it leads us to write our query using the in connective of SQL.
We begin by finding all courses taught in Spring 2010, and we write the subquery

(select course id
from section
where semester = ’Spring’ and year= 2010)

We then need to find those courses that were taught in the Fall 2009 and that
appear in the set of courses obtained in the subquery. We do so by nesting the
subquery in the where clause of an outer query. The resulting query is

select distinct course id
from section
where semester = ’Fall’ and year= 2009 and

course id in (select course id
from section
where semester = ’Spring’ and year= 2010);

Can also be written using Set Intersection

(select course_id from section where semester = ‘Fall’ and year = 2009)
intersect

(select course_id from section where semester = ‘Spring’ and year = 2010);
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Can do this with “tuples” as well:
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This example shows that it is possible to write the same query several ways in
SQL. This flexibility is beneficial, since it allows a user to think about the query in
the way that seems most natural. We shall see that there is a substantial amount
of redundancy in SQL.

We use the not in construct in a way similar to the in construct. For example,
to find all the courses taught in the Fall 2009 semester but not in the Spring 2010
semester, we can write:

select distinct course id
from section
where semester = ’Fall’ and year= 2009 and
course id not in (select course id

from section
where semester = ’Spring’ and year= 2010);

The in and not in operators can also be used on enumerated sets. The follow-
ing query selects the names of instructors whose names are neither “Mozart” nor
“Einstein”.

select distinct name
from instructor
where name not in (’Mozart’, ’Einstein’);

In the preceding examples, we tested membership in a one-attribute relation.
It is also possible to test for membership in an arbitrary relation in SQL. For
example, we can write the query “find the total number of (distinct) students who
have taken course sections taught by the instructor with ID 110011” as follows:

select count (distinct ID)
from takes
where (course id, sec id, semester, year) in (select course id, sec id, semester, year

from teaches
where teaches.ID= 10101);

3.8.2 Set Comparison

As an example of the ability of a nested subquery to compare sets, consider the
query “Find the names of all instructors whose salary is greater than at least one
instructor in the Biology department.” In Section 3.4.1, we wrote this query as
follows:

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = ’Biology’;
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SQL does, however, offer an alternative style for writing the preceding query. The
phrase “greater than at least one” is represented in SQL by > some. This construct
allows us to rewrite the query in a form that resembles closely our formulation
of the query in English.

select name
from instructor
where salary > some (select salary

from instructor
where dept name = ’Biology’);

The subquery:

(select salary
from instructor
where dept name = ’Biology’)

generates the set of all salary values of all instructors in the Biology department.
The > some comparison in the where clause of the outer select is true if the salary
value of the tuple is greater than at least one member of the set of all salary values
for instructors in Biology.

SQL also allows < some, <= some, >= some, = some, and <> some com-
parisons. As an exercise, verify that = some is identical to in, whereas <> some
is not the same as not in.8

Now we modify our query slightly. Let us find the names of all instructors
that have a salary value greater than that of each instructor in the Biology depart-
ment. The construct > all corresponds to the phrase “greater than all.” Using this
construct, we write the query as follows:

select name
from instructor
where salary > all (select salary

from instructor
where dept name = ’Biology’);

As it does for some, SQL also allows < all, <= all, >= all, = all, and <> all
comparisons. As an exercise, verify that <> all is identical to not in, whereas =
all is not the same as in.

As another example of set comparisons, consider the query “Find the depart-
ments that have the highest average salary.” We begin by writing a query to find
all average salaries, and then nest it as a subquery of a larger query that finds

8The keyword any is synonymous to some in SQL. Early versions of SQL allowed only any. Later versions added the
alternative some to avoid the linguistic ambiguity of the word any in English.
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that have a salary value greater than that of each instructor in the Biology depart-
ment. The construct > all corresponds to the phrase “greater than all.” Using this
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comparisons. As an exercise, verify that <> all is identical to not in, whereas =
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As another example of set comparisons, consider the query “Find the depart-
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alternative some to avoid the linguistic ambiguity of the word any in English.
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those departments for which the average salary is greater than or equal to all
average salaries:

select dept name
from instructor
group by dept name
having avg (salary) >= all (select avg (salary)

from instructor
group by dept name);

3.8.3 Test for Empty Relations

SQL includes a feature for testing whether a subquery has any tuples in its result.
The exists construct returns the value true if the argument subquery is nonempty.
Using the exists construct, we can write the query “Find all courses taught in both
the Fall 2009 semester and in the Spring 2010 semester” in still another way:

select course id
from section as S
where semester = ’Fall’ and year= 2009 and

exists (select *
from section as T
where semester = ’Spring’ and year= 2010 and

S.course id= T.course id);

The above query also illustrates a feature of SQL where a correlation name
from an outer query (S in the above query), can be used in a subquery in the
where clause. A subquery that uses a correlation name from an outer query is
called a correlated subquery.

In queries that contain subqueries, a scoping rule applies for correlation
names. In a subquery, according to the rule, it is legal to use only correlation
names defined in the subquery itself or in any query that contains the subquery.
If a correlation name is defined both locally in a subquery and globally in a
containing query, the local definition applies. This rule is analogous to the usual
scoping rules used for variables in programming languages.

We can test for the nonexistence of tuples in a subquery by using the not exists
construct. We can use the not exists construct to simulate the set containment (that
is, superset) operation: We can write “relation Acontains relation B” as “not exists
(B except A).” (Although it is not part of the current SQL standards, the contains
operator was present in some early relational systems.) To illustrate the not exists
operator, consider the query “Find all students who have taken all courses offered
in the Biology department.” Using the except construct, we can write the query
as follows:

Also: “Not Exists”
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select distinct S.ID, S.name
from student as S
where not exists ((select course id

from course
where dept name = ’Biology’)
except
(select T.course id
from takes as T
where S.ID = T.ID));

Here, the subquery:

(select course id
from course
where dept name = ’Biology’)

finds the set of all courses offered in the Biology department. The subquery:

(select T.course id
from takes as T
where S.ID = T.ID)

finds all the courses that student S.ID has taken. Thus, the outer select takes each
student and tests whether the set of all courses that the student has taken contains
the set of all courses offered in the Biology department.

3.8.4 Test for the Absence of Duplicate Tuples

SQL includes a boolean function for testing whether a subquery has duplicate
tuples in its result. The unique construct9 returns the value true if the argument
subquery contains no duplicate tuples. Using the unique construct, we can write
the query “Find all courses that were offered at most once in 2009” as follows:

select T.course id
from course as T
where unique (select R.course id

from section as R
where T.course id= R.course id and

R.year = 2009);

Note that if a course is not offered in 2009, the subquery would return an empty
result, and the unique predicate would evaluate to true on the empty set.

An equivalent version of the above query not using the unique construct is:

9This construct is not yet widely implemented.
126



Used for creating “temporary” tables within the context of 
the query

3.8 Nested Subqueries 97

3.8.6 The with Clause

The with clause provides a way of defining a temporary relation whose definition
is available only to the query in which the with clause occurs. Consider the
following query, which finds those departments with the maximum budget.

with max budget (value) as
(select max(budget)
from department)

select budget
from department, max budget
where department.budget = max budget.value;

The with clause defines the temporary relation max budget, which is used in
the immediately following query. The with clause, introduced in SQL:1999, is
supported by many, but not all, database systems.

We could have written the above query by using a nested subquery in either
the from clause or the where clause. However, using nested subqueries would
have made the query harder to read and understand. The with clause makes the
query logic clearer; it also permits a view definition to be used in multiple places
within a query.

For example, suppose we want to find all departments where the total salary
is greater than the average of the total salary at all departments. We can write the
query using the with clause as follows.

with dept total (dept name, value) as
(select dept name, sum(salary)
from instructor
group by dept name),

dept total avg(value) as
(select avg(value)
from dept total)

select dept name
from dept total, dept total avg
where dept total.value >= dept total avg.value;

We can, of course, create an equivalent query without the with clause, but it would
be more complicated and harder to understand. You can write the equivalent
query as an exercise.

3.8.7 Scalar Subqueries

SQL allows subqueries to occur wherever an expression returning a value is
permitted, provided the subquery returns only one tuple containing a single
attribute; such subqueries are called scalar subqueries. For example, a subquery
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can be used in the select clause as illustrated in the following example that lists
all departments along with the number of instructors in each department:

select dept name,
(select count(*)
from instructor
where department.dept name = instructor.dept name)

as num instructors
from department;

The subquery in the above example is guaranteed to return only a single value
since it has a count(*) aggregate without a group by. The example also illustrates
the usage of correlation variables, that is, attributes of relations in the from clause
of the outer query, such as department.dept name in the above example.

Scalar subqueries can occur in select, where, and having clauses. Scalar sub-
queries may also be defined without aggregates. It is not always possible to figure
out at compile time if a subquery can return more than one tuple in its result;
if the result has more than one tuple when the subquery is executed, a run-time
error occurs.

Note that technically the type of a scalar subquery result is still a relation,
even if it contains a single tuple. However, when a scalar subquery is used in an
expression where a value is expected, SQL implicitly extracts the value from the
single attribute of the single tuple in the relation, and returns that value.

3.9 Modification of the Database

We have restricted our attention until now to the extraction of information from
the database. Now, we show how to add, remove, or change information with SQL.

3.9.1 Deletion

A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses
a deletion by

delete from r
where P;

where P represents a predicate and r represents a relation. The delete statement
first finds all tuples t in r for which P(t) is true, and then deletes them from r. The
where clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates on only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation.
The predicate in the where clause may be as complex as a select command’s
where clause. At the other extreme, the where clause may be empty. The request
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delete from instructor;

deletes all tuples from the instructor relation. The instructor relation itself still
exists, but it is empty.

Here are examples of SQL delete requests:

• Delete all tuples in the instructor relation pertaining to instructors in the
Finance department.

delete from instructor
where dept name= ’Finance’;

• Delete all instructors with a salary between $13,000 and $15,000.

delete from instructor
where salary between 13000 and 15000;

• Delete all tuples in the instructor relation for those instructors associated with
a department located in the Watson building.

delete from instructor
where dept name in (select dept name

from department
where building = ’Watson’);

This delete request first finds all departments located in Watson, and then
deletes all instructor tuples pertaining to those departments.

Note that, although we may delete tuples from only one relation at a time,
we may reference any number of relations in a select-from-where nested in the
where clause of a delete. The delete request can contain a nested select that
references the relation from which tuples are to be deleted. For example, suppose
that we want to delete the records of all instructors with salary below the average
at the university. We could write:

delete from instructor
where salary< (select avg (salary)

from instructor);

The delete statement first tests each tuple in the relation instructor to check
whether the salary is less than the average salary of instructors in the univer-
sity. Then, all tuples that fail the test—that is, represent an instructor with a
lower-than-average salary—are deleted. Performing all the tests before perform-
ing any deletion is important—if some tuples are deleted before other tuples
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SQL: NULLs
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} Book Chapters (6th Edition)
◦ 3.6, 3.7.4

} Key Topics
◦ Operating with NULLs

◦ ”Unknown” as a new Boolean value

◦ Operating with UNKNOWNs

◦ Aggregates and NULLs
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Can cause headaches for query semantics as well as 
query processing and optimization)

Can be a value of any attribute
e.g:  branch  =

What does this mean?
(unknown) We don’t know Waltham’s assets?
(inapplicable) Waltham has a special kind of account without 
assets
(withheld) We are not allowed to know 

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M
Mianus Horseneck .4M

Waltham Boston NULL
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Arithmetic Operations with Null

n + NULL = NULL  (similarly for all arithmetic ops: +, -, *, /, mod, …)

SELECT bname, assets * 2 as a2
FROM branch

e.g:  branch  =

=

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M
Mianus Horseneck .4M

Waltham Boston NULL

bname a2
Downtown 18M

Perry 3.4M
Mianus .8M

Waltham NULL
Counter-intuitive: NULL * 0 = NULL
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Boolean Operations with Null
n < NULL = UNKNOWN (similarly for all boolean ops:  >, <=, >=, <>, =, …)

e.g:  branch  = bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M
Mianus Horseneck .4M

Waltham Boston NULL

assets < 10M   will evaluate to  UNKNOWN for the last tuple

But what about: 
(assets < 10M) or (bcity = ‘Boston’) ?
(assets < 10M) and (bcity = ‘Boston’)?
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Intuition:  substitute each of TRUE, FALSE for unknown. If 
different answer results, results is unknown

FALSE OR UNKNOWN = UNKNOWN

TRUE AND UNKNOWN = UNKNOWN

FALSE AND UNKNOWN = FALSE

TRUE OR UNKNOWN = TRUE

UNKNOWN OR UNKNOWN = UNKNOWN

UNKNOWN AND UNKNOWN = UNKNOWN

NOT (UNKNOWN) = UNKNOWN

Values Expression Result

x = NULL, y = 10 (x < 10) and (y = 20) UNKNOWN and FALSE = FALSE 

x = NULL, y = 10 (x is NULL) and (y = 20) TRUE and FALSE = FALSE

x = NULL, y = 10 (x < 10) and (y = 10) UNKNOWN and TRUE = UNKNOWN

x = NULL, y = 10 (x < 10) is UNKNOWN TRUE

x = NULL, y = 10 ( (x < 10) is UNKNOWN) and (y = 10) TRUE AND TRUE = TRUE

UNKNOWN tuples are not included in final result
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Given
branch =

Aggregate Operations
SELECT SUM (assets) =

FROM branch

NULL is ignored for SUM
Same for AVG (3.7M), MIN (0.4M), 
MAX (9M)

Also for COUNT(assets) -- returns 3

SUM
11.1 M

COUNT
4

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M
Mianus Horseneck .4M

Waltham Boston NULL

But COUNT (*) returns
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Given
branch =

SELECT SUM (assets) =

FROM branch

• Same as AVG, MIN, MAX
• But COUNT (assets) returns

SUM
NULL

COUNT

0

bname bcity assets
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SQL: Transactions, Functions, Procedures, 
Recursive Queries, Authorization
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} Book Chapters (6th Edition)
◦ Sections 5.2, 5.3, 5.4, 5.5.1
◦ Mostly at a high level
◦ See Assignment 2

} Key topics
◦ Transactions
◦ Ranking over relations or results
◦ Recursion in SQL (makes SQL Turing Complete)
◦ Functions and Procedures
◦ Triggers
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} Ranking is done in conjunction with an order by specification.

} Consider:                 student_grades(ID, GPA) 

} Find the rank of each student.

select ID, rank() over (order by GPA desc) as s_rank
from student_grades
order by s_rank

} Equivalent to: 
select ID, (1 + (select count(*)

from student_grades B
where B.GPA > A.GPA)) as s_rank

from student_grades A
order by s_rank;
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https://www.postgresql.org/docs/9.3/tutorial-window.html

} Similar to “Group By” – allows a calculation over “related” tuples
} Unlike aggregates, does not “group” them – rather rows remain separate 

from each other
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} Example: find which courses are a prerequisite, whether directly or 
indirectly, for a specific course 

with recursive rec_prereq(course_id, prereq_id) as (
select course_id, prereq_id
from prereq

union
select rec_prereq.course_id, prereq.prereq_id, 
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id

)
select ∗
from rec_prereq;

Makes SQL Turing Complete (i.e., you can write any program in SQL)

But: Just because you can, doesn’t mean you should
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} Function to count number of instructors in a department
create function dept_count (dept_name varchar(20))

returns integer
begin
declare d_count integer;

select count (* ) into d_count
from instructor
where instructor.dept_name = dept_name

return d_count;
end

} Can use in queries
select dept_name, budget
from department
where dept_count (dept_name ) > 12
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} Same function as a procedure
create procedure dept_count_proc (in dept_name varchar(20), 

out d_count integer)
begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

} But use differently:
declare d_count integer;
call dept_count_proc( ‘Physics’, d_count);

} HOWEVER: Syntax can be wildly different across different systems
◦ Was put in place by DBMS systems before standardization
◦ Hard to change once customers are already using it
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} Stored procedures widely used in practice
◦ Many benefits including reusability, better performance (reduce back and forth to the DB)

} Most database systems support multiple langauges
◦ Purely SQL à Fully procedural (e.g., C, etc)

} PostgreSQL supports SQL, C, PL/pgSQL
◦ Note PostgreSQL 10 (that we use) does not support PROCEDURE, only FUNCTION
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} A trigger is a statement that is executed automatically 
by the system as a side effect of a modification to the 
database.

} Suppose that instead of allowing negative account 
balances, the bank deals with overdrafts by 
◦ 1. setting the account balance to zero
◦ 2. creating a loan in the amount of the overdraft
◦ 3. giving this loan a loan number identical to the account 

number of the overdrawn account
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create trigger overdraft-trigger after update on account 
referencing new row as nrow                                                                                  
for each row
when nrow.balance < 0
begin atomic

actions to be taken
end
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create trigger overdraft-trigger after update on account 
referencing new row as nrow                                                                                  
for each row
when nrow.balance < 0
begin atomic

insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number = depositor.account-number);

insert into loan values
(nrow.account-number, nrow.branch-name, nrow.balance);

update account set balance = 0
where account.account-number = nrow.account-number

end
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https://www.postgresql.org/docs/12/sql-createtrigger.html

NOTE: We use PostgreSQL 10, which does not support 
PROCEUDRE
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https://www.postgresql.org/docs/12/sql-createtrigger.html


} External World Actions
◦ How does the DB order something if the inventory is low ?

} Syntax
◦ Every system has its own syntax

} Careful with triggers
◦ Cascading triggers, Infinite Sequences…

} More Info/Examples:
◦ http://www.adp-gmbh.ch/ora/sql/create_trigger.html
◦ Google: “create trigger” oracle download-uk
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} A transaction is a sequence of queries and update statements executed as a 
single unit
◦ Transactions are started implicitly and terminated by one of

� commit work: makes all updates of the transaction permanent in the database
� rollback work: undoes all updates performed by the transaction. 

} Motivating example
◦ Transfer of money from one account to another involves two steps:

� deduct from one account and credit to another
◦ If one steps succeeds and the other fails, database is in an inconsistent state
◦ Therefore, either both steps should succeed or neither should

} If any step of a transaction fails, all work done by the transaction can be 
undone by rollback work.  

} Rollback of incomplete transactions is done automatically, in case of system 
failures 
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} In most database systems, each SQL statement that 
executes successfully is automatically committed.  
◦ Each transaction would then consist of only a single statement
◦ Automatic commit can usually be turned off, allowing multi-

statement transactions,  but how to do so depends on the 
database system
◦ Another option in SQL:1999:  enclose statements within

begin atomic
… 

end
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Anatomy of a Web Application
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} Book Chapters (6th Edition)
◦ Sections 9.1, 9.2, 9.3.5, 9.3.6, 9.4.3
◦ Much not covered in depth in the book, but lot of good tutorials 

on the web

} Key Topics
◦ How Web Applications Work

◦ Some of the underlying technologies

◦ REST
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} Three distinct eras of application architecture
◦ Mainframe (1960’s and 70’s)
◦ Personal computer era (1980’s)
◦ Web era (mid 1990’s onwards)
◦ Web and Smartphone era (2010 onwards)

(a) Mainframe Era (b) Personal Computer Era (c) Web era

Web Application Server

Database

Internet

Web browsersTerminals

Mainframe Computer

Propietary Network or
dial up phone lines Local Area Network

Desktop PCs

Database

Application
Program

Application
Program
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} Web browsers and mobile applications have become de 
facto standard user interface 
◦ Wide cross-platform accessibility
◦ No need to download something

HTTP

browser

server

data

database server

web server and
application server

network

Three Tier or Two Tier Architectures
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1. Web Browser (Firefox, Chrome, 
Safari, Edge)

2. HTML to render webpages
3. Javascript for “client-side scripting” 

(running code in your browser 
without contacting the server)

4. Flash (not supported much – too 
much security risk)

5. Java “applets” – less common 
today

• Flask, Django, Tomcat, Node.js, and 
others 

• Accept requests from the client and 
pass to the application server

• Pass application server response 
back to the client

• Support HTTP and HTTPS 
connections

• PostgreSQL, Oracle, SQL Server, 
Amazon RDS (Relational 
Databases)

• MongoDB (Document/JSON 
databases)

• SQLite --- not typically for production 
environments

• Pretty much any database can be 
used…

• Encapsulates business logic
• Needs to support different 

user flows
• Needs to handle all of the 

rendering and visualization
• Ruby-on-rails, Django, Flask, 

Angular, React, PHP, and 
many others
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} HTML
◦ Controls display of content on webpages

} HTTP/HTTPS, Sessions, Cookies
◦ How “clients” connect to “servers”

} Server-side vs client-side scripting
◦ Some processing happens on the server, but increasingly on the 

client (though Javascript)
} REST, SOAP, GraphQL
◦ Protocols for “clients” to requests things from the “servers” (or 

for two web services to talk to each other)
} Web APIs (typically REST or GraphQL)
◦ Some services available on the Web
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} Representation State Transfer: use standard HTTP requests to execute a 
request (against a web or application server) and return data 
◦ Technically REST is a software architectural style -- APIs that conform to it are called RESTful APIs

} How REST uses the five standard HTTP request types:
◦ POST: Invoke the method that corresponds to the URL, typically with data that is sent with the 

request

◦ GET: Retrieve the data (no data sent with the request)

◦ PUT: Reverse of GET

◦ PATCH: Update some data

◦ DELETE: Delete the data

} Alternative: GraphQL -- uses HTTP POST calls, where the body of the call tells the web 
server what needs to be done

As someone on Stackoverflow
put it: “REST is the way HTTP

should be used."
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https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
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SQL and Programming 
Languages

161

} Book Chapters (6th Edition)
◦ Sections 5.1, 9.4.2

} Key Topics
◦ Why use a programming language

◦ Embedded SQL vs OBDC/JDBC

◦ Object-relational impedance mismatch

◦ Object-relational Mapping Frameworks
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} Programmers/developers more comfortable using a programming 
language like Java, Python, etc.
◦ SQL not natural for many things
◦ Performance issues in going back and forth to the database

} Need to deal with impedance mismatch between:
◦ how data is represented in memory (typically as objects) 
◦ how it is stored (typically in a “normalized” relational schema)

163

} Use a standard protocol like JDBC (Java Database Connectivity) to talk to the 
database from the programming language

} Doesn’t solve impedance mismatch problem
◦ Have to convert from the “result tuples” into “objects” and vice versa (when 

updating)
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} WARNING: always use prepared statements when taking an input from the user and adding it to a 
query (Related to the issue of SQL Injection attacks)
◦ NEVER create a query by concatenating strings
◦ "insert into instructor values(' " + ID + " ', ' " + name + " ', " + " ' + dept name + " ', " ' balance + ')“
◦ What if name is “D'Souza”?

PreparedStatement pStmt = conn.prepareStatement("insert into instructor 
values(?,?,?,?)");
pStmt.setString(1, "88877");
pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance");
pStmt.setInt(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

} Python psycopg2 also has its own way of doing prepared statements

cur = conn.cursor() 
for i, j in parameters: 

cur.execute( "select * from tables where i = %s and j = %s", (i, j)) 
for record in cur: do_something_with(record)
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} JDBC Features
◦ Getting schemas, columns, primary keys

� DatabaseMetaData dbmd = conn.getMetaData()
◦ Transaction control

� conn.commit(), conn.rollback()
◦ Calling functions and procedures

} ODBC: Open Database Connectivity Standard
◦ Similar in many ways
◦ Older – designed by Microsoft and typically used in C, C++, like languages

� Java supports as well but slower
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} SQL standard defines embeddings of SQL in a variety of programming languages such as 
C, C++, Java, Fortran, and PL/1
◦ The language in which embedded is call “host” language
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} SQL standard defines embeddings of SQL in a variety of programming 
languages such as C, C++, Java, Fortran, and PL/1
◦ The language in which embedded is call “host” language

} Needs compiler support for the host language
◦ The compiler needs to know what to do with the EXEC SQL commands
◦ Hard to port 

} Doesn’t solve impedance mismatch problem
◦ Have to convert from the “result tuples” into “objects” and vice versa (when 

updating)

} Not a preferred approach today
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} Often there are vendor-specific libraries that sometimes use internal protocols 
(and not JDBC/ODBC)

} e.g., python psycopg2 for PostgreSQL – although similar to JDBC calls, it uses 
the same proprietary protocol that ‘psql’ uses
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} Aimed at solving the impedance mismatch
◦ Primarily for Web Application Development

} The ORM takes care of the mapping between objects and the database
◦ Although largely designed around RDBMS, some ORMs support other databases as well 

} The programmer works with objects, and never directly sees the SQL
◦ Has pros (easier to use) and cons (performance and correctness issues)

} ORMs typically work with “Entities/Objects” and “Relationships”
◦ Aligns well with the ER model that we will discuss next
◦ We will cover Django constructs in more detail 
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} Many other “wrappers” on top of relational databases that offer different 
functionalities
◦ In some cases, operations written in a higher-level language mapped to SQL 

� like what we saw for ORMs
� Microsoft LINQ is also similar
� Allows intermixing of code mapped to SQL and other code 

◦ In some cases, used to provide alternate data models to users
� e.g., a thin layer that provides a graph data model, but stores data in a relational database 
� Most “RDF” databases built on top of SQL databases

} In today’s big data ecosystem, we see many many permutations how 
different tools (including databases) are combined together
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Relational Algebra

173

} Book Chapters (6th Edition)
◦ 2.5, 2.6, 6.1.1-6.1.3 (expanded treatment of 2.5, 2.6)

} Key Topics
◦ Relational query languages and what purpose they serve

◦ Basic unary and binary relational operations

◦ Mapping between relational operations and SQL
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} Example schema: R(A, B)
} Practical languages
◦ SQL
� select A from R where B = 5;
◦ Datalog (sort of practical)
� q(A) :- R(A, 5)

} Formal languages
◦ Relational algebra

πA ( sB=5 (R) )
◦ Tuple relational calculus

{ t : {A} | ∃ s : {A, B} ( R(A, B) ∧ s.B = 5) }
◦ Domain relational calculus
� Similar to tuple relational calculus
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} Some of the languages are “procedural” and provide a 
set of operations 
◦ Each operation takes one or two relations as input, and 

produces a single relation as output
◦ Examples: SQL, and Relational Algebra

} The “non-procedural” (also called “declarative”) 
languages specify the output, but don’t specify the 
operations 
◦ Relational calculus
◦ Datalog (used as an intermediate layer in quite a few systems 

today)
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} Procedural language

} Six basic operators
◦ select
◦ project
◦ union
◦ set difference
◦ Cartesian product
◦ rename

} The operators take one or more relations as inputs and 
give a new relation as a result.
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Relation r A B C D

⍺

⍺

β

β

⍺

β

β

β

1

5

12

23

7

7

3

10

σ
A=B ∧ D > 5 

(r) A B C D

⍺

β

⍺

β

1

23

7

10

SQL Equivalent:
select distinct * 
from r
where A = B and D > 5

Unfortunate naming confusion

178



Relation r π
A,D 

(r)

SQL Equivalent:
select distinct A, D 
from r

A D

⍺

⍺

β

β

7

7

3

10

A D

⍺

β

β

7

3

10

A B C D

⍺

⍺

β

β

⍺

β

β

β

1

5

12

23

7

7

3

10
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Relation r, s

SQL Equivalent:
select * from r
union/except/intersect
select * from s;

This is one case where 
duplicates are removed.

A B

⍺

⍺

β

1

2

1

A B

⍺

β

2

3

r
s

r ⋃ s: A B

⍺

⍺

β

β

1

2

1

3

A B

⍺

β

1

1

r  – s:

Must be compatible schemas

What about intersection ?
Can be derived
r ∩ s = r – ( r – s);        
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Relation r, s

SQL Equivalent:
select distinct * 
from r, s

Does not remove duplicates.       

r × s:A B

⍺

β

1

2

C D

⍺

β

β 

γ

10

10

20

10

E

a

a

b

b

r

s

A B

⍺
⍺
⍺
⍺
β
β
β
β

1
1
1
1
2
2
2
2

C D

⍺
β
β
γ
⍺
β
β
γ

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b
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} Allows us to name, and therefore to refer to, the results 
of relational-algebra expressions.

} Allows us to refer to a relation by more than one name.
Example:

r x (E)
returns the expression E under the name X

If a relational-algebra expression E has arity n, then 
rx (A1, A2, …, An) (E)

returns the result of expression E under the name X, 
and with the attributes renamed to A1, A2, …., An.
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} Those are the basic operations

} What about SQL Joins ?
◦ Compose multiple operators together

sA=C(r x s)

} Additional Operations
◦ Set intersection
◦ Natural join
◦ Division
◦ Assignment
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} Set intersection (∩ )
◦ r ∩ s = r – ( r – s);        
◦ SQL Equivalent: intersect

} Assignment (¬)
◦ A convenient way to right complex RA expressions
◦ Essentially for creating “temporary” relations
� temp1¬ÕR-S (r)

◦ SQL Equivalent: “create table as…”
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} Natural join (⋈)
◦ A Cartesian product with equality condition on common attributes  
◦ Example:
� if r has schema  R(A, B, C, D), and if s has schema S(E, B, D)
� Common attributes: B and D
� Then:

r ⋈ s  = Õr.A, r.B, r.C, r.D, s.E (sr.B = s.B Ù r.D = s.D (r x  s)

} SQL Equivalent:
◦ select r.A, r.B, r.C, r.D, s.E from r, s where r.B = s.B and r.D = s.D, 

OR 
◦ select * from r natural join s
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} Equi-join
◦ A join that only has equality conditions

} Theta-join (⋈θ )
◦ r ⋈θ s = sθ(r x s)

} Left outer join (⟕)
◦ Say r(A, B), s(B, C)
◦ We need to somehow find the tuples in r that have no match in s
◦ Consider: (r – πr.A, r.B(r ⋈ s))

◦ We are done:

(r ⋈ s)       ⋃ rtemp (A, B, C) ( (r – πr.A, r.B(r ⋈ s)) × {(NULL)} )
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} Tables: r(A, B), s(B, C)

name Symbol SQL Equivalent RA expression

cross product × select * from r, s; r × s

natural join ⋈ natural join πr.A, r.B, s.Csr.B = s.B(r x s)

theta join ⋈θ from .. where θ; sθ(r x s)

equi-join ⋈θ (theta must be equality)

left outer join r ⟕ s left outer join (with “on”) (see previous slide)

full outer join r ⟗ s full outer join (with “on”) -

(left) semijoin r ⋉ s none πr.A, r.B(r ⋈ s)

(left) antijoin r ⊲ s none r - πr.A, r.B(r ⋈ s)
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©Silberschatz, Korth and Sudarshan6.188Database System Concepts - 6th Edition

Example Query

! Find the largest salary in the university
! Step 1: find instructor salaries that are less than some other 

instructor salary (i.e. not maximum)
– using a copy of instructor under a new name d

4 Õinstructor.salary (s instructor.salary < d,salary
(instructor x rd (instructor)))  

! Step 2: Find the largest salary
4 Õsalary (instructor) –

Õinstructor.salary (s instructor.salary < d,salary
(instructor x rd (instructor))) 

188



©Silberschatz, Korth and Sudarshan6.189Database System Concepts - 6th Edition

Example Queries

" Find the names of all instructors in the Physics department, along with the 
course_id of all courses they have taught

! Query 1

Õinstructor.ID,course_id (sdept_name=“Physics” (
s instructor.ID=teaches.ID (instructor x teaches)))

! Query 2

Õinstructor.ID,course_id (sinstructor.ID=teaches.ID (
s dept_name=“Physics” (instructor) x teaches))
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Instructor: Amol Deshpande
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SQL “Multi-Set/Bag” 
Semantics

190



} Book Chapters (6th Edition)
◦ Multiset Relational Algebra Paragraph (Section 6.1, page 238)

} Key Topics
◦ SQL ”Bag”/”Multiset” Semantics

◦ Operations on multisets

191

} By definition, relations are sets
◦ So à No duplicates allowed

} Problem: 
◦ Not practical to remove duplicates after every operation
◦ Why ?

} So…
◦ SQL by default does not remove duplicates

} SQL follows bag semantics, not set semantics
◦ Implicitly we keep count of number of copies of each tuple
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} RA can only express SELECT DISTINCT queries

cname ccity
Johnson

Smith
Johnson

Smith

Brighton
Perry

Brighton
R.H.

• To express SQL, must extend RA to a bag algebra
à Bags (aka: multisets) like sets, but can have duplicates

e.g: {5, 3, 3}

e.g: homes =

• Next: will define RA*: a bag version of RA
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1. s*p (r): preserves copies in r

cname ccity
Johnson
Johnson

Brighton
Brighton

cname
Johnson

Smith
Johnson

Smith

e.g:  s*city = Brighton (homes) =

2. p*A1, …, An (r): no duplicate elimination

e.g: p *cname (homes) =
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=

3.  r È* s : additive union

A B
1
1
2
2
3
1

α
α
β  
β 
α
α

A B
1
1
2

α 
α
β

A B
2
3
1

β  
α
α

A B
1 α 

A B
3 α 

4. r -* s: bag difference

e.g:    r  -* s =      s  -* r  =

È*

r s

195

´* 

5. r ´!"s: cartesian product

A B C
1
1
1
1 
2
2

α
α
α
α
β  
β

+
-
+
-
+
-

A B
1
1
2

α 
α
β

C
+
-

=
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Query: SELECT a1, ….., an
FROM r1, ….., rm
WHERE p

Semantics: p*A1, …, An (s*p (r1 ´ * … ´ * rm) ) (1)

Query: SELECT DISTINCT a1, ….., an
FROM r1, ….., rm
WHERE p

Semantics: What is the only operator to change in (1)?
p A1, …, An (s*p (r1 ´ * … ´ * rm) ) (2)
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} Set Operations
◦ UNION ≡   !
◦ INTERSECT ≡   ∩
◦ EXCEPT ≡   -

Bag Operations
UNION ALL ≡   !"
INTERSECT ALL ≡   ∩*
EXCEPT ALL ≡   -*

Duplicate Counting:
Given m copies of t in r, n copies of t in s, how many copies of t in:

r UNION ALL s?

r INTERSECT ALL s?

A:  m + n

A:  min (m, n)

r EXCEPT ALL s? A:  max (0, m-n)
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Instructor: Amol Deshpande
amol@umd.edu

SQL: Views, 
Authorization

199

} Book Chapters (6th Edition)
◦ 3.8, 4.6

} Key Topics
◦ Defining Views and Use Cases

◦ Difference between a view and a table

◦ Updating a view

◦ Authorization
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} Provide a mechanism to hide certain data from the view of certain 
users.  To create a view we use the command:

} Can be used in any place a normal table can be used
} For users, there is no distinction in terms of using it

create view v as <query expression>

where:
<query expression> is any legal expression
The view name is represented by v

201

} A view consisting of courses and sections for Physics in Fall 2009

Find all physics fall 2009 courses in a building.

122 Chapter 4 Intermediate SQL

where <query expression> is any legal query expression. The view name is
represented by v.

Consider again the clerk who needs to access all data in the instructor relation,
except salary. The clerk should not be authorized to access the instructor relation
(we see later, in Section 4.6, how authorizations can be specified). Instead, a
view relation faculty can be made available to the clerk, with the view defined as
follows:

create view faculty as
select ID, name, dept name
from instructor;

As explained earlier, the view relation conceptually contains the tuples in the
query result, but is not precomputed and stored. Instead, the database system
stores the query expression associated with the view relation. Whenever the view
relation is accessed, its tuples are created by computing the query result. Thus,
the view relation is created whenever needed, on demand.

To create a view that lists all course sections offered by the Physics department
in the Fall 2009 semester with the building and room number of each section, we
write:

create view physics fall 2009 as
select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id

and course.dept name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’;

4.2.2 Using Views in SQL Queries

Once we have defined a view, we can use the view name to refer to the virtual
relation that the view generates. Using the view physics fall 2009, we can find
all Physics courses offered in the Fall 2009 semester in the Watson building by
writing:

select course id
from physics fall 2009
where building= ’Watson’;

View names may appear in a query any place where a relation name may appear,
The attribute names of a view can be specified explicitly as follows:

create view departments total salary(dept name, total salary) as
select dept name, sum (salary)
from instructor
group by dept name;
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} Is it different from DBMS’s side ?
◦ Yes; a view may or may not be materialized
◦ Pros/Cons ?

} Updates into views have to be treated differently
◦ In most cases, disallowed.
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It’s a new table.
You can do what you want.

In any select query.
Only some update queries.

Can be used

It’s a new table.
Stored on disk.

1. Evaluate the query and store 
it on disk as if a table.
2. Don’t store. Substitute in 
queries when referenced.

Maintained as

T is a separate table; there 
is no reason why DBMS 
should keep it updated. If 
you want that, you must 
define a trigger.

1. If stored on disk, the stored 
table is automatically 
updated to be accurate.

2. If we are just substituting, 
there is no need to do 
anything.

What if a tuple 
inserted in A ?

Create table T
as (select *

from A, B
where …)

Create view V
as (select *

from A, B
where …)

Creating
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} Views strictly supercede “create a table and define a trigger to keep it 
updated”

} Two main reasons for using them:
◦ Security/authorization

� Can provide a user with ”read” access to only the view

◦ Ease of writing queries
� E.g. PresidentStateReturns , or a view listing who won which state

} Perhaps the only reason to create a table is to force the DBMS to 
choose the option of “materializing”
◦ That has efficiency advantages in some cases
◦ Especially if the underlying tables don’t change
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} Create a view of all instructors while hiding the salary

} Add a new tuple to the view
insert into faculty values (’30765’, ’Green’, ’Music’); 

} Options: 
◦ Reject because we don’t “salary” information, or 
◦ Insert into “instructors”: (’30765’, ’Green’, ’Music’, NULL); 

} Updates on more complex views are difficult or impossible to translate, and 
hence are disallowed. 

} Many SQL implementations allow updates only on simple views (without 
aggregates) defined on a single relation

122 Chapter 4 Intermediate SQL

where <query expression> is any legal query expression. The view name is
represented by v.
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and section.year = ’2009’;
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Once we have defined a view, we can use the view name to refer to the virtual
relation that the view generates. Using the view physics fall 2009, we can find
all Physics courses offered in the Fall 2009 semester in the Watson building by
writing:
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} GRANT and REVOKE keywords
◦ grant select on instructor to U1, U2, U3

◦ revoke select on branch  from U1, U2, U3

} Can provide select, insert, update, delete privileges

} Can provide this for tables, schemas, “functions/procedures”, etc.
◦ Some databases support doing this at the level of individual “tuples”

� MS SQL Server: https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-
server-ver15

� PostgreSQL: https://www.postgresql.org/docs/10/ddl-rowsecurity.html

} Can also create “Roles” and do security at the level of roles
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Instructor: Amol Deshpande
amol@umd.edu

SQL: Integrity Constraints
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https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver15


} Book Chapters (6th Edition)
◦ 4.4

} Key Topics
◦ Why Constraints

◦ Different Types of Integrity Constraints

◦ Referential Integrity 

◦ How to specify in SQL
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} Goal: Avoid Semantic Inconsistencies in the Data
} An IC is a predicate on the database 
} Must always be true (checked whenever DB gets updated)

} There are the following 4 types of IC’s:
◦ Key constraints (1 table)

e.g., 2 accts can’t share the same acct_no
◦ Attribute constraints (1 table)

e.g., accts must have nonnegative balance
◦ Referential Integrity constraints ( 2 tables)

E.g. bnames associated w/ loans must be names of real branches
◦ Global Constraints (n tables)

E.g., all loans must be carried by at least 1 customer with a savings 
acct
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Idea: specifies that a relation is a set, not a bag
SQL examples:

1.   Primary Key:
CREATE TABLE branch( 

bname CHAR(15)  PRIMARY KEY,
bcity CHAR(20),
assets    INT);

or
CREATE TABLE depositor(

cname CHAR(15),
acct_no CHAR(5),
PRIMARY KEY(cname, acct_no));

2. Candidate Keys:
CREATE TABLE customer (

ssn CHAR(9)    PRIMARY KEY,
cname CHAR(15),
address CHAR(30),
city          CHAR(10),
UNIQUE (cname, address, city));

211

Effect of SQL Key declarations
PRIMARY  (A1, A2, .., An) or
UNIQUE (A1, A2, ..., An)

Insertions:  check if any tuple has same values for A1, A2, .., An as any 
inserted tuple. If found,    reject insertion

Updates to any of A1, A2, ..., An:   treat as insertion of entire tuple

Primary vs Unique (candidate)
1. 1 primary key per table, several unique keys allowed.
2. Only primary key can be referenced by “foreign key” (ref integrity)
3. DBMS may treat primary key differently 

(e.g.: create an index on PK)
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} Idea:
◦ Attach constraints to values of attributes
◦ Enhances types system (e.g.: >= 0 rather than integer)

} In SQL: 
1. NOT NULL 

e.g.:   CREATE TABLE branch(
bname   CHAR(15)  NOT NULL,
....
)

Note: declaring bname as primary key also prevents null values

2. CHECK 
e.g.:   CREATE TABLE depositor(

....
balance int NOT NULL,
CHECK(  balance >= 0),
....
)

affect insertions, update in affected columns 
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Domains:  can associate constraints with DOMAINS rather than attributes

e.g:   instead of:       CREATE TABLE depositor(
....
balance INT NOT NULL,
CHECK  (balance >= 0)
)

One can write: 
CREATE DOMAIN  bank-balance INT (

CONSTRAINT not-overdrawn CHECK (value >= 0),
CONSTRAINT not-null-value CHECK( value NOT NULL));

CREATE TABLE depositor (
.....
balance    bank-balance,
)

Advantages?
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Advantage of associating constraints with domains:

1.  can avoid repeating specification of same constraint 
for multiple columns

2. can  name constraints
e.g.:  CREATE DOMAIN bank-balance INT (

CONSTRAINT not-overdrawn 
CHECK (value >= 0),

CONSTRAINT not-null-value
CHECK( value NOT NULL));

allows one to:
1. add or remove:

ALTER DOMAIN bank-balance
ADD CONSTRAINT capped

CHECK( value <= 10000)
2. report better errors (know which constraint violated) 
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Idea: prevent “dangling tuples” (e.g.: a loan with a bname, 
Kenmore, when no Kenmore tuple in branch)

Referencing
Relation
(e.g. loan)

Referenced
Relation
(e.g. branch)

“foreign key”
bname primary key

bname

Ref Integrity:   
ensure that:

foreign key value   à primary key value

(note: don’t need to ensure ß,  i.e., not all branches have to have loans)
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Referencing
Relation
(e.g. loan)

Referenced
Relation
(e.g. branch)

bname bname
x

x x

In SQL:
CREATE TABLE  branch( 

bname   CHAR(15)   PRIMARY KEY
....)

CREATE TABLE loan (
.........
FOREIGN KEY bname REFERENCES branch);

Affects:
1) Insertions, updates of referencing relation
2) Deletions, updates of referenced relation
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c c
x

x x

A B
what happens when
we try to delete
this tuple?

ti

tj

Ans:  3 possibilities
1)  reject  deletion/ update

2)  set    ti [c], tj[c]  = NULL 

3)  propagate deletion/update 
DELETE:    delete  ti, tj
UPDATE:    set ti[c], tj[c] to updated values 
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c c
x

x x

A B

what happens when
we try to delete
this tuple?

ti

tj

CREATE TABLE A (   .....
FOREIGN KEY c REFERENCES B  action
.......... )

Action:      1)  left blank  (deletion/update  rejected)

2)  ON DELETE SET NULL/ ON UPDATE SET NULL
sets  ti[c] = NULL, tj[c] = NULL

3)  ON  DELETE CASCADE  
deletes ti, tj

ON UPDATE CASCADE
sets ti[c], tj[c] to new key values 
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Idea:   two kinds
1)  single relation (constraints spans multiple columns)
◦ E.g.:  CHECK (total = svngs + check)  declared in the CREATE TABLE

2)  multiple relations: CREATE ASSERTION

SQL examples:
1)   single relation:  All Bkln branches must have assets > 5M

CREATE TABLE branch ( 
..........
bcity  CHAR(15),
assets INT,
CHECK (NOT(bcity = ‘Bkln’) OR assets > 5M))

Affects: 
insertions into branch
updates of bcity or assets in branch
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SQL example:
2)  Multiple relations:  every loan has a borrower with a savings account

CHECK (NOT EXISTS (
SELECT   * 
FROM loan AS L
WHERE  NOT EXISTS(

SELECT   *
FROM borrower B, depositor D, account A
WHERE B.cname = D.cname  AND

D.acct_no = A.acct_no  AND
L.lno  = B.lno)))

Problem: Where to put this constraint?  At depositor? Loan? ....

Ans: None of the above:
CREATE ASSERTION loan-constraint 

CHECK(  ..... )

Checked with EVERY DB update!
very expensive.....
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Constraint Type Where declared Affects... Expense

Key Constraints CREATE TABLE 
(PRIMARY KEY, UNIQUE)

Insertions, Updates Moderate

Attribute Constraints CREATE TABLE
CREATE DOMAIN
(Not NULL, CHECK)

Insertions, Updates Cheap

Referential Integrity Table Tag
(FOREIGN KEY ....
REFERENCES ....)

1.Insertions into 
referencing rel’n
2. Updates of 
referencing rel’n of 
relevant attrs
3. Deletions  from 
referenced rel’n
4. Update of 
referenced rel’n

1,2: like key constraints. 
Another reason to 
index/sort on the primary 
keys
3,4: depends on
a. update/delete policy 

chosen
b. existence of indexes 
on foreign key 

Global Constraints Table Tag (CHECK)
or

outside table 
(CREATE ASSERTION)

1. For single rel’n 
constraint, with 
insertion, deletion of 
relevant attrs
2. For assesrtions w/ 
every db modification

1. cheap

2. very expensive
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Instructor: Amol Deshpande
amol@umd.edu

SQLMan: Wielding the 
Superpower of SQL
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} https://blog.jooq.org/2016/04/25/10-sql-tricks-that-
you-didnt-think-were-possible/
◦ Long slide-deck linked off of this page
◦ Complex SQL queries showing how to do things like: do 

Mandelbrot, solve subset sum problem etc.

} The MADlib Analytics Library or MAD Skills, the SQL; 
https://arxiv.org/abs/1208.4165

} https://www.red-gate.com/simple-talk/blogs/statistics-
sql-simple-linear-regressions/
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https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/
https://arxiv.org/abs/1208.4165


https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-
think-were-possible/
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https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-
think-were-possible/

Makes SQL 
Turing-Complete
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https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/
https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/


https://www.postgresql.org/docs/9.3/tutorial-window.html
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https://www.red-gate.com/simple-talk/blogs/statistics-sql-simple-linear-regressions/

228



} Recursive algorithm to assign weights to 
the nodes of a graph (Web Link Graph)

} Weight for a node depends on the 
weights of the nodes that point to it

} Typically done in iterations till 
“convergence”

} Not obvious that you can do it in SQL, 
but:
◦ Each iteration is just a LEFT OUTERJOIN
◦ Stopping condition is trickier

} Other ways to do it as well

https://devnambi.com/2013/pagerank.html
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Instructor: Amol Deshpande
amol@umd.edu

Design Process

231

} Book Chapters (6th Edition)
◦ Sections 7.1

} Key Topics
◦ Steps in application and database design process

◦ Two approaches to doing database design
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} To create an end-to-end database-backed application, we must:
◦ Design the database schema for hosting the data
◦ Design the application programs for accessing and updating the data
◦ Design security schemes to control access to the data

} Typically an iterative process, involving many decision points and 
stakeholders
◦ computing environments, where to deploy, how to host, languages to use, data 

model, database systems, application frameworks, etc. etc.

} Need clear understanding of user requirements
◦ Followed by conceptual designs à functional requirements à physical designs à

implementation
◦ Need to keep revisiting earlier decisions as requirements evolve
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1. Web Browser (Firefox, Chrome, 
Safari, Edge)

2. HTML to render webpages
3. Javascript for “client-side scripting” 

(running code in your browser 
without contacting the server)

4. Flash (not supported much – too 
much security risk)

5. Java “applets” – less common 
today

• Flask, Django, Tomcat, Node.js, and 
others 

• Accept requests from the client and 
pass to the application server

• Pass application server response 
back to the client

• Support HTTP and HTTPS 
connections

• PostgreSQL, Oracle, SQL Server, 
Amazon RDS (Relational 
Databases)

• MongoDB (Document/JSON 
databases)

• SQLite --- not typically for production 
environments

• Pretty much any database can be 
used…

• Encapsulates business logic
• Needs to support different 

user flows
• Needs to handle all of the 

rendering and visualization
• Ruby-on-rails, Django, Flask, 

Angular, React, PHP, and 
many others

234



} Goal: design the logical database schema
◦ Try to avoid redundancy

� Can lead to inconsistencies and require manual intervention
� Makes it harder to program against the database

� Need additional code/processes to update everywhere

� Harder to make schema changes and migrate data 

◦ Ensure faithfulness to the requirements 
� Need to make sure it supports the use cases and the application requirements

� Capturing all the data properly
� Any data properties not captured cannot be stored in the database

� Capture the constraints accurately
� e.g., don’t want to set `s_id` as the primary key for `advisor(s_id, i_id)` if we expect 

multiple advisors for a student

} Need a systematic way to do this for large schemas
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} Approach 1: Using a logical data model like the Entity-
Relationship Model
◦ Easier for humans to work with and visualize
◦ Abstracts away the details, and allows focusing on the important issues
◦ Richer than relational model, but allows easy conversion to relational for 

implementation
◦ Harder to keep up to date – requires a lot of discipline

} Approach 2: Normalization Theory
◦ Helps formalize the key design pitfalls and how to avoid them

} The two approaches are complementary and important to know 
both of them
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} Initial application schema nicely designed and normalized
} But as business requirements changes, 
◦ Schemas need to be modified
◦ Data needs to be ”migrated” from old schema to new schema

} Ideally the new schema is also normalized and properly designed
} However…
◦ More changes to schema à More changes to applications running on top
◦ Incremental schema changes often preferred by developers
◦ Result: After a few iterations, the schema is not properly normalized any 

more

} No good solutions to date
◦ Using “views” can help, but also requires discipline
◦ Things we discuss here provide the foundations needed…
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Basics of E/R Models
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} Book Chapters (6th Edition)
◦ Sections 7.2, 7.3.1, 7.3.3, 7.5.1-7.5.5 

} Key Topics
◦ Basics

◦ Different types of attributes 

◦ Cardinalities of relationships

◦ How to identify ”keys” for relationships
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} Two key concepts
◦ Entities:
� An object that exists and is distinguishable from other objects

� Examples: Bob Smith, BofA, CMSC424

� Have attributes (people have names and addresses)
� Form entity sets with other entities of the same type that share the 

same properties
� Set of all people, set of all classes

� Entity sets may overlap
� Customers and Employees
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} Two key concepts
◦ Relationships:
� Relate 2 or more entities 

� E.g. Bob Smith has account at College Park Branch

� Form relationship sets with other relationships of the same type 
that share the same properties
� Customers have accounts at Branches

� Can have attributes:
� has account at may have an attribute start-date

� Can involve more than 2 entities
� Employee works at Branch at Job
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instructor

student

22222 Einstein

Katz

Kim

Crick

Srinivasan

Singh

45565

98345

76766

10101

76543

12345
98988

76653
23121

00128
76543

Shankar
Tanaka

Aoi
Chavez
Peltier

Zhang
Brown

44553

Two Entity Sets

instructor
student

76766 Crick

Katz
Srinivasan

Kim
Singh
Einstein

45565

10101

98345
76543

22222

98988

12345

00128
76543
76653

23121
44553

Tanaka
Shankar

Zhang

Brown
Aoi
Chavez
Peltier

Advisor Relationship, with and without attributes

instructor

student

76766 Crick

Katz

Srinivasan

Kim
Singh

Einstein

45565

10101

98345

76543

22222

98988

12345

00128

76543

44553

Tanaka

Shankar

Zhang

Brown

Aoi

Chavez

Peltier

3 May 2008

10 June 2007

12 June 2006

6 June 2009

30 June 2007

31 May 2007

4 May 2006

76653

23121
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customer has

cust-street

cust-id

cust-name

cust-city

account

balance

number
access-date

ID
name
salary

ID
name
tot_cred

date

instructor student
advisor

Alternative representation, 
used in the book in the past

Both notations used 
commonly
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} Simple vs Composite
◦ Single value per attribute ?

} Single-valued vs Multi-valued
◦ E.g. Phone numbers are multi-valued

} Derived
◦ If date-of-birth is present, age can be derived
◦ Can help in avoiding redundancy, enforcing constraints etc…
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instructor
ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ( )

Multi-valued

Derived

Composite

Primary key underlined
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} We may know:
� One customer can only open one account
� OR
� One customer can open multiple accounts

} Representing this is important
} Why ?
◦ Better manipulation of data
� If former, can store the account info in the customer table
◦ Can enforce such a constraint
� Application logic will have to do it; NOT GOOD
◦ Remember: If not represented in conceptual model, the domain 

knowledge may be lost
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} Express the number of entities to which another entity 
can be associated via a relationship set

} Most useful in describing binary relationship sets
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} One-to-One

} One-to-Many

} Many-to-One

} Many-to-Many

Instructor advises Student

Instructor advises Student

Instructor advises Student

Instructor advises Student
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} Express the number of entities to which another entity 
can be associated via a relationship set

} Most useful in describing binary relationship sets

} N-ary relationships ?
◦ More complicated
◦ Details in the book

7.5 Entity-Relationship Diagrams 279

instructor

ID
name
salary

student

ID
name
tot_cred

. . .
project

proj_guide

Figure 7.13 E-R diagram with a ternary relationship.

We can specify some types of many-to-one relationships in the case of non-
binary relationship sets. Suppose a student can have at most one instructor as
a guide on a project. This constraint can be specified by an arrow pointing to
instructor on the edge from proj guide.

We permit at most one arrow out of a relationship set, since an E-R diagram
with two or more arrows out of a nonbinary relationship set can be interpreted in
two ways. Suppose there is a relationship set R between entity sets A1, A2, . . . , An,
and the only arrows are on the edges to entity sets Ai+1, Ai+2, . . . , An. Then, the
two possible interpretations are:

1. A particular combination of entities from A1, A2, . . . , Ai can be associated
with at most one combination of entities from Ai+1, Ai+2, . . . , An. Thus, the
primary key for the relationship R can be constructed by the union of the
primary keys of A1, A2, . . . , Ai .

2. For each entity set Ak , i < k ≤ n, each combination of the entities from the
other entity sets can be associated with at most one entity from Ak . Each set
{A1, A2, . . . , Ak−1, Ak+1, . . . , An}, for i < k ≤ n, then forms a candidate key.

Each of these interpretations has been used in different books and systems. To
avoid confusion, we permit only one arrow out of a relationship set, in which
case the two interpretations are equivalent. In Chapter 8 (Section 8.4), we study
functional dependencies, which allow either of these interpretations to be specified
in an unambiguous manner.

7.5.6 Weak Entity Sets

Consider a section entity, which is uniquely identified by a course identifier,
semester, year, and section identifier. Clearly, section entities are related to course
entities. Suppose we create a relationship set sec course between entity sets section
and course.

Now, observe that the information in sec course is redundant, since section
already has an attribute course id, which identifies the course with which the
section is related. One option to deal with this redundancy is to get rid of the
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} What attributes are needed to represent a relationship 
completely and uniquely ?
◦ Union of primary keys of the entities involved, and relationship 

attributes

◦ {instructor.ID, date, student.ID} describes a relationship 
completely
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Figure 7.7 E-R diagram corresponding to instructors and students.

• Rectangles divided into two parts represent entity sets. The first part, which
in this textbook is shaded blue, contains the name of the entity set. The second
part contains the names of all the attributes of the entity set.

• Diamonds represent relationship sets.

• Undivided rectangles represent the attributes of a relationship set. Attributes
that are part of the primary key are underlined.

• Lines link entity sets to relationship sets.

• Dashed lines link attributes of a relationship set to the relationship set.

• Double lines indicate total participation of an entity in a relationship set.

• Double diamonds represent identifying relationship sets linked to weak
entity sets (we discuss identifying relationship sets and weak entity sets later,
in Section 7.5.6).

Consider the E-R diagram in Figure 7.7, which consists of two entity sets, in-
structor and student related through a binary relationship set advisor. The attributes
associated with instructor are ID, name, and salary. The attributes associated with
student are ID, name, and tot cred. In Figure 7.7, attributes of an entity set that are
members of the primary key are underlined.

If a relationship set has some attributes associated with it, then we enclose the
attributes in a rectangle and link the rectangle with a dashed line to the diamond
representing that relationship set. For example, in Figure 7.8, we have the date
descriptive attribute attached to the relationship set advisor to specify the date on
which an instructor became the advisor.
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date
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advisor

Figure 7.8 E-R diagram with an attribute attached to a relationship set.
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} Is {student_id, date, instructor_id} a candidate key ?
◦ No. Attribute date can be removed from this set without losing key-ness

◦ In fact, union of primary keys of associated entities is always a superkey
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} Is {student_id, instructor_id} a candidate key ?
◦ Depends
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} Is {student_id, instructor_id} a candidate key ?
◦ Depends

l If one-to-one relationship, either {instructor_id} or {student_id} sufficient
l Since a given instructor can only have one advisee, an instructor entity can 

only participate in one relationship
l Ditto student
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} Is {student_id, instructor_id} a candidate key ?
◦ Depends

l If one-to-many relationship (as shown), {student_id} is a candidate key
l A given instructor can have many advisees, but at most one advisor per 

student allowed
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} General rule for binary relationships
◦ one-to-one: primary key of either entity set
◦ one-to-many: primary key of the entity set on the many side
◦ many-to-many: union of primary keys of the associate entity 

sets

} n-ary relationships
◦ More complicated rules
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Instructor: Amol Deshpande
amol@umd.edu

More E/R Constructs
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} Book Chapters (6th Edition)
◦ Sections 7.5.4, 7.5.6, 7.8

} Key Topics
◦ Recursive Relationships and Roles

◦ Weak Entity Sets

◦ Specialization/Generalization

◦ Aggregation
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} Sometimes a relationship associates an entity set to 
itself

} Need “roles” to distinguish

course
course_id
title
credits

course_id

prereq_id prereq

2.1 Structure of Relational Databases 41

course id prereq id
BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure 2.3 The prereq relation.

Thus, in the relational model the term relation is used to refer to a table, while
the term tuple is used to refer to a row. Similarly, the term attribute refers to a
column of a table.

Examining Figure 2.1, we can see that the relation instructor has four attributes:
ID, name, dept name, and salary.

We use the term relation instance to refer to a specific instance of a relation,
i.e., containing a specific set of rows. The instance of instructor shown in Figure 2.1
has 12 tuples, corresponding to 12 instructors.

In this chapter, we shall be using a number of different relations to illustrate the
various concepts underlying the relational data model. These relations represent
part of a university. They do not include all the data an actual university database
would contain, in order to simplify our presentation. We shall discuss criteria for
the appropriateness of relational structures in great detail in Chapters 7 and 8.

The order in which tuples appear in a relation is irrelevant, since a relation
is a set of tuples. Thus, whether the tuples of a relation are listed in sorted order,
as in Figure 2.1, or are unsorted, as in Figure 2.4, does not matter; the relations in

ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

Figure 2.4 Unsorted display of the instructor relation.
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} An entity set without enough attributes to have a 
primary key
◦ E.g. Section Entity

} Still need to be able to distinguish between weak 
entities
◦ Called “discriminator attributes”: dashed underline

course
course_id
title
credits

section
sec_id
semester
year

sec_course

259

Loan may or may not have an extra 
unique identifier

Apartments don’t have a unique identifer (across all 
buildings) without the building information

If transaction numbers are per ATM (i.e., first transaction 
from that ATM gets number 1, etc.), then Transactions is a 

weak entity
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} Allow specifying full participation from an entity set in a 
relationship
◦ i.e., every entity from that entity set ”must” participate in at 

least one relationship
◦ Most common for Weak Entity Sets, but useful otherwise as well

course
course_id
title
credits

section
sec_id
semester
year

sec_course
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person
ID
name
address

student

instructor
rank

secretary
hours_per_week

employee
salary tot_credits

Similar to object-oriented programming: allows inheritance etc.
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} No relationships allowed between relationships
} Suppose we want to record evaluations of a student 

by a guide on a project

evaluation

proj_ guide
instructor student

eval_ for

project
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Converting to Relational
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} Book Chapters (6th Edition)
◦ Sections 7.6, 7.8.6

} Key Topics
◦ Creating Relational Schema from an E/R Model

◦ Mapping Entities and Relationships to Relations

◦ Weak Entity Sets to Relations

◦ Other E/R Constructs
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} Convert entity sets into a relational schema with the 
same set of attributes

Student (ID, name, tot_cred)

Instructor(ID, name, salary)

282 Chapter 7 Database Design and the E-R Model

7.5.7 E-R diagram for the University Enterprise

In Figure 7.15, we show an E-R diagram that corresponds to the university enter-
prise that we have been using thus far in the text. This E-R diagram is equivalent
to the textual description of the university E-R model that we saw in Section 7.4,
but with several additional constraints, and section now being a weak entity.

In our university database, we have a constraint that each instructor must have
exactly one associated department. As a result, there is a double line in Figure 7.15
between instructor and inst dept, indicating total participation of instructor in inst
dept; that is, each instructor must be associated with a department. Further, there

is an arrow from inst dept to department, indicating that each instructor can have
at most one associated department.

time_slotcourse
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name
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ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day

start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot
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prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

Figure 7.15 E-R diagram for a university enterprise.
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} Convert relationship sets also into a relational schema
} Remember: A relationship is completely described by primary 

keys of associated entities and its own attributes

We can do better for many-to-
one or one-to-one
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(a)
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(c)

advisor

advisor

advisor

Figure 7.9 Relationships. (a) One-to-one. (b) One-to-many. (c) Many-to-many.

7.5.2 Mapping Cardinality

The relationship set advisor, between the instructor and student entity sets may be
one-to-one, one-to-many, many-to-one, or many-to-many. To distinguish among
these types, we draw either a directed line (→) or an undirected line (—) between
the relationship set and the entity set in question, as follows:

• One-to-one: We draw a directed line from the relationship set advisor to
both entity sets instructor and student (see Figure 7.9a). This indicates that an
instructor may advise at most one student, and a student may have at most
one advisor.

• One-to-many: We draw a directed line from the relationship set advisor to
the entity set instructor and an undirected line to the entity set student (see
Figure 7.9b). This indicates that an instructor may advise many students, but
a student may have at most one advisor.

• Many-to-one: We draw an undirected line from the relationship set advisor
to the entity set instructor and a directed line to the entity set student. This
indicates that an instructor may advise at most one student, but a student
may have many advisors.

• Many-to-many: We draw an undirected line from the relationship set advisor
to both entity sets instructor and student (see Figure 7.9c). This indicates that

Advisor (student_ID, instructor_ID, date)
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Figure 7.7 E-R diagram corresponding to instructors and students.

• Rectangles divided into two parts represent entity sets. The first part, which
in this textbook is shaded blue, contains the name of the entity set. The second
part contains the names of all the attributes of the entity set.

• Diamonds represent relationship sets.

• Undivided rectangles represent the attributes of a relationship set. Attributes
that are part of the primary key are underlined.

• Lines link entity sets to relationship sets.

• Dashed lines link attributes of a relationship set to the relationship set.

• Double lines indicate total participation of an entity in a relationship set.

• Double diamonds represent identifying relationship sets linked to weak
entity sets (we discuss identifying relationship sets and weak entity sets later,
in Section 7.5.6).

Consider the E-R diagram in Figure 7.7, which consists of two entity sets, in-
structor and student related through a binary relationship set advisor. The attributes
associated with instructor are ID, name, and salary. The attributes associated with
student are ID, name, and tot cred. In Figure 7.7, attributes of an entity set that are
members of the primary key are underlined.

If a relationship set has some attributes associated with it, then we enclose the
attributes in a rectangle and link the rectangle with a dashed line to the diamond
representing that relationship set. For example, in Figure 7.8, we have the date
descriptive attribute attached to the relationship set advisor to specify the date on
which an instructor became the advisor.
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Figure 7.8 E-R diagram with an attribute attached to a relationship set.
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one-to-one, one-to-many, many-to-one, or many-to-many. To distinguish among
these types, we draw either a directed line (→) or an undirected line (—) between
the relationship set and the entity set in question, as follows:

• One-to-one: We draw a directed line from the relationship set advisor to
both entity sets instructor and student (see Figure 7.9a). This indicates that an
instructor may advise at most one student, and a student may have at most
one advisor.

• One-to-many: We draw a directed line from the relationship set advisor to
the entity set instructor and an undirected line to the entity set student (see
Figure 7.9b). This indicates that an instructor may advise many students, but
a student may have at most one advisor.

• Many-to-one: We draw an undirected line from the relationship set advisor
to the entity set instructor and a directed line to the entity set student. This
indicates that an instructor may advise at most one student, but a student
may have many advisors.

• Many-to-many: We draw an undirected line from the relationship set advisor
to both entity sets instructor and student (see Figure 7.9c). This indicates that
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structor and student related through a binary relationship set advisor. The attributes
associated with instructor are ID, name, and salary. The attributes associated with
student are ID, name, and tot cred. In Figure 7.7, attributes of an entity set that are
members of the primary key are underlined.

If a relationship set has some attributes associated with it, then we enclose the
attributes in a rectangle and link the rectangle with a dashed line to the diamond
representing that relationship set. For example, in Figure 7.8, we have the date
descriptive attribute attached to the relationship set advisor to specify the date on
which an instructor became the advisor.
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Figure 7.8 E-R diagram with an attribute attached to a relationship set.
Fold into Student:
Student(ID, name, tot_credits, advisor_ID, date)

Foreign key into Instructor relation
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7.5.2 Mapping Cardinality

The relationship set advisor, between the instructor and student entity sets may be
one-to-one, one-to-many, many-to-one, or many-to-many. To distinguish among
these types, we draw either a directed line (→) or an undirected line (—) between
the relationship set and the entity set in question, as follows:

• One-to-one: We draw a directed line from the relationship set advisor to
both entity sets instructor and student (see Figure 7.9a). This indicates that an
instructor may advise at most one student, and a student may have at most
one advisor.

• One-to-many: We draw a directed line from the relationship set advisor to
the entity set instructor and an undirected line to the entity set student (see
Figure 7.9b). This indicates that an instructor may advise many students, but
a student may have at most one advisor.

• Many-to-one: We draw an undirected line from the relationship set advisor
to the entity set instructor and a directed line to the entity set student. This
indicates that an instructor may advise at most one student, but a student
may have many advisors.

• Many-to-many: We draw an undirected line from the relationship set advisor
to both entity sets instructor and student (see Figure 7.9c). This indicates that

Fold into Instructor:
Instructor(ID, name, salary, advisee_ID, date)
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associated with instructor are ID, name, and salary. The attributes associated with
student are ID, name, and tot cred. In Figure 7.7, attributes of an entity set that are
members of the primary key are underlined.

If a relationship set has some attributes associated with it, then we enclose the
attributes in a rectangle and link the rectangle with a dashed line to the diamond
representing that relationship set. For example, in Figure 7.8, we have the date
descriptive attribute attached to the relationship set advisor to specify the date on
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Figure 7.8 E-R diagram with an attribute attached to a relationship set.
Fold into Student:
Student(ID, name, tot_credits, advisor_ID)

OR

Fold into Instructor:
Instructor(ID, name, salary, advisee_ID)
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instructor student
ID
name
salary

instructor
ID
name
salary

instructor
ID
name
salary

ID
name
tot_cred

student
ID
name
tot_cred

student
ID
name
tot_cred

(a)

(b)

(c)

advisor

advisor

advisor

Figure 7.9 Relationships. (a) One-to-one. (b) One-to-many. (c) Many-to-many.

7.5.2 Mapping Cardinality

The relationship set advisor, between the instructor and student entity sets may be
one-to-one, one-to-many, many-to-one, or many-to-many. To distinguish among
these types, we draw either a directed line (→) or an undirected line (—) between
the relationship set and the entity set in question, as follows:

• One-to-one: We draw a directed line from the relationship set advisor to
both entity sets instructor and student (see Figure 7.9a). This indicates that an
instructor may advise at most one student, and a student may have at most
one advisor.

• One-to-many: We draw a directed line from the relationship set advisor to
the entity set instructor and an undirected line to the entity set student (see
Figure 7.9b). This indicates that an instructor may advise many students, but
a student may have at most one advisor.

• Many-to-one: We draw an undirected line from the relationship set advisor
to the entity set instructor and a directed line to the entity set student. This
indicates that an instructor may advise at most one student, but a student
may have many advisors.

• Many-to-many: We draw an undirected line from the relationship set advisor
to both entity sets instructor and student (see Figure 7.9c). This indicates that
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course
course_id
title
credits

section
sec_id
semester
year

sec_course

Figure 7.14 E-R diagram with a weak entity set.

had a primary key. However, conceptually, a section is still dependent on a course
for its existence, which is made explicit by making it a weak entity set.

In E-R diagrams, a weak entity set is depicted via a rectangle, like a strong
entity set, but there are two main differences:

• The discriminator of a weak entity is underlined with a dashed, rather than
a solid, line.

• The relationship set connecting the weak entity set to the identifying strong
entity set is depicted by a double diamond.

In Figure 7.14, the weak entity set section depends on the strong entity set course
via the relationship set sec course.

The figure also illustrates the use of double lines to indicate total participation;
the participation of the (weak) entity set section in the relationship sec course is
total, meaning that every section must be related via sec course to some course.
Finally, the arrow from sec course to course indicates that each section is related to
a single course.

A weak entity set can participate in relationships other than the identifying
relationship. For instance, the section entity could participate in a relationship
with the time slot entity set, identifying the time when a particular class section
meets. A weak entity set may participate as owner in an identifying relationship
with another weak entity set. It is also possible to have a weak entity set with more
than one identifying entity set. A particular weak entity would then be identified
by a combination of entities, one from each identifying entity set. The primary
key of the weak entity set would consist of the union of the primary keys of the
identifying entity sets, plus the discriminator of the weak entity set.

In some cases, the database designer may choose to express a weak entity set
as a multivalued composite attribute of the owner entity set. In our example, this
alternative would require that the entity set course have a multivalued, composite
attribute section. A weak entity set may be more appropriately modeled as an
attribute if it participates in only the identifying relationship, and if it has few
attributes. Conversely, a weak entity set representation more aptly models a
situation where the set participates in relationships other than the identifying
relationship, and where the weak entity set has several attributes. It is clear that
section violates the requirements for being modeled as a multivalued composite
attribute, and is modeled more aptly as a weak entity set.

Need to copy the primary key from the strong entity set:

Section(course_id, sec_id, semester, year)

Primary key for section = Primary key for course +            
Discriminator Attributes
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BUT

Phone_number needs to be split out into a separate table

Instructor_Phone(Instructor_ID, phone_number)

284 Chapter 7 Database Design and the E-R Model

classroom (building, room number, capacity)
department (dept name, building, budget)
course (course id, title, credits)
instructor (ID, name, salary)
student (ID, name, tot cred)

As you can see, both the instructor and student schemas are different from the
schemas we have used in the previous chapters (they do not contain the attribute
dept name). We shall revisit this issue shortly.

7.6.2 Representation of Strong Entity Sets with Complex Attributes

When a strong entity set has nonsimple attributes, things are a bit more complex.
We handle composite attributes by creating a separate attribute for each of the
component attributes; we do not create a separate attribute for the composite
attribute itself. To illustrate, consider the version of the instructor entity set de-
picted in Figure 7.11. For the composite attribute name, the schema generated
for instructor contains the attributes first name, middle name, and last name; there
is no separate attribute or schema for name. Similarly, for the composite attribute
address, the schema generated contains the attributes street, city, state, and zip code.
Since street is a composite attribute it is replaced by street number, street name, and
apt number. We revisit this matter in Section 8.2.

Multivalued attributes are treated differently from other attributes. We have
seen that attributes in an E-R diagram generally map directly into attributes for the
appropriate relation schemas. Multivalued attributes, however, are an exception;
new relation schemas are created for these attributes, as we shall see shortly.

Derived attributes are not explicitly represented in the relational data model.
However, they can be represented as “methods” in other data models such as the
object-relational data model, which is described later in Chapter 22.

The relational schema derived from the version of entity set instructor with
complex attributes, without including the multivalued attribute, is thus:

instructor (ID, first name, middle name, last name,
street number, street name, apt number,
city, state, zip code, date of birth)

For a multivalued attribute M, we create a relation schema R with an attribute
A that corresponds to M and attributes corresponding to the primary key of the
entity set or relationship set of which M is an attribute.

As an illustration, consider the E-R diagram in Figure 7.11 that depicts the
entity set instructor, which includes the multivalued attribute phone number. The
primary key of instructor is ID. For this multivalued attribute, we create a relation
schema

instructor phone (ID, phone number)
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instructor
ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ( )

Figure 7.11 E-R diagram with composite, multivalued, and derived attributes.

street, city, state, and zip code. The attribute street is itself a composite attribute
whose component attributes are street number, street name, and apartment number.

Figure 7.11 also illustrates a multivalued attribute phone number, denoted by
“{phone number}”, and a derived attribute age, depicted by a “age ( )”.

7.5.4 Roles

We indicate roles in E-R diagrams by labeling the lines that connect diamonds to
rectangles. Figure 7.12 shows the role indicators course id and prereq id between
the course entity set and the prereq relationship set.

7.5.5 Nonbinary Relationship Sets

Nonbinary relationship sets can be specified easily in an E-R diagram. Figure 7.13
consists of the three entity sets instructor, student, and project, related through the
relationship set proj guide.

course
course_id
title
credits

course_id

prereq_id prereq

Figure 7.12 E-R diagram with role indicators.
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A few different ways to handle it

1. Common table for common information 
and separate tables for additional 
information

2. Separate tables altogether – good idea if an 
employee can’t be a student also –
querying becomes harder (have to do 
unions for queries across all “persons”)
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person
ID
name
address

student

instructor
rank

secretary
hours_per_week

employee
salary tot_credits

Figure 7.21 Specialization and generalization.

sets are depicted as regular entity sets—that is, as rectangles containing the name
of the entity set.

7.8.2 Generalization

The refinement from an initial entity set into successive levels of entity subgroup-
ings represents a top-down design process in which distinctions are made explicit.
The design process may also proceed in a bottom-up manner, in which multiple
entity sets are synthesized into a higher-level entity set on the basis of common
features. The database designer may have first identified:

• instructor entity set with attributes instructor id, instructor name, instructor
salary, and rank.

• secretary entity set with attributes secretary id, secretary name, secretary salary,
and hours per week.

There are similarities between the instructor entity set and the secretary entity
set in the sense that they have several attributes that are conceptually the same
across the two entity sets: namely, the identifier, name, and salary attributes.
This commonality can be expressed by generalization, which is a containment
relationship that exists between a higher-level entity set and one or more lower-level
entity sets. In our example, employee is the higher-level entity set and instructor and
secretary are lower-level entity sets. In this case, attributes that are conceptually
the same had different names in the two lower-level entity sets. To create a
generalization, the attributes must be given a common name and represented
with the higher-level entity person. We can use the attribute names ID, name,
address, as we saw in the example in Section 7.8.1.
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project

evaluation

instructor student

eval_ for

proj_ guide

Figure 7.22 E-R diagram with redundant relationships.

guide and evaluation to represent which (student, project, instructor) combination
an evaluation is for. Figure 7.23 shows a notation for aggregation commonly used
to represent this situation.

7.8.6 Reduction to Relation Schemas

We are in a position now to describe how the extended E-R features can be
translated into relation schemas.

7.8.6.1 Representation of Generalization

There are two different methods of designing relation schemas for an E-R diagram
that includes generalization. Although we refer to the generalization in Figure 7.21
in this discussion, we simplify it by including only the first tier of lower-level
entity sets—that is, employee and student. We assume that ID is the primary key
of person.

1. Create a schema for the higher-level entity set. For each lower-level entity
set, create a schema that includes an attribute for each of the attributes of that
entity set plus one for each attribute of the primary key of the higher-level
entity set. Thus, for the E-R diagram of Figure 7.21 (ignoring the instructor
and secretary entity sets) we have three schemas:

person (ID, name, street, city)
employee (ID, salary)
student (ID, tot cred)
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evaluation

proj_ guide
instructor student

eval_ for

project

Figure 7.23 E-R diagram with aggregation.

The primary-key attributes of the higher-level entity set become primary-
key attributes of the higher-level entity set as well as all lower-level entity
sets. These can be seen underlined in the above example.

In addition, we create foreign-key constraints on the lower-level entity
sets, with their primary-key attributes referencing the primary key of the
relation created from the higher-level entity set. In the above example, the
ID attribute of employee would reference the primary key of person, and
similarly for student.

2. An alternative representation is possible, if the generalization is disjoint and
complete—that is, if no entity is a member of two lower-level entity sets
directly below a higher-level entity set, and if every entity in the higher-level
entity set is also a member of one of the lower-level entity sets. Here, we do
not create a schema for the higher-level entity set. Instead, for each lower-
level entity set, we create a schema that includes an attribute for each of
the attributes of that entity set plus one for each attribute of the higher-level
entity set. Then, for the E-R diagram of Figure 7.21, we have two schemas:

employee (ID, name, street, city, salary)
student (ID, name, street, city, tot cred)

Both these schemas have ID, which is the primary-key attribute of the higher-
level entity set person, as their primary key.
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Design Issues; 
Alternate Notations
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} Book Chapters (6th Edition)
◦ Sections 7.7, 7.9 (briefly)

} Key Topics
◦ Some Common Mistakes

◦ Choosing between different ways to do the same thing

◦ Alternate notations commonly used (including UML)

◦ Recap 
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} Entity sets vs attributes
◦ Depends on the semantics of the application
◦ Consider telephone
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added to the instructor relation when the schema for inst dept is merged into
instructor.

7.7 Entity-Relationship Design Issues

The notions of an entity set and a relationship set are not precise, and it is possible
to define a set of entities and the relationships among them in a number of
different ways. In this section, we examine basic issues in the design of an E-R
database schema. Section 7.10 covers the design process in further detail.

7.7.1 Use of Entity Sets versus Attributes

Consider the entity set instructor with the additional attribute phone number (Fig-
ure 7.17a.) It can easily be argued that a phone is an entity in its own right with
attributes phone number and location; the location may be the office or home where
the phone is located, with mobile (cell) phones perhaps represented by the value
“mobile.” If we take this point of view, we do not add the attribute phone number
to the instructor. Rather, we create:

• A phone entity set with attributes phone number and location.

• A relationship set inst phone, denoting the association between instructors
and the phones that they have.

This alternative is shown in Figure 7.17b.
What, then, is the main difference between these two definitions of an instruc-

tor? Treating a phone as an attribute phone number implies that instructors have
precisely one phone number each. Treating a phone as an entity phone permits
instructors to have several phone numbers (including zero) associated with them.
However, we could instead easily define phone number as a multivalued attribute
to allow multiple phones per instructor.

The main difference then is that treating a phone as an entity better models
a situation where one may want to keep extra information about a phone, such
as its location, or its type (mobile, IP phone, or plain old phone), or all who share

instructor

ID
name
salary

phone
phone_number
location

instructor

ID
name
salary
phone_number

(a) (b)

inst_phone

Figure 7.17 Alternatives for adding phone to the instructor entity set.
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} Entity sets vs Relationsihp sets
◦ Consider takes
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registration
...
...
...

section
sec_id
semester
year

student
ID
name
tot_cred

section_reg student_reg

Figure 7.18 Replacement of takes by registration and two relationship sets

Both the approach of Figure 7.15 and that of Figure 7.18 accurately represent
the university’s information, but the use of takes is more compact and probably
preferable. However, if the registrar’s office associates other information with a
course-registration record, it might be best to make it an entity in its own right.

One possible guideline in determining whether to use an entity set or a
relationship set is to designate a relationship set to describe an action that occurs
between entities. This approach can also be useful in deciding whether certain
attributes may be more appropriately expressed as relationships.

7.7.3 Binary versus n-ary Relationship Sets

Relationships in databases are often binary. Some relationships that appear to be
nonbinary could actually be better represented by several binary relationships.
For instance, one could create a ternary relationship parent, relating a child to
his/her mother and father. However, such a relationship could also be represented
by two binary relationships, mother and father, relating a child to his/her mother
and father separately. Using the two relationships mother and father provides us a
record of a child’s mother, even if we are not aware of the father’s identity; a null
value would be required if the ternary relationship parent is used. Using binary
relationship sets is preferable in this case.

In fact, it is always possible to replace a nonbinary (n-ary, for n > 2) relation-
ship set by a number of distinct binary relationship sets. For simplicity, consider
the abstract ternary (n = 3) relationship set R, relating entity sets A, B, and C . We
replace the relationship set R by an entity set E , and create three relationship sets
as shown in Figure 7.19:

• RA, relating E and A.

• RB , relating E and B.

• RC , relating E and C .
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} N-ary vs binary relationships
◦ Possible to avoid n-ary relationships, but there are some cases 

where it is advantageous to use them
7.7 Entity-Relationship Design Issues 293

B R C

A

CB E

A

RA

RB RC

(a) (b)

Figure 7.19 Ternary relationship versus three binary relationships.

If the relationship set R had any attributes, these are assigned to entity set E ;
further, a special identifying attribute is created for E (since it must be possible to
distinguish different entities in an entity set on the basis of their attribute values).
For each relationship (ai , bi , ci ) in the relationship set R, we create a new entity
ei in the entity set E . Then, in each of the three new relationship sets, we insert a
relationship as follows:

• (ei , ai ) in RA.

• (ei , bi ) in RB .

• (ei , ci ) in RC .

We can generalize this process in a straightforward manner to n-ary relation-
ship sets. Thus, conceptually, we can restrict the E-R model to include only binary
relationship sets. However, this restriction is not always desirable.

• An identifying attribute may have to be created for the entity set created to
represent the relationship set. This attribute, along with the extra relationship
sets required, increases the complexity of the design and (as we shall see in
Section 7.6) overall storage requirements.

• An n-ary relationship set shows more clearly that several entities participate
in a single relationship.

• There may not be a way to translate constraints on the ternary relationship
into constraints on the binary relationships. For example, consider a con-
straint that says that R is many-to-one from A, B to C ; that is, each pair of
entities from A and B is associated with at most one C entity. This constraint
cannot be expressed by using cardinality constraints on the relationship sets
RA, RB , and RC .

Consider the relationship set proj guide in Section 7.2.2, relating instructor,
student, and project. We cannot directly split proj guide into binary relationships
between instructor and project and between instructor and student. If we did so,
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in this sixth edition of this book which actually differs from the notation we used
in earlier editions, for reasons that we explain later in this section.

In the rest of this section, we study some of the alternative E-R diagram
notations, as well as the UML class diagram notation. To aid in comparison of our
notation with these alternatives, Figure 7.24 summarizes the set of symbols we
have used in our E-R diagram notation.

7.9.1 Alternative E-R Notations

Figure 7.25 indicates some of the alternative E-R notations that are widely used.
One alternative representation of attributes of entities is to show them in ovals
connected to the box representing the entity; primary key attributes are indicated
by underlining them. The above notation is shown at the top of the figure. Re-
lationship attributes can be similarly represented, by connecting the ovals to the
diamond representing the relationship.

participation
in R: total (E1)
and partial (E2)

E1 E2 E2E1R
R

R

entity set E with
simple a!ribute A1,
composite a!ribute A2,
multivalued a!ribute A3,
derived a!ribute A4,
and primary key A1

many-to-many
relationship

one-to-one
relationship

many-to-one
relationship

R

R

*

*

*

1

1

1

R

E1

E1

E1

E2

E2

E2 E1 E2

generalization ISA ISAtotal
generalizationweak entity set

A1
A2

A3

A2.1 A2.2

A4E

RE1 E2

RE1 E2

Figure 7.25 Alternative E-R notations.
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} More comprehensive – covers use cases, flow of tasks 
between components, implementation diagrams, etc., in 
addition to data representation

–A1
+M1

E

E2 E3

E1

E2 E3

E1

E2 E3

binary
relationship

class with simple a!ributes
and methods (a!ribute
prefixes:  +  =  public,
– =  private, # = protected)

overlapping
generalization

disjoint
generalization

A1
M1

E entity with
a!ributes (simple,
composite,
multivalued, derived)

R
E2E1 role1 role2

relationship
a!ributes E2E1 role1 role2

A1
R

R cardinality
constraintsE2E1

R
E2E10.. * 0..1 0..1 0.. *

R
E3

E1
E2

R
E3

E1
E2n-ary

relationships

E1

E2 E3

overlapping

disjoint

ER Diagram Notation Equivalent in UML

R E2E1 role1 role2

R E2E1 role1 role2

A1

() ()

E1
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} Nothing about actual data
◦ How is it stored ? 

} No talk about the query languages
◦ How do we access the data ?

} Semantic vs Syntactic Data Models
◦ Remember: E/R Model is used for conceptual modeling
◦ Many conceptual models have the same properties

} They are much more about representing the knowledge 
than about database storage/querying
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} Basic design principles
◦ Faithful
� Must make sense
◦ Satisfies the application requirements
◦ Models the requisite domain knowledge
� If not modeled, lost afterwards
◦ Avoid redundancy
� Potential for inconsistencies
◦ Go for simplicity

} Typically an iterative process that goes back and forth

283
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Normalization: Basics
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} Where did we come up with the schema that we used ?
◦ E.g. why not store the student course titles with their names ?

} If from an E-R diagram, then:
◦ Did we make the right decisions with the E-R diagram ?

} Goals:
◦ Formal definition of what it means to be a “good” schema.
◦ How to achieve it.

} More abstract and formal than most other topics we will 
study
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} Book Chapters (6th Edition)
◦ Section 8.1, 8.2

} Key Topics
◦ What makes a ”good” schema

◦ Problems with small schemas

◦ Problems with large schemas

◦ Atomic domains and First Normal Form

287

Student(student_id, name, tot_cred)

Student_Dept(student_id, dept_name)

Department(dept_name, building, budget)

Course(course_id, title, dept_name, credits)

Takes(course_id, student_id, semester, year)

Student_Dept(student_id, dept_name, name, tot_cred, building, budget)
<Student, Student_Dept, and Department Merged Together>
Course(course_id, title, dept_name, credits)
Takes(course_id, student_id, semester, year)

Changed to:

Is this a good schema ???
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student_id dept_name name tot_cred building budget
s1 Comp. Sci. John 30 Iribe Center 10 M
s2 Comp. Sci. Alice 20 Iribe Center 10 M
s2 Math Alice 20 Kirwan Hall 10 M
s3 Comp. Sci. Mike 30 Iribe Center 10 M
s3 Math Mike 30 Kirwan Hall 10 M

Issues:

1. Redundancy è higher storage, inconsistencies (“anomalies”)

update anomalies, insertion anamolies

2. Need nulls 

Unable to represent some information without using nulls
How to store depts w/o students, or vice versa ?

Can’t have NULLs in primary keys

Student_Dept(student_id, dept_name, name, tot_cred, building, budget)

289

Issues:
3. Avoid sets 

- Hard to represent
- Hard to query
- In this case, too many issues

student_ids dept_name names tot_creds building budget
{s1, s2, s3} Comp. Sci. {John, Alice, 

Mike}
{30, 20, 
30}

Iribe Center 10 M

{s2, s3} Math {Alice, Mike} {20, 30} Kirwan Hall 10 M

Student_Dept(student_ids, dept_name, names, tot_creds, building, budget)
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course_id credits
c1 3
c2 3
c3 3

This process is also called “decomposition”

Issues:

4. Requires more joins (w/o any obvious benefits)

5. Hard to check for some dependencies

What if the “credits” depend on the “dept_name” (e.g., all CS 
courses must be 3 credits)? 

No easy way to ensure that constraint (w/o a join)

Split Course(course_id, title, dept_name, credits) into:

Course1 (course_id, title, dept_name)              Course2(course_id, credits)???

course_id title dept_name
c1 “Intro to..” Comp. Sci.
c2 “Discrete Structures“ Comp. Sci.
c3 “Database Design” Comp. Sci.

Smaller schemas always good ????

291

Issues:
6. “joining” them back (on course_id) results in more tuples than what we started with

(c1, s1, Spring 2020) & (c1, s2, Fall 2020)
This is a “lossy” decomposition

We lost some constraints/information
The previous example was a “lossless” decomposition.

Decompose Takes(course_id, student_id, semester, year) into:

course_id student_id semester year

c1 s1 Fall 2020
c1 s2 Spring 2020
c2 s1 Spring 2020

Smaller schemas always good ????

course_id semester year

c1 Fall 2020
c1 Spring 2020
c2 Spring 2020

course_id student_id

c1 s1
c1 s2
c2 s1

Takes2(course_id, student_id )

Takes1(course_id, semester, year)
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} No sets
} Correct and faithful to the original design
◦ Must avoid lossy decompositions 

} As little redundancy as possible
◦ To avoid potential anomalies

} No “inability to represent information”
◦ Nulls shouldn’t be required to store information

} Dependency preservation
◦ Should be possible to check for constraints

Not always possible. 
We sometimes relax these for: 

simpler schemas, and fewer joins during queries.
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1. We will encode and list all our knowledge about the schema
◦ e.g., Functional dependencies (FDs)

SSN à name         (means: SSN “implies” length)
� If two tuples have the same “SSN”, they must have the same “name”

movietitle à length  ????  Not true. 
� But, (movietitle, movieYear) à length --- True.

2. We will define a set of rules that the schema must follow to be considered 
good
◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …
◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema 
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} A domain is called “atomic” if the elements can be 
considered indivisible
◦ i.e., not composite or sets
◦ Somewhat subjective and depends on how it is being used

} What about CMSC424? 
◦ A natural split into “CMSC” and “424”.
◦ Technically not atomic since programs/analysis often split it
◦ Often treated as atomic, but better to keep as separate columns

} As long as all attributes are atomic à 1st Normal Form
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Functional Dependencies
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} Book Chapters (6th Edition)
◦ Section 8.3.1

} Key Topics
◦ Definition of a FD

◦ Examples

◦ Holding on an instance vs on all “legal” instances

◦ FDs and Redundancies

297

} On a relational schema: R(A, B, C, …)
A à B      (A “implies” B)

means that if two tuples have the same value for A, they      
have the same value for B

} A way to reason about duplication in a relational schema
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student_id dept_name name tot_cred building budget
s1 Comp. Sci. John 30 Iribe Center 10 M
s2 Comp. Sci. Alice 20 Iribe Center 10 M
s2 Math Alice 20 Kirwan Hall 10 M
s3 Comp. Sci. Mike 30 Iribe Center 10 M
s3 Math Mike 30 Kirwan Hall 10 M

student_id à name

student_id à name, tot_cred

dept_name à building

dept_name à building, budget
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State 
Name

State 
Code

State
Population

County
Name

County 
Population

Senator
Name

Senator
Elected

Senator
Born

Senator
Affiliatio
n

Alabama AL 4779736 Autauga 54571 Jeff 
Sessions

1997 1946 ‘R’

Alabama AL 4779736 Baldwin 182265 Jeff 
Sessions

1997 1946 ‘R’

Alabama AL 4779736 Barbour 27457 Jeff 
Sessions

1997 1946 ‘R’

Alabama AL 4779736 Autauga 54571 Richard 
Shelby

1987 1934 ‘R’

Alabama AL 4779736 Baldwin 182265 Richard 
Shelby

1987 1934 ‘R’

Alabama AL 4779736 Barbour 27457 Richard 
Shelby

1987 1934 ‘R’

State Name à State Code
State Code à State Name
Senator Name à Senator Born
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Course
ID

Course
Name

Dept 
Name

Credits Section
ID

Semester Year Building Room 
No.

Capacity Time
Slot ID

Functional dependencies

course_id à title, dept_name, credits
building, room_number à capacity
course_id, section_id, semester, year à building, room_number, time_slot_id

301

} Let R be a relation schema and 
a Í R  and  b Í R

} The functional dependency

a ® b
holds on R iff for any legal relations r(R), whenever two tuples t1 and t2 of r
have same values for a, they have same values for b. 

t1[a] = t2 [a]   Þ t1[b ]  = t2 [b ] 

} Example:

} On this instance, A ® B does NOT hold, but  B ® A does hold.

1 4
1     5
3 7

A     B
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Difference between holding on an instance and holding on all legal relation

Name à Tot_Cred holds on this instance

Is this a true functional dependency ? No.
Two students with the same name can have the different credits.

Can’t draw conclusions based on a single instance
Need to use domain knowledge to decide which FDs hold

student_id dept_name name tot_cred building budget
s1 Comp. Sci. John 30 Iribe Center 10 M
s2 Comp. Sci. Alice 20 Iribe Center 10 M
s2 Math Alice 20 Kirwan Hall 10 M
s3 Comp. Sci. Mike 30 Iribe Center 10 M
s3 Math Mike 30 Kirwan Hall 10 M

303

} Consider a table: R(A, B, C):
◦ With FDs: B à C, and A à BC
◦ So “A” is a Key, but “B” is not

} So: there is a FD whose left hand side is not a key
◦ Leads to redundancy

A B C
a1 b1 c1

a2 b1 c1

a3 b1 c1

a4 b2 c2

a5 b2 c2

a6 b3 c3

a7 b4 c1

Since B is not unique, it may be duplicated
Every time B is duplicated, so is C

Not a problem with A à BC
A can never be duplicated

Not a duplication à Two different tuples just 
happen to have the same value for C
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} Better to split it up

A B
a1 b1

a2 b1

a3 b1

a4 b2

a5 b2

a6 b3

a7 b4

Not a duplication à Two different tuples just 
happen to have the same value for C

B C
b1 c1

b2 c2

b3 c3

b4 c1
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} Functional dependencies and keys
◦ A key constraint is a specific form of a FD.
◦ E.g. if A is a superkey for R, then:

A à R
◦ Similarly for candidate keys and primary keys.

} Deriving FDs
◦ A set of FDs may imply other FDs

◦ e.g. If A à B, and B à C, then clearly A à C

◦ We will see a formal method for inferring this later
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1. A relation instance r satisfies a set of functional 
dependencies, F, if the FDs hold on the relation

2. F holds on a relation schema R if no legal (allowable) 
relation instance of R violates it

3. A functional dependency, A à B, is called trivial if:
◦ B is a subset of A
◦ e.g. Movieyear, length à length

4. Given a set of functional dependencies, F, its closure, 
F+ , is all the FDs that are implied by FDs in F. 
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Instructor: Amol Deshpande
amol@umd.edu

FDs: Armstrong Axioms, etc.
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} Book Chapters (6th Edition)
◦ Section 8.4.1, 8.4.2, 8.4.3

} Key Topics
◦ Closure of an attribute and attribute set

◦ Armstrong Axioms

◦ Extraneous Attributes 

◦ Canonical Cover

} Sufficient to get a high-level idea of these – don’t need to 
understand the entire theory to follow rest of this
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} Given a set of functional dependencies, F, its closure, F+ , is 
all FDs that are implied by FDs in F. 
◦ e.g. If A à B, and B à C, then clearly A à C

} We can find F+ by applying Armstrong’s Axioms:
◦ if b Í a, then a® b (reflexivity)
◦ if a® b, then g a ® g b (augmentation)
◦ if a® b, and b ® g, then a® g (transitivity)

} These rules are 
◦ sound (generate only functional dependencies that actually hold) 
◦ complete (generate all functional dependencies that hold)
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} If a®b and a® g, then a®b g (union)

} If a®b g, then a®b and a® g (decomposition)

} If a®b and g b® d, then a g® d (pseudotransitivity)

} The above rules can be inferred from Armstrong’s axioms.
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} R = (A, B, C, G, H, I)
F = {  A ® B

A ® C
CG ® H
CG ® I

B ® H}
} Some members of F+

◦ A ® H        
� by transitivity from A ® B and B ® H

◦ AG ® I       
� by augmenting A ® C with G, to get AG ® CG 

and then transitivity with CG ® I 
◦ CG ® HI     

� by augmenting CG ® I to infer CG ® CGI, 
and augmenting of CG ® H to infer CGI ® HI, 

and then transitivity
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} Given a set of attributes A and a set of FDs F, closure of A under 
F is the set of all attributes implied by A

} In other words, the largest B such that: A à B

} Redefining super keys:
◦ The closure of a super key is the entire relation schema

} Redefining candidate keys:
1. It is a super key
2. No subset of it is a super key

313

} Simple algorithm

} 1. Start with B = A.
} 2. Go over all functional dependencies, b® g , in F+

} 3. If b Í B, then
Add g to B

} 4. Repeat till B changes
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} R = (A, B, C, G, H, I)
F = {  A ® B

A ® C
CG ® H
CG ® I

B ® H}

} (AG) + ?
◦ 1. result = AG
◦ 2.result = ABCG (A ® C and A ® B)
◦ 3.result = ABCGH (CG ® H and CG Í AGBC)
◦ 4.result = ABCGHI (CG ® I and CG Í AGBCH

} Is (AG) a candidate key ?
1. It is a super key.
2. (A+) = ABCH, (G+) = G.
YES.
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} Determining superkeys and candidate keys

} Determining if A à B is a valid FD
◦ Check if A+ contains B

} Can be used to compute F+
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} Consider F, and a functional dependency, A à B.

} “Extraneous”: Are there any attributes in A or B that can 
be safely removed ?

Without changing the constraints implied by F

} Example:  Given F = {A ® C, AB ® CD}
◦ C is extraneous in AB ® CD since  AB ® C can be inferred even 

after deleting C
◦ ie., given: A à C, and AB à D, we can use Armstrong Axioms to 

infer AB à CD
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} A canonical cover for F is a set of dependencies Fc such 
that 
◦ F logically implies all dependencies in Fc, and 
◦ Fc logically implies all dependencies in F, and
◦ No functional dependency in Fc contains an extraneous 

attribute, and
◦ Each left side of functional dependency in Fc is unique

} In some (vague) sense, it is a minimal version of F

} Read up algorithms to compute Fc
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Instructor: Amol Deshpande
amol@cs.umd.edu

Decompositions

319

} Book Chapters (6th Edition)
◦ Section 8.4.4

} Key Topics
◦ How to decompose a schema in a lossless manner

◦ Dependency preserving decompositions
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} Splitting a relational schema R into two relations R1, R2, 
typically for normalization

} e.g., R(A, B, C, D, E) can be decomposed into:
◦ R1(A, B, C), R2(D, E)

◦ R1(A, B, C, D), R2(D, E)

◦ …

} When is this okay to do?
◦ The two resulting relations must be equivalent to the original relation… always

} Otherwise, it is a “lossy” decomposition, and not allowed
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} Definition: A decomposition of R into (R1, R2) is called lossless if, for all legal 
instances of r(R):

r  = ÕR1 (r )        ÕR2 (r ) 

} In other words, projecting on R1 and R2, and joining back, results in the 
relation you started with

} Rule: A decomposition of R into (R1, R2) is lossless, iff:

R1 ∩ R2 à R1 or     R1 ∩ R2 à R2

in F+.

} Why? The join attributes then form a key for one of the relations
◦ Each tuple from the other relation joins with exactly one from that relation
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} Example: R(A, B, C), FDs: A à B
◦ Decomposition into R1(A, B) and R2(A, C) is lossless

� (R1 ∩ R2 =) A à (R1 =) AB

◦ Decomposition into R1(A, B) and R2(B, C) is not lossless

A B C
a1 b1 c1
a1 b1 c2
a2 b1 c3
a3 b1 c4

A B
a1 b1
a2 b1
a3 b1

B C
b1 c1
b1 c2
b1 c3
b1 c4

A B C
a1 b1 c1
a1 b1 c2
a1 b1 c3
a1 b1 c4
a2 b1 c1
a2 b1 c2
a2 b1 c3
a2 b1 c4
a3 b1 c1
a3 b1 c2
a3 b1 c3
a3 b1 c4

=
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Is it easy to check if the dependencies in F hold ?

Okay as long as the dependencies can be checked in the same table.

Consider R = (A, B, C), and F ={A à B, B à C}

1. Decompose into R1 = (A, B), and R2 = (A, C)

Lossless ? Yes.

But, makes it hard to check for B à C

The data is in multiple tables.

2. On the other hand, R1 = (A, B), and R2 = (B, C),

is both lossless and dependency-preserving

Really ? What about A à C ?

If we can check A à B, and B à C, A à C is implied.
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} Definition: 
◦ Consider decomposition of R into R1, …, Rn.
◦ Let Fi be the set of dependencies F + that include only attributes 

in Ri. 

} The decomposition is  dependency preserving,  if
(F1 È F2 È … È Fn )+ = F +
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Boyce-Codd Normal Form
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} Book Chapters (6th Edition)
◦ Section 8.3.2

} Key Topics
◦ Definition

◦ How BCNF helps avoid redundancy

◦ How to decompose a schema into BCNF

327

1. We will encode and list all our knowledge about the schema
◦ Functional dependencies (FDs)

◦ Also:

� Multi-valued dependencies (briefly discuss later)

� Join dependencies etc…

2. We will define a set of rules that the schema must follow to 
be considered good
◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …

◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema 
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} A relation schema R is “in BCNF” if:
◦ Every functional dependency A à B that holds on it is EITHER:

1. Trivial OR
2. A is a superkey of R

} Why is BCNF good ?
◦ Guarantees that there can be no redundancy because of a 

functional dependency
◦ Consider a relation r(A, B, C, D) with functional dependency 

A à B and two tuples: (a1, b1, c1, d1), and (a1, b1, c2, d2)
� b1 is repeated because of the functional dependency
� BUT this relation is not in BCNF

� A à B is neither trivial nor is A a superkey for the relation
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} Why does redundancy arise ?
◦ Given a FD, A à B, if A is repeated (B – A) has to be repeated 
1. If rule 1 is satisfied, (B – A) is empty, so not a problem.
2. If rule 2 is satisfied, then A can’t be repeated, so this doesn’t 

happen either

} Hence no redundancy because of FDs
◦ Redundancy may exist because of other types of dependencies
� Higher normal forms used for that (specifically, 4NF)
◦ Data may naturally have duplicated/redundant data
� We can’t control that unless a FD or some other dependency is 

defined
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} What if the schema is not in BCNF ?
◦ Decompose (split) the schema into two pieces.

} From the previous example: split the schema into:
◦ r1(A, B),  r2(A, C, D)
◦ The first schema is in BCNF, the second one may not be (and may 

require further decomposition)
◦ No repetition now: r1 contains (a1, b1), but b1 will not be repeated

} Careful: you want the decomposition to be lossless
◦ No information should be lost
� The above decomposition is lossless
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For all dependencies A à B in F+, check if A is a superkey
By using attribute closure

If not, then 
Choose a dependency in F+ that breaks the BCNF rules, say A à B
Create R1 = A B
Create R2 = A (R – B – A)
Note that: R1 ∩ R2 = A and A à AB (= R1), so this is lossless decomposition

Repeat for R1, and R2
By defining F1+ to be all dependencies in F that contain only attributes in R1
Similarly F2+
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B à C

R = (A, B, C)
F = {A à B, B à C}

Candidate keys = {A}
BCNF = No. B à C violates.

R1 = (B, C)
F1 = {B à C}

Candidate keys = {B}
BCNF = true

R2 = (A, B)
F2 = {A à B}

Candidate keys = {A}
BCNF = true

333

R3 = (A, C, D)
F3 = {AC à D}

Candidate keys = {AC}
BCNF = true

A à B

R = (A, B, C, D, E)
F = {A à B, BC à D}

Candidate keys = {ACE}
BCNF = Violated by {A à B, BC à D} etc…

R1 = (A, B)
F1 = {A à B}

Candidate keys = {A}
BCNF = true

R2 = (A, C, D, E)
F2 = {AC à D}

Candidate keys = {ACE}
BCNF = false (AC à D)

From A à B and BC à D by 
pseudo-transitivity

AC à D

R4 = (A, C, E)
F4 = {}  [[ only trivial ]]

Candidate keys = {ACE}
BCNF = true

Dependency preservation ???
We can check: 

A à B (R1), AC à D (R3), 
but we lost BC à D

So this is not a dependency
-preserving decomposition
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R3 = (A, B)
F3 = {A à B}

Candidate keys = {A}
BCNF = true

BC à D

R = (A, B, C, D, E)
F = {A à B, BC à D}

Candidate keys = {ACE}
BCNF = Violated by {A à B, BC à D} etc…

R1 = (B, C, D)
F1 = {BC à D}

Candidate keys = {BC}
BCNF = true

R2 = (B, C, A, E)
F2 = {A à B}

Candidate keys = {ACE}
BCNF = false (A à B)

A à B

R4 = (A, C, E)
F4 = {}  [[ only trivial ]]

Candidate keys = {ACE}
BCNF = true

Dependency preservation ???
We can check: 

BC à D (R1), A à B (R3), 
Dependency-preserving
decomposition
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A à BC

R = (A, B, C, D, E, H)
F = {A à BC, E à HA}
Candidate keys = {DE}

BCNF = Violated by {A à BC} etc…

R1 = (A, B, C)
F1 = {A à BC}

Candidate keys = {A}
BCNF = true

R2 = (A, D, E, H)
F2 = {E à HA}

Candidate keys = {DE}
BCNF = false (E à HA)

E à HA

R3 = (E, H, A)
F3 = {E à HA}

Candidate keys = {E}
BCNF = true

R4 = (ED)
F4 = {}  [[ only trivial ]]
Candidate keys = {DE}

BCNF = true

Dependency preservation ???
We can check: 

A à BC (R1), E à HA (R3), 
Dependency-preserving
decomposition
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3NF, 4NF, and Other Issues

337

} Book Chapters (6th Edition)
◦ Section 8.3.4, 8.3.5, 8.5.2, 8.6 (at a high level)

} Key Topics
◦ BCNF can’t always preserve dependencies

◦ How 3NF fixes that

◦ BCNF causes redundancy because of “multi-valued dependencies”

◦ How 4NF fixes that
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} R = (J, K, L}
} F = {JK ® L, L ® K }

} Two candidate keys = JK and JL

} R is not in BCNF

} Any decomposition of R will fail to preserve
JK ® L

} This implies that testing for JK ® L requires a join
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} Not always possible to find a dependency-preserving 
decomposition that is in BCNF.

} PTIME to determine if there exists a dependency-
preserving decomposition in BCNF
◦ in size of F

} NP-Hard to find one if it exists

} Better results exist if F satisfies certain properties
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} Definition: Prime attributes
An attribute that is contained in a candidate key for R

} Example 1:
◦ R = (A, B, C, D, E, H}, F = {A à BC, E à HA}, 
◦ Candidate keys = {ED}
◦ Prime attributes: D, E

} Example 2:
◦ R = (J, K, L), F = {JK à L, L à K}, 
◦ Candidate keys = {JL, JK}
◦ Prime attributes: J, K, L

} Observation/Intuition: 
1. A key has no redundancy (is not repeated in a relation)
2. A prime attribute has limited redundancy
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} Given a relation schema R, and a set of functional 
dependencies F, if every FD, A à B, is either:

1. Trivial, or
2. A is a superkey of R, or
3. All attributes in (B – A) are prime

Then, R is in 3NF (3rd Normal Form)

} Why is 3NF good ?
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} Why does redundancy arise ?
◦ Given a FD, A à B, if A is repeated (B – A) has to be repeated 
1. If rule 1 is satisfied, (B – A) is empty, so not a problem.
2. If rule 2 is satisfied, then A can’t be repeated, so this doesn’t 

happen either
3. If not, rule 3 says (B – A) must contain only prime attributes

This limits the redundancy somewhat.

} So 3NF relaxes BCNF somewhat by allowing for some (hopefully 
limited) redundancy

} Why ?
◦ There always exists a dependency-preserving lossless decomposition in 3NF.
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} A synthesis algorithm

} Start with the canonical cover, and construct the  3NF 
schema directly

} Homework assignment.
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MovieTitle MovieYear StarName Address

Star wars 1977 Harrison Ford Address 1, LA
Star wars 1977 Harrison Ford Address 2, FL
Indiana Jones 198x Harrison Ford Address 1, LA
Indiana Jones 198x Harrison Ford Address 2, FL

Witness 19xx Harrison Ford Address 1, LA

Witness 19xx Harrison Ford Address 2, FL

… … … …

Lot of redundancy

FDs ? No non-trivial FDs.

So the schema is trivially in BCNF (and 3NF)

What went wrong ? 
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} The redundancy is because of multi-valued dependencies
} Denoted:

starname ®® address 
starname ®® movietitle, movieyear

} Should not happen if the schema is constructed from an E/R 
diagram

} Functional dependencies are a special case of multi-valued 
dependencies
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} Similar to BCNF, except with MVDs instead of FDs.

} Given a relation schema R, and a set of multi-valued 
dependencies F, if every MVD, A àà B, is either:

1. Trivial, or
2. A is a superkey of R

Then, R is in 4NF (4th Normal Form)

} 4NF à BCNF à 3NF à 2NF à 1NF:  
◦ If a schema is in 4NF, it is in BCNF.
◦ If a schema is in BCNF, it is in 3NF.

} Other way round is untrue.
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3NF BCNF 4NF

Eliminates redundancy 
because of FD’s

Mostly Yes Yes

Eliminates redundancy 
because of MVD’s

No No Yes

Preserves FDs Yes. Maybe Maybe

Preserves MVDs Maybe Maybe Maybe

4NF is typically desired and achieved.
A good E/R diagram won’t generate non-4NF relations at all

Choice between 3NF and BCNF is up to the designer
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Recap and Other Issues

349

} Book Chapters (6th Edition)
◦ Section 8.8

} Key Topics
◦ Database design process

◦ Denormalization

◦ Other normal forms 

◦ Recap
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} Three ways to come up with a schema

1. Using E/R diagram
◦ If good, then little normalization is needed
◦ Tends to generate 4NF designs

2. A universal relation R that contains all attributes.
◦ Called universal relation approach
◦ Note that MVDs will be needed in this case

3. An ad hoc schema that is then normalized
◦ MVDs may be needed in this case
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} What about 1st and 2nd normal forms ?
} 1NF:
◦ Essentially says that no set-valued attributes allowed
◦ Formally, a domain is called atomic if the elements of the 

domain are considered indivisible
◦ A schema is in 1NF if the domains of all attributes are atomic
◦ We assumed 1NF throughout the discussion
� Non 1NF is just not a good idea

} 2NF:
◦ Mainly historic interest
◦ See Exercise 7.15 in the book
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} We would like our relation schemas to:
◦ Not allow potential redundancy because of FDs or MVDs
◦ Be dependency-preserving:
� Make it easy to check for dependencies
� Since they are a form of integrity constraints

} Functional Dependencies/Multi-valued Dependencies
◦ Domain knowledge about the data properties

} Normal forms
◦ Defines the rules that schemas must follow
◦ 4NF is preferred, but 3NF is sometimes used instead  
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} Denormalization
◦ After doing the normalization, we may have too many tables
◦ We may denormalize for performance reasons
� Too many tables à too many joins during queries
◦ A better option is to use views instead
� So if a specific set of tables is joined often, create a view on the join

} More advanced normal forms
◦ project-join normal form (PJNF or 5NF)
◦ domain-key normal form
◦ Rarely used in practice
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l Shifting into discussing the internals of a DBMS 
l How data stored? How queries/transactions executed?

l Topics:
l Storage: How is data stored? Important features of the 

storage devices (RAM, Disks, SSDs, etc)
l File Organization: How are tuples mapped to blocks
l Indexes: How to quickly find specific tuples of interest (e.g., 

all ‘friends’ of ‘user0’)
l Query processing: How to execute different relational 

operations? How to combine them to execute an SQL query?
l Query optimization: How to choose the best way to execute a 

query?

Database Implementation
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Query Processing/Storage

Space Management on 
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

• Storage hierarchy
• How are relations mapped to files?
• How are tuples mapped to disk blocks?

• Bringing pages from disk to memory
• Managing the limited memory

• Given an input user query, decide 
how to “execute” it

• Specify sequence of pages to be 
brought in memory

• Operate upon the tuples to produce 
results

user query

page 
requests

block 
requests

results

pointers
to pages

data
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Storage: Storage Hierarchy
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l Book Chapters
l 10.1 (and some other online resources)

l Key topics:
l Differences between storage media
l Storage hierarchy
l Caches 

Storage Hierarchy
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Storage Options
l At various points, data stored in different storage 

hardware
l Memory, Disks, SSDs, Tapes, Cache
l Tradeoffs between speed and cost of access
l CPU needs the data in memory and cache to operate on it 

l Volatile vs nonvolatile
l Volatile: Loses contents when power switched off

l Sequential vs random access
l Sequential: read the data contiguously

l select * from employee
l Random: read the data from anywhere at any time

l select * from employee where name like ‘__a__b’
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Storage Hierarchy

source: http://cse1.net/recaps/4-memory.html
361

AMD Ryzen CPU Architecture

Die shot overlaid with functional units

https://www.techpowerup.com/review/amd-ryzen-5-1600/3.html
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Storage Hierarchy

source: http://cse1.net/recaps/4-memory.html
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Storage Options 
l Primary

l e.g. Main memory, cache; typically volatile, fast

l Secondary
l e.g. Disks; Solid State Drives (SSD); non-volatile

l Tertiary
l e.g. Tapes; Non-volatile, super cheap, slow

l Each storage media has different performance 
characteristics
l Important to understand in order to write systems or optimize 

queries or tasks
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Storage Hierarchy: Cache

l Cache 

l Super fast; volatile; Typically on chip

l L1 vs L2 vs L3 caches ???
l L1 about 64KB or so; L2 about 1MB; L3 8MB (on chip) to 256MB (off chip)

l Huge L3 caches available now-a-days

l Becoming more and more important to care about this

l Cache misses are expensive

l Similar tradeoffs as were seen between main memory and disks
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Storage Hierarchy: Cache

source: http://cse1.net/recaps/4-memory.html
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Storage Hierarchy: Cache
K8 core in the AMD Athlon 64 CPU
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Storage Hierarchy: Main 
Memory
l Data must be brought from disks/SSDs into Memory (and then into 

Caches) for the CPU to access it
l CPU has no “direct” connection to the disks

l 10s or 100s of ns; Volatile (so will not survive a power failure)

l Pretty cheap and dropping: 1GByte < $10 today

l Main memory databases very common now-a-days
l Dramatically changes the tradeoffs

l Don’t need to worry about the disks or SSDs as much
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Storage Hierarchy

l Magnetic Disk (Hard Drive)
l Non-volatile

l Sequential access much much faster than random access

l Discuss in more detail later

l Optical Storage - CDs/DVDs; Jukeboxes
l Used more as backups… Why ?

l Very slow to write (if possible at all)

l Tape storage 
l Backups; super-cheap; painful to access

l IBM just released a secure tape drive storage solution
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How important is this today?
l Trade-offs shifted drastically over last 10-15 years

l Especially with fast network, SSDs, and high memories
l However, the volume of data is also growing quite rapidly

l Some observations:
l Cheaper to access another computer’s memory than accessing your 

own disk
l Cache is playing more and more important role 
l Enough memory around that data often fits in memory of a single 

machine, or a cluster of machines
l “Disk” considerations less important

l Still: Disks are where most of the data lives today
l Similar reasoning/algorithms required though
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Storage: Disks and SSDs
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l Book Chapters
l 10.2

l Key topics:
l Key components
l Characteristics
l Solid State Drives

Disks and SSDs
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1956
IBM RAMAC
24” platters
100,000 characters each
5 million characters

373

1979
SEAGATE
5MB

1998
SEAGATE
47GB

2006
Western Digital
500GB
Weight (max. g): 600g 
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10.2 Magnetic Disk and Flash Storage 433

track t

sector s

spindle

cylinder c

platter
arm

read–write
head

arm assembly

rotation

Figure 10.2 Moving head disk mechanism.

typically 512 bytes; there are about 50,000 to 100,000 tracks per platter, and 1 to
5 platters per disk. The inner tracks (closer to the spindle) are of smaller length,
and in current-generation disks, the outer tracks contain more sectors than the
inner tracks; typical numbers are around 500 to 1000 sectors per track in the inner
tracks, and around 1000 to 2000 sectors per track in the outer tracks. The numbers
vary among different models; higher-capacity models usually have more sectors
per track and more tracks on each platter.

The read–write head stores information on a sector magnetically as reversals
of the direction of magnetization of the magnetic material.

Each side of a platter of a disk has a read–write head that moves across the
platter to access different tracks. A disk typically contains many platters, and the
read–write heads of all the tracks are mounted on a single assembly called a disk
arm, and move together. The disk platters mounted on a spindle and the heads
mounted on a disk arm are together known as head–disk assemblies. Since the
heads on all the platters move together, when the head on one platter is on the ith
track, the heads on all other platters are also on the ith track of their respective
platters. Hence, the ith tracks of all the platters together are called the ith cylinder.

Today, disks with a platter diameter of 3 1
2 inches dominate the market. They

have a lower cost and faster seek times (due to smaller seek distances) than do
the larger-diameter disks (up to 14 inches) that were common earlier, yet they
provide high storage capacity. Disks with even smaller diameters are used in
portable devices such as laptop computers, and some handheld computers and
portable music players.

The read–write heads are kept as close as possible to the disk surface to
increase the recording density. The head typically floats or flies only microns
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“Typical” Values

Diameter: 1 inch ® 15 inches
Cylinders: 100  ® 2000
Surfaces: 1 or 2
(Tracks/cyl) 2 (floppies) ® 30
Sector Size: 512B ® 50K
Capacity à 360 KB to 2TB (as of Feb 2010)
Rotations per minute (rpm) à 5400 to 15000
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Accessing Data

l Accessing a sector
l Time to seek to the track (seek time)

l average 4 to 10ms
l + Waiting for the sector to get under the head (rotational latency)

l average 4 to 11ms
l + Time to transfer the data (transfer time)

l very low
l About 10ms per access

l So if randomly accessed blocks, can only do 100 block transfers
l 100 x 512bytes = 50 KB/s

l Data transfer rates
l Rate at which data can be transferred (w/o any seeks)
l 30-50MB/s to up to 200MB/s (Compare to above)

l Seeks are bad !
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Reliability

l Mean time to/between failure (MTTF/MTBF):
l 57 to 136 years

l Consider:
l 1000 new disks
l 1,200,000 hours of MTTF each
l On average, one will fail 1200 hours = 50 days !

l Need to assume disk failures are common
l Handled today through keeping data in duplicate, or triplicate
l If a disk fails, replace with a new disk and copy data over
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Disk Controller

l Interface between the disk and the CPU
l Accepts the commands
l checksums to verify correctness
l Remaps bad sectors
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Optimizing block accesses

l Typically sectors too small
l Block: A contiguous sequence of sectors

l 512 bytes to several Kbytes
l All data transfers done in units of blocks

l Scheduling of block access requests ?
l Considerations: performance and fairness
l Elevator algorithm
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Solid State Drives

l Essentially flash that emulates hard disk interfaces

https://blogs.umass.edu/Techbytes/2018/02/23/types-of-ssds-
and-which-ones-to-buy/
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Solid State Drives

l Still support the same “block-oriented” interface
l So reads/writes happen in units of blocks

l No seeks à Much better random reads performance

l Writes are more complicated
l Must write an entire block at a time, after first “erasing” it

l Limit on how many times you can erase a block

l Wear leveling
l Distributes writes across the SSD for uniform wearing out

l Flash Translation Layer (FTL) takes care of these issues
l About a factor of 5-10 more expensive right now
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Instructor: Amol Deshpande
amol@umd.edu

Virtual Memory and Buffer Manager
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l Book Chapters
l 10.7 and other resources (VM not covered in book)

l Key topics:
l Role of a Buffer Manager
l Buffer Manager Replacement Policies
l Key requirements and definitions for Buffer Manager
l Brief recap of Virtual Memory and Why it matters in 

practice

Virtual memory and buffer manager
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Query Processing/Storage

Space Management on 
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

• Storage hierarchy
• How are relations mapped to files?
• How are tuples mapped to disk blocks?

• Bringing pages from disk to memory
• Managing the limited memory

• Given an input user query, decide 
how to “execute” it

• Specify sequence of pages to be 
brought in memory

• Operate upon the tuples to produce 
results

user query

page 
requests

block 
requests

results

pointers
to pages

data
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Buffer Manager

l When the QP wants a block, it asks the “buffer manager”
l The block must be in memory to operate upon

l Buffer manager:
l If block already in memory: return a pointer to it
l If not:

l Evict a current page
§ Either write it to temporary storage,
§ or write it back to its original location,
§ or just throw it away (if it was read from disk, and not modified)

l and make a request to the storage subsystem to fetch it
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Buffer Manager

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy
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Buffer Manager

l Similar to virtual memory manager

l Buffer replacement policies
l What page to evict ?

l LRU: Least Recently Used
l Throw out the page that was not used in a long time

l MRU: Most Recently Used
l The opposite

l Why ? Works better for database “scan” operations

l LRU-k
l Look at the penultimate access rather than the last access
l Does as well as MRU for scans
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Replacement Policy: Example
l Say Buffer can hold 3 pages, and pages are: A, B, C, D, E, F

l For LRU-2: we look at the second-last access
l If no second-last access, then treat it as: - ∞
l Break ties based on last access
l Once a page goes to disk, the accesses reset

Page Request LRU State MRU State LRU-2 State

A A A A

B A, B B, A A, B

C A, B, C C, B, A A, B, C

D B, C, D D, B, A B, C, D

A C, D, A A, D, B C, D, A

C D, A, C C, D, B D, A, C

B A, C, B B, C, D A, B, C

Order of eviction
i.e., A will be evicted first

Different from LRU – B will be evicted earlier
Penultimate access for C is earlier than B (- infinity for B)
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Buffer Manager

l Pinning a block
l Not allowed to write back to the disk

l Force-output (force-write)
l Force the contents of a block to be written to disk

l Order the writes
l This block must be written to disk before this block

l Critical for fault tolerant guarantees
l Otherwise the database has no control over whats on disk 

and whats not on disk
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Reality Check…

l Most operating systems don’t provide user programs 
with direct access to memory
l Some DBs built their own OSs because of this in the early days

l Most databases today run on top of your OSes
l Including our PostgreSQL

l Causes several problems
l OS Buffer Manager doesn’t provide the required functionality

l No real control over when pages are written back

l Can’t “pin” pages, or “force-write”
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Reality Check…

l Memory-mapped files help with many of these issues
l Allow mapping a disk file directly to virtual memory

l More efficient than going through the OS

l With increasing memory sizes, most databases now-a-days fit 
in memory
l Many newer database systems redesigned to exploit this

l Issues of cache/memory, how memory is managed, etc. becoming 
increasingly important

l Distributed/parallel architectures also add more complexity to this
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Instructor: Amol Deshpande
amol@umd.edu

File Organization
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l Book Chapters
l 10.5, 10.6

l Key topics:
l Different ways the tuples mapped to disk blocks
l Pros and cons of the different approaches

File Organization & Indexes Overview
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Review: Query Processing/Storage

Space Management on 
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

• Storage hierarchy
• How are relations mapped to files?
• How are tuples mapped to disk blocks?

• Bringing pages from disk to memory
• Managing the limited memory

• Given a input user query, decide 
how to “execute” it

• Specify sequence of pages to be 
brought in memory

• Operate upon the tuples to produce 
results

user query

page 
requests

block 
requests

results

pointers
to pages

data
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Mapping Tuples to Disk Blocks
1.6 Database Design 19

ID name salary dept name building budget

22222 Einstein 95000 Physics Watson 70000
12121 Wu 90000 Finance Painter 120000
32343 El Said 60000 History Painter 50000
45565 Katz 75000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000
76766 Crick 72000 Biology Watson 90000
10101 Srinivasan 65000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
83821 Brandt 92000 Comp. Sci. Taylor 100000
15151 Mozart 40000 Music Packard 80000
33456 Gold 87000 Physics Watson 70000
76543 Singh 80000 Finance Painter 120000

Figure 1.4 The faculty table.

We shall discuss these problems with the help of a modified database design for
our university example.

Suppose that instead of having the two separate tables instructor and depart-
ment, we have a single table, faculty, that combines the information from the two
tables (as shown in Figure 1.4). Notice that there are two rows in faculty that
contain repeated information about the History department, specifically, that
department’s building and budget. The repetition of information in our alterna-
tive design is undesirable. Repeating information wastes space. Furthermore, it
complicates updating the database. Suppose that we wish to change the budget
amount of the History department from $50,000 to $46,800. This change must
be reflected in the two rows; contrast this with the original design, where this
requires an update to only a single row. Thus, updates are more costly under the
alternative design than under the original design. When we perform the update
in the alternative database, we must ensure that every tuple pertaining to the His-
tory department is updated, or else our database will show two different budget
values for the History department.

Now, let us shift our attention to the issue of “inability to represent certain
information.” Suppose we are creating a new department in the university. In the
alternative design above, we cannot represent directly the information concerning
a department (dept name, building, budget) unless that department has at least one
instructor at the university. This is because rows in the faculty table require
values for ID, name, and salary. This means that we cannot record information
about the newly created department until the first instructor is hired for the new
department.

One solution to this problem is to introduce null values. The null value
indicates that the value does not exist (or is not known). An unknown value
may be either missing (the value does exist, but we do not have that information)
or not known (we do not know whether or not the value actually exists). As we

1.5 Relational Databases 13

ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

dept name building budget

Comp. Sci. Taylor 100000
Biology Watson 90000
Elec. Eng. Taylor 85000
Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table

Figure 1.2 A sample relational database.

associated with the Physics department. In Chapter 8, we shall study how to
distinguish good schema designs from bad schema designs.

1.5.2 Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an
SQL query that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed.
More specifically, the result of executing this query is a table with a single column
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associated with the Physics department. In Chapter 8, we shall study how to
distinguish good schema designs from bad schema designs.

1.5.2 Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an
SQL query that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed.
More specifically, the result of executing this query is a table with a single column

• Very important implications on 
performance

• Quite a few different ways to do 
this 

• Similar issues even if not using 
disks as the primary storage 

?
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File Organization

l Requirements and Performance Goals:
l Allow insertion/deletions of tuples/records in relations

l Fetch a particular record (specified by record id)

l Find all tuples that match a condition (say SSN = 123) ?

l Fetch all tuples from a specific relation (scans)
l Faster if they are all sequential/in contiguous blocks

l Allow building of “indexes” 
l Auxiliary data structures maintained on disks and in memory for faster 

retrieval

l And so on…
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File System or Not

l Option 1: Use OS File System
l File systems are a standard abstraction provided by Operating 

Systems (OS) for managing data
l Major Con: Databases don’t have as much control over the 

physical placement anymore --- OS controls that
l E.g., Say DBMS maps a relation to a “file”
l No guarantee that the file will be “contiguous” on the disk
l OS may spread it across the disk, and won’t even tell the DBMS

l Option 2: DBMS directly works with the disk or uses a 
lightweight/custom OS
l Increasingly uncommon – most DBMSs today run on top of OSes 

(e.g., PostgreSQL on your laptop, or on linux VMs in the cloud, or 
on a distributed HDFS)
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Through a File System

l Option 1: Allocate a single “file” on the disk, and 
treat it as a contiguous sequence of blocks
l This is what PostgreSQL does
l The blocks may not actually be contiguous on disk

l Option 2: A different file per relation
l Some of the simpler DBMS use this approach

l Either way: we have a set of relations mapped to a set of 
blocks on disk
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Assumptions for Now

l Each relation stored separately on a separate set of blocks
l Assumed to be contiguous

l Each “index” maintained in a separate set of blocks
l Assumed to be contiguous

instructor student B+-tree index for instructor

Disk 
block

Some extra space for new tuples
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Within block: Fixed Length Records

l n = number of bytes per record
l Store record i at position:

l n * (i – 1)
l Records may cross blocks

l Not desirable
l Stagger so that that doesn’t happen

l Inserting a tuple ?
l Depends on the policy used
l One option: Simply append at the end 

of the record

l Deletions ?
l Option 1: Rearrange
l Option 2: Keep a free list and use for 

next insert
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Within block: Fixed Length Records

l Deleting: using “free lists”
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Within block: Variable-length Records

l Indirection:
l The records may move inside the page, but the outside world is oblivious to it
l Why ?

l The headers are used as a indirection mechanism
l Record ID 1000 is the 5th entry in the page number X

Slotted page/block structure

404



Across Blocks of a Relation

l Which block should a record go to ?
l Anywhere ?

l How to search for “SSN = 123” ?
l Called “heap” organization

l Sorted by SSN ?
l Called “sequential” organization
l Keeping it sorted would be painful
l How would you search ?

l Based on a “hash” key
l Called “hashing” organization
l Store the record with SSN = x in the block number x%1000
l Why ? 
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Across Blocks: Sequential File 
Organization

l Keep sorted by some search key
l Insertion

l Find the block in which the tuple should be

l If there is free space, insert it

l Otherwise, must create overflow pages

l Deletions
l Delete and keep the free space

l Databases tend to be insert heavy, so free space gets used 
fast

l Can become fragmented

l Must reorganize once in a while
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Across Blocks: Sequential File 
Organization

l What if I want to find a particular record by value ?

l Account info for SSN = 123

l Binary search

l Takes log(n) number of disk accesses

l Random accesses

l Too much

l n = 1,000,000,000 -- log(n) = 30

l Recall each random access approx 10 ms

l 300 ms to find just one account information

l < 4 requests satisfied per second

Indexes – next topic
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Advanced Topics

l Row vs columnar representation:
l We are largely focused on row 

representation
l Column-based organization much 

more efficient for queries
l But are not as efficient to update

l Used by most modern warehouses
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Advanced Topics

l Data Storage Formats used in ”big data” world
l Parquet, Avro, and many others

l Sophisticated on-disk and in-memory representations for 
maintaining very large volumes of data as ”files”
l That can be emailed, shared, interpreted by many different programs

l Typically tend to be ”column-oriented” 
l Are not designed to be easy to update (by and large)

l Lot of work in recent years on this
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Indexes Overview
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l Book Chapters
l 11.1, 11.2

l Key topics:
l How an “index” helps efficiently find tuples that satisfy 

a condition?
l What are key characteristics of indexes?

File Organization & Indexes Overview
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Index

l A data structure for efficient search through large databaess
l Two key ideas:

l The records are mapped to the disk blocks in specific ways
l Sorted, or hash-based

l Auxiliary data structures are maintained that allow quick search
l Search key:

l Attribute or set of attributes used to look up records
l E.g. SSN for a persons table

l Two types of indexes
l Ordered indexes
l Hash-based indexes

l Think library index/catalogue
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Ordered Indexes
l Primary index

l The relation is sorted on the search key of the index
l Secondary index

l It is not
l Can have only one primary index on a relation

Relation

Index

11.2 Ordered Indices 479

Consider a (printed) dictionary. The header of each page lists the first word
alphabetically on that page. The words at the top of each page of the book index
together form a sparse index on the contents of the dictionary pages.

As another example, suppose that the search-key value is not not a primary
key. Figure 11.4 shows a dense clustering index for the instructor file with the
search key being dept name. Observe that in this case the instructor file is sorted
on the search key dept name, instead of ID, otherwise the index on dept name
would be a nonclustering index. Suppose that we are looking up records for
the History department. Using the dense index of Figure 11.4, we follow the
pointer directly to the first History record. We process this record, and follow the
pointer in that record to locate the next record in search-key (dept name) order. We
continue processing records until we encounter a record for a department other
than History.

As we have seen, it is generally faster to locate a record if we have a dense
index rather than a sparse index. However, sparse indices have advantages over
dense indices in that they require less space and they impose less maintenance
overhead for insertions and deletions.

There is a trade-off that the system designer must make between access time
and space overhead. Although the decision regarding this trade-off depends on
the specific application, a good compromise is to have a sparse index with one
index entry per block. The reason this design is a good trade-off is that the
dominant cost in processing a database request is the time that it takes to bring
a block from disk into main memory. Once we have brought in the block, the
time to scan the entire block is negligible. Using this sparse index, we locate the
block containing the record that we are seeking. Thus, unless the record is on an
overflow block (see Section 10.6.1), we minimize block accesses while keeping
the size of the index (and thus our space overhead) as small as possible.
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32343
76766
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58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
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22222 Einstein
32343 El Said
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90000
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95000
60000
87000

Figure 11.3 Sparse index.
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Primary Sparse Index
l Every key doesn’t have to appear in the index
l Allows for very small indexes

l Better chance of fitting in memory
l Tradeoff: Must access the relation file even if the record is not 

present
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Primary Dense Index
l Every key must appear in the index
l Index becomes pretty large, but can often avoid having to go 

to the relation
l E.g., select * from instructor where ID = 10000

l Not found in the index, so can return immediately478 Chapter 11 Indexing and Hashing
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Figure 11.2 Dense index.

• Dense index: In a dense index, an index entry appears for every search-key
value in the file. In a dense clustering index, the index record contains the
search-key value and a pointer to the first data record with that search-key
value. The rest of the records with the same search-key value would be stored
sequentially after the first record, since, because the index is a clustering one,
records are sorted on the same search key.

In a dense nonclustering index, the index must store a list of pointers to
all records with the same search-key value.

• Sparse index: In a sparse index, an index entry appears for only some of the
search-key values. Sparse indices can be used only if the relation is stored in
sorted order of the search key, that is, if the index is a clustering index. As
is true in dense indices, each index entry contains a search-key value and a
pointer to the first data record with that search-key value. To locate a record,
we find the index entry with the largest search-key value that is less than or
equal to the search-key value for which we are looking. We start at the record
pointed to by that index entry, and follow the pointers in the file until we find
the desired record.

Figures 11.2 and 11.3 show dense and sparse indices, respectively, for the
instructor file. Suppose that we are looking up the record of instructor with ID
“22222”. Using the dense index of Figure 11.2, we follow the pointer directly to
the desired record. Since ID is a primary key, there exists only one such record
and the search is complete. If we are using the sparse index (Figure 11.3), we
do not find an index entry for “22222”. Since the last entry (in numerical order)
before “22222” is “10101”, we follow that pointer. We then read the instructor file
in sequential order until we find the desired record.
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Secondary Index
l Relation sorted on ID
l But we want an index on salary
l Must be dense

l Every search key must appear in the index

484 Chapter 11 Indexing and Hashing

only some of the search-key values, since it is always possible to find records
with intermediate search-key values by a sequential access to a part of the file, as
described earlier. If a secondary index stores only some of the search-key values,
records with intermediate search-key values may be anywhere in the file and, in
general, we cannot find them without searching the entire file.

A secondary index on a candidate key looks just like a dense clustering
index, except that the records pointed to by successive values in the index are not
stored sequentially. In general, however, secondary indices may have a different
structure from clustering indices. If the search key of a clustering index is not a
candidate key, it suffices if the index points to the first record with a particular
value for the search key, since the other records can be fetched by a sequential
scan of the file.

In contrast, if the search key of a secondary index is not a candidate key, it
is not enough to point to just the first record with each search-key value. The
remaining records with the same search-key value could be anywhere in the file,
since the records are ordered by the search key of the clustering index, rather
than by the search key of the secondary index. Therefore, a secondary index must
contain pointers to all the records.

We can use an extra level of indirection to implement secondary indices on
search keys that are not candidate keys. The pointers in such a secondary index
do not point directly to the file. Instead, each points to a bucket that contains
pointers to the file. Figure 11.6 shows the structure of a secondary index that uses
an extra level of indirection on the instructor file, on the search key salary.

A sequential scan in clustering index order is efficient because records in
the file are stored physically in the same order as the index order. However,
we cannot (except in rare special cases) store a file physically ordered by both
the search key of the clustering index and the search key of a secondary index.
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65000
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92000
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10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
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33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 11.6 Secondary index on instructor file, on noncandidate key salary.
417

Multi-level Indexes

l What if the index itself is too big for 
memory ?

l Relation size = n = 1,000,000,000
l Block size = 100 tuples per block
l So, number of pages = 10,000,000
l Keeping one entry per page takes too 

much space
l Solution

l Build an index on the index itself
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Multi-level Indexes

l How do you search through a multi-level index ?

l What about keeping the index up-to-date ?
l Tuple insertions and deletions

l This is a static structure
l Need overflow pages to deal with insertions

l Works well if no inserts/deletes
l Not so good when inserts and deletes are common
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Instructor: Amol Deshpande
amol@cs.umd.edu

B+-Trees: Basics

420



l Book Chapters
l 11.3

l Key topics:
l B+-Trees as a multi-level index, and basic properties
l How to search in a B+-Tree?

B+-Trees
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Figure 11.9 B+-tree for instructor file (n = 4).

Observe that the height of this tree is less than that of the previous tree, which
had n = 4.

These examples of B+-trees are all balanced. That is, the length of every path
from the root to a leaf node is the same. This property is a requirement for a B+-
tree. Indeed, the “B” in B+-tree stands for “balanced.” It is the balance property of
B+-trees that ensures good performance for lookup, insertion, and deletion.

11.3.2 Queries on B+-Trees

Let us consider how we process queries on a B+-tree. Suppose that we wish to
find records with a search-key value of V. Figure 11.11 presents pseudocode for
a function find() to carry out this task.

Intuitively, the function starts at the root of the tree, and traverses the tree
down until it reaches a leaf node that would contain the specified value if it exists
in the tree. Specifically, starting with the root as the current node, the function
repeats the following steps until a leaf node is reached. First, the current node
is examined, looking for the smallest i such that search-key value Ki is greater

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

Figure 11.10 B+-tree for instructor file with n = 6.

Index Disk Blocks

422



B+-Tree Node Structure

l Typical node

l Ki are the search-key values 
l Pi are pointers to children (for non-leaf nodes) or pointers to 

records or buckets of records (for leaf nodes).

l The search-keys in a node are ordered 
K1 < K2 < K3 < . . . < Kn–1
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Properties of B+-Trees

l It is balanced
l Every path from the root to a leaf is same length

l Leaf nodes (at the bottom)
l P1 contains the pointers to tuple(s) with key K1

l …
l Pn is a pointer to the next leaf node
l Must contain at least n/2 entries

424



Properties

l Interior nodes

l All tuples in the subtree pointed to by P1, have search key < K1

l To find a tuple with key K1’ < K1, follow P1

l …

l Finally, search keys in the tuples contained in the subtree pointed 

to by Pn, are all larger than Kn-1

l Must contain at least n/2 entries (unless root)
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B+-Trees - Searching

l How to search ?
l Follow the pointers

l Logarithmic
l logB/2(N), where B = Number of entries per block
l B is also called the order of the B+-Tree Index

l Typically 100 or so

l If a relation contains1,000,000,000 entries, takes only 4 
random accesses

l The top levels are typically in memory

l So only requires 1 or 2 random accesses per request
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Figure 11.9 B+-tree for instructor file (n = 4).

Observe that the height of this tree is less than that of the previous tree, which
had n = 4.

These examples of B+-trees are all balanced. That is, the length of every path
from the root to a leaf node is the same. This property is a requirement for a B+-
tree. Indeed, the “B” in B+-tree stands for “balanced.” It is the balance property of
B+-trees that ensures good performance for lookup, insertion, and deletion.

11.3.2 Queries on B+-Trees

Let us consider how we process queries on a B+-tree. Suppose that we wish to
find records with a search-key value of V. Figure 11.11 presents pseudocode for
a function find() to carry out this task.

Intuitively, the function starts at the root of the tree, and traverses the tree
down until it reaches a leaf node that would contain the specified value if it exists
in the tree. Specifically, starting with the root as the current node, the function
repeats the following steps until a leaf node is reached. First, the current node
is examined, looking for the smallest i such that search-key value Ki is greater
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Figure 11.10 B+-tree for instructor file with n = 6.
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Figure 11.9 B+-tree for instructor file (n = 4).

Observe that the height of this tree is less than that of the previous tree, which
had n = 4.

These examples of B+-trees are all balanced. That is, the length of every path
from the root to a leaf node is the same. This property is a requirement for a B+-
tree. Indeed, the “B” in B+-tree stands for “balanced.” It is the balance property of
B+-trees that ensures good performance for lookup, insertion, and deletion.

11.3.2 Queries on B+-Trees

Let us consider how we process queries on a B+-tree. Suppose that we wish to
find records with a search-key value of V. Figure 11.11 presents pseudocode for
a function find() to carry out this task.

Intuitively, the function starts at the root of the tree, and traverses the tree
down until it reaches a leaf node that would contain the specified value if it exists
in the tree. Specifically, starting with the root as the current node, the function
repeats the following steps until a leaf node is reached. First, the current node
is examined, looking for the smallest i such that search-key value Ki is greater

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

Figure 11.10 B+-tree for instructor file with n = 6.

If this were a “primary” index, then not all ”keys” are present in the index
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B+ Trees in Practice

l Typical order: 100.  Typical fill-factor: 67%.
l average fanout = 133

l Typical capacities:
l Height 3: 1333 =     2,352,637 entries
l Height 4: 1334 = 312,900,700 entries

l Can often hold top levels in buffer pool:
l Level 1 =           1 page  =     8 Kbytes
l Level 2 =      133 pages =     1 Mbyte
l Level 3 = 17,689 pages = 133 MBytes       
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Instructor: Amol Deshpande
amol@cs.umd.edu

B+-Trees: Inserts
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l Book Chapters
l 11.3.3.1 

l Key topics:
l How to insert a new entry in the index while keeping it 

balanced and satisfying half-full guarantees

B+-Trees: Inserts

431

Tuple Insertion

l Find the leaf node where the search key should go
l If already present 

l Insert record in the file. Update the bucket if necessary
l This would be needed for secondary indexes

l If not present
l Insert the record in the file
l Adjust the index

l Add a new (Ki, Pi) pair to the leaf node 
l Recall the keys in the nodes are sorted

l What if there is no space ?
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Figure 11.9 B+-tree for instructor file (n = 4).

Observe that the height of this tree is less than that of the previous tree, which
had n = 4.

These examples of B+-trees are all balanced. That is, the length of every path
from the root to a leaf node is the same. This property is a requirement for a B+-
tree. Indeed, the “B” in B+-tree stands for “balanced.” It is the balance property of
B+-trees that ensures good performance for lookup, insertion, and deletion.

11.3.2 Queries on B+-Trees

Let us consider how we process queries on a B+-tree. Suppose that we wish to
find records with a search-key value of V. Figure 11.11 presents pseudocode for
a function find() to carry out this task.

Intuitively, the function starts at the root of the tree, and traverses the tree
down until it reaches a leaf node that would contain the specified value if it exists
in the tree. Specifically, starting with the root as the current node, the function
repeats the following steps until a leaf node is reached. First, the current node
is examined, looking for the smallest i such that search-key value Ki is greater

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

Figure 11.10 B+-tree for instructor file with n = 6.
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Tuple Insertion

l Splitting a node
l Node has too many key-pointer pairs

l Needs to store n, only has space for n-1

l Split the node into two nodes
l Put about half in each

l Recursively go up the tree
l May result in splitting all the way to the root
l In fact, may end up adding a level to the tree

l Pseudocode in the book !!
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Figure 11.9 B+-tree for instructor file (n = 4).

Observe that the height of this tree is less than that of the previous tree, which
had n = 4.

These examples of B+-trees are all balanced. That is, the length of every path
from the root to a leaf node is the same. This property is a requirement for a B+-
tree. Indeed, the “B” in B+-tree stands for “balanced.” It is the balance property of
B+-trees that ensures good performance for lookup, insertion, and deletion.

11.3.2 Queries on B+-Trees

Let us consider how we process queries on a B+-tree. Suppose that we wish to
find records with a search-key value of V. Figure 11.11 presents pseudocode for
a function find() to carry out this task.

Intuitively, the function starts at the root of the tree, and traverses the tree
down until it reaches a leaf node that would contain the specified value if it exists
in the tree. Specifically, starting with the root as the current node, the function
repeats the following steps until a leaf node is reached. First, the current node
is examined, looking for the smallest i such that search-key value Ki is greater
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Figure 11.10 B+-tree for instructor file with n = 6.
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Adams Califieri CrickBrandt

Figure 11.12 Split of leaf node on insertion of “Adams”

11.3.3.1 Insertion

We now consider an example of insertion in which a node must be split. Assume
that a record is inserted on the instructor relation, with the name value being
Adams. We then need to insert an entry for “Adams” into the B+-tree of Figure 11.9.
Using the algorithm for lookup, we find that “Adams” should appear in the leaf
node containing “Brandt”, “Califieri”, and “Crick.” There is no room in this leaf to
insert the search-key value “Adams.” Therefore, the node is split into two nodes.
Figure 11.12 shows the two leaf nodes that result from the split of the leaf node on
inserting “Adams”. The search-key values “Adams” and “Brandt” are in one leaf,
and “Califieri” and “Crick” are in the other. In general, we take the n search-key
values (the n− 1 values in the leaf node plus the value being inserted), and put
the first "n/2# in the existing node and the remaining values in a newly created
node.

Having split a leaf node, we must insert the new leaf node into the B+-tree
structure. In our example, the new node has “Califieri” as its smallest search-key
value. We need to insert an entry with this search-key value, and a pointer to the
new node, into the parent of the leaf node that was split. The B+-tree of Figure
11.13 shows the result of the insertion. It was possible to perform this insertion
with no further node split, because there was room in the parent node for the new
entry. If there were no room, the parent would have had to be split, requiring an
entry to be added to its parent. In the worst case, all nodes along the path to the
root must be split. If the root itself is split, the entire tree becomes deeper.

Splitting of a nonleaf node is a little different from splitting of a leaf node.
Figure 11.14 shows the result of inserting a record with search key “Lamport” into
the tree shown in Figure 11.13. The leaf node in which “Lamport” is to be inserted
already has entries “Gold”, “Katz”, and “Kim”, and as a result the leaf node has
to be split. The new right-hand-side node resulting from the split contains the
search-key values “Kim” and “Lamport”. An entry (Kim, n1) must then be added

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Figure 11.13 Insertion of “Adams” into the B+-tree of Figure 11.9.
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Califieri Einstein
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Kim

Adams Brandt Einstein El Said Gold Katz Kim Lamport Mozart Singh Srinivasan WuCrickCalifieri

Figure 11.14 Insertion of “Lamport” into the B+-tree of Figure 11.13.

to the parent node, where n1 is a pointer to the new node, However, there is no
space in the parent node to add a new entry, and the parent node has to be split.
To do so, the parent node is conceptually expanded temporarily, the entry added,
and the overfull node is then immediately split.

When an overfull nonleaf node is split, the child pointers are divided among
the original and the newly created nodes; in our example, the original node is
left with the first three pointers, and the newly created node to the right gets
the remaining two pointers. The search key values are, however, handled a little
differently. The search key values that lie between the pointers moved to the right
node (in our example, the value “Kim”) are moved along with the pointers, while
those that lie between the pointers that stay on the left (in our example, “Califieri”
and “Einstein”) remain undisturbed.

However, the search key value that lies between the pointers that stay on the
left, and the pointers that move to the right node is treated differently. In our
example, the search key value “Gold” lies between the three pointers that went to
the left node, and the two pointers that went to the right node. The value “Gold”
is not added to either of the split nodes. Instead, an entry (Gold, n2) is added to
the parent node, where n2 is a pointer to the newly created node that resulted
from the split. In this case, the parent node is the root, and it has enough space
for the new entry.

The general technique for insertion into a B+-tree is to determine the leaf node
l into which insertion must occur. If a split results, insert the new node into the
parent of node l. If this insertion causes a split, proceed recursively up the tree
until either an insertion does not cause a split or a new root is created.

Figure 11.15 outlines the insertion algorithm in pseudocode. The procedure
insert inserts a key-value pointer pair into the index, using two subsidiary
procedures insert in leaf and insert in parent. In the pseudocode, L , N, P
and T denote pointers to nodes, with L being used to denote a leaf node. L .Ki and
L .Pi denote the ith value and the ith pointer in node L , respectively; T.Ki and
T.Pi are used similarly. The pseudocode also makes use of the function parent(N)
to find the parent of a node N. We can compute a list of nodes in the path from
the root to the leaf while initially finding the leaf node, and can use it later to find
the parent of any node in the path efficiently.

The procedure insert in parent takes as parameters N, K ′, N′, where node
N was split into N and N′, with K ′ being the least value in N′. The procedure

B+-Trees:  Insertion
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11.3.3.1 Insertion

We now consider an example of insertion in which a node must be split. Assume
that a record is inserted on the instructor relation, with the name value being
Adams. We then need to insert an entry for “Adams” into the B+-tree of Figure 11.9.
Using the algorithm for lookup, we find that “Adams” should appear in the leaf
node containing “Brandt”, “Califieri”, and “Crick.” There is no room in this leaf to
insert the search-key value “Adams.” Therefore, the node is split into two nodes.
Figure 11.12 shows the two leaf nodes that result from the split of the leaf node on
inserting “Adams”. The search-key values “Adams” and “Brandt” are in one leaf,
and “Califieri” and “Crick” are in the other. In general, we take the n search-key
values (the n− 1 values in the leaf node plus the value being inserted), and put
the first "n/2# in the existing node and the remaining values in a newly created
node.

Having split a leaf node, we must insert the new leaf node into the B+-tree
structure. In our example, the new node has “Califieri” as its smallest search-key
value. We need to insert an entry with this search-key value, and a pointer to the
new node, into the parent of the leaf node that was split. The B+-tree of Figure
11.13 shows the result of the insertion. It was possible to perform this insertion
with no further node split, because there was room in the parent node for the new
entry. If there were no room, the parent would have had to be split, requiring an
entry to be added to its parent. In the worst case, all nodes along the path to the
root must be split. If the root itself is split, the entire tree becomes deeper.

Splitting of a nonleaf node is a little different from splitting of a leaf node.
Figure 11.14 shows the result of inserting a record with search key “Lamport” into
the tree shown in Figure 11.13. The leaf node in which “Lamport” is to be inserted
already has entries “Gold”, “Katz”, and “Kim”, and as a result the leaf node has
to be split. The new right-hand-side node resulting from the split contains the
search-key values “Kim” and “Lamport”. An entry (Kim, n1) must then be added
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Figure 11.13 Insertion of “Adams” into the B+-tree of Figure 11.9.
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Another B+Tree Insertion Example

INITIAL TREE

Next slides show the insertion of (125) into this tree
According to the Algorithm in Figure 12.13, Page 495
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Another Example: INSERT (125)

Step 1: Split L to create L’

Insert the lowest value in L’ (130) upward into the parent P
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Another Example: INSERT (125)

Step 2: Insert (130) into P by creating a temp node T
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Another Example: INSERT (125)

Step 3: Create P’; distribute from T into P and P’

New P has only 1 key, but two pointers so it is OKAY.
This follows the last 4 lines of Figure 12.13 (note that “n” = 4)
K’’ = 130. Insert upward into the root 
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Another Example: INSERT (125)

Step 4: Insert (130) into the parent (R); create R’

Once again following the insert_in_parent() procedure, K’’ = 1000
441

Another Example: INSERT (125)

Step 5: Create a new root
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Instructor: Amol Deshpande
amol@cs.umd.edu

B+-Trees: Deletions

443

l Book Chapters
l 11.3.3.2 

l Key topics:
l How to delete an existing entry in the index while 

keeping it balanced and satisfying half-full guarantees

B+-Trees: Deletions
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Updates on B+-Trees: Deletion
l Find the record, delete it.
l Remove the corresponding (search-key, pointer) pair from a leaf 

node
l Note that there might be another tuple with the same search-key
l In that case, this is not needed

l Issue:
l The leaf node now may contain too few entries

l Why do we care ?
l Solution:

1. See if you can borrow some entries from a sibling
2. If all the siblings are also just barely full, then merge (opposite of split)

l May end up merging all the way to the root
l In fact, may reduce the height of the tree by one
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Examples of B+-Tree Deletion
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11.3.3.1 Insertion

We now consider an example of insertion in which a node must be split. Assume
that a record is inserted on the instructor relation, with the name value being
Adams. We then need to insert an entry for “Adams” into the B+-tree of Figure 11.9.
Using the algorithm for lookup, we find that “Adams” should appear in the leaf
node containing “Brandt”, “Califieri”, and “Crick.” There is no room in this leaf to
insert the search-key value “Adams.” Therefore, the node is split into two nodes.
Figure 11.12 shows the two leaf nodes that result from the split of the leaf node on
inserting “Adams”. The search-key values “Adams” and “Brandt” are in one leaf,
and “Califieri” and “Crick” are in the other. In general, we take the n search-key
values (the n− 1 values in the leaf node plus the value being inserted), and put
the first "n/2# in the existing node and the remaining values in a newly created
node.

Having split a leaf node, we must insert the new leaf node into the B+-tree
structure. In our example, the new node has “Califieri” as its smallest search-key
value. We need to insert an entry with this search-key value, and a pointer to the
new node, into the parent of the leaf node that was split. The B+-tree of Figure
11.13 shows the result of the insertion. It was possible to perform this insertion
with no further node split, because there was room in the parent node for the new
entry. If there were no room, the parent would have had to be split, requiring an
entry to be added to its parent. In the worst case, all nodes along the path to the
root must be split. If the root itself is split, the entire tree becomes deeper.

Splitting of a nonleaf node is a little different from splitting of a leaf node.
Figure 11.14 shows the result of inserting a record with search key “Lamport” into
the tree shown in Figure 11.13. The leaf node in which “Lamport” is to be inserted
already has entries “Gold”, “Katz”, and “Kim”, and as a result the leaf node has
to be split. The new right-hand-side node resulting from the split contains the
search-key values “Kim” and “Lamport”. An entry (Kim, n1) must then be added
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Figure 11.13 Insertion of “Adams” into the B+-tree of Figure 11.9.

Deleting “Katz” – No issues

Deleting “Gold” – Just delete from the leaf
Gold can stay in the “interior” node – no need to delete it
The purpose of the search keys in the interior nodes is to “direct” searches
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Examples of B+-Tree Deletion
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11.3.3.1 Insertion

We now consider an example of insertion in which a node must be split. Assume
that a record is inserted on the instructor relation, with the name value being
Adams. We then need to insert an entry for “Adams” into the B+-tree of Figure 11.9.
Using the algorithm for lookup, we find that “Adams” should appear in the leaf
node containing “Brandt”, “Califieri”, and “Crick.” There is no room in this leaf to
insert the search-key value “Adams.” Therefore, the node is split into two nodes.
Figure 11.12 shows the two leaf nodes that result from the split of the leaf node on
inserting “Adams”. The search-key values “Adams” and “Brandt” are in one leaf,
and “Califieri” and “Crick” are in the other. In general, we take the n search-key
values (the n− 1 values in the leaf node plus the value being inserted), and put
the first "n/2# in the existing node and the remaining values in a newly created
node.

Having split a leaf node, we must insert the new leaf node into the B+-tree
structure. In our example, the new node has “Califieri” as its smallest search-key
value. We need to insert an entry with this search-key value, and a pointer to the
new node, into the parent of the leaf node that was split. The B+-tree of Figure
11.13 shows the result of the insertion. It was possible to perform this insertion
with no further node split, because there was room in the parent node for the new
entry. If there were no room, the parent would have had to be split, requiring an
entry to be added to its parent. In the worst case, all nodes along the path to the
root must be split. If the root itself is split, the entire tree becomes deeper.

Splitting of a nonleaf node is a little different from splitting of a leaf node.
Figure 11.14 shows the result of inserting a record with search key “Lamport” into
the tree shown in Figure 11.13. The leaf node in which “Lamport” is to be inserted
already has entries “Gold”, “Katz”, and “Kim”, and as a result the leaf node has
to be split. The new right-hand-side node resulting from the split contains the
search-key values “Kim” and “Lamport”. An entry (Kim, n1) must then be added
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Figure 11.13 Insertion of “Adams” into the B+-tree of Figure 11.9.

Deleting “Brandt”
The first leaf node becomes underful
Merge with the next node, and modify Parent appropriately.

Merged leaf node: Adams, Califieri, Crick
Updated parent node: Einstein, Gold (one fewer entry)
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Examples of B+-Tree Deletion

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart Singh Wu

Califieri

Gold

MozartEinstein

Before and after deleting “Singh” and “Wu”

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim      Mozart

Califieri Einstein Kim

Gold
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Examples of B+-Tree Deletion

11.3 B+-Tree Index Files 495

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim Mozart Singh Wu

Califieri

Gold

MozartEinstein

Figure 11.16 Deletion of “Srinivasan” from the B+-tree of Figure 11.13.

modifies the parent of N to record the split. The procedures insert into index
and insert in parent use a temporary area of memory T to store the contents
of a node being split. The procedures can be modified to copy data from the
node being split directly to the newly created node, reducing the time required
for copying data. However, the use of the temporary space T simplifies the
procedures.

11.3.3.2 Deletion

We now consider deletions that cause tree nodes to contain too few pointers. First,
let us delete “Srinivasan” from the B+-tree of Figure 11.13. The resulting B+-tree
appears in Figure 11.16. We now consider how the deletion is performed. We first
locate the entry for “Srinivasan” by using our lookup algorithm. When we delete
the entry for “Srinivasan” from its leaf node, the node is left with only one entry,
“Wu”. Since, in our example, n = 4 and 1 < !(n− 1)/2#, we must either merge
the node with a sibling node, or redistribute the entries between the nodes, to
ensure that each node is at least half-full. In our example, the underfull node with
the entry for “Wu” can be merged with its left sibling node. We merge the nodes
by moving the entries from both the nodes into the left sibling, and deleting the
now empty right sibling. Once the node is deleted, we must also delete the entry
in the parent node that pointed to the just deleted node.

In our example, the entry to be deleted is (Srinivasan, n3), where n3 is a
pointer to the leaf containing “Srinivasan”. (In this case the entry to be deleted
in the nonleaf node happens to be the same value as that deleted from the leaf;
that would not be the case for most deletions.) After deleting the above entry,
the parent node, which had a search key value “Srinivasan” and two pointers,
now has one pointer (the leftmost pointer in the node) and no search-key values.
Since 1 < !n/2# for n = 4, the parent node is underfull. (For larger n, a node that
becomes underfull would still have some values as well as pointers.)

In this case, we look at a sibling node; in our example, the only sibling is
the nonleaf node containing the search keys “Califieri”, “Einstein”, and “Gold”.
If possible, we try to coalesce the node with its sibling. In this case, coalescing is
not possible, since the node and its sibling together have five pointers, against a
maximum of four. The solution in this case is to redistribute the pointers between
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Adams Califieri CrickBrandt

Figure 11.12 Split of leaf node on insertion of “Adams”

11.3.3.1 Insertion

We now consider an example of insertion in which a node must be split. Assume
that a record is inserted on the instructor relation, with the name value being
Adams. We then need to insert an entry for “Adams” into the B+-tree of Figure 11.9.
Using the algorithm for lookup, we find that “Adams” should appear in the leaf
node containing “Brandt”, “Califieri”, and “Crick.” There is no room in this leaf to
insert the search-key value “Adams.” Therefore, the node is split into two nodes.
Figure 11.12 shows the two leaf nodes that result from the split of the leaf node on
inserting “Adams”. The search-key values “Adams” and “Brandt” are in one leaf,
and “Califieri” and “Crick” are in the other. In general, we take the n search-key
values (the n− 1 values in the leaf node plus the value being inserted), and put
the first "n/2# in the existing node and the remaining values in a newly created
node.

Having split a leaf node, we must insert the new leaf node into the B+-tree
structure. In our example, the new node has “Califieri” as its smallest search-key
value. We need to insert an entry with this search-key value, and a pointer to the
new node, into the parent of the leaf node that was split. The B+-tree of Figure
11.13 shows the result of the insertion. It was possible to perform this insertion
with no further node split, because there was room in the parent node for the new
entry. If there were no room, the parent would have had to be split, requiring an
entry to be added to its parent. In the worst case, all nodes along the path to the
root must be split. If the root itself is split, the entire tree becomes deeper.

Splitting of a nonleaf node is a little different from splitting of a leaf node.
Figure 11.14 shows the result of inserting a record with search key “Lamport” into
the tree shown in Figure 11.13. The leaf node in which “Lamport” is to be inserted
already has entries “Gold”, “Katz”, and “Kim”, and as a result the leaf node has
to be split. The new right-hand-side node resulting from the split contains the
search-key values “Kim” and “Lamport”. An entry (Kim, n1) must then be added

Adams Brandt Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

Gold Srinivasan

Mozart

EinsteinCalifieri

CrickCalifieri

Figure 11.13 Insertion of “Adams” into the B+-tree of Figure 11.9.
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Examples of B+-Tree Deletion

Adams Brandt Califieri Crick Einstein El Said Gold Katz Kim      Mozart

Califieri Einstein Kim

Gold

l Rightmost two leaves merged into a single one: (Katz, Kim, Mozart) 
l Need to remove a pointer from parent node (Kim), which also becomes underful

and merged with its sibling (Califieri, Einstein) è New root

Deletion of “Gold”

Adams Brandt Einstein El Said Katz Kim Mozart

GoldCalifieri

Califieri

Einstein

Crick
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Hash Indexes; Miscellaneous
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l Book Chapters
l 11.6, 11.7 (at a high level), 11.4.1, 11.4.5, 11.5, 11.9 

(briefly)

l Key topics:
l Hash-based file organization
l Static hashing-based indexes
l Handling of bucket overflows
l B-Tree Indexes, B+-Tree File Organization
l Multi-key indexes, Bitmap indexes, R-Trees

Hash Indexes
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Hash-based File Organization

Store record with search key k
in block number h(k)

e.g. for a person file,
h(SSN) = SSN % 4

Blocks called “buckets”

What if the block becomes full ?
Overflow pages

Uniformity property:
Don’t want all tuples to map to 

the same bucket
h(SSN) = SSN % 2 would be bad

Hash functions should also be random
Should handle different real datasets

(1000, “A”,…)
(200, “B”,…)
(4044, “C”, …)

(401, “Ax”,…)
(21, “Bx”,…)

(1002, “Ay”,…)
(10, “By”,…)

(1003, “Az”,…)
(35, “Bz”,…)

Block 0

Block 1

Block 2

Block 3

Buckets
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Overflow Pages

• Overflow chaining – the overflow buckets of a 
given bucket are chained together in a linked list.

• Above scheme is called closed hashing.
• An alternative, called open hashing, which 

does not use overflow buckets,  is not 
suitable for database applications.
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Hashed on “branch-name”

Hash function:
a = 1, b = 2, .., z = 26
h(abz) 

= (1 + 2 + 26) % 10
= 9

Hash-based File Organization
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Hash Indexes

Extends the basic idea

Search:
Find the block with   

search key
Follow the pointer

Range search ?
a < X < b ?

hash index on instructor, on attribute ID
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Hash Indexes

l Very fast search on equality

l Can’t search for “ranges” at all
l Must scan the file

l Inserts/Deletes
l Overflow pages can degrade the performance

l Can do periodic reorganization (by modifying hash functions)

l A better approach is to use “dynamic hashing”
l Allow use of a hash function that can be modified

l e.g., Extendable Hashing, or Linear Hashing
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Comparison of Ordered Indexing and 
Hashing

l Cost of periodic re-organization
l Relative frequency of insertions and deletions
l Is it desirable to optimize average access time at the expense of 

worst-case access time?
l Expected type of queries:

l Hashing is generally better at retrieving records having a 
specified value of the key.

l If range queries are common, ordered indices are to be 
preferred

l Hashing very common in distributed settings (e.g., in 
key-value stores)
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B-Tree Index Example

B-tree (above) and B+-tree (below) on same data – B-
Trees have ”record pointers” at interior nodes
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B-Tree Index Files (Cont.)

l Advantages of B-Tree indices:
l May use less tree nodes than a corresponding B+-Tree.
l Sometimes possible to find search-key value before reaching 

leaf node.

l Disadvantages of B-Tree indices:
l Only small fraction of all search-key values are found early 
l Non-leaf nodes are larger, so fan-out is reduced.  Thus, B-Trees 

typically have greater depth than corresponding B+-Tree
l Insertion and deletion more complicated than in B+-Trees 
l Implementation is harder than B+-Trees.

l Typically, advantages of B-Trees do not outweigh 
disadvantages. 

460



B+-Tree File Organization

l Store the records at the leaves
l Sorted order etc..
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Multiple-Key Access

select ID
from instructor
where dept_name = “Finance” and salary = 80000

l Possible strategies for processing query using indices on single 
attributes:
l Use index on dept_name to find instructors with department 

name Finance; test salary = 80000 
l Use index on salary to find instructors with a salary of $80000; 

test dept_name = “Finance”.
l Use dept_name index to find pointers to all records pertaining to 

the “Finance” department.  Similarly use index on salary.  Take 
intersection of both sets of pointers obtained.
l Called “INDEX-ANDING”
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Indices on Multiple Keys

l Composite search keys are search keys containing more than one 
attribute
l E.g. (dept_name, salary)

l Lexicographic ordering: (a1, a2) < (b1, b2) if either 
l a1 < b1, or 
l a1=b1 and  a2 < b2

l Ideal for something like:
where dept_name = “Finance” and salary = 80000

l Can also efficiently handle 
where dept_name = “Finance” and salary < 80000

l But cannot efficiently handle
where dept_name < “Finance” and balance = 80000
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Bitmap Indices

l Specialized indexes used in data warehouses

l Assume records numbered sequentially from 0
l Given a number n it must be easy to retrieve record n

l Particularly easy if records are of fixed size

l Best for attributes that with a small domain
l E.g., gender, country, state, …
l E.g., income-level (income broken up into a small number 

of  levels such as 0-9999, 10000-19999, 20000-50000, 
50000- infinity)

l A bitmap is simply an array of bits
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Bitmap Indices (Cont.)
l Bitmap index on an attribute has one bitmap for 

each value of the attribute
l Bitmap has as many bits as records
l Keeps track of whether a record has that value for the attr

ID income_levelgender

76766

22222

12121

15151

58583

m

m

f

f

f

L1

L1

L2

L4

L3

record
number

1

0

2

3

4

m

f

Bitmaps for gender

10010

01101

Bitmaps for
income_level

L1

L2

L3

L4

L5

10100

01000

00001

00010

00000
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Bitmap Indices (Cont.)

l Not particularly useful for single attribute queries

l But consider a query: gender = m and income_level = L1
l Retrieve individual bitmaps for those two
l Do an AND to find all records that satisfy both conditions
l Retrieve only those records

l Can also be used for gender = m or income_level = L1

l Really useful when queries have many predicates, and 
relations are large (i.e., a data warehouse)

l Updating bitmap indexes is very expensive
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R-Trees

For spatial data (e.g. maps, rectangles, GPS data etc)
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Conclusions

l Indexing Goal: “Quickly find the tuples that match certain 
conditions”

l Equality and range queries most common

l Hence B+-Trees the predominant structure for on-disk 
representation

l Hashing is used more commonly for in-memory operations

l Many many more types of indexing structures exist
l For different types of data

l For different types of queries

l E.g. “nearest-neighbor” queries
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l Shifting into discussing the internals of a DBMS 
l How data stored? How queries/transactions executed?

l Topics:
l Storage: How is data stored? Important features of the 

storage devices (RAM, Disks, SSDs, etc)
l File Organization: How are tuples mapped to blocks
l Indexes: How to quickly find specific tuples of interest (e.g., 

all ‘friends’ of ‘user0’)
l Query processing: How to execute different relational 

operations? How to combine them to execute an SQL query?
l Query optimization: How to choose the best way to execute a 

query?

Database Implementation
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Query Processing/Storage

Space Management on 
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

• Storage hierarchy
• How are relations mapped to files?
• How are tuples mapped to disk blocks?

• Bringing pages from disk to memory
• Managing the limited memory

• Given an input user query, decide 
how to “execute” it

• Specify sequence of pages to be 
brought in memory

• Operate upon the tuples to produce 
results

user query

page 
requests

block 
requests

results

pointers
to pages

data
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Query Processing: Overview, 
and Cost Measures
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l Book Chapters
l 12.1, 12.2

l Key topics:
l Main steps in Query Processing
l How to measure the ”cost” of an operation so we can 

compare alternatives?

Overview and Cost Measures
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Getting Deeper into Query Processing
User

select *
from R, S
where …

R, B+Tree on R.a
S, Hash Index on S.a

…

Results

Query Parser

Resolve the references,
Syntax errors etc.
Converts the query to an 
internal format

relational algebra like

Query Optimizer Find the best way to evaluate 
the query

Which index to use ?
What join method to use ? 
… 

Query Processor

Read the data from the files
Do the query processing

joins, selections, aggregates
…
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Getting Deeper into Query Processing

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data
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“Cost”

l Complicated to compute, but very important to decide early on
l Need to know what you are “optimizing” for

l Many competing factors in today’s computing environment
l CPU Instructions 

l Disk I/Os

l Network Usage – either peak or average (for distributed settings)
l Memory Usage

l Cache Misses

l … and so on

l Want to pick the one (or combination) that’s actually a bottleneck
l No sense in optimizing for “memory usage” if you have a TB of memory and a single 

disk
l Can do combinations by doing a weighted sum: e.g., 10 * Memory + 50 * Disk I/Os
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“Cost”

l We will focus on disk for simplicity:
l Number of I/Os ?

l Not sufficient

l Number of seeks matters a lot… why ?

l tT – time to transfer one block

l tS – time for one seek

l Cost for b block transfers plus S seeks
b * tT + S * tS

l Measured in seconds

l Real systems do take CPU cost into account
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“Cost” Example

l tS = 10 ms (seek time)
l tT = ?

l Typical block size = 4kB
l Say transfer rate = 200MB/s à 200kB/ms à 0.02ms per 4kB

l If a plan makes 100 seeks, and transfer 100 blocks:
l Cost = 100 * 10 + 0.02 * 100 = 1002ms

l If a plan makes 1 seek, and transfer 5000 blocks:

l Cost = 10 + 0.02 * 5000 = 110ms

l Transfer rates keep going up (through better hardware and 
parallelization), but seek times are constant
l The gap keeps increasing
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Next…

l For each relational operation, we will discuss different techniques 
for doing them
l The basic technique usually straightforward, adaptations more complex

l For each technique, we will try to figure out roughly the number of 
seeks and I/Os

l Try to focus on the abstract principles involved, and not the 
details

l Very similar techniques used in data processing in other 
systems like Apache Spark, Hadoop, Python Pandas, etc.
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Selection Operation
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l Book Chapters
l 12.3

l Key topics:
l Different ways to do a ”selection” operation (“where” 

clause) based on the properties of the predicates and 
the availability of indexes

Selections
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Selection Operation

l select * from person where SSN = “123”
l Option 1: Sequential Scan

l Read the relation start to end and look for “123”
l Can always be used (not true for the other options)

l Cost ?
l Let br = Number of relation blocks
l Then:

§ 1 seek and br block transfers
l So:

§ tS + br * tT sec

l Improvements:
§ If SSN is a key, then can stop when found

§ So on average, br/2 blocks accessed
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Selection Operation

l select * from person where SSN = “123”

l Option 2 : Use Index
l Pre-condition:

l An appropriate index must exist

l Use the index

l Find the first leaf page that contains the search key

l Retrieve all the tuples that match by following the pointers
§ If primary index, the relation is sorted by the search key

§ Go to the relation and read blocks sequentially

§ If secondary index, must follow all pointers using the index
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Selection w/ B+-Tree Indexes

n * (tT + tS)
n = number of records 
that match
This can be bad

hi * (tT + tS)secondary index, not a 
key, equality

1 * (tT + tS)hi * (tT + tS)secondary index, 
candidate key, equality

1 * (tT + tS) + (b – 1) * tT
Note: primary == sorted
b = number of pages that 
contain the matches

hi * (tT + tS)primary index, not a key, 
equality

1 * (tT + tS)hi * (tT + tS)primary index, candidate 
key, equality

cost of retrieving 
the tuples

cost of finding the 
first leaf

hi = height of the index
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Selection Operation

l Selections involving ranges
l select * from accounts where balance > 100000

l select * from matches where matchdate between ’10/20/06’ and 
’10/30/06’

l Option 1: Sequential scan

l Option 2: Using an appropriate index

l Can’t use hash indexes for this purpose

l Cost formulas:
§ Range queries == “equality” on “non-key” attributes

§ So rows 3 and 5 in the preceding page
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Selection Operation

l Complex selections

l Conjunctive:  select * from accounts where balance > 100000 and SSN = “123”

l Disjunctive:   select * from accounts where balance > 100000 or SSN = “123”

l Option 1: Sequential scan

l Option 2 (Conjunctive only): Using an appropriate index on one of the conditions

l E.g. Use SSN index to evaluate SSN = “123”. Apply the second condtion to the tuples 

that match

l Or do the other way around (if index on balance exists)

l Which is better ?

l Option 3 (Conjunctive only) : Choose a multi-key index 

l Not commonly available
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Selection Operation

l Complex selections

l Conjunctive:  select * from accounts where balance > 100000 and SSN = “123”

l Disjunctive:   select * from accounts where balance > 100000 or SSN = “123”

l Option 4: Conjunction or disjunction of record identifiers

l Use indexes to find all RIDs that match each of the conditions

l Do an intersection (for conjunction) or a union (for disjunction)

l Sort the records and fetch them in one shot

l Called “Index-ANDing” or “Index-ORing”

l Heavily used in commercial systems

487

Instructor: Amol Deshpande
amol@umd.edu

Joins

488



l Book Chapters
l 12.5.1, 12.5.2, 12.5.3, 12.5.5

l Key topics:
l Simplest way to do a join as a nested for loop
l Block Nested Loops Joins
l Using “indexes” for more efficient joins
l Hash Joins
l Sort-merge Joins

Joins
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Join

l select * from R, S where R.a = S.a
l Called an “equi-join”

l select * from R, S where |R.a – S.a | < 0.5
l Not an “equi-join”

l Goal: For each tuple r in R, find all “matching” tuples in S (or vice versa)

l Simplest Algorithm (“nested loops” join)
for each tuple r in R

for each tuple s in S
check if r.a = s.a (or whether |r.a – s.a| < 0.5)

l Complexity too high– also not disk efficient
l e.g., imagine if |R| and |S| both in millions of tuples
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Block Nested-loops Join

l Simple modification to the basic “nested-loops join” that is disk efficient
l Read a chunk of blocks of R from disk at a time; go through S for each chunk

for each k blocks of R
for each block Bs of S
for each tuple r in those k blocks of R

for each tuple s in Bs
check if r.a = s.a (or whether |r.a – s.a| < 0.5)

l Cost?
l Blocks Read of R: |Br| (every block read exactly once)
l Blocks Read of S: |Bs| * |Br|/k (every block of S read |Br|/k times)
l Seeks: 2 * |Br|/k

l Choose k to be as large as possible (but can’t be more than M)
l However: We are still comparing every R tuple with every S tuple à high 

CPU cost
491

Index Nested-loops Join

l select * from R, S where R.a = S.a
l Called an “equi-join”

l Let’s say there is an “index” on S.a
for each tuple r in R

use the index to find S tuples with S.a = r.a

l Blocks read of R: Br

l Blocks read of S: depends on the index (see previous formulas)
l Seeks: Br for R, but seeks for S depend on the index
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Index Nested-loops Join

l Restricted applicability
l An appropriate index must exist

l What about |R.a – S.a| < 5 ?

l Great for queries with joins and selections
select * 

from accounts, customers

where accounts.customer-SSN = customers.customer-SSN and 

accounts.acct-number = “A-101”

l Only need to access one SSN from the other relation

493

Hash Join

l Case 1: Smaller relation (S) fits in memory

read S in memory and build a hash index on it
for each tuple r in R

use the hash index on S to find tuples such that S.a = r.a

l Cost: br + bs transfers, 2 seeks

l Why good ?
l CPU cost is much better (even though we technically don’t care about it in 

our cost function, in reality, it matters a lot)
l Performs much better than nested-loops join when S doesn’t fit in memory 

(next)
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Hash Join

l Case 2: Smaller relation (S) doesn’t fit in memory

l Two “phases”

l Phase 1:
l Read the relation R block by block and partition it using a hash function, 

h1(a)
l Create one partition for each possible value of h1(a)

l Write the partitions to disk
l R gets partitioned into R1, R2, …, Rk

l Similarly, read and partition S, and write partitions S1, S2,  …, Sk to disk
l Only requirement:

l Each S partition fits in memory
l Requires SQRT(Bs) Memory 

§ Can do “recursive” partitioning if not enough memory – rarely the case today
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Hash Join

l Case 2: Smaller relation (S) doesn’t fit in memory
l Two “phases”

l Phase 2:
l Read S1 into memory, and bulid a hash index on it (S1 fits in 

memory)

l Using a different hash function, h2(a)

l Read R1 block by block, and use the hash index to find matches.

l Repeat for S2, R2, and so on.
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Hash Join

l Case 2: Smaller relation (S) doesn’t fit in memory

l Two “phases”:

l Phase 1:
l Partition the relations using one hash function, h1(a)

l Phase 2:
l Read Si into memory, and bulid a hash index on it (Si fits in memory)

l Read Ri block by block, and use the hash index to find matches.

l Cost ?
l 3(br + bs) +4 * nh  block transfers + 2( ébr / bbù + ébs / bbù)  seeks

l Where bb is the size of each output buffer
l Much better than Nested-loops join under the same conditions
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Hash Join
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Hash Join: Issues

l How to guarantee that the partitions of S all fit in memory ?
l Say S = 10000 blocks, Memory = M = 100 blocks

l Use a hash function that hashes to 100 different values ?
l Eg. h1(a) = a % 100 ?

l Problem: Impossible to guarantee uniform split
l Some partitions will be larger than 100 blocks, some will be smaller

l Use a hash function that hashes to 100*f different values
l f is called fudge factor, typically around 1.2
l So we may consider h1(a) = a % 120.
l This is okay IF a is uniformly distributed

l What if the hash function turns out to be bad ?
l Repartition using a different hash function (at run time)
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Group By and Aggregation

select a, count(b)  
from R 
group by a;

l Hash-based algorithm 
l Steps:

l Create a hash table on a, and keep the count(b) so far
l Read R tuples one by one
l For a new R tuple, “r”

l Check if r.a exists in the hash table
l If yes, increment the count
l If not, insert a new value
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Group By and Aggregation

select a, count(b)  
from R 
group by a;

l Sort-based algorithm
l Steps:

l Sort R on a
l Now all tuples in a single group are contigous
l Read tuples of R (sorted) one by one and compute the 

aggregates
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Group By and Aggregation

select a, AGGR(b)  from R group by a;

l sum(), count(), min(), max(): only need to maintain one value per group
l Called “distributive”

l average() : need to maintain the “sum” and “count” per group
l Called “algebraic”

l stddev(): algebraic, but need to maintain some more state
l median(): can do efficiently with sort, but need two passes (called “holistic”)

l First to find the number of tuples in each group, and then to find the median 
tuple in each group

l count(distinct b): must do duplicate elimination before the count

503

Instructor: Amol Deshpande
amol@umd.edu

Sorting and Merge Joins; Some 
Other Operators
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l Book Chapters
l 12.4, 12.5.4, 12.6

l Key topics:
l How to sort when data doesn’t fit in memory
l Using sorting for joins
l Duplicate elimination
l Set operations
l Outerjoins

Sorting; Merge Joins

505

Sorting

l Commonly required for many operations
l Duplicate elimination, group by’s, sort-merge join
l Queries may have ASC or DSC in the query

l One option:
l Read the lowest level of the index

l May be enough in many cases
l But if relation not sorted, this leads to too many random accesses

l If relation small enough…
l Read in memory, use quick sort (qsort() in C)

l What if relation too large to fit in memory ?
l External sort-merge
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External sort-merge

l Divide and Conquer !!

l Let M denote the memory size (in blocks)

l Phase 1:
l Read first M blocks of relation, sort, and write it to disk
l Read the next M blocks, sort, and write to disk …
l Say we have to do this “N” times
l Result: N sorted runs of size M blocks each

l Phase 2:
l Merge the N runs (N-way merge)
l Can do it in one shot if N < M
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External sort-merge

l Phase 1:
l Create sorted runs of size M each
l Result: N sorted runs of size M blocks each

l Phase 2:
l Merge the N runs (N-way merge)
l Can do it in one shot if N < M

l What if N > M ?
l Do it recursively 
l Not expected to happen
l If M = 1000 blocks = 4MB  (assuming blocks of 4KB each)

l Can sort: 4000MB = 4GB of data 
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Example: External Sorting Using Sort-Merge
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External Merge Sort (Cont.)

l Cost analysis:
l Total number of merge passes required: élogM–1(br/M)ù.
l Disk accesses for initial run creation as well as in each pass is 

2br

l for final pass, we don’t count write cost 
§ we ignore final write cost for all operations since the output of an 

operation may be sent to the parent operation without being 
written to disk

Thus total number of disk accesses for external sorting:
br ( 2 élogM–1(br / M)ù + 1)

l What about seeks?
l More complicated
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Merge-Join (Sort-merge join)

l Pre-condition:

l The relations must be sorted by the join attribute

l If not sorted, can sort first, and then use this algorithms

l Called “sort-merge join” sometimes

select * 
from r, s
where r.a1 = s.a1

Step:
1. Compare the tuples at pr and ps
2. Move pointers down the list

- Depending on the join condition
3. Repeat 
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Merge-Join (Sort-merge join)

l Cost:

l If the relations sorted, then just
l br + bs block transfers, some seeks depending on memory size

l What if not sorted ?
l Then sort the relations first

l In many cases, still very good performance

l Typically comparable to hash join

l Observation:
l The final join result will also be sorted on a1

l This might make further operations easier to do
l E.g. duplicate elimination
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Joins: Summary

l Block Nested-loops join
l Can always be applied irrespective of the join condition

l Index Nested-loops join
l Only applies if an appropriate index exists

l Hash joins – only for equi-joins
l Join algorithm of choice when the relations are large

l Hybrid hash join
l An optimization on hash join that is always implemented

l Sort-merge join
l Very commonly used – especially since relations are typically sorted

l Sorted results commonly desired at the output
l To answer group by queries, for duplicate elimination, because of ASC/DSC 
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Duplicate Elimination

select distinct a  
from R ;

l Best done using sorting – Can also be done using hashing
l Steps:

l Sort the relation R
l Read tuples of R in sorted order
l prev = null;
l for each tuple r in R (sorted)

l if r != prev then
§ Output   r
§ prev  =  r

l else
§ Skip r
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Set operations

(select * from R) union (select * from S) ; 
(select * from R) intersect (select * from S) ;
(select * from R) union all (select * from S) ; 
(select * from R) intersect all (select * from S) ;

l Remember the rules about duplicates
l “union all”: just append the tuples of R and S
l “union”: append the tuples of R and S, and do duplicate 

elimination
l “intersection”: similar to joins

l Find tuples of R and S that are identical on all attributes
l Can use hash-based or sort-based algorithm
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Outer Joins

l Say: R FULL OUTER JOIN S, on R.a = S.a
l Need to keep track of which tuples of R “do not match” 

any tuples from S, and vice versa

l Hash-based, with a hash index on S:
l For a tuple r in R, if the probe returns NULL, output r padded 

with NULLs
l For each tuple s in S, maintain a Boolean variable (in the hash 

table) to track whether s was returned for any probes
l At the end, go through the hash table, and look for S tuples that 

did not match anything

l Merge join can also be adapted in a similar way
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Instructor: Amol Deshpande
amol@cs.umd.edu

Putting it All Together

517

l Book Chapters
l 12.7

l Key topics:
l How to put it all together in a query plan
l Pipelining vs Materialization
l Iterator Interface

Putting it all together
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Evaluation of Expressions

l Two options:
l Materialization
l Pipelining

select customer-name
from account a, customer c
where a.SSN = c.SSN and 

a.balance < 2500
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Evaluation of Expressions

l Materialization
l Evaluate each expression separately

l Store its result on disk in temporary relations
l Read it for next operation

l Pipelining
l Evaluate multiple operators simultaneously
l Skip the step of going to disk
l Usually faster, but requires more memory
l Also not always possible..

l E.g. Sort-Merge Join
l Harder to reason about
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Materialization

l Materialized evaluation is always applicable
l Cost of writing results to disk and reading them back can 

be quite high
l Our cost formulas for operations ignore cost of writing results to 

disk, so
l Overall cost  =  Sum of costs of individual operations + 

cost of writing intermediate results to disk

l Double buffering: use two output buffers for each 
operation, when one is full write it to disk, while the other 
is getting filled
l Allows overlap of disk writes with computation and reduces 

execution time
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Pipelining

l Evaluate several operations simultaneously, passing the results of 
one operation on to the next.

l E.g., in previous expression tree, don’t store result of

l instead, pass tuples directly to the join..  Similarly, don’t store result of 
join, pass tuples directly to projection. 

l Much cheaper: no need to store a temporary relation to disk.

l Requires higher amount of memory
l All operations are executing at the same time (say as processes)

l Somewhat limited applicability

l A “blocking” operation: An operation that has to consume entire input 
before it starts producing output tuples

)(2500 accountbalance<s
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Pipelining

l Need operators that generate output tuples while 
receiving tuples from their inputs
l Selection: Usually yes.

l Sort: NO. The sort operation is blocking

l Sort-merge join: The final (merge) phase can be pipelined

l Hash join: The partitioning phase is blocking; the second phase 
can be pipelined

l Aggregates: Typically no. Need to wait for the entire input before 
producing output 

l However, there are tricks you can play here

l Duplicate elimination: Since it requires sort, the final merge phase 
could be pipelined

l Set operations: see duplicate elimination
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Pipelining: Demand-driven

l Iterator Interface
l Each operator implements:

l init(): Initialize the state  (sometimes called open())
l get_next(): get the next tuple from the operator
l close(): Finish and clean up

l Sequential Scan:
l init():   open the file
l get_next():   get the next tuple from file
l close(): close the file

l Execute by repeatadly calling get_next() at the root
l root calls get_next() on its children, the children call get_next() on 

their children etc…
l The operators need to maintain internal state so they know what to do 

when the parent calls get_next()
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Hash-Join Iterator Interface

l open():
l Call open() on the left and the right children
l Decide if partitioning is needed (if size of smaller relation > allotted 

memory)
l Create a hash table 

l get_next(): ((( assuming no partitioning needed )))
l First call:

l Get all tuples from the right child one by one (using get_next()), and insert 
them into the hash table

l Read the first tuple from the left child (using get_next())
l All calls:

l Probe into the hash table using the “current” tuple from the left child
§ Read a new tuple from left child if needed

l Return exactly “one result”
§ Must keep track if more results need to be returned for that tuple
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Hash-Join Iterator Interface

l close():
l Call close() on the left and the right children
l Delete the hash table, other intermediate state etc…

l get_next(): (((partitioning needed )))
l First call:

l Get all tuples from both children and create the partitions on disk
l Read the first partition for the right child and populate the hash table
l Read the first tuple from the left child from appropriate partition

l All calls:
l Once a partition is finished, clear the hash table, read in a new partition from 

the right child, and re-populate the hash table
l Not that much more complicated

l Take a look at the postgreSQL codebase
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Pipelining (Cont.)

l In produce-driven or eager pipelining
l Operators produce tuples eagerly and pass them 

up to their parents
l Buffer maintained between operators, child puts tuples 

in buffer, parent removes tuples from buffer
l if buffer is full, child waits till there is space in the 

buffer, and then generates more tuples
l System schedules operations that have space in 

output buffer and can process more input tuples
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Recap: Query Processing

l Many, many ways to implement the relational operations
l Numerous more used in practice

l Especially in data warehouses which handles TBs (even PBs) of data

l However, consider how complex SQL is and how much you can do
l Compared to that, this isn’t much

l Most of it is very nicely modular
l Especially through use of the iterator() interface

l Can plug in new operators quite easily

l PostgreSQL query processing codebase very easy to read and modify

l Having so many operators does complicate the codebase and the query 
optimizer though
l But needed for performance
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Instructor: Amol Deshpande
amol@umd.edu

Query Optimization

529

l Key topics:
l Why query optimization is so important?
l Key steps in query optimization
l High-level concepts

Query Optimization: Overview
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Getting Deeper into Query Processing
User

select *
from R, S
where …

R, B+Tree on R.a
S, Hash Index on S.a

…

Results

Query Parser

Resolve the references,
Syntax errors etc.
Converts the query to an 
internal format

relational algebra like

Query Optimizer Find the best way to evaluate 
the query

Which index to use ?
What join method to use ? 
… 

Query Processor

Read the data from the files
Do the query processing

joins, selections, aggregates
…
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Query Optimization

l Why ? 
l Many different ways of executing a given query
l Huge differences in cost

l Example:
l select * from person where ssn = “123”
l Size of person = 1GB
l Sequential Scan:

l Takes 1GB / (20MB/s) = 50s
l Use an index on SSN (assuming one exists):

l Approx 4 Random I/Os = 40ms 
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Query Optimization

l Many choices

l Using indexes or not, which join method (hash, vs merge, vs NL)

l What join order ?

l Given a join query on R, S, T, should I join R with S first, or S 
with T first ?

l This is an optimization problem

l Similar to say traveling salesman problem

l Number of different choices is very very large

l Step 1: Figuring out the solution space

l Step 2: Finding algorithms/heuristics to search through the 
solution space
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Query Optimization: Goal

l Find the best (or a good enough) execution plan
l Execution plans = Evaluation expressions annotated with the methods used

16.1 Overview 745

Π name, title

instructor

σdept_name = Music
                                   (use index 1)

sortID

teaches

(sort to remove duplicates)

(hash join)

(merge join)

course

Πcourse_id, title

sortID

Figure 16.2 An evaluation plan.

The expression that we saw in Figure 16.1 may not necessarily lead to the least-
cost evaluation plan for computing the result, since it still computes the join of the
entire teaches relation with the course relation. The following expression gives the same
final result, but generates smaller intermediate results, since it joins teaches with only
instructor tuples corresponding to the Music department, and then joins that result
with course.

Πname,title ((σdept name= “Music” (instructor) ⋈ teaches) ⋈ Πcourse id,title(course))

Regardless of the way the query is written, it is the job of the optimizer to find the
least-cost plan for the query.

To find the least costly query-evaluation plan, the optimizer needs to generate al-
ternative plans that produce the same result as the given expression and to choose the
least costly one. Generation of query-evaluation plans involves three steps: (1) gener-
ating expressions that are logically equivalent to the given expression, (2) annotating
the resultant expressions in alternative ways to generate alternative query-evaluation
plans, and (3) estimating the cost of each evaluation plan, and choosing the one whose
estimated cost is the least.

Steps (1), (2), and (3) are interleaved in the query optimizer—some expressions
are generated and annotated to generate evaluation plans, then further expressions are
generated and annotated, and so on. As evaluation plans are generated, their costs are
estimated by using statistical information about the relations, such as relation sizes and
index depths.

To implement the first step, the query optimizer must generate expressions equiv-
alent to a given expression. It does so by means of equivalence rules that specify how
to transform an expression into a logically equivalent one. We describe these rules in
Section 16.2.

In Section 16.3 we describe how to estimate statistics of the results of each opera-
tion in a query plan. Using these statistics with the cost formulae in Chapter 15 allows
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Query Optimization

l Steps:
l Generate all possible execution plans for the query
l Figure out the cost for each of them
l Choose the best

l Not done exactly as listed above
l Too many different execution plans for that

l Typically interleave all of these into a single efficient search 
algorithm
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Equivalence of Expressions

l Equivalent relational expressions
l Drawn as a tree
l List the operations and the order

744 Chapter 16 Query Optimization

instructor

instructorteaches teaches

course course

∏name, title

∏ course_id, title ∏ course_id, title

∏name, titleσdept_name = Music

σdept_name = Music

(a) Initial expression tree                            (b) Transformed expression tree

Figure 16.1 Equivalent expressions.

Music department, and in only two of the nine attributes of this relation. Since we are
concerned with only those tuples in the instructor relation that pertain to the Music
department, we do not need to consider those tuples that do not have dept name =
“Music”. By reducing the number of tuples of the instructor relation that we need to
access, we reduce the size of the intermediate result. Our query is now represented by
the relational-algebra expression:

Πname,title ((σdept name= “Music” (instructor)) ⋈ (teaches ⋈ Πcourse id,title(course)))

which is equivalent to our original algebra expression, but which generates smaller
intermediate relations. Figure 16.1 depicts the initial and transformed expressions.

An evaluation plan defines exactly what algorithm should be used for each op-
eration and how the execution of the operations should be coordinated. Figure 16.2
illustrates one possible evaluation plan for the expression from Figure 16.1(b). As we
have seen, several different algorithms can be used for each relational operation, giving
rise to alternative evaluation plans. In the figure, hash join has been chosen for one
of the join operations, while the other uses merge join, after sorting the relations on
the join attribute, which is ID. All edges are assumed to be pipelined, unless marked
as materialized. With pipelined edges the output of the producer is sent directly to
the consumer, without being written out to disk; with materialized edges, on the other
hand, the output is written to disk, and then read from the disk by the consumer. There
are no materialized edges in the evaluation plan in Figure 16.2, although some of the
operators, such as sort and hash join, can be represented using suboperators with ma-
terialized edges between the suboperators, as we saw in Section 15.7.2.2.

Given a relational-algebra expression, it is the job of the query optimizer to come
up with a query-evaluation plan that computes the same result as the given expression,
and is the least costly way of generating the result (or, at least, is not much costlier than
the least costly way).
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Equivalence of Expressions

l Two relational expressions equivalent iff:
l Their result is identical on all legal databases

l Equivalence rules:
l Allow replacing one expression with another

l Examples:
1. 

2. Selections are commutative

))(()(
2121
EE qqqq sss =Ù

))(())((
1221
EE qqqq ssss =
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Equivalence Rules

l Examples:

3.

5.    E1      q E2 = E2 q E1

7(a). If q0 only involves attributes from E1

sq0(E1  q E2) = (sq0(E1))    q E2

l And so on…
l Many rules of this type

)())))((((
121
EE LLnLL P=PPP !!
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Pictorial Depiction
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Equivalence of Expressions

l The rules give us a way to enumerate all equivalent 
expressions
l Note that the expressions don’t contain physical access methods, 

join methods etc…

l Simple Algorithm:
l Start with the original expression
l Apply all possible applicable rules to get a new set of 

expressions
l Repeat with this new set of expressions
l Till no new expressions are generated
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Equivalence of Expressions

l Works, but is not feasible
l Consider a simple case:

l R1        (R2         (R3        (…      Rn)))….)

l Just join commutativity and associativity will give us:
l At least:

l n^2  * 2^n
l At worst:

l n! * 2^n

l Typically the process of enumeration is combined with the 
search process
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Evaluation Plans

l We still need to choose the join methods etc..
l Option 1: Choose for each operation separately

l Usually okay, but sometimes the operators interact
l Consider joining three relations on the same attribute:

§ R1      a (R2      a R3)

l Best option for R2 join R3 might be hash-join
§ But if R1 is sorted on a, then sort-merge join is preferable
§ Because it produces the result in sorted order by a

l Also, we need to decide whether to use pipelining or 
materialization

l Such issues are typically taken into account when doing the 
optimization 
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Query Optimization

l Steps:
l Generate all possible execution plans for the query

l First generate all equivalent expressions

l Then consider all annotations for the operations

l Figure out the cost for each of them
l Compute cost for each operation 

§ Using the formulas discussed before

§ One problem: How do we know the number of result tuples for, 
say, 

l Add them !

l Choose the best

)(2500 accountbalance<s
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Cost estimation

l Computing operator costs requires information like:
l Primary key ? 
l Sorted or not, which attribute

l So we can decide whether need to sort again
l How many tuples in the relation, how many blocks ?
l RAID ?? Which one ?

l Read/write costs are quite different
l How many tuples match a predicate like “age > 40” ?

l E.g. Need to know how many index pages need to be read

l Intermediate result sizes
l E.g. (R JOIN S) is input to another join operation – need to know if it 

fits in memory
l And so on…
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Cost estimation

l Some information is static and is maintained in the 
metadata
l Primary key ? 
l Sorted or not, which attribute

l So we can decide whether need to sort again
l How many tuples in the relation, how many blocks ?
l RAID ?? Which one ?

l Read/write costs are quite different

l Typically kept in some tables in the database
l “all_tab_columns” in Oracle

l Most systems have commands for updating them
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Cost estimation
l However, others need to be estimated somehow

l How many tuples match a predicate like “age > 40” ?
l E.g. Need to know how many index pages need to be read

l Intermediate result sizes
l The problem variously called:

l “intermediate result size estimation”
l “selectivity estimation”

l Very important to estimate reasonably well
l e.g. consider “select * from R where zipcode = 20742”
l We estimate that there are 10 matches, and choose to use a secondary 

index (remember: random I/Os)
l Turns out there are 10000 matches
l Using a secondary index very bad idea
l Optimizer also often choose Nested-loop joins if one relation very 

small… underestimation can result in very bad
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Selectivity Estimation

l Basic idea:
l Maintain some information about the tables

l More information à more accurate estimation
l More information à higher storage cost, higher update cost

l Make uniformity and randomness assumptions to fill in the gaps

l Example:
l For a relation “people”, we keep:

l Total number of tuples = 100,000
l Distinct “zipcode” values that appear in it = 100

l Given a query: “zipcode = 20742”
l We estimated the number of matching tuples as: 100,000/100 = 1000

l What if I wanted more accurate information ?
l Keep better statistics/summaries…
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Examples

l Consider a range query: x < R.a < y
l Let Max(a, R) = maximum value of a in R
l Let Min(a, R) = minimum value of a in R
l Then: fraction of tuples that satisfy = (y – x) / (Max – Min)

l Assuming all tuples are distributed uniformly and randomly
l If y > Max or x < Min à adjust accordingly

l Better summary statistics (like histograms) can help with refining 
these estimates
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Example: Joins
l R JOIN S: R.a = S.a

l |R| = 10,000; |S| = 5000

l CASE 1: a is key for S
l Each tuple of R joins with exactly one tuple of S
l So: |R JOIN S| = |R| = 10,000
l Assumption: Referential integrity holds

l What if there is a selection on R or S
l Adjust accordingly
l Say: S.b = 100, with selectivity 0.1
l THEN: |R JOIN S| = |R| * 0.1 = 100

l CASE 2: a is key for R
l Similar
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Joins
l R JOIN S: R.a = S.a

l |R| = 10,000; |S| = 5000

l CASE 3: a is not a key for either
l Reason with the distributions on a
l Say: the domain of a: V(A, R) = 100 (the number of distinct values a can take)
l THEN, assuming uniformity

l For each value of a
§ We have 10,000/100 = 100 tuples of R with that value of a
§ We have 5000/100 = 50 tuples of S with that value of a
§ All of these will join with each other, and produce 100 *50 = 5000

l So total number of results in the join:
§ 5000 * 100 = 500000

l We can improve the accuracy if we know the distributions on a better
l Say using a histogram
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Query Optimization

l Steps:
l Generate all possible execution plans for the query

l First generate all equivalent expressions

l Then consider all annotations for the operations

l Figure out the cost for each of them
l Compute cost for each operation 

§ Using the formulas discussed before

§ One problem: How do we know the number of result tuples for, 
say, 

l Add them !

l Choose the best

)(2500 accountbalance<s
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Optimization Algorithms

l Two types:
l Exhaustive: That attempt to find the best plan
l Heuristical: That are simpler, but are not guaranteed to find 

the optimal plan

l Consider a simple case 
l Join of the relations R1, …, Rn
l No selections, no projections

l Still very large plan space
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Searching for the best plan

l Option 1:
l Enumerate all equivalent expressions for the original query 

expression
l Using the rules outlined earlier

l Estimate cost for each and choose the lowest

l Too expensive !
l Consider finding the best join-order for r1 r2      . . . rn.
l There are (2(n – 1))!/(n – 1)! different join orders for above 

expression.  With n = 7, the number is 665280, with n = 10, 
the number is greater than 176 billion!
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Searching for the best plan

l Option 2:
l Dynamic programming

l There is too much commonality between the plans
l Also, costs are additive

§ Caveat: Sort orders (also called “interesting orders”)

l Reduces the cost down to O(n3^n) or O(n2^n) in most 
cases
l Interesting orders increase this a little bit

l Considered acceptable
l Typically n < 10.

l Switch to heuristic if not acceptable
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Heuristic Optimization

l Dynamic programming is expensive
l Use heuristics to reduce the number of choices 
l Typically rule-based:

l Perform selection early (reduces the number of tuples)

l Perform projection early (reduces the number of attributes)

l Perform most restrictive selection and join operations before other 
similar operations.

l Some systems use only heuristics, others combine heuristics 
with partial cost-based optimization.
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Summary

l Integral component of query processing
l Why ?

l One of the most complex pieces of code in a 
database system

l Active area of research
l E.g. XML Query Optimization ?
l What if you don’t know anything about the statistics
l Better statistics
l Etc …
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Overview; Parallel/Distributed 
Architectures
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! Book Chapters
ê10.1, 10.2 (7TH EDITION)

! Key topics:
êBig data motivating scenarios

êWhy systems so far (relational databases, data 
warehouses, parallel databases) don’t work

NoSQL and Big Data Systems: Motivation
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! Online Transaction Processing (OLTP)
êE-commerce, Airline Reservations, Class registrations, etc.

êSimple queries (get all orders for a customer)

êMany updates (inserts, updates, deletes)

êNeed ACID properties (consistency, etc.)

! Online Analytical Processing (OLAP)
êDecision-support, data mining, ML (today), etc.

êHuge volumes of data, but not updated 

êComplex, but read-only queries (many joins, group-by’s)

RDBMS: Application Scenarios
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! Original database systems aimed to support both use cases

! Slowly, specialized systems were built, starting late 80’s-early 
90’s, especially for decision support (Data Warehouses)

! Today, different RDBMSs systems for different use cases, e.g.,:
ê VoltDB for OLTP – fully in-memory, very fast transactions, but no complex queries

ê Teradata, Aster Data, Snowflake, AWS Redshift – handle PBs of data, but batch 
updates only – many indexes and summary structures (cubes) for queries –
typically “parallel” (i.e., use many machines)

! Fundamental and wide differences in the technology

! But both still support SQL as the primary interface (with 
visualizations, exploration, and other tools on top)

RDBMS Evolution
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NoSQL + Big Data Systems: Motivation

! Very large volumes of data being collected
ê Driven by growth of web, social media, and more recently 

internet-of-things
ê Web logs were an early source of data

Ø Analytics on web logs has great value for advertisements, web 
site structuring, what posts to show to a user, etc

! Big Data:  differentiated from data handled by earlier 
generation databases
ê Volume: much larger amounts of data stored
ê Velocity: much higher rates of insertions
ê Variety: many types of data, beyond relational data
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Some motivating scenarios

! Deciding what to show a user in a social network, or news 
aggregator

! Advertising on the Web or Mobile
! Analyzing user behavior on web sites to optimize or increase 

engagement
! Analyzing large numbers of images and building search 

indexes on them
! Text analytics for topic modelling, summarization, …
! Internet of things…
! And many many others…
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Two Primary Use Cases

! OLTP-like
ê Simple queries, but lots of updates
ê Need to support distributed users
ê Need to support non-relational data (e.g., graphs, JSONs)
ê Need to scale fast (10 users to 10s of Millions of Users)
ê Need to work well in 3-tier Web Apps
ê Need to support fast schema changes

! OLAP-like
ê Complex analysis on large volumes of data
ê Often no “real-time” component, and no updates
ê Mostly non-relational data (images, webpages, text, etc)
ê Tasks often procedural in nature (analyse webpages for searching, data 

cleaning, ML)
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Why (Parallel) Databases Don’t Work

! The data is often not relational in nature
ê E.g., images, text, graphs

! The analysis/queries are not relational in nature
ê E.g., Image Analysis, Text Analytics, Natural Language Processing, Web Analytics, Social 

Network Analysis, Machine Learning, etc.
ê Databases don’t really have constructs to support this 

Ø User-defined functions can help to some extent

ê Need to interleave relational-like operations with non-relational (e.g., data cleaning, etc.)
ê Domain users are more used to procedural languages

! The operations are often one-time
ê Only need to analyse images once in a while to create a “deep learning” model
ê Databases are really better suited for repeated analysis of the data

! Much of the analysis not time-sensitive
! Parallel databases too expensive given the data volumes

ê Were designed for large enterprises, with typically big budgets
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Parallel and Distributed Architectures

! Ability to scale “up” a computer is limited è Use many 
computers together
êCalled cluster or network of computers (and today, just a “data 

center”)

! Also need to ”meet” where the users are
êTo minimize interactive latencies (e.g., social 

networks)

! Has made parallel and distributed architectures very 
common today
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Parallel Architectures

! Shared-nothing vs. shared-memory vs. shared-disk
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Parallel Architectures

20.4 Parallel Systems 981

All the cores on a single processor typically access a shared memory. Further, a
system can have multiple processors which can share memory. Another effect of the
increasing number of gates has been the steady increase in the size of main memory as
well as a decrease in cost, per-byte, of main memory.

Given the availability of multicore processors at a low cost, as well as the concur-
rent availability of very large amounts of memory at a low cost, shared-memory parallel
processing has become increasingly important in recent years.

20.4.5.1 Shared-Memory Architectures

In earlier generation architectures, processors were connected to memory via a bus,
with all processor cores and memory banks sharing a single bus. A downside of shared-
memory accessed via a common bus is that the bus or the interconnection network
becomes a bottleneck, since it is shared by all processors. Adding more processors
does not help after a point, since the processors will spend most of their time waiting
for their turn on the bus to access memory.

As a result, modern shared-memory architectures associate memory directly with
processors; each processor has locally connected memory, which can be accessed very
quickly; however, each processor can also access memory associated with other proces-
sors; a fast interprocessor communication network ensures that data are fetched with
relatively low overhead. Since there is a difference in memory access speed depend-
ing on which part of memory is accessed, such an architecture is often referred to as
non-uniform memory architecture (NUMA).

Figure 20.6 shows a conceptual architecture of a modern shared-memory system
with multiple processors; note that each processor has a bank of memory directly con-
nected to it, and the processors are linked by a fast interconnect system; processors are
also connected to I/O controllers which interface with external storage.
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Figure 20.6 Architecture of a modern shared-memory system. 20.4 Parallel Systems 985
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Figure 20.8 Storage-area network.

A storage-area network (SAN) is a high-speed local-area network designed to con-
nect large banks of storage devices (disks) to nodes that use the data (see Figure 20.8).
The storage devices physically consist of an array of multiple disks but provide a view
of a logical disk, or set of disks, that hides the details of the underlying disks. For ex-
ample, a logical disk may be much larger than any of the physical disks, and a logical
disk’s size can be increased by adding more physical disks. The processing nodes can
access disks as if they are local disks, even though they are physically separate.

Storage-area networks are usually built with redundancy, such as multiple paths
between nodes, so if a component such as a link or a connection to the network fails,
the network continues to function.

Storage-area networks are well suited for building shared-disk systems. The shared-
disk architecture with storage-area networks has found acceptance in applications that
do not need a very high degree of parallelism but do require high availability.

Compared to shared-memory systems, shared-disk systems can scale to a larger
number of processors, but communication across nodes is slower (up to a few millisec-
onds in the absence of special-purpose hardware for communication), since it has to
go through a communication network.

One limitation of shared-disk systems is that the bandwidth of the network connec-
tion to storage in a shared-disk system is usually less than the bandwidth available to
access local storage. Thus, storage access can become a bottleneck, limiting scalability.

20.4.7 Shared Nothing

In a shared-nothing system, each node consists of a processor, memory, and one or
more disks. The nodes communicate by a high-speed interconnection network. A node
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Parallel Architectures

Distributed 
transactions are 
complicated 
(deadlock 
detection etc);

Transactions 
complicated; 
natural fault-
tolerance.

Cache-coherency 
an issue

Notes 

Main use

Scalability ?

Communication 
between 
processors

EverywhereNot used very 
often

Low degrees of 
parallelism

Very very 
scalable

Not very scalable 
(disk interconnect 
is the bottleneck)

Not beyond 32 or 
64 or so (memory 
bus is the 
bottleneck)

Over a LAN, so 
slowest

Disk interconnect 
is very fast

Extremely fast

Shared NothingShared DiskShared Memory

569

©Silberschatz, Korth and Sudarshan17.570Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Parallel Systems

! A coarse-grain parallel machine à a small number of powerful 
processors

! A massively parallel or fine grain parallel machine à thousands of 
smaller processors.

! We see a variety of mixes of these today, especially with the rise of 
multi-core machines

! Two main performance measures:
! throughput --- the number of tasks that can be completed in a 

given time interval
! response time --- the amount of time it takes to complete a single 

task from the time it is submitted
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Speed-Up and Scale-Up

" Speedup: a fixed-sized problem executing on a small system is 
given to a system which is N-times larger.
! Measured by:

speedup = small system elapsed time
large system elapsed time

! Speedup is linear if equation equals N.

" Scaleup: increase the size of both the problem and the system
! N-times larger system used to perform N-times larger job
! Measured by:

scaleup = small system small problem elapsed time
big system big problem elapsed time 

! Scale up is linear if equation equals 1.

linear speedup

sublinear speedup

resources

sp
ee

d

linear scaleup

sublinear scaleup

problem size

TS
TL
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Factors Limiting Speedup and Scaleup

! Sequential computation: Some parts may not be parallalelizable
! Amdahl’s Law: If “p” is the fraction of the task that can be 

parallelized, then the best speedup you can get is:
! If ”p” is 0.9, the best speedup is 10  

! Startup costs: Cost of starting up multiple processes may dominate 
computation time, if the degree of parallelism is high.

! Interference:  Processes accessing shared resources (e.g., system 
bus, disks, or locks) compete with each other, thus spending time 
waiting on other processes, rather than performing useful work.

! Skew: Increasing the degree of parallelism increases the variance in 
service times of parallely executing tasks.  Overall execution time 
determined by slowest of parallely executing tasks.

974 Chapter 20 Database-System Architectures

pacity of the system by increasing the parallelism provides a smoother path for growth
for an enterprise than does replacing a centralized system with a faster machine (even
assuming that such a machine exists). However, we must also look at absolute perfor-
mance numbers when using scaleup measures; a machine that scales up linearly may
perform worse than a machine that scales less than linearly, simply because the latter
machine is much faster to start off with.

A number of factors work against efficient parallel operation and can diminish both
speedup and scaleup.

• Sequential computation. Many tasks have some components that can benefit from
parallel processing, and some components that have to be executed sequentially.
Consider a task that takes time T to run sequentially. Suppose the fraction of the
total execution time that can benefit from parallelization is p, and that part is exe-
cuted by n nodes in parallel. Then the total time taken would be (1−p)T +(p∕n)T ,
and the speedup would be 1

(1−p)+(p∕n)
. (This formula is referred to as Amdahl’s law.)

If the fraction p is, say 9
10

, then the maximum speedup possible, even with very large
n, would be 10.

Now consider scaleup, where the problem size increases. If the time taken
by the sequential part of a task increases along with the problem size, scaleup
will be similarly limited. Suppose fraction p of the execution time of a problem
benefits from increasing resources, while fraction (1−p) is sequential and does not
benefit from increasing resources. Then the scaleup with n times more resources
on a problem that is n times larger will be 1

n(1−p)+p
. (This formula is referred to

as Gustafson’s law.) However, if the time taken by the sequential part does not
increase with problem size, its impact on scaleup will be less as the problem sizes.

Start-up costs. There is a start-up cost associated with initiating a single process.
In a parallel operation consisting of thousands of processes, the start-up time may
overshadow the actual processing time, affecting speedup adversely.

• Interference. Since processes executing in a parallel system often access shared
resources, a slowdown may result from the interference of each new process as it
competes with existing processes for commonly held resources, such as a system
bus, or shared disks, or even locks. Both speedup and scaleup are affected by this
phenomenon.

• Skew. By breaking down a single task into a number of parallel steps, we reduce the
size of the average step. Nonetheless, the service time for the single slowest step
will determine the service time for the task as a whole. It is often difficult to divide
a task into exactly equal-sized parts, and the way that the sizes are distributed is
therefore skewed. For example, if a task of size 100 is divided into 10 parts, and the
division is skewed, there may be some tasks of size less than 10 and some tasks of
size more than 10; if even one task happens to be of size 20, the speedup obtained
by running the tasks in parallel is only 5, instead of 10 as we would have hoped.
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What about “Distributed” Systems?
! Over a wide area network
! Typically not done for performance reasons

ê For that, use a parallel system

! Done because of necessity
ê Imagine a large corporation with offices all over the world
ê Or users distributed across the globe
ê Also, for redundancy and for disaster recovery reasons

20.5 Distributed Systems 987

site A site C
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communication
via network
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Figure 20.9 A distributed system.

• Distributed databases have sites that are geographically separated. As a result, the
network connections have lower bandwidth, higher latency, and greater probability
of failures, as compared to networks within a single data center.
Systems built on distributed databases therefore need to be aware of network la-
tency, and failures, as well as of physical data location. We discuss these issues
later in this section. In particular, it is often desirable to keep a copy of the data at
a data center close to the end user.

• Parallel database systems address the problem of node failure. However, some fail-
ures, particularly those due to earthquakes, fires, or other natural disasters, may
affect an entire data center, causing failure of a large number of nodes. Distributed
database systems need to continue working even in the event of failure of an en-
tire data center, to ensure high availability. This requires replication of data across
geographically separated data centers, to ensure that a common natural disaster
does not affect all the data centers. Replication and other techniques to ensure
high availability are similar in both parallel and distributed databases, although
implementation details may differ.

• Distributed databases may be separately administered, with each site retaining
some degree of autonomy of operation. Such databases are often the result of
the integration of existing databases to allow queries and transactions to cross
database boundaries. However, distributed databases that are built for providing
geographic distribution, versus those built by integrating existing databases, may
be centrally administered.

• Nodes in a distributed database tend to vary more in size and function, whereas
parallel databases tend to have nodes that are of similar capacity.
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Data Replication; Sharding; 
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Parallel or Distributed Systems

! Key Questions from Data Management Perspective:
" How to partition (or “shard”) data across a collection of 

storage devices/machines
" How to execute an “operation” across a group of computers

4 In different configurations (shared-memory vs shared-
disk vs shared-nothing vs NUMA)

4 Trade-offs and bottlenecks can be vastly different
" How to execute an “update” across a group of computers

4 Need to ensure consistency 
" How to deal with “failures”
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Data Partitioning
! Partition a relation or a dataset across machines

! Typically through “hashing”
! Advantages:

! In-memory computation: data fits in memory across machines
! Parallelism: simple read/write queries can be distributed across machines

! Disadvantages:
! Complex queries: require combining data across all partitions, especially “joins” are 

tricky

R3, S3

R2, S2

R1, S1
Partitions of R (Not 
different relations)

Machine 1

Machine 2

Machine 3

Machine 1 can 
directly read R1, S1

If it wants R2, 
Machine 2 must read 
it and send it to 
Machine 1
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Data Replication
! A data item (file, relation, relation fragment, object, tuple) is replicated if it is stored 

redundantly in two or more sites
! Advantages:

! Availability: failures can be handled through replicas
! Parallelism: queries can be run on any replica
! Reduced data transfer: queries can go to the “closest” replica

! Disadvantages:
! Increased cost of updates: both computation as well as latency
! Increased complexity of concurrency control: need to update all copies of a data 

item/tuple

R

R

R Machine 1

Machine 2

Machine 3

Read queries can go to any machine

Write queries must go to “all” 
machines (if we want consistency)

e.g., what if Application 1 writes to 
Machine 1, and Application 2 sends 
its write to Machine 3
-- May result in an inconsistent state
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Data Sharding + Replication

! Many data management systems today combine both
êPartition a dataset/file/relation into smaller pieces and distributed it 

across machines
êReplicate each of the pieces multiple times

! This may be done:
ê In a data center with very fast networks, or
ê In a wide-area setting with slower networks and higher latencies

! So need to worry about:
êEfficient execution of complex queries
êConsistency for updates
êRecovery from failures
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Failures

! Need to consider:
êDisk failures: one of the disks (hard drives or SSDs) fails

Ø Not uncommon with 10’s of thousands of disks
êNetwork failures: machines may not be able to talk to each other
êMachine failure: a machine crashes during the execution of a query 

or a transaction

! Required guarantees:
êShouldn’t lose any data if a disk fails
êConsistency (when making updates) shouldn’t be affected if one of 

the involved machines fails
Ø Or if machines are not able to talk to each other

êShouldn’t have to restart a complex analytics task entirely if one of 
the involved machines fails
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Two Primary Use Cases

! OLTP-like
ê Simple queries, but lots of updates
ê Need to support distributed users
ê Need to support non-relational data (e.g., graphs, JSONs)
ê Need to scale fast (10 users to 10s of Millions of Users)
ê Need to work well in 3-tier Web Apps
ê Need to support fast schema changes

! OLAP-like
ê Complex analysis on large volumes of data
ê Often no “real-time” component, and no updates
ê Mostly non-relational data (images, webpages, text, etc)
ê Tasks often procedural in nature (analyse webpages for searching, data 

cleaning, ML)

NoSQL Storage Systems: 
HDFS, Cassandra, MongoDB, 
Neo4j, AWS DynamoDB, and 
many many others

Big data frameworks:
Hadoop MapReduce, Flink, 
Spark, and many others
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Examples of Systems

! Too much variety in the systems out there today
ê different types of data models supported

Ø Files/Objects (HDFS, AWS S3), Document (MongoDB), Graph (Neo4j), Wide-
table (Cassandra, DynamoDB), Multi-Model (Azure CosmosDB)

ê different types of query languages or frameworks or workloads
Ø SQL (Snowflake, Redshift, …), MongoQL, Cassandra QL, DataFrames (Spark), 

MapReduce (Hadoop), TensorFlow for ML, …

ê different environmental assumptions
Ø Distributed vs parallel, disks or in-memory only, single-machine or not, 

streaming or static, etc. 

ê different performance focus and/or guarantees
Ø e.g., consistency guarantees in a distributed setting differ quite a bit

! Many of these systems work with each
ê e.g., Spark can read data from most of the storage systems
ê Interoperability increasing a requirement
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What We Will Cover
" Apache Spark

ê Current leader in big data (OLAP-style) frameworks
ê Supports many query/analysis models, including a light version of SQL

" MongoDB
ê Perhaps the most popular NoSQL system, uses a ”document” (JSON) data model
ê Focus primarily on OLTP
ê Doesn’t really support joins (some limited ability today) – have to do that in the app

" How to “Parallelize” Operations
ê Useful to understand how Spark and other systems actually work
ê Often times you have to build these in the application layer
ê The original MapReduce framework

Ø Led to development of much work on large-scale data analysis (OLAP-style)
Ø Basically a way to execute a group-by at scale on non-relational data

" Hadoop Distributed File System (briefly)
ê A key infrastructure piece, with no real alternative
ê Basic file system interface, with replication and redundancy built in for failures

" Quick overview of other NoSQL data models

583

Instructor: Amol Deshpande
amol@umd.edu

Apache Spark
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! Book Chapters
ê10.4 (7TH EDITION) covers this topic, but Spark 

programming guide is a better resource

êAssignments will refer to the programming guide

! Key topics:
êA Resilient Distributed Dataset (RDD)

êOperations on RDDs

Apache Spark
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Spark
! Open-source, distributed cluster computing framework
! Much better performance than Hadoop MapReduce through in-

memory caching and pipelining
! Originally provided a low-level RDD-centric API, but today, most of 

the use is through the “Dataframes” (i.e., relations) API
ê Dataframes support relational operations like Joins, Aggregates, etc.
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Resilient Distributed Dataset (RDD)
! RDD = Collection of records stored across multiple machines in-memory

Worker Nodes
- Always running

Drivers
- Come and go
- Not fault-tolerant

In-memory partitions of RDD 2

In-memory partitions of RDD 3

In-memory partitions of RDD 1 RDD Manipulation 
Commands

Results – typically at 
the end
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Spark
! Why “Resilient”?

ê Can survive the failure of a worker node
ê Spark maintains a “lineage graph” of how each RDD partition was created
ê If a worker node fails, the partitions are recreated from its inputs
ê Only a small set of well-defined operations are permitted on the RDDs

Ø But the operations usually take in arbitrary ”map” and “reduce” functions

! Fault tolerance for the “driver” is trickier
ê Drivers have arbitrary logic (cf., the programs you are writing)
ê In some cases (e.g., Spark Streaming), you can do fault tolerance
ê But in general, driver failure requires a restart
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Driver

Example Spark Program
from pyspark import SparkContext

sc = SparkContext("local", "Simple App")

textFile = sc.textFile("README.md")

counts = textFile
.flatMap(lambda line: line.split(" "))
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a + b)

print(counts.take(100))

Initialize RDD by reading the textFile and 
partitioning
If textFile stored on HDFS, it is already 
partitioned – just read each partition as a 
separate RDD partition

Split each line into words, creating an RDD 
of words
For each word, output (word, 1), creating a 
new RDD
Do a group-by SUM aggregate to count the 
number of times each word appears Retrieve 100 of the values in the final RDD
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Spark

! Operations often take in a ”function” as input
! Using the inline “lambda” functionality

! Or a more explicit function declaration

! Similarly ”reduce” functions essentially tell Spark how to do 
pairwise aggregation

ê Spark will apply this to the dataset pair of values at a time
ê Difficult to do something like “median” 

flatMap(lambda line: line.split(" "))

def split(line): 
return line.split(" ")

flatMap(split)

reduceByKey(lambda a, b: a + b)
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Spark: Map

InputRDD:   [x1, x2, …., x_n]

map(lambda x: x + 1) def fn(x):
return x+1

map(fn)

outputRDD:   [x1+1, x2+1, …., x_n+1]

x1, x2, … can be anything, 
including documents, 
images, text files, tuples, 
dicts, etc.

InputRDD:   [x1, x2, …, x_n]

map(fn)

outputRDD:   [fn(x1), fn(x2), …, fn(x_n)]
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Spark: flatMap

InputRDD:   [(a1, b1), (a2, b2), ….]

flatMap(lambda x: [x[0], x[1]])

outputRDD:   [a1, b1, a2, b2, …]

InputRDD:   [‘the little brown fox…’, …]

flatMap(lambda x: x.split())

outputRDD:   [‘the’, ‘little’, ‘brown’, …]
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Spark: groupByKey

InputRDD:   [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)…]

groupByKey()

outputRDD:   [(a1, [b1, b3, b4, …]), (a2, [b3, b5,…]), …]

InputRDD must be a collection of 2-tuples
Usually called (Key, Value) pairs

Value can be anything (e.g., dicts, tuples, bytes)
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Spark: reduceByKey

InputRDD:   [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)…]

reduceByKey(func)

outputRDD:   [(a1, …func(func(b1, b3), b4)…), 
(a2, …func(func(b2, b5), …)…),]

InputRDD must be a collection of 2-tuples
Usually called (Key, Value) pairs

def func(V1, V2):
return V3

All of V1, V2, and V3 
be of the same type

”func” executed in parallel in a pairwise fashion
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Spark: join

InputRDD1:   [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)…]

inputRDD1.join(inputRDD2)

outputRDD:   [       (a1, (b1, c1)), 
(a1, (b1, c3)), 
(a1, (b1, c4)), 

….]

InputRDD1 and InputRDD2 both must 
be a collection of 2-tuples

InputRDD2:   [(a1, c1), (a2, c2), (a1, c3), (a1, c4), (a2, c5)…]
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Spark: cogroup

InputRDD1:   [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)…]

inputRDD1.cogroup(inputRDD2)

outputRDD:   [     (a1, ([b1, b3, b4, …], [c1, c3, c4, …]), 
(a2, ([b2, b5, …], [c2, c5, …]), …

]

InputRDD1 and InputRDD2 both must 
be a collection of 2-tuples

InputRDD2:   [(a1, c1), (a2, c2), (a1, c3), (a1, c4), (a2, c5)…]
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RDD Operations
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Dataframes Example
def basic_df_example(spark):

# $example on:create_df$
# spark is an existing SparkSession
df = spark.read.json("examples/src/main/resources/people.json")
# Displays the content of the DataFrame to stdout
df.show()
# +----+-------+
# | age| name|
# +----+-------+
# |null|Michael|
# | 30| Andy|
# | 19| Justin|
# +----+-------+
# $example off:create_df$

# $example on:untyped_ops$
# spark, df are from the previous example
# Print the schema in a tree format
df.printSchema()
# root
# |-- age: long (nullable = true)
# |-- name: string (nullable = true)

# Select only the "name" column
df.select("name").show()
# +-------+
# | name|
# +-------+
# |Michael|
# | Andy|
# | Justin|
# +-------+

# Select everybody, but increment the age by 1
df.select(df['name'], df['age'] + 1).show()
# +-------+---------+
# | name|(age + 1)|
# +-------+---------+
# |Michael| null|
# | Andy| 31|
# | Justin| 20|
# +-------+---------+

# Select people older than 21
df.filter(df['age'] > 21).show()
# +---+----+
# |age|name|
# +---+----+
# | 30|Andy|
# +---+----+

# Count people by age
df.groupBy("age").count().show()
# +----+-----+
# | age|count|
# +----+-----+
# | 19| 1|
# |null| 1|
# | 30| 1|
# +----+-----+
# $example off:untyped_ops$

sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
# +----+-------+
# | age| name|
# +----+-------+
# |null|Michael|
# | 30| Andy|
# | 19| Justin|
# +----+-------+
# $example off:run_sql$

# $example on:global_temp_view$
# Register the DataFrame as a global temporary view
df.createGlobalTempView("people")

# Global temporary view is tied to a system preserved database 
`global_temp`

spark.sql("SELECT * FROM global_temp.people").show()
# +----+-------+
# | age| name|
# +----+-------+
# |null|Michael|
# | 30| Andy|
# | 19| Justin|
# +----+-------+
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Summary

! Spark is a popular and widely used framework for large-scale 
computing

! Simple programming interface 
ê You don’t need to typically worry about the parallelization
ê That’s handled by Spark transparently
ê In practice, may need to fiddle with number of partitions etc.

! Managed services supported by several vendors including 
Databricks (started by the authors of Spark), Cloudera, etc.

! Many other concepts that we did not discuss
ê Shared accumulator and broadcast variables
ê Support for Machine Learning, Graph Analytics, Streaming, and other use 

cases

! Alternatives include: Apache Tez, Flink, and several others
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} A prototypical NoSQL database
} Short for humongous
} First version in 2009!
} Still very popular
◦ IPO in 2017
◦ Now worth >7B in market capital (as of 2020)

Slides adapted from CS186 Slides by:
Alvin Cheung
Aditya Parameswaran
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} A prototypical NoSQL database
} Short for humongous
} First version in 2009!
} Still very popular
◦ IPO in 2017
◦ Now worth >7B in market capital (as of 2020)
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} Internet & social media boom led to a demand for
◦ Rapid data model evolution: "a move fast and break things" mentality to system dev

� E.g., adding a new attrib to a Facebook profile
� Contrary to DBMS wisdom of declaring schema upfront and changing rarely (costly!)

◦ Rapid txn support, even at the cost of losing some updates or non-atomicity
� Contrary to DBMS wisdom of ACID, esp. with distribution/2PC (costly!)

} Early version centered around storing and querying json documents quickly
} Made several tradeoffs for speed
◦ No joins è now support left outer joins
◦ Limited query opt è still limited, but many improvements
◦ No txn support apart from atomic writes to json docs è limited support for multi-doc 

txns
◦ No checks/schema validation è now support json schema validation (rarely used!) 
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} Most egregious: no durability or write ahead logging! 

Sure enough, this was fixed later (four years after the first version!)

https://www.mongodb.com/blog/post/what-about-durability

Excuse 1: 
Durability is 
overrated

Excuse 2: 
It’s hard to 
implement
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Bottomline:
MongoDB has now evolved into a mature "DBMS" with 
some different design decisions, and relearning many of the 
canonical DBMS lessons

We’ll focus on two primary design decisions:
} The data model
} The query language

Will discuss these two to start with, then some of the 
architectural issues
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MongoDB DBMS
Database Database
Collection Relation
Document Row/Record
Field Column

Document = {…, field: value, …}

Where value can be:
• Atomic
• A document
• An array of atomic values
• An array of documents

{ qty : 1,  status : "D", size : {h : 14, w : 21}, tags : 
["a", "b"] },

Can also mix and match, e.g., array of atomics 
and documents, or array of arrays
[Same as the JSON data model]

Internally stored as BSON = Binary JSON
• Client libraries can directly operate on this 

natively
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MongoDB DBMS
Database Database
Collection Relation
Document Row/Record
Field Column

Document = {…, field: value, …}

Can use JSON schema validation
• Some integrity checks, field typing and 

ensuring the presence of certain fields
• Rarely used, and we’ll skip for our 

discussion

Special field in each document: _id
• Primary key
• Will also be indexed by default
• If it is not present during ingest, it will be 

added 
• Will be first attribute of each doc.
• This field requires special treatment 

during projections as we will see later
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} Input = collections, output = collections
◦ Very similar to Spark

} Three main types of queries in the query language
◦ Retrieval: Restricted SELECT-WHERE-ORDER BY-LIMIT type queries
◦ Aggregation: A bit of a misnomer; a general pipeline of operators

� Can capture Retrieval as a special case
� But worth understanding Retrieval queries first…
◦ Updates

} All queries are invoked as
◦ db.collection.operation1(…).operation2(…)…

� collection: name of collection
◦ Unlike SQL which lists many tables in a FROM clause, MQL is centered 

around manipulating a single collection (like Spark)

Syntax somewhat different when called 
from within Python3 (using pymongo)
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} "." is used to drill deeper into nested docs/arrays
} Recall that a value could be atomic, a nested document, an array of atomics, or an 

array of nested documents

} Examples:
◦ "instock.qty" è qty field within the instock field
◦ "instock.1" è second element within the instock array 

� Element could be an atomic value or a nested document
◦ "instock.1.qty" è qty field within the second document within the instock array

} Note: such dot expressions need to be in quotes
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} $ indicates that the string is a special keyword 
◦ E.g., $gt, $lte, $add, $elemMatch, …

} Used as the "field" part of a "field : value" expression
} So if it is a binary operator, it is usually done as:
◦ {LOperand : { $keyword : ROperand}} 
◦ e.g., {qty : {$gt : 30}}

} Alternative: arrays 
◦ {$keyword : [argument list]} 
◦ e.g., {$add : [ 1, 2]} 

} Exception: $fieldName, used to refer to a previously defined field on the value side
◦ Purpose: disambiguation
◦ Only relevant for aggregation pipelines
◦ Let’s not worry about this for now.
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db.collection.find(<predicate>, optional <projection>) 

returns documents that match <predicate>
keep fields as specified in <projection>
both <predicate> and <projection> expressed as documents
in fact, most things are documents!

db.inventory.find( { } )
returns all documents 

Syntax somewhat different when called 
from within Python3 (using pymongo)
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db.collection.find(<predicate>, optional <projection>) 
} find( { status : "D"} )
◦ all documents with status D è paper, planner

} find ( { qty : {$gte : 50} } )
◦ all documents with qty >= 50 è notebook, paper, planner

} find ( { status : "D", qty : {$gte : 50} } )
◦ all documents that satisfy both è paper, planner

} find( { $or: [ { status : "D" }, { qty : { $lt : 30 } } ] } ) 
◦ all documents that satisfy either è journal, paper, planner

Syntax somewhat different when called 
from within Python3 (using pymongo)
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db.collection.find(<predicate>, optional <projection>) 

} find( { size: { h: 14, w: 21, uom: "cm" } } ) 
◦ exact match of nested document, including ordering of fields! è

journal
} find ( { "size.uom" : "cm", "size.h" : {$gt : 14 } )
◦ querying a nested field è planner
◦ Note: when using . notation for sub-fields, expression must be in 

quotes
◦ Also note: binary operator handled via a nested document

Syntax somewhat different when called 
from within Python3 (using pymongo)
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Slightly different example dataset for Arrays and Arrays of Document Examples
db.collection.find(<predicate>, optional <projection>) 

} find( { tags: ["red", "blank"] } )
◦ Exact match of array è notebook

} find( { tags: "red" } )
◦ If one of the elements matches red è journal, notebook, paper, planner

} find( { tags: "red", tags: "plain" } )
◦ If one matches red, one matches plain è paper

} find( { dim: { $gt: 15, $lt: 20 } } )
◦ If one element is >15 and another is <20 è journal, notebook, paper, postcard

} find( { dim: {$elemMatch: { $gt: 15, $lt: 20 } } } )
◦ If a single element is >15 and <20 è postcard

} find( { "dim.1": { $gt: 25 } } )
◦ If second item > 25 è planner
◦ Notice again that we use quotes to when using . notation

Syntax somewhat different when called 
from within Python3 (using pymongo)
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db.collection.find(<predicate>, optional <projection>) 

} find( { instock: { loc: "A", qty: 5 } } )
◦ Exact match of document [like nested doc/atomic array case] è journal

} find( { "instock.qty": { $gte : 20 } } )
◦ One nested doc has >= 20 è paper, planner, postcard

} find( { "instock.0.qty": { $gte : 20 } } )
◦ First nested doc has >= 20 è paper, planner

} find( { "instock": { $elemMatch: { qty: { $gt: 10, $lte: 20 } } } } )
◦ One doc has  20 >= qty >10è paper, journal, postcard

} find( { "instock.qty": { $gt: 10, $lte: 20 } } )
◦ One doc has  20 >= qty, another has qty>10 è paper, journal, postcard, planner

Syntax somewhat different when called 
from within Python3 (using pymongo)
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db.collection.find(<predicate>, optional <projection>) 
} Use 1s to indicate fields that you want 
◦ Exception: _id is always present unless explicitly excluded

} OR Use 0s to indicate fields you don’t want 
} Mixing 0s and 1s is not allowed for non _id fields

} find( { }, {item: 1})
{ "_id" : ObjectId("5fb59ab9f50b800678c0e196"), "item" : "journal" }
{ "_id" : ObjectId("5fb59ab9f50b800678c0e197"), "item" : "notebook" }
{ "_id" : ObjectId("5fb59ab9f50b800678c0e198"), "item" : "paper" }
{ "_id" : ObjectId("5fb59ab9f50b800678c0e199"), "item" : "planner" }

{ "_id" : ObjectId("5fb59ab9f50b800678c0e19a"), "item" : "postcard" }

} find( { }, {item: 1, _id : 0})
{ "item" : "journal" }
{ "item" : "notebook" }
{ "item" : "paper" }
{ "item" : "planner" }
{ "item" : "postcard" }

• find({},{item : 1, tags: 0, _id : 0})
Error: error: {
"ok" : 0,
"errmsg" : "Cannot do exclusion on field tags in inclusion projection",
"code" : 31254,
"codeName" : "Location31254" }

• find({},{item : 1, "instock.loc": 1, _id : 0})
{ "item" : "journal", "instock" : [ { "loc" : "A" }, { "loc" : "C" } ] }
{ "item" : "notebook", "instock" : [ { "loc" : "C" } ] }
{ "item" : "paper", "instock" : [ { "loc" : "A" }, { "loc" : "B" } ] }
{ "item" : "planner", "instock" : [ { "loc" : "A" }, { "loc" : "B" } ] }
{ "item" : "postcard", "instock" : [ { "loc" : "B" }, { "loc" : "C" } ] }

Syntax somewhat different when called 
from within Python3 (using pymongo)
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Two additional operations that are useful for retrieval:
} Limit (k) like LIMIT in SQL
◦ e.g., db.inventory.find( { } ).limit(1) 

} Sort ({ }) like ORDER BY in SQL
◦ List of fields, -1 indicates decreasing 1 indicates ascending
◦ e.g., db.inventory.find( { }, {_id : 0, instock : 0} ).sort( { "dim.0": -1, item: 

1 } )
{ "item" : "planner", "tags" : [ "blank", "red" ], "dim" : [ 22.85, 30 ] }
{ "item" : "journal", "tags" : [ "blank", "red" ], "dim" : [ 14, 21 ] }
{ "item" : "notebook", "tags" : [ "red", "blank" ], "dim" : [ 14, 21 ] }
{ "item" : "paper", "tags" : [ "red", "blank", "plain" ], "dim" : [ 14, 21 ] }
{ "item" : "postcard", "tags" : [ "blue" ], "dim" : [ 10, 15.25 ] }

Syntax somewhat different when called 
from within Python3 (using pymongo)
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find() = SELECT <projection> 
FROM Collection 
WHERE <predicate>

limit() = LIMIT
sort()  = ORDER BY

db.inventory.find( 
{ tags : red }, 
{_id : 0, instock : 0} )

.sort ( { "dim.0": -1, item: 1 } )

.limit (2) 

WHERE
SELECT
ORDER BY
LIMIT

FROM

Syntax somewhat different when called 
from within Python3 (using pymongo)
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} The use of regexes for matching
} $all : all entries in an array satisfy a condition
} $in : checking if a value is present in an array of atomic 

values
} The presence or absence of fields 
◦ Can use special “null” values
◦ {field : null} checks if a field is null or missing
◦ $exists : checking the presence/absence of a field

Syntax somewhat different when called 
from within Python3 (using pymongo)
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} Input = collections, output = collections
◦ Very similar to Spark

} Three main types of queries in the query language
◦ Retrieval: Restricted SELECT-WHERE-ORDER BY-LIMIT type queries
◦ Aggregation: A bit of a misnomer; a general pipeline of operators

� Can capture Retrieval as a special case
� But worth understanding Retrieval queries first…
◦ Updates

} All queries are invoked as
◦ db.collection.operation1(…).operation2(…)…

� collection: name of collection
◦ Unlike SQL which lists many tables in a FROM clause, MQL is centered 

around manipulating a single collection (like Spark)

Syntax somewhat different when called 
from within Python3 (using pymongo)
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} Composed of a linear pipeline of 
stages

} Each stage corresponds to one of:
◦ match // first arg of find ( )
◦ project // second arg of find ( ) but 

more expressiveness
◦ sort/limit // same as retrieval
◦ group
◦ unwind
◦ lookup
◦ … lots more!!

} Each stage manipulates the 
existing collection in some way

matc
h

matc
h
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• Syntax:
db.collection.aggregate ( [
{ $stage1Op: { } },
{ $stage2Op: { } },
…

{ $stageNOp: { } }
] )

621

One document per zipcode: 29353 zipcodes

Syntax somewhat different when called 
from within Python3 (using pymongo)
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Find states with population > 15M, sort by decending order
db.zips.aggregate( [
{ $group: { _id: "$state", totalPop: { $sum: "$pop" } } },
{ $match: { totalPop: { $gte: 15000000 } } }, 
{ $sort : { totalPop : -1 } }
] )

{ "_id" : "CA", "totalPop" : 29754890 }
{ "_id" : "NY", "totalPop" : 17990402 }
{ "_id" : "TX", "totalPop" : 16984601 }
…

Q: what would the SQL query for this be?

matc
h

gro
up

so
rt

SELECT state AS id, SUM(pop) AS totalPop
FROM zips 
GROUP BY state
HAVING totalPop >= 15000000
ORDER BY totalPop DESCENDING

GROUP BY AGGS.

match after 
group = 
HAVING

Syntax somewhat different when called 
from within Python3 (using pymongo)
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$group : { 
_id: <expression>, // Group By Expression
<field1>: { <aggfunc1> : <expression1> }, 
... }

Returns one document per unique group, indexed by _id

Agg.func. can be standard ops like $sum, $avg, $max

Also MQL specific ones:
} $first : return the first expression value per group 
◦ makes sense only if docs are in a specific order [usually done after sort]

} $push : create an array of expression values per group  
◦ didn’t make sense in a relational context because values are atomic

} $addToSet : like $push, but eliminates duplicates
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aggregate( [
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } },
{ $group: { _id: "$_id.state", avgCityPop: { $avg: "$pop" } } } 
] )

Q: Guesses on what this might be doing?
A: Find average city population per state

{ "_id" : "GA", "avgCityPop" : 11547.62210338681 }
{ "_id" : "WI", "avgCityPop" : 7323.00748502994 }
{ "_id" : "FL", "avgCityPop" : 27400.958963282937 }
{ "_id" : "OR", "avgCityPop" : 8262.561046511628 }
{ "_id" : "SD", "avgCityPop" : 1839.6746031746031 }
{ "_id" : "NM", "avgCityPop" : 5872.360465116279 }
{ "_id" : "MD", "avgCityPop" : 12615.775725593667 }
…

gro
up

gro
up

Group by 
previously 

def. id.state Notice use of $ to 
refer to previously 

defined fields

Group by 2 attribs, 
giving nested id

Syntax somewhat different when called 
from within Python3 (using pymongo)

625

Find, for every state, the biggest city and its population

aggregate( [ 
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } }, 
{ $sort: { pop: -1 } }, 
{ $group: { _id : "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } }, 
{ $sort : {bigPop : -1} }
] )

Approach: 
} Group by pair of city and state, and compute population per city
} Order by population descending
} Group by state, and find first city and population per group (i.e., the highest population city)
} Order by population descending

{ ”_id" : "IL", "bigCity" : "CHICAGO", "bigPop" : 2452177 }
{ "_id" : "NY", "bigCity" : "BROOKLYN", "bigPop" : 2300504 }
{ "_id" : "CA", "bigCity" : "LOS ANGELES", "bigPop" : 2102295 }
{ "_id" : "TX", "bigCity" : "HOUSTON", "bigPop" : 2095918 }
{ "_id" : "PA", "bigCity" : "PHILADELPHIA", "bigPop" : 1610956 }
{ "_id" : "MI", "bigCity" : "DETROIT", "bigPop" : 963243 }
…

gro
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Can list multiple 
aggregations 

after grouping id

Syntax somewhat different when called 
from within Python3 (using pymongo)
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If we only want to keep the state and city …

aggregate( [ 
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } }, 
{ $sort: { pop: -1 } }, 
{ $group: { _id : "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } }, 
{ $sort : {bigPop : -1} }
{ $project : {bigPop : 0} }
] )

{ "_id" : "IL", "bigCity" : "CHICAGO" }
{ "_id" : "NY", "bigCity" : "BROOKLYN" }
{ "_id" : "CA", "bigCity" : "LOS ANGELES" }
{ "_id" : "TX", "bigCity" : "HOUSTON" }
{ "_id" : "PA", "bigCity" : "PHILADELPHIA" }
…
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Syntax somewhat different when called 
from within Python3 (using pymongo)
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If we wanted to nest the name of the city and population into a nested doc

aggregate( [ 
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } }, 
{ $sort: { pop: -1 } }, 
{ $group: { _id : "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } }, 
{ $sort : {bigPop : -1} },
{ $project : { _id : 0, state : "$_id", bigCityDeets: { name: "$bigCity", pop: "$bigPop" } } }
] )

{ "state" : "IL", "bigCityDeets" : { "name" : "CHICAGO", "pop" : 2452177 } }
{ "state" : "NY", "bigCityDeets" : { "name" : "BROOKLYN", "pop" : 2300504 } }
{ "state" : "CA", "bigCityDeets" : { "name" : "LOS ANGELES", "pop" : 2102295 } }
{ "state" : "TX", "bigCityDeets" : { "name" : "HOUSTON", "pop" : 2095918 } }
{ "state" : "PA", "bigCityDeets" : { "name" : "PHILADELPHIA", "pop" : 1610956 } }
…

Can construct new 
nested documents 

in output, unlike 
vanilla projection

Syntax somewhat different when called 
from within Python3 (using pymongo)
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} In addition to excluding/including fields like in projection 
during retrieval (find), projection in the aggregation 
pipeline allows you to:
◦ Rename fields
◦ Redefine new fields using complex expressions on old fields
◦ Reorganize fields into nestings or unnestings
◦ Reorganize fields into arrays or break down arrays

} Try them at home!

629

} Composed of a linear pipeline of 
stages

} Each stage corresponds to one of:
◦ match // first arg of find ( )
◦ project // second arg of find ( ) but 

more expressiveness
◦ sort/limit // same 
◦ group
◦ unwind
◦ lookup
◦ … lots more!!

} Each stage manipulates the 
existing collection in some way

• Syntax:
db.collection.aggregate ( [
{ $stage1Op: { } },
{ $stage2Op: { } },
…

{ $stageNOp: { } }
] }
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Syntax somewhat different when called 
from within Python3 (using pymongo)
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Unwind expands an array by 
constructing documents one per 
element of the array

Somewhat like flatMap in Spark

Going back to our old example with an 
array of tags

Notice no relational analog here: no 
arrays so no unwinding
[in fact, some RDBMSs do support 
arrays, but not in the rel. model]

aggregate( [ 
{ $unwind : "$tags" }, 
{ $project : {_id : 0, instock: 0}}  

] )

{ "item" : "journal", "tags" : "blank", "dim" : [ 14, 21 ] }
{ "item" : "journal", "tags" : "red", "dim" : [ 14, 21 ] }
{ "item" : "notebook", "tags" : "red", "dim" : [ 14, 21 ] }
{ "item" : "notebook", "tags" : "blank", "dim" : [ 14, 21 ] }
{ "item" : "paper", "tags" : "red", "dim" : [ 14, 21 ] }
{ "item" : "paper", "tags" : "blank", "dim" : [ 14, 21 ] }
{ "item" : "paper", "tags" : "plain", "dim" : [ 14, 21 ] }
{ "item" : "planner", "tags" : "blank", "dim" : [ 22.85, 30 ] }
{ "item" : "planner", "tags" : "red", "dim" : [ 22.85, 30 ] }
{ "item" : "postcard", "tags" : "blue", "dim" : [ 10, 15.25 ] }

Syntax somewhat different when called 
from within Python3 (using pymongo)
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Q: Imagine if we want to find sum of qtys across items. How would we do this?

A common recipe in MQL queries is to unwind and then group by

aggregate( [ 
{ $unwind : "$instock" },
{ $group : {_id : "$item", totalqty : {$sum : "$instock.qty"}}} 

] )

{ "_id" : "notebook", "totalqty" : 5 }
{ "_id" : "postcard", "totalqty" : 50 }
{ "_id" : "journal", "totalqty" : 20 }
{ "_id" : "planner", "totalqty" : 45 }
{ "_id" : "paper", "totalqty" : 75 }

Syntax somewhat different when called 
from within Python3 (using pymongo)
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{ $lookup: { 

from: <collection to join>, 
localField: <referencing field>, 
foreignField: <referenced field>, 
as: <output array field> 

} }

Conceptually, for each document
} find documents in other coll that join (equijoin)
◦ local field must match foreign field

} place each of them in an array

Thus, a left outer equi-join, with the join results stored in an 
array

Straightforward, but kinda gross. Let’s see…

Say, for each item, I want to find other items located in the 
same location = self-join

db.inventory.aggregate( [ 
{ $lookup : {from : "inventory", localField: "instock.loc", 
foreignField: "instock.loc", as:"otheritems"}},
{ $project : {_id : 0, tags : 0, dim : 0}} 

] )

{ "item" : "journal", "instock" : [ { "loc" : "A", "qty" : 5 }, { "loc" : "C", "qty" 
: 15 } ], "otheritems" : [ 

{ "_id" : ObjectId("5fb6f9605f0594e0227d3c24"), "item" : "journal", 
"instock" : [ { "loc" : "A", "qty" : 5 }, { "loc" : "C", "qty" : 15 } ], 
"tags" : [ "blank", "red" ], "dim" : [ 14, 21 ] }, 
{ "_id" : ObjectId("5fb6f9605f0594e0227d3c25"), "item" : 
"notebook", "instock" : [ { "loc" : "C", "qty" : 5 } ], "tags" : [ "red", 
"blank" ], "dim" : [ 14, 21 ] }, 
{ "_id" : ObjectId("5fb6f9605f0594e0227d3c26"), "item" : "paper", 
"instock" : [ { "loc" : "A", "qty" : 60 }, { "loc" : "B", "qty" : 15 } ], 
"tags" : [ "red", "blank", "plain" ], "dim" : [ 14, 21 ] }, 
…
] }

And many other records!

Syntax somewhat different when called 
from within Python3 (using pymongo)
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db.inventory.aggregate( [ 
{ $lookup : {from:"inventory", localField:"instock.loc", foreignField:"instock.loc", as:"otheritems"}},
{$project : {_id : 0, tags :0, dim :0, "otheritems._id":0, "otheritems.tags":0, "otheritems.dim":0, 
"otheritems.instock.qty":0}} ] )

{ "item" : "journal", "instock" : [ { "loc" : "A", "qty" : 5 }, { "loc" : "C", "qty" : 15 } ], "otheritems" : [ 
{ "item" : "journal", "instock" : [ { "loc" : "A" }, { "loc" : "C" } ] }, 
{ "item" : "notebook", "instock" : [ { "loc" : "C" } ] }, 
{ "item" : "paper", "instock" : [ { "loc" : "A" }, { "loc" : "B" } ] }, 
{ "item" : "planner", "instock" : [ { "loc" : "A" }, { "loc" : "B" } ] }, 
{ "item" : "postcard", "instock" : [ { "loc" : "B" }, { "loc" : "C" } ] } ] }

{ "item" : "notebook", "instock" : [ { "loc" : "C", "qty" : 5 } ], "otheritems" : [ 
{ "item" : "journal", "instock" : [ { "loc" : "A" }, { "loc" : "C" } ] }, 
{ "item" : "notebook", "instock" : [ { "loc" : "C" } ] }, 
{ "item" : "postcard", "instock" : [ { "loc" : "B" }, { "loc" : "C" } ] } ] }

…

Syntax somewhat different when called 
from within Python3 (using pymongo)
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• $project is helpful if you want to construct or deconstruct nestings
(in addition to removing fields or creating new ones)

• $group is helpful to construct arrays (using $push or $addToSet)
• $unwind is helpful for unwinding arrays
• $lookup is your only hope for joins. Be prepared for a mess. Lots of 

$project needed

635

} Input = collections, output = collections
◦ Very similar to Spark

} Three main types of queries in the query language
◦ Retrieval: Restricted SELECT-WHERE-ORDER BY-LIMIT type queries
◦ Aggregation: A bit of a misnomer; a general pipeline of operators

� Can capture Retrieval as a special case
� But worth understanding Retrieval queries first…
◦ Updates

} All queries are invoked as
◦ db.collection.operation1(…).operation2(…)…

� collection: name of collection
◦ Unlike SQL which lists many tables in a FROM clause, MQL is centered 

around manipulating a single collection (like Spark)

Syntax somewhat different when called 
from within Python3 (using pymongo)
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[Insert/Delete/Update] [One/Many]
◦ Many is more general, so we’ll discuss that instead

db.inventory.insertMany( [
{ item: "journal", instock: [ { loc: "A", qty: 5 }, { loc: "C", qty: 15 } ], tags: ["blank", "red"], dim: [ 14, 21 ] },
{ item: "notebook", instock: [ { loc: "C", qty: 5 } ], tags: ["red", "blank"] , dim: [ 14, 21 ]},
{ item: "paper", instock: [ { loc: "A", qty: 60 }, { loc: "B", qty: 15 } ], tags: ["red", "blank", "plain"] , dim: [ 14, 21 ]},
{ item: "planner", instock: [ { loc: "A", qty: 40 }, { loc: "B", qty: 5 } ], tags: ["blank", "red"], dim: [ 22.85, 30 ] },
{ item: "postcard", instock: [ {loc: "B", qty: 15 }, { loc: "C", qty: 35 } ], tags: ["blue"] , dim: [ 10, 15.25 ] } 
] );

Several actions will be taken as part of this insert:
} Will create inventory collection if absent [No schema specification/DDL needed!]
} Will add the _id attrib to each document added (since it isn’t there)
} _id will be the first field for each document by default
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Syntax: updateMany ( {<condition>}, {<change>}) 
db.inventory.updateMany ( 

{"dim.0": { $lt: 15 } }, 
{ $set: { "dim.0": 15, status: "InvalidWidth"} }

) // if any width <15, set it to 15 and set status to InvalidWidth.

Analogous to: UPDATE R SET <change> WHERE <condition>
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Syntax: updateMany ( {<condition>}, {<change>}) 
db.inventory.updateMany ( 
{"dim.0": { $lt: 15 } },
{ $inc: { "dim.0": 5},

$set: {status: "InvalidWidth"} } )
// if any width <15, increment by 5 and set status to InvalidWidth.

Analogous to: UPDATE R SET <change> WHERE <condition

639

} MongoDB is a distributed NoSQL database
} Collections are partitioned/sharded based on a field [range-

based]
◦ Each partition stores a subset of documents

} Each partition is replicated to help with failures
◦ The replication is done asynchronously
◦ Failures of the main partition that haven’t been propagated will be lost

} Limited heuristic-based query optimization (will discuss later)
} Atomic writes to documents within collections by default. 

Multi-document txns are discouraged (but now supported). 
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} Weird constraint: intermediate results of aggregations must not be too large 
(100MB)
◦ Else will end up spilling to disk
◦ Not clear if they perform any pipelining across aggregation operators

} Optimization heuristics
◦ Will use indexes for $match if early in the pipeline [user can explicitly declare]
◦ $match will be merged with other $match if possible

� Selection fusion
◦ $match will be moved early in the pipeline sometimes 

� Selection pushdown
� But: not done always (e.g., not pushed before $lookup)

◦ No cost-based optimization as far as one can tell
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Bottomline:
MongoDB has now evolved into a mature "DBMS" with some 
different design decisions, and relearning many of the canonical 
DBMS lessons

MongoDB has a flexible data model and a powerful (if 
confusing) query language.

Many of the internal design decisions as well as the query & 
data model can be understood when compared with DBMSs
} DBMSs provide a "gold standard" to compare against.
} In the "wild" you’ll encounter many more NoSQL systems, 

and you’ll need to do the same thing that we did here!
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Parallelizing Operations

643

©Silberschatz, Korth and Sudarshan18.644Database System Concepts - 6th Edition

! Book Chapters
! 18.5, 18.6

! Key topics:
! Parallelizing a Sort Operation

! Parallelizing a Join Operation

! Parallelizing a Group By Operation

Parallelizing Operations
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! Assume Shared-Nothing Model

! Relations are already partitioned across a set of machines 
(will talk about how next video)

! How to execute different operations?

Setup

R3, S3

R2, S2

R1, S1
Partitions of R (Not 
different relations)

Processor 1

Processor 2

Processor w

Processor 1 can 
directly read R1, S1

If it wants R2, 
Processor 2 must 
read it and send it to 
Processor 1
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Parallel Sort

1. Each processor sorts a portion of the data (e.g., the data on their local 
disk)

2. If the data is small enough, all the processors can send it to a single 
machine to do a “merge”

3. If the data is large, then ”merge” itself done in parallel through range 
partitioning

1. Each processor in the merge phase gets assigned a range of the 
data

2. All other processors send the appropriate data based on that 
range partitioning

! In either phase, the processors work by themselves (“data 
parallelism”) but data must be “shuffled” in between

! Other approaches exist, but basically same steps
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Parallel Sort

Sort R1 Locally

R4

R3

R2

R1

Partitions of R (Not 
different relations)

Sort R2 Locally

Sort R3 Locally

Sort R4 Locally

Sort received tuples

Sort received tuples

Sort received tuples

Sort received tuples

tuples with R.a < 100

100 <= R.a < 200

500 <= R.a

200 <= R.a < 500

Shuffle – typically expensive

Can be same machines 
or different
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Parallel Join

! Hash-based approach
! Very similar to how partitioning hash join works (i.e., the variant 

we saw for the case when the relations don’t fit in memory)
! Most common for equi-joins where hashing can be used
! Easier to guarantee balanced work 

! Sort-based approach
! Similar to the parallel sort approach
! Both relations sorted using the same key
! Same processor used for merging in the second phase for both 

relations
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Hash-based Parallel Join

Read R1 and Partition 
Read S1 and Partition

R4, S4

R3, S3

R2, S2

R1, S1

Read R2 and Partition 
Read S2 and Partition

Read R3 and Partition 
Read S3 and Partition

Read R4 and Partition 
Read S4 and Partition

Join the R and S 
tuples with h(a) = 1

Join the R and S 
tuples with h(a) = 2

Join the R and S 
tuples with h(a) = 3

Join the R and S 
tuples with h(a) = 4

R1 and S1 tuples with 
h(a) = 1

h(a) = 2

h(a) = 4

h(a) = 3

Shuffle – typically expensive

649

©Silberschatz, Korth and Sudarshan18.650Database System Concepts - 6th Edition

Fragment-and-Replicate Join

! Partitioning not possible for some join conditions 
! E.g., non-equijoin conditions, such as r.A > s.B.

! For joins were partitioning is not applicable, parallelization  can be 
accomplished by fragment and replicate technique

! Special case – asymmetric fragment-and-replicate:
! One of the relations, say r, is partitioned; any partitioning 

technique can be used.
! The other relation, s, is replicated across all the processors.
! Processor Pi then locally computes the join of ri with all of s using 

any join technique.
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Asymmetric Fragment and Replicate

Read S1 and send 
it around

R4, S4

R3, S3

R2, S2

R1, S1

Read S2 and send 
it around

Read S3 and send 
it around

Read S4 and send 
it around

Join R1 with all of S

Join R2 with all of S

Join R3 with all of S

Join R4 with all of S

All S1 tuples (no need to 
send if same machine) 

All S1 tuples 

All S1 tuples 

All S1 tuples 
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Grouping/Aggregation
! Very common operation, especially in Map-Reduce applications

! E.g., grouping by “hostnames” or “words” (as in project 5) or “labels” (in 
ML context), etc.

! The idea of distributing data, doing some computations, and collecting 
results is quite powerful

! Even ”joins” can be seen as a “group by” operation (you can group the 
tuples of the two relations on the join attribute, and then compute join)

! Need to differentiate between “groupby” and “aggregate” (”reduce”)
! Groupby: For every value of ”group by attribute” (i.e., “key”), collect all 

tuples/records with that key on a single machine
! Aggregate/Reduce: Perform some computation on them, typically 

reducing the size of the data
! Spark has more granular operations than SQL

! Challenges: 
! Number of keys might be very large
! Should try to do as much pre-aggregation as possible
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Scenario 1: Small # of Groups + Reduce

Group tuples of R1; 
Compute 
partial aggregates

R4

R3

R2

R1

Partitions of R (Not 
different relations)

Combine partial 
aggregates

(a, 5, ..)
(b, 3, ..)
(a, 4, ..)

(a, 9, ..)
(b, 3, ..)

Partial aggregates

Group tuples of R2; 
Compute 
partial aggregates

Group tuples of R3; 
Compute 
partial aggregates

Group tuples of R4; 
Compute 
partial aggregates

• Similarly to how we have seen, 
”average” would require 
sending ”sum” an “count”, etc

• Amount of data transferred low
• Requires a proper 

aggregate/reduce, and small 
number of groups
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Scenario 2: Large # of Groups + Reduce

Group tuples of R1; 
Compute 
partial aggregates

R4

R3

R2

R1 Combine partial 
aggregates

(a, 5, ..)
(b, 3, ..)
(a, 4, ..) (a, 9, ..)

Group tuples of R2; 
Compute 
partial aggregates

Group tuples of R3; 
Compute 
partial aggregates

Group tuples of R4; 
Compute 
partial aggregates

Combine partial 
aggregates

Combine partial 
aggregates

Combine partial 
aggregates

(b, 3, ..)

Use hashing to 
redistribute data
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Scenario 3: Large # of Groups + No Reduce

Group tuples of R1; 
Redistribute using 
Hashing

R4

R3

R2

R1 Compute aggregates
Or reduce functions

Group tuples of R2; 
Redistribute using 
Hashing

Group tuples of R3; 
Redistribute using 
Hashing

Group tuples of R4; 
Redistribute using 
Hashing

Compute aggregates
Or reduce functions

Compute aggregates
Or reduce functions

Compute aggregates
Or reduce functions

e.g., if we want to compute “median” or some other 
complex statistics – no “partial aggregation” possible
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Other Relational Operations

Selection sq(r)

! If q is of the form ai = v, where ai is an attribute and v a value.
! If r is partitioned on ai the selection is performed at a single 

processor.

! If q is of the form l <= ai <= u  (i.e., q is a range selection) and the 
relation has been range-partitioned on ai

! Selection is performed at each processor whose partition overlaps 
with the specified range of values.

! In all other cases: the selection is performed in parallel at all the 
processors.
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Other Relational Operations (Cont.)

! Duplicate elimination
! Perform by using either of the parallel sort techniques

4 eliminate duplicates as soon as they are found during sorting.
! Can also partition the tuples (using either range- or hash-

partitioning) and perform duplicate elimination locally at each 
processor.

! Projection
! Projection without duplicate elimination can be performed as 

tuples are read in from disk in parallel.
! If duplicate elimination is required, any of the above duplicate 

elimination techniques can be used.
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MapReduce Overview
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! Book Chapters
ê10.3 (7TH EDITION)

! Key topics:
êWhy MapReduce and History

êWord Count using MapReduce

Big Data; Storage Systems
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The MapReduce Paradigm

! Platform for reliable, scalable parallel computing

! Abstracts issues of distributed and parallel environment from 
programmer
ê Programmer provides core logic (via map() and reduce() functions)
ê System takes care of parallelization of computation, coordination, etc.

! Paradigm dates back many decades 
ê But very large scale implementations running on clusters with 10^3 to 

10^4 machines are more recent
êGoogle Map Reduce, Hadoop, ..

! Data storage/access typically done using distributed file systems 
or key-value stores
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MapReduce Framework
! Provides a fairly restricted, but still powerful abstraction for programming

! Programmers write a pipeline of functions, called map or reduce
ê map programs

Ø inputs: a list of “records” (record defined arbitrarily – could be images, 
genomes etc…)

Ø output: for each record, produce a set of “(key, value)” pairs

ê reduce programs
Ø input: a list of “(key, {values})” grouped together from the mapper
Ø output: whatever

ê Both can do arbitrary computations on the input data as long as the basic 
structure is followed
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MapReduce Framework
input files mappers intermediate

files
reducers output

files
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Word Count Example

for a rewrite of our production indexing system. Sec-
tion 7 discusses related and future work.

2 Programming Model

The computation takes a set of input key/value pairs, and
produces a set of output key/value pairs. The user of
the MapReduce library expresses the computation as two
functions: Map and Reduce.
Map, written by the user, takes an input pair and pro-
duces a set of intermediate key/value pairs. The MapRe-
duce library groups together all intermediate values asso-
ciated with the same intermediate key I and passes them
to the Reduce function.
The Reduce function, also written by the user, accepts
an intermediate key I and a set of values for that key. It
merges together these values to form a possibly smaller
set of values. Typically just zero or one output value is
produced per Reduce invocation. The intermediate val-
ues are supplied to the user’s reduce function via an iter-
ator. This allows us to handle lists of values that are too
large to fit in memory.

2.1 Example
Consider the problem of counting the number of oc-
currences of each word in a large collection of docu-
ments. The user would write code similar to the follow-
ing pseudo-code:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

The map function emits each word plus an associated
count of occurrences (just ‘1’ in this simple example).
The reduce function sums together all counts emitted
for a particular word.
In addition, the user writes code to fill in a mapreduce
specification object with the names of the input and out-
put files, and optional tuning parameters. The user then
invokes the MapReduce function, passing it the specifi-
cation object. The user’s code is linked together with the
MapReduce library (implemented in C++). Appendix A
contains the full program text for this example.

2.2 Types

Even though the previous pseudo-code is written in terms
of string inputs and outputs, conceptually the map and
reduce functions supplied by the user have associated
types:
map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

I.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore,
the intermediate keys and values are from the same do-
main as the output keys and values.
Our C++ implementation passes strings to and from
the user-defined functions and leaves it to the user code
to convert between strings and appropriate types.

2.3 More Examples

Here are a few simple examples of interesting programs
that can be easily expressed as MapReduce computa-
tions.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermedi-
ate data to the output.

Count of URL Access Frequency: The map func-
tion processes logs of web page requests and outputs
〈URL,1〉. The reduce function adds together all values
for the same URL and emits a 〈URL,total count〉
pair.

Reverse Web-Link Graph: The map function outputs
〈target,source〉 pairs for each link to a target
URL found in a page named source. The reduce
function concatenates the list of all source URLs as-
sociated with a given target URL and emits the pair:
〈target, list(source)〉

Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set
of documents as a list of 〈word, frequency〉 pairs. The
map function emits a 〈hostname,term vector〉
pair for each input document (where the hostname is
extracted from the URL of the document). The re-
duce function is passed all per-document term vectors
for a given host. It adds these term vectors together,
throwing away infrequent terms, and then emits a final
〈hostname,term vector〉 pair.

To appear in OSDI 2004 2
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MapReduce Framework: Word Count
input files mappers intermediate

files
reducers

(a, 8)
(c, 5)

output
files

a b a c d b 

b c d a a a

a b a b a b

c c c c c 

(a, 1)
(a, 1)
(c, 1)
(a, 1)
(a, 1)
(a, 1)

…

(a, 1)
(b, 1)
(a, 1)
(c, 1)
(d, 1)
(b, 1)

(b, 1)
(d, 1)
(b, 1)
(b, 1)
(d, 1)
(b, 1)

…

(b, 6)
(d, 2)
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More Efficient Word Count
input files mappers intermediate

files
reducers

(a, 8)
(c, 5)

output
files

a b a c d b 

b c d a a a

a b a b a b

c c c c c 

(a, 2)
(a, 3)
(c, 1)
(c, 5)

(a, 2)
(b, 2)
(c, 1)
(d, 1)

…

(b, 6)
(d, 2)

Called “mapper-side” combiner
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Hadoop MapReduce

! Google pioneered original map-reduce implementation
ê For building web indexes, text analysis, PageRank, etc.

! Hadoop -- widely used open source implementation in Java

! Huge ecosystem built around Hadoop now, including HDFS, 
consistency mechanisms, connectors to different systems (e.g., 
key-value stores, databases), etc.

! Apache Spark a newer implementation of Map-Reduce
ê More user-friendly syntax
ê Significantly faster because of in-memory processing
ê SQL-like in many ways (“DataFrames”)
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Other Storage Systems; 
Wrapup

667

Big Data Storage Options

! Parallel or distributed databases
êSuffer from the issues discussed earlier

!Distributed File Systems 
êAlso called object stores
êA “data lake” is basically a collection of files in a dfs
êStructured data (relational-like) stored in files (more 

sophisticated “csv” files)

! Key-value Storage Systems
êDocument stores (MongoDB, etc)
êWide column stores (HBase, Cassandra)
êGraph Stores (Neo4j)
êAnd many others…
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Distributed File Systems
! A distributed file system stores data across a large collection of 

machines, but provides single file-system view

! Highly scalable distributed file system for large data-intensive 
applications.
ê E.g., 10K nodes, 100 million files, 10 PB

! Provides redundant storage of massive amounts of data on 
cheap and unreliable computers
ê Files are replicated to handle hardware failure
ê Detect failures and recovers from them

! Examples: 
ê Google File System (GFS)

ê Hadoop File System (HDFS)
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Hadoop File System Architecture

§ Single Namespace for entire cluster
§ Files are broken up into blocks

• Typically 64 MB block size
• Each block replicated on multiple 

DataNodes
§ Client

• Finds location of blocks from 
NameNode

• Accesses data directly from 
DataNode

• Maps a filename to list of Block IDs
• Maps each Block ID to DataNodes

containing a replica of the block

Maps a Block ID to a physical location 
on disk
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Key-Value Storage Systems

! Unlike HDFS, focus here on storing large numbers (billions or even 
more) of small (KB-MB) sized records
ê uninterpreted bytes, with an associated key

Ø E.g., Amazon S3, Amazon Dynamo
ê Wide-table (can have arbitrarily many attribute names) with associated key

– Google BigTable, Apache Cassandra, Apache Hbase, Amazon DynamoDB
– Allows some operations (e.g., filtering) to execute on storage node

ê JSON
Ø MongoDB, CouchDB (document model)

! Records partitioned across multiple machines
ê Queries are routed by the system to appropriate machine

! Records replicated across multiple machines for fault tolerance as 
well as efficient querying
ê Need to guarantee “consistency” when data is updated
ê “Distributed Transactions”

671

Key-Value Storage Systems

! Key-value stores support
ê put(key, value):  used to store values with an associated key, 
ê get(key):  which retrieves the stored value associated with the 

specified key
ê delete(key) -- Remove the key and its associated value

! Some support range queries on key values
! Document stores support richer queries (e.g., MongoDB)

ê Slowly evolving towards the richness of SQL

! Not full database systems (increasingly changing)
ê Have no/limited support for transactional updates
ê Applications must manage query processing on their own

! Not supporting above features makes it easier to build scalable 
data storage systems, i.e., NoSQL systems
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MongoDB
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Apache Cassandra

! Wide-table key value store
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Neo4j

! Graph Database using a Property Graph Model
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Summary
! Traditional databases don’t provide the right abstractions for many newer 

data processing/analytics tasks

! Led to development of NoSQL systems and Map-Reduce (or similar) 
frameworks
ê Easier to get started
ê Easier to handle ad hoc and arbitrary tasks
ê Not as efficient

–

! Over the last 10 years, seen increasing convergence 
ê NoSQL stores increasingly support SQL constructs like joins and aggregations
ê Map-reduce frameworks also evolved to support joins and SQL more explicitly
ê Databases evolved to support more data types, richer functionality for ad hoc 

processing

! Think of Map-Reduce systems as another option 
ê Appropriate in some cases, not a good fit in other cases
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Overview
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! Book Chapters
ê14.1, 14.2, 14.3, 14.4, 14.5

! Key topics:
êTransactions and ACID Properties

êDifferent states a transaction goes through

êNotion of a ”Schedule” 

êIntroduction to Serializability

Transactions: Overview

678



Transaction Concept

! A transaction is a unit of program execution that accesses 
and  possibly updates various data items.

! E.g. transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

! Two main issues to deal with:
ê Failures of various kinds, such as hardware failures and system 

crashes
ê Concurrent execution of multiple transactions
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Overview

! Transaction: A sequence of database actions enclosed within 
special tags

! Properties:
ê Atomicity: Entire transaction or nothing
ê Consistency: Transaction, executed completely, takes database 

from one consistent state to another

ê Isolation: Concurrent transactions appear to run in isolation
ê Durability: Effects of committed transactions are not lost

! Consistency: Transaction programmer needs to guarantee that
Ø DBMS can do a few things, e.g., enforce constraints on the data

! Rest: DBMS guarantees
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How does..

! .. this relate to queries that we discussed ?
êQueries don’t update data, so durability and consistency not 

relevant
êWould want concurrency

Ø Consider a query computing total balance at the end of 
the day

êWould want isolation
Ø What if somebody makes a transfer while we are 

computing the balance
Ø Typically not guaranteed for such long-running queries

! TPC-C vs TPC-H
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Assumptions and Goals
! Assumptions:

ê The system can crash at any time
ê Similarly, the power can go out at any point

Ø Contents of the main memory won’t survive a crash, or power outage
ê BUT… disks are durable. They might stop, but data is not lost.

Ø For now.
ê Disks only guarantee atomic sector writes, nothing more
ê Transactions are by themselves consistent

! Goals:
ê Guaranteed durability, atomicity
ê As much concurrency as possible, while not compromising isolation 

and/or consistency
Ø Two transactions updating the same account balance… NO
Ø Two transactions updating different account balances… YES
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Transaction states

Initial State –
stays in this 
during execution

Any changes 
have been rolled 
back

Successful 
Completion
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Summary
! Transactions is how we update data in databases

! ACID properties: foundations on which high-performance transaction 
processing systems are built
ê From the beginning, consistency has been a key requirement
ê Although “relaxed” consistency is acceptable in many cases (originally 

laid out in 1975)

! NoSQL systems originally eschewed ACID properties
ê MongoDB was famously bad at guaranteeing any of the properties
ê Lot of focus on what’s called “eventual consistency”

! Recognition today that strict ACID is more important than that
ê Hard to build any business logic if you have no idea if your transactions 

are consistent
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Concurrency: Basics

685

! Book Chapters
ê14.5

! Key topics:
êWhy Concurrency

êNotion of a ”Schedule” 

êIntroduction to Serializability

Concurrency: Basics
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Next…

! Concurrency: Why?
ê Increased processor and disk utilization
ê Reduced average response times

! Concurrency control schemes
ê A CC scheme is used to guarantee that concurrency does not lead 

to problems
ê For now, we will assume durability is not a problem

Ø So no crashes
Ø Though transactions may still abort

! Schedules
! When is concurrency okay ?

ê Serial schedules
ê Serializability
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A Schedule

T1
read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Transactions:
T1:   transfers $50 from A to B
T2:   transfers 10% of A to B

Database constraint: A + B is constant (checking+saving accts)

Effect:      Before After
A      100          45
B       50           105

Each transaction obeys 
the constraint.

This schedule does too.
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Schedules

! A schedule is simply a (possibly interleaved) 
execution sequence of transaction instructions

! Serial Schedule: A schedule in which transaction 
appear one after the other
ê ie., No interleaving

! Serial schedules satisfy isolation and consistency
êSince each transaction by itself does not introduce 

inconsistency
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Example Schedule

! Another “serial” schedule:

T1

read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2
read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Consistent ?
Constraint is satisfied.

Since each Xion is consistent, any 
serial schedule must be consistent

Effect:      Before After
A      100          40
B       50           110
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Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B + tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect:      Before After
A      100          45
B       50           105

Consistent. 
So this schedule is okay too.

691

Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect:      Before After
A      100          45
B       50           105

Further, the effect same as the
serial schedule 1.

Called serializable
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Example Schedules (Cont.)
A “bad” schedule

Not consistent

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

Effect:      Before After
A      100          50
B       50           60
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Serializability
! A schedule is called serializable if its final effect is the same as that 

of a serial schedule

! Serializability à schedule is fine and doesn’t cause inconsistencies
ê Since serial schedules are fine

! Non-serializable schedules unlikely to result in consistent databases

! We will ensure serializability
ê Typically relaxed in real high-throughput environments

! Not possible to look at all n! serial schedules to check if the effect is 
the same
ê Instead we ensure serializability by allowing or not allowing certain 

schedules
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Example Schedule with More Transactions

T1 T2 T3 T4 T5

read(X)
read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)
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Summary
! Transactions is how we update data in databases

! ACID properties: foundations on which high-performance transaction 
processing systems are built
ê From the beginning, consistency has been a key requirement
ê Although “relaxed” consistency is acceptable in many cases (originally 

laid out in 1975)

! NoSQL systems originally eschewed ACID properties
ê MongoDB was famously bad at guaranteeing any of the properties
ê Lot of focus on what’s called “eventual consistency”

! Recognition today that strict ACID is more important than that
ê Hard to build any business logic if you have no idea if your transactions 

are consistent
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Concurrency: Serializability
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! Book Chapters
ê14.6

! Key topics:
êConflict equivalence of schedules

êConflict serializability and checking by drawing precedence 
graphs

Transactions: Serializability
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An Interleaved schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect:      Before After
A      100          45
B       50           105

Further, the effect same as the
serial schedule 1 (T1 before T2)

Called serializable
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Conflict Serializability

! Two read/write instructions “conflict” if 
ê They are by different transactions
ê They operate on the same data item
ê At least one is a “write” instruction

! Why do we care ?
ê If two read/write instructions don’t conflict, they can be “swapped” 

without any change in the final effect
ê However, if they conflict they CAN’T be swapped without changing 

the final effect
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Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)

B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect:      Before After
A      100          45
B       50           105

Effect:      Before After
A      100          45
B       50           105

==
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Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)

B = B+ tmp
write(B)

Effect:      Before After
A      100          45
B       50           105

Effect:      Before After
A      100          45
B       50           55

! ==
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Conflict Serializability

! Conflict-equivalent schedules:
ê If S can be transformed into S’ through a series of swaps, S and S’ 

are called conflict-equivalent
ê conflict-equivalent guarantees same final effect on the database

! A schedule S is conflict-serializable if it is conflict-equivalent to a 
serial schedule
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Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect:      Before After
A      100          45
B       50           105

Effect:      Before After
A      100          45
B       50           105

==
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Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Effect:      Before After
A      100          45
B       50           105

Effect:      Before After
A      100          45
B       50           105

==
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Example Schedules (Cont.)
A “bad” schedule

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

X

Y Can’t move Y below X
read(B) and write(B) conflict

Other options don’t work either

So: Not Conflict Serializable
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Testing for conflict-serializability

! Given a schedule, determine if it is conflict-serializable

! Draw a precedence-graph over the transactions
ê A directed edge from T1 and T2, if they have conflicting instructions, 

and T1’s conflicting instruction comes first

! If there is a cycle in the graph, not conflict-serializable
ê Can be checked in at most O(n+e) time, where n is the number of 

vertices, and e is the number of edges 

! If there is none, conflict-serializable

! Testing for view-serializability is NP-hard.
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Example Schedule (Schedule A) + Precedence Graph

T1 T2 T3 T4 T5

read(X)
read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)

T3
T4

T1 T2
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Instructor: Amol Deshpande
amol@umd.edu

Concurrency: View 
Serializability; Recoverability

709

! Book Chapters
ê14.6 (last paragraph), 14.7

! Key topics:
êView serializability

êRecoverability

View Serializability; Recoverability
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Conflict Serializability

! In essence, following set of instructions is not conflict-serializable:
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View-Serializability
! Similarly, following not conflict-serializable

! BUT, it is serializable
ê Intuitively, this is because the conflicting write instructions don’t matter
ê The final write is the only one that matters

! View-serializability allows these
ê Read up
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Other notions of serializability

! Not conflict-serializable or view-serializable, but serializable
! Mainly because of the +/- only operations

ê Requires analysis of the actual operations, not just read/write 
operations

! Most high-performance transaction systems will allow these
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Recoverability

! Serializability is good for 
consistency

! But what if transactions fail ?
ê T2 has already committed

Ø A user might have been notified
ê Now T1 abort creates a problem

Ø T2 has seen its effect, so just 
aborting T1 is not enough. T2 
must be aborted as well (and 
possibly restarted)

Ø But T2 is committed

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)
ABORT

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
COMMIT
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Recoverability

! Recoverable schedule: If T1 has read something T2 has written, 
T2 must commit before T1
ê Otherwise, if T1 commits, and T2 aborts, we have a problem

! Cascading rollbacks: If T10 aborts, T11 must abort, and hence 
T12 must abort and so on.
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Recoverability

! Dirty read: Reading a value written by a transaction that hasn’t 
committed yet

! Cascadeless schedules:
ê A transaction only reads committed values.
ê So if T1 has written A, but not committed it, T2 can’t read it.

Ø No dirty reads

! Cascadeless à No cascading rollbacks
ê That’s good
ê We will try to guarantee that as well
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Recap so far…

! We discussed:
ê Serial schedules, serializability
ê Conflict-serializability, view-serializability
ê How to check for conflict-serializability
ê Recoverability, cascade-less schedules

! We haven’t discussed:
ê How to guarantee serializability ?

Ø Allowing transactions to run, and then aborting them if the 
schedules wasn’t serializable is clearly not the way to go

ê We instead use schemes to guarantee that the schedule will be 
conflict-serializable
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Instructor: Amol Deshpande
amol@umd.edu

Concurrency Control: 
Locking - 1

718



! Book Chapters
ê15.1.1-15.1.4

! Key topics:
êUsing locking to guarantee concurrency

ê2-Phase Locking (2PL)

êImplementation of locking

Locking - 1
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Approach, Assumptions etc..

! Approach
ê Guarantee conflict-serializability by allowing certain types of 

concurrency
Ø Lock-based

! Assumptions:
ê Durability is not a problem

Ø So no crashes
Ø Though transactions may still abort

! Goal:
ê Serializability
ê Minimize the bad effect of aborts (cascade-less schedules only) 
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Lock-based Protocols
! A transaction must get a lock before operating on the data

! Two types of locks:
ê Shared (S) locks (also called read locks)

Ø Obtained if we want to only read an item – lock-S() instruction
ê Exclusive (X) locks (also called write locks)

Ø Obtained for updating a data item – lock-X() instruction

read(B)
B ßB-50
write(B)
read(A)
A ßA + 50
write(A)

read(A)
read(B)
display(A+B)

T1 T2
lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)
lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

lock-S(A)
read(A)
unlock(A)
lock-S(B)
read(B)
unlock(B)
display(A+B)

T1 T2
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Lock-based Protocols

! Lock requests are made to the concurrency control manager

ê It decides whether to grant a lock request

! T1 asks for a lock on data item A, and T2 currently has a lock on it ?
ê Depends 

! If compatible, grant the lock, otherwise T1 waits in a queue.

T2 lock type T1 lock type Should allow ?

Shared Shared YES

Shared Exclusive NO

Exclusive - NO
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Lock-based Protocols

! How do we actually use this to guarantee serializability/recoverability ?
ê Not enough just to take locks when you need to read/write something

lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)

lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

T1

lock-X(A), lock-X(B)
TMP = (A + B) * 0.1
A = A - TMP
B = B + TMP
unlock(A), unlock(B)

NOT SERIALIZABLE
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2-Phase Locking Protocol (2PL)

! Phase 1: Growing phase
ê Transaction may obtain locks
ê But may not release them

! Phase 2: Shrinking phase
ê Transaction may only release locks

! Can be shown that this achieves 
conflict-serializability
ê lock-point: the time at which a 

transaction acquired last lock
ê if lock-point(T1) < lock-point(T2), 

there can’t be an edge from T2 to 
T1 in the precedence graph

lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)

lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

T1
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2 Phase Locking
! Example: T1 in 2PL

T1

lock-X(B)
read(B)
B ß B - 50
write(B)
lock-X(A)
read(A)
A ß A - 50
write(A)

unlock(B)
unlock(A)

{Growing phase

{Shrinking phase
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2 Phase Locking
! Guarantees conflict-serializability, but not cascade-less 

recoverability

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

lock-X(A)
read(A)
write(A)
unlock(A)
Commit lock-S(A)

read(A)
Commit 
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2 Phase Locking
! Guarantees conflict-serializability, but not cascade-less 

recoverability

! Guaranteeing just recoverability:
ê If T2 reads a dirty data of T1 (ie, T1 has not committed), then T2 

can’t commit unless T1 either commits or aborts
ê If T1 commits, T2 can proceed with committing
ê If T1 aborts, T2 must abort

Ø So cascades still happen
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Strict 2PL
! Release exclusive locks only at the very end, just before commit 

or abort

Strict 2PL
will not 
allow that

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

lock-X(A)
read(A)
write(A)
unlock(A)
Commit lock-S(A)

read(A)
Commit 

Works. Guarantees cascade-less and recoverable schedules.
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Strict 2PL
! Release exclusive locks only at the very end, just before commit 

or abort
ê Read locks are not important

! Rigorous 2PL: Release both exclusive and read locks only at the 
very end
ê The serializability order === the commit order
ê More intuitive behavior for the users

Ø No difference for the system

! Lock conversion:
ê Transaction might not be sure what it needs a write lock on
ê Start with a S lock 
ê Upgrade to an X lock later if needed
ê Doesn’t change any of the other properties of the protocol
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Implementation of Locking

! A separate process, or a separate module

! Uses a lock table to keep track of currently assigned locks and 
the requests for locks
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Lock Table
" Black rectangles indicate granted locks, 

white ones indicate waiting requests
" Lock table also records the type of lock 

granted or requested
" New request is added to the end of the 

queue of requests for the data item, and 
granted if it is compatible with all earlier 
locks

" Unlock requests result in the request 
being deleted, and later requests are 
checked to see if they can now be 
granted

" If transaction aborts, all waiting or 
granted requests of the transaction are 
deleted 
ê lock manager may keep a list of 

locks held by each transaction, to 
implement this efficientlygranted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912
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Recap so far…
! Concurrency Control Scheme

ê A way to guarantee serializability, recoverability etc

! Lock-based protocols
ê Use locks to prevent multiple transactions accessing the same data 

items

! 2 Phase Locking
ê Locks acquired during growing phase, released during shrinking 

phase

! Strict 2PL, Rigorous 2PL
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Instructor: Amol Deshpande
amol@umd.edu

Concurrency Control: 
Locking - 2

733

! Book Chapters
ê15.2

! Key topics:
êDeadlocks and how 2PL doesn’t prevent them

êDeadlock detection through precedence graphs

êDeadlock avoidance/prevention schemes

Locking - 2
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More Locking Issues: Deadlocks

! No xction proceeds:
Deadlock

- T1 waits for T2 to unlock A
- T2 waits for T1 to unlock B

! 2PL does not prevent deadlock
ê Strict doesn’t either

T1 T2

lock-X(B)
read(B)
B ß B-50
write(B)

lock-X(A)

lock-S(A)
read(A)
lock-S(B)

Rollback transactions
Can be costly...
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Deadlock detection and recovery

! Instead of trying to prevent deadlocks, let them happen and deal 
with them if they happen

! How do you detect a deadlock?
ê Wait-for graph
ê Directed edge from Ti to Tj

Ø Ti waiting for Tj

T1 T2 T3 T4

S(V)

X(V)

S(W)

X(Z)

S(V)

X(W)

T1

T2
T4

T3

Suppose T4 requests lock-S(Z)....
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Dealing with Deadlocks

! Deadlock detected, now what ?
ê Will need to abort some transaction
ê Prefer to abort the one with the minimum work done so far
ê Possibility of starvation

Ø If a transaction is aborted too many times, it may be given 
priority in continueing
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Preventing deadlocks

! Solution 1: A transaction must acquire all locks before it begins
ê Not acceptable in most cases
ê Still need some way to deal with deadlocks during lock acquisition

! Solution 2: A transaction must acquire locks in a particular order 
over the data items
ê Also called graph-based protocols
ê The particular order used doesn’t matter (e.g., based on the value of 

some unique attribute)
ê Guarantees that there can never be a cycle in the precedence graph
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Preventing deadlocks
! Solution 3: Use time-stamps; say T1 is older than T2

ê wait-die scheme: T1 will wait for T2. T2 will not wait for T1; instead it will 
abort and restart
Ø In the precedence graph, there can be an edge from old transaction 

to a new transaction, but never the other way
Ø So there cannot be a cycle in precedence graph

ê wound-wait scheme: T1 will wound T2 (force it to abort) if it needs a lock 
that T2 currently has; T2 will wait for T1.
Ø Similar to above: edges only from newer transactions to older 

transactions
ê May abort more transactions that needed

! Solution 4: Timeout based
ê Transaction waits a certain time for a lock; aborts if it doesn’t get it by 

then
ê As above, may lead to unnecessary restarts, but very simple to 

implement
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Concurrency Control: 
Locking - 3

740



! Book Chapters
ê15.3

! Key topics:
êWhat are we taking locks on

êMulti-granularity locking

êIntentional locks and compatibility

Locking - 3
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Locking granularity

! Locking granularity
ê What are we taking locks on ? Tables, tuples, attributes ?

! Coarse granularity
ê e.g. take locks on tables
ê less overhead (the number of tables is not that high)
ê very low concurrency

! Fine granularity
ê e.g. take locks on tuples
ê much higher overhead
ê much higher concurrency
ê What if I want to lock 90% of the tuples of a table ?

Ø Prefer to lock the whole table in that case

742



Granularity Hierarchy

The highest level in the example hierarchy is the entire database.
The levels below are of type area, file or relation and record in that 
order.

Can lock at any level in the hierarchy
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Granularity Hierarchy

! New lock mode, called intentional locks
ê Declare an intention to lock parts of the subtree below a node
ê IS: intention shared

Ø The lower levels below may be locked in the shared mode
ê IX: intention exclusive
ê SIX: shared and intention-exclusive

Ø The entire subtree is locked in the shared mode, but I might also 
want to get exclusive locks on the nodes below

! Protocol:
ê If you want to acquire a lock on a data item, all the ancestors must 

be locked as well, at least in the intentional mode 
ê So you always start at the top root node
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Granularity Hierarchy

(1) Want to lock F_a in shared mode, DB and A1 must be locked in at 
least IS mode (but IX, SIX, S, X are okay too)

(2) Want to lock rc1 in exclusive mode, DB, A2,Fc must be locked in at 
least IX mode (SIX, X are okay too)
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! Rules for Multi-granularity Locking
ê Always start with the root

ê Can lock Q in S or IS, only if parent is locked in IS or IX mode

ê Can lock Q in X, SIX, or IX only if parent is locked in IX or SIX mode

ê Must follow 2-phase locking protocol

ê Unlock Q only if locks on all children (if any) are released 

Ø i.e., unlock from the bottom up

! However: it is not a problem to lock a child in, say S, if the parent is in SIX
ê It is redundant, but may happen because of “lock upgrades”

ê Depending on implementation, may release the child lock or not

Multi-granularity Locking
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Compatibility Matrix with
Intention Lock Modes

! The compatibility matrix (which locks can be present 
simultaneously on the same data item) for all lock modes is: 

IS IX S S IX X 

IS

IX

S

S IX

X 

ü

ü

ü

ü

´

ü ü ü

ü

ü´

´

´ ´ ´ ´

´´ ´

´ ´

´

´

´´holder

requestor
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Example

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(IX)

T2(X)
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Examples
R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(IX)

T1(IX)

T1(X)

R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(IS)

T1(S)

R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(SIX)

T1(IX)

T1(X)

Can T2 access object f2.2 in X mode? 
What locks will T2 get?
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Examples

! T1 scans R, and updates a few tuples:
ê T1 gets an SIX lock on R, then occasionally upgrades to X on the specific 

tuples.

! T2 uses an index to read only part of R:
ê T2 gets an IS lock on R, and repeatedly  gets an S lock on tuples of R.

! T3 reads all of R:
ê T3 gets an S lock on R. 
ê OR, T3 could behave like T2; can   
use lock escalation to decide which.

-- IS IX

--

IS

IX

Ö

Ö

Ö

Ö Ö

Ö

S X

Ö
Ö

S

X

Ö Ö

Ö

Ö

Ö

Ö Ö

Ö

750



Recap: Locking-based CC

! Key idea: Take locks as required to ensure conflict serializability

! 2-phase locking, and Strict and Rigorous 2PL

! Deadlocks and how to prevent or detect them

! Multi-granularity locking

! Many commercial databases support locking-based CC, but 
increasingly multi-version concurrency control more common
ê Locking expensive in comparison, and supports lower concurrency 

than MVCC techniques (like Snapshot Isolation)
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Concurrency Control: 
Other Schemes
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1. Time-stamp Based

! Time-stamp based
ê Transactions are issued time-stamps when they enter the system
ê The time-stamps determine the serializability order
ê So if T1 entered before T2, then T1 should be before T2 in the 

serializability order
ê Say timestamp(T1) < timestamp(T2)
ê If T1 wants to read data item A

Ø If any transaction with larger time-stamp wrote that data item, 
then this operation is not permitted, and T1 is aborted

ê If T1 wants to write data item A
Ø If a transaction with larger time-stamp already read that data item 

or written it, then the write is rejected and T1 is aborted
ê Aborted transaction are restarted with a new timestamp

Ø Possibility of starvation
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1. Time-stamp Based

! Maintain for each data Q, two timestamps:
ê W-timestamp(Q): largest time-stamp of any transaction that 

executed Write(Q) successfully
ê R-timestamp(Q): largest time-stamp of any transaction that executed 

Read(Q) successfully

! Suppose Ti wants to read(Q):
ê If TS(T_i) < W-Timestamp(Q): Reject the operation and roll back T_i
ê Otherwise, allow the operation and modify:

Ø R-timestamp(Q) = max(R-timestamp(Q)), TS(T_i))
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1. Time-stamp Based

! Maintain for each data Q, two timestamps:
ê W-timestamp(Q): largest time-stamp of any transaction that 

executed Write(Q) successfully
ê R-timestamp(Q): largest time-stamp of any transaction that executed 

Read(Q) successfully

! Suppose Ti wants to write(Q):
1. If TS(Ti) < R-timestamp(Q): reject the write and roll back T_i

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an 
obsolete value of Q. 
Ø Hence, this write operation is rejected, and Ti is rolled back.

3.   Otherwise, execute write, and W-timestamp(Q) is set to TS(Ti).
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1. Example of Schedule Under TSO

! How about this one,
where initially

R-TS(Q)=W-
TS(Q)=0

Assume that initially:
R-TS(A) = W-TS(A) = 0
R-TS(B) = W-TS(B) = 0

Assume TS(T25) = 25 and         
TS(T26) = 26

§ Is this schedule valid under TSO?
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1. Another Example
ê Example
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1. Recoverability and Cascade Freedom

! Solution 1:
ê A transaction is structured such that its writes are all performed at 

the end of its processing
ê All writes of a transaction form an atomic action; no transaction 

may execute while a transaction is being written
ê A transaction that aborts is restarted with a new timestamp

! Solution 2: 
ê Limited form of locking: wait for data to be committed before 

reading it

! Solution 3: 
ê Use commit dependencies to ensure recoverability (i.e., require 

them to commit in some order)
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1. Thomas’ Write Rule

! Ignore obsolete write operations under certain circumstances

! When Ti attempts to write data item Q, if TS(Ti) < W-
timestamp(Q), then Ti is attempting to write an obsolete value of 
{Q}. 
ê Rather than rolling back Ti, this {write} operation can be ignored.

! Allows greater potential concurrency. 
ê Allows some view-serializable schedules that are not conflict-

serializable.
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2. Optimistic Concurrency Control

! Optimistic concurrency control
ê Also called validation-based 

ê Intuition 
Ø Let the transactions execute as they wish
Ø At the very end when they are about to commit, check if there might 

be any problems/conflicts etc
– If no, let it commit
– If yes, abort and restart

ê Optimistic: The hope is that there won’t be too many problems/aborts
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! Each transaction Ti has 3 timestamps
ê Start(Ti) : the time when Ti started its execution
ê Validation(Ti): the time when Ti entered its validation phase
ê Finish(Ti) : the time when Ti finished its write phase

! Serializability order is determined by timestamp given at 
validation time,  to increase concurrency. 
ê Thus TS(Ti) is given the value of Validation(Ti).

! This protocol is useful and gives greater degree of concurrency 
if probability of conflicts is low. 
ê because the serializability order is not pre-decided, and
ê relatively few transactions will have to be rolled back.

2. Optimistic Concurrency Control
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2. Optimistic Concurrency Control

! If for all Ti with TS (Ti) < TS (Tj) either one of the following 
condition holds:
ê finish(Ti) < start(Tj) 
ê start(Tj) < finish(Ti) < validation(Tj) and the set of data items 

written by Ti does not intersect with the set of data items read by 
Tj.  

then validation succeeds and Tj can be committed.  Otherwise, 
validation fails and Tj is aborted.

! Justification:  Either the first condition is satisfied, and there is 
no overlapped execution, or the second condition is satisfied 
and
" the writes of Tj do not affect reads of Ti since they occur after Ti

has finished its reads.
" the writes of Ti do not affect reads of Tj since Tj does not read  

any item written by Ti.
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2. Optimistic Concurrency Control

! Example of schedule produced using validation
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3. Snapshot Isolation

! Very popular scheme, used as the primary scheme by many 
systems including Oracle, PostgreSQL etc…
ê Several others support this in addition to locking-based protocol

! A type of “multi-version concurrency control”
ê Also similar to optimistic concurrency control in many ways

! Key idea: 
ê For each object, maintain past “versions” of the data along with 

timestamps
Ø Every update to an object causes a new version to be generated
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3. Snapshot Isolation

! Read queries:
ê Let “t” be the “time-stamp” of the query, i.e., the time at which it entered 

the system
ê When the query asks for a data item, provide a version of the data item 

that was latest as of “t”
Ø Even if the data changed in between, provide an old version

ê No locks needed, no waiting for any other transactions or queries
ê The query executes on a consistent snapshot of the database

! Update queries (transactions):
ê Reads processed as above on a snapshot
ê Writes are done in private storage
ê At commit time, for each object that was written, check if some other 

transaction updated the data item since this transaction started
Ø If yes, then abort and restart
Ø If no, make all the writes public simultaneously (by making new 

versions)
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3. Snapshot Isolation
" A transaction T1 executing with Snapshot 

Isolation
ê takes snapshot of committed data at start
ê always reads/modifies data in its own 

snapshot
ê updates of concurrent transactions are not 

visible to T1 
ê writes of T1 complete when it commits
ê First-committer-wins rule:

Ø Commits only if no other concurrent 
transaction has already written data 
that T1 intends to write.

T1 T2 T3

W(Y := 1)
Commit

Start
R(X) à 0
R(Y)à 1

W(X:=2)
W(Z:=3)
Commit

R(Z) à 0
R(Y) à 1
W(X:=3)
Commit-Req
Abort

Concurrent updates not visible
Own updates are visible
Not first-committer of X

Serialization error, T2 is rolled back
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3. Snapshot Isolation

! Advantages:
ê Read query don’t block at all, and run very fast
ê As long as conflicts are rare, update transactions don’t abort either
ê Overall better performance than locking-based protocols

! Major disadvantage:
ê Not serializable
ê Inconsistencies may be introduced
ê See the wikipedia article for more details and an example

Ø http://en.wikipedia.org/wiki/Snapshot_isolation
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3. Snapshot Isolation

! Example of problem with SI
ê T1: x:=y
ê T2: y:= x
ê Initially x = 3 and y = 17

Ø Serial execution:  x = ??, y = ??
Ø if both transactions start at the same time, with snapshot 

isolation:  x = ?? , y = ??
! Called skew write
! Skew also occurs with inserts

ê E.g:
Ø Find max order number among all orders
Ø Create a new order with order number = previous max + 1
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3. SI In Oracle and PostgreSQL

! Warning: SI used when isolation level is set to serializable, by 
Oracle, and PostgreSQL versions prior to 9.1
ê PostgreSQL’s implementation of SI (versions prior to 9.1) described in 

Section 26.4.1.3
ê Oracle implements “first updater wins” rule (variant of “first committer 

wins”)
Ø concurrent writer check is done at time of write, not at commit time
Ø Allows transactions to be rolled back earlier
Ø Oracle and PostgreSQL < 9.1 do not support true serializable

execution
ê PostgreSQL 9.1 introduced new protocol called “Serializable Snapshot 

Isolation” (SSI)
Ø Which guarantees true serializabilty including handling predicate 

reads (coming up)
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Instructor: Amol Deshpande
amol@umd.edu

Concurrency Control: 
Phantom Problem; Weak 

Levels of Isolations
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Phantom Phenomenon
! Example of phantom phenomenon.

ê A transaction T1 that performs predicate read (or scan) of a 
relation 
Ø select count(*)

from instructor
where dept_name = 'Physics'

ê and a transaction T2 that inserts a tuple while T1 is active but after 
predicate read 
Ø insert into instructor values ('11111', 'Feynman', 'Physics', 

94000)
(conceptually) conflict in spite of not accessing any tuple in 

common.
! If only tuple locks are used, non-serializable schedules can 

result
ê E.g. the scan transaction does not see the new instructor, but may 

read some other tuple written by the update transaction
! Can also occur with updates

ê E.g. update Wu’s department from Finance to Physics
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Insert/Delete Operations and Predicate Reads

! Another Example Schedule with a problem
ê T1 saw a partial update of T2, but not the full update
ê So not serializable
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Insert/Delete Operations and Predicate Reads

! Another Example:  T1 and T2 both find maximum instructor 
ID in 
parallel, and create new instructors with ID = maximum ID + 1
ê Both instructors get same ID, not possible in serializable schedule
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Index Locking To Prevent Phantoms

! Index locking protocol to prevent phantoms
ê Every relation must have at least one index. 
ê A transaction can access tuples only after finding them through one 

or more indices on the relation
ê A transaction Ti that performs a lookup must lock all the index leaf 

nodes that it accesses, in S-mode
Ø Even if the leaf node does not contain any tuple satisfying the 

index lookup (e.g. for a range query, no tuple in a leaf is in the 
range)

ê A transaction Ti that inserts, updates or deletes a tuple ti in a 
relation r
Ø Must update all indices to r
Ø Must obtain exclusive locks on all index leaf nodes affected by 

the insert/update/delete
ê The rules of the two-phase locking protocol must be observed

! Guarantees that phantom phenomenon won’t occur
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Weak Levels of Consistency
! Degree-two consistency: differs from two-phase locking in that 

S-locks may be released at any time, and locks may be acquired 
at any time
ê X-locks must be held till end of transaction
ê Guarantees no “dirty reads” (so no recoverability issues)
ê Serializability is not guaranteed, programmer must ensure that no 

erroneous database state will occur]

! Cursor stability: 
ê For reads, each tuple is locked, read, and lock is immediately 

released
ê X-locks are held till end of transaction
ê Special case of degree-two consistency
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Weak Levels of Consistency

880 Chapter 18 Concurrency Control

18.9 Weak Levels of Consistency in Practice

In Section 17.8, we discussed the isolation levels specified by the SQL standard: seri-
alizable, repeatable read, read committed, and read uncommitted. In this section, we
first briefly outline some older terminology relating to consistency levels weaker than
serializability and relate it to the SQL standard levels. We then discuss the issue of con-
currency control for transactions that involve user interaction, an issue that we briefly
discussed in Section 17.8.

18.9.1 Degree-Two Consistency

The purpose of degree-two consistency is to avoid cascading aborts without necessarily
ensuring serializability. The locking protocol for degree-two consistency uses the same
two lock modes that we used for the two-phase locking protocol: shared (S) and exclu-
sive (X). A transaction must hold the appropriate lock mode when it accesses a data
item, but two-phase behavior is not required.

In contrast to the situation in two-phase locking, S-locks may be released at any
time, and locks may be acquired at any time. Exclusive locks, however, cannot be re-
leased until the transaction either commits or aborts. Serializability is not ensured by
this protocol. Indeed, a transaction may read the same data item twice and obtain dif-
ferent results. In Figure 18.21, T32 reads the value of Q before that value is written by
T33, and again after it is written by T33.

Reads are not repeatable, but since exclusive locks are held until transaction com-
mit, no transaction can read an uncommitted value. Thus, degree-two consistency is
one particular implementation of the read-committed isolation level.

It is interesting to note that with degree-two consistency, a transaction that is scan-
ning an index may potentially see two versions of a record that was updated while
the scan was in progress and may also potentially see neither version! For example,

T32 T33

lock-S(Q)
read(Q)
unlock(Q)

lock-X(Q)
read(Q)
write(Q)
unlock(Q)

lock-S(Q)
read(Q)
unlock(Q)

Figure 18.21 Nonserializable schedule with degree-two consistency.

776



The “Phantom” problem

! An interesting problem that comes up for dynamic databases
! Schema: accounts(acct_no, balance, zipcode, …)
! Transaction 1: Find the number of accounts in zipcode = 20742, 

and divide $1,000,000 between them
! Transaction 2: Insert <acctX, …, 20742, …>
! Execution sequence:

ê T1 locks all tuples corresponding to “zipcode = 20742”, finds the 
total number of accounts (= num_accounts)

ê T2 does the insert
ê T1 computes 1,000,000/num_accounts
ê When T1 accesses the relation again to update the balances, it finds 

one new (“phantom”) tuples (the new tuple that T2 inserted)

! Not serializable
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Weak Levels of Consistency
! Degree-two consistency: differs from two-phase locking in that 

S-locks may be released at any time, and locks may be acquired 
at any time
ê X-locks must be held till end of transaction
ê Serializability is not guaranteed, programmer must ensure that no 

erroneous database state will occur]

! Cursor stability: 
ê For reads, each tuple is locked, read, and lock is immediately 

released
ê X-locks are held till end of transaction
ê Special case of degree-two consistency
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Weak Levels of Consistency in SQL
! SQL allows non-serializable executions

ê Serializable: is the default
ê Repeatable read: allows only committed records to be read, and 

repeating a read should return the same value (so read locks should 
be retained)
Ø However, the phantom phenomenon need not be prevented

– T1 may see some records inserted by T2, but may not see 
others inserted by T2

ê Read committed:  same as degree two consistency, but most 
systems implement it as cursor-stability

ê Read uncommitted: allows even uncommitted data to be read

! In many database systems, read committed is the default 
consistency level
ê has to be explicitly changed to serializable when required

Ø set isolation level serializable
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Summary
! Concurrency control schemes help guarantee isolation while 

allowing for concurrent transactions

! Many different schemes developed over the years 
ê Lock-based, Timestamp-based, Snapshot Isolation, Optimistic

! Lot of new work in the recent years because of shifting hardware 
trends
ê E.g., locking performance overheads quite significant

! Many NoSQL systems still have limited concurrency 

! Important to consider recovery schemes at the same time
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Instructor: Amol Deshpande
amol@umd.edu

Recovery: Overview; 
Terminology; Steal and Force

781

! Book Chapters
ê16.1, 16.2, 16.3.2

! Key topics:
êChallenges in guaranteeing Atomicity and Durability

êBasics of how disks and memory interact

êNew operations: Output() and Input()

êSTEAL and NO FORCE: Why those are desirable

êTerminology used in the book: Immediate vs Deferred 
Modifications

Transactions: Recovery
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Context

! ACID properties:
ê We have talked about Isolation and Consistency
ê How do we guarantee Atomicity and Durability ?

Ø Atomicity: Two problems
– Part of the transaction is done, but we want to cancel it

» ABORT/ROLLBACK
– System crashes during the transaction. Some changes made 

it to the disk, some didn’t.
Ø Durability:

– Transaction finished. User notified. But changes not sent to 
disk yet (for performance reasons). System crashed.

! Essentially similar solutions
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Reasons for crashes

! Transaction failures
ê Logical errors: transaction cannot complete due to some internal 

error condition
ê System errors: the database system must terminate an active 

transaction due to an error condition (e.g., deadlock)

! System crash
ê Power failures, operating system bugs etc
ê Fail-stop assumption: non-volatile storage contents are assumed 

to not be corrupted by system crash
Ø Database systems have numerous integrity checks to prevent 

corruption of disk data 

! Disk failure
ê Head crashes; for now we will assume 

Ø STABLE STORAGE: Data never lost. Can approximate by 
using RAID and maintaining geographically distant copies 
of the data
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Approach, Assumptions etc..
! Approach:

ê Guarantee A and D:
Ø by controlling how the disk and memory interact, 
Ø by storing enough information during normal processing to recover from 

failures
Ø by developing algorithms to recover the database state

! Assumptions:
ê System may crash, but the disk is durable
ê The only atomicity guarantee is that a disk block write is atomic

! Once again, obvious naïve solutions exist that work, but that are too 
expensive.
ê E.g. The shadow copy solution

Ø Make a copy of the database; do the changes on the copy; do an atomic 
switch of the dbpointer at commit time

ê Goal is to do this as efficiently as possible
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Data Access

! Physical blocks are those blocks residing on the disk. 
! Buffer blocks are the blocks residing temporarily in main 

memory.
! Block movements between  disk and main memory are initiated 

through the following two operations:
ê input(B) transfers the physical block B  to main memory.
ê output(B) transfers the buffer block B to the disk, and replaces the 

appropriate physical block there.

! We assume, for simplicity, that each data item fits in, and is 
stored inside, a single block.
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Example of Data Access

X      

Y     
A
B

x1

y1 

buffer
Buffer Block A

Buffer Block B

input(A)

output(B) 

read(X)
write(Y)

disk

work area
of T1

work area
of T2 

memory

x2
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Data Access (Cont.)

! Each transaction Ti has its private work-area in which local 
copies of all data items accessed and updated by it are kept.
ê Ti's local copy of a data item X is called xi.

! Transferring data items between system buffer blocks and its 
private work-area done by:
ê read(X) assigns the value of data item X to the local variable xi.
ê write(X) assigns the value of local variable xi to data item {X} in 

the buffer block.
ê Note: output(BX) need not immediately follow write(X). System 

can perform the output operation when it deems fit.

! Transactions 
ê Must perform read(X) before accessing X for the first time 

(subsequent reads can be from local copy) 
ê write(X) can be executed at any time before the transaction 

commits
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STEAL vs NO STEAL, FORCE vs NO FORCE

! STEAL:
ê The buffer manager can steal a (memory) page from the database

Ø ie., it can write an arbitrary page to the disk and use that page for 
something else from the disk

Ø In other words, the database system doesn’t control the buffer 
replacement policy

ê Why a problem ?
Ø The page might contain dirty writes, ie., writes/updates by a 

transaction that hasn’t committed
ê But, we must allow steal for performance reasons.

! NO STEAL:
ê Not allowed. More control, but less flexibility for the buffer manager.
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STEAL vs NO STEAL, FORCE vs NO FORCE

! FORCE:
ê The database system forces all the updates of a transaction to disk 

before committing
ê Why ?

Ø To make its updates permanent before committing
ê Why a problem ?

Ø Most probably random I/Os, so poor response time and throughput
Ø Interferes with the disk controlling policies

! NO FORCE:
ê Don’t do the above. Desired.
ê Problem: 

Ø Guaranteeing durability becomes hard
ê We might still have to force some pages to disk, but minimal.
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STEAL vs NO STEAL, FORCE vs NO FORCE:
Recovery implications

Force

No Force

No Steal Steal

Desired

Trivial
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STEAL vs NO STEAL, FORCE vs NO FORCE:
Recovery implications

! How to implement A and D when No Steal and Force ?
ê Only updates from committed transaction are written to disk (since 

no steal)
ê Updates from a transaction are forced to disk before commit (since 

force)
Ø A minor problem: how do you guarantee that all updates from a 

transaction make it to the disk atomically ?
– Remember we are only guaranteed an atomic block write
– What if some updates make it to disk, and other don’t ?

Ø Can use something like shadow copying/shadow paging

ê No atomicity/durability problem arise.
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Terminology

! Deferred Database Modification:
ê Similar to NO STEAL, NO FORCE

Ø Not identical
ê Only need redos, no undos
ê We won’t cover this in detail

! Immediate Database Modification:
ê Similar to STEAL, NO FORCE
ê Need both redos, and undos
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Instructor: Amol Deshpande
amol@umd.edu

Recovery: Basics of Logging 
and UNDO
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! Book Chapters
ê16.3.1, 16.3.5

! Key topics:
êGenerating log records

êUsing log records to support UNDO/Rollback

Transactions: Recovery
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Log-based Recovery

! Most commonly used recovery method
! Intuitively, a log is a record of everything the database system 

does
! For every operation done by the database, a log record is 

generated and stored typically on a different (log) disk
! <T1, START> 
! <T2, COMMIT>
! <T2, ABORT>
! <T1, A, 100, 200>

ê T1 modified A; old value = 100, new value = 200
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Log
! Example transactionsT0 and T1 (T0 executes before T1):

T0:    read (A) T1 : read (C)
A: - A - 50 C:- C- 100
write (A) write (C)
read (B)
B:- B + 50
write (B)

! Log:
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Log-based Recovery

! Assumptions:
1. Log records are immediately pushed to the disk as soon as they are 

generated

2. Log records are written to disk in the order generated
3. A log record is generated before the actual data value is updated

4. Strict two-phase locking

ê The first assumption can be relaxed
ê As a special case, a transaction is considered committed only after the 

<T1, COMMIT> has been pushed to the disk

! But, this seems like exactly what we are trying to avoid ??
ê Log writes are sequential

ê They are also typically on a different disk

! Aside: LFS == log-structured file system
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Log-based Recovery

! Assumptions:
1. Log records are immediately pushed to the disk as soon as they are 

generated

2. Log records are written to disk in the order generated
3. A log record is generated before the actual data value is updated

4. Strict two-phase locking

ê The first assumption can be relaxed
ê As a special case, a transaction is considered committed only after the 

<T1, COMMIT> has been pushed to the disk

! NOTE: As a result of assumptions 1 and 2, if data item A is updated, 
the log record corresponding to the update is always forced to the 
disk before data item A is written to the disk
ê This is actually the only property we need; assumption 1 can be relaxed 

to just guarantee this (called write-ahead logging)
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Using the log to abort/rollback

! STEAL is allowed, so changes of a transaction may have made it 
to the disk

! UNDO(T1):
ê Procedure executed to rollback/undo the effects of a transaction
ê E.g. 

Ø <T1, START>
Ø <T1, A, 200, 300>
Ø <T1, B, 400, 300>
Ø <T1, A, 300, 200>           [[ note: second update of A ]]
Ø T1 decides to abort

ê Any of the changes might have made it to the disk
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Using the log to abort/rollback

! UNDO(T1):
ê Go backwards in the log looking for log records belonging to T1
ê Restore the values to the old values
ê NOTE: Going backwards is important.

Ø A was updated twice
ê In the example, we simply:

Ø Restore A to 300
Ø Restore B to 400
Ø Restore A to 200

ê Write a log record <Ti , Xj,  V1> 
Ø such log records are called compensation log records
Ø <T1, A, 300>, <T1, B, 400>, <T1, A, 200>

ê Note: No other transaction better have changed A or B in the 
meantime
Ø Strict two-phase locking
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Recovery: Log-based Restart 
Recovery
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! Book Chapters
ê16.4

! Key topics:
êHow to use logs for REDO

êIdempotency of log records 

êRestart recovery after a failure

Using Logs for Recovery
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Using the log to recover

! We don’t require FORCE, so a change made by the committed 
transaction may not have made it to the disk before the system crashed
ê BUT, the log record did (recall our assumptions)

! REDO(T1):
ê Procedure executed to recover a committed transaction
ê E.g.

Ø <T1, START>
Ø <T1, A, 200, 300>
Ø <T1, B, 400, 300>
Ø <T1, A, 300, 200>           [[ note: second update of A ]]
Ø <T1, COMMIT>

ê By our assumptions, all the log records made it to the disk (since the 
transaction committed)

ê But any or none of the changes to A or B might have made it to disk

804



Using the log to recover

! REDO(T1):
ê Go forwards in the log looking for log records belonging to T1
ê Set the values to the new values
ê NOTE: Going forwards is important.
ê In the example, we simply:

Ø Set A to 300
Ø Set B to 300
Ø Set A to 200
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Idempotency

! Both redo and undo are required to idempotent
ê F is idempotent, if F(x) = F(F(x)) = F(F(F(F(…F(x)))))

! Multiple applications shouldn’t change the effect
ê This is important because we don’t know exactly what made it to the 

disk, and we can’t keep track of that
ê E.g. consider a log record of the type 

Ø <T1, A, incremented by 100>
Ø Old value was 200, and so new value was 300

ê But the on disk value might be 200 or 300 (since we have no control 
over the buffer manager)

ê So we have no idea whether to apply this log record or not
ê Hence, value based logging is used (also called physical), not 

operation based (also called logical)

806



Log-based recovery

! Log is maintained

! If during the normal processing, a transaction needs to abort
ê UNDO() is used for that purpose

! If the system crashes, then we need to do recovery using both 
UNDO() and REDO()
ê Some transactions that were going on at the time of crash may not 

have completed, and must be aborted/undone
ê Some transaction may have committed, but their changes didn’t 

make it to disk, so they must be redone
ê Called restart recovery
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! Recovery from failure: Two phases
ê Redo phase:  replay updates of all transactions, whether they 

committed, aborted, or are incomplete
ê Undo phase: undo all incomplete transactions

! Redo phase:
1. Set undo-list to {} (empty).
2. Scan forward from first log record

1. Whenever a  record <Ti, Xj,  V1,  V2> is found, redo it by writing 
V2  to Xj

2. Whenever a log record <Ti start> is found, add Ti  to undo-list
3. Whenever a log record <Ti commit> or <Ti abort> is found, 

remove Ti from undo-list

Recovery Algorithm (Cont.)

808



Recovery Algorithm (Cont.)
! Undo phase: 

1. Scan log backwards from end 
1. Whenever a log record <Ti, Xj,  V1,  V2> is found where Ti is in 

undo-list perform same actions as for transaction rollback:
1. perform undo by writing V1 to Xj.
2. write a log record <Ti , Xj,  V1>

2. Whenever a log record <Ti start> is found where Ti is in undo-
list, 
1. Write a log record <Ti abort> 
2. Remove Ti  from undo-list

3. Stop when undo-list is empty
" i.e. <Ti start> has been found for every transaction in undo-

list
" After undo phase completes, normal transaction processing can 

commence
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Example of Recovery

810



Instructor: Amol Deshpande
amol@umd.edu

Checkpointing; Write-ahead 
Logging; Recap
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! Book Chapters
ê16.3.6, 16.5

! Key topics:
êCheckpointing

êWrite-ahead logging

êRecap

Recovery: Recap
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Checkpointing

! How far should we go back in the log while constructing redo and 
undo lists ??
ê It is possible that a transaction made an update at the very 

beginning of the system, and that update never made it to disk
Ø very very unlikely, but possible (because we don’t do force)

ê For correctness, we have to go back all the way to the beginning of 
the log

ê Bad idea !!

! Checkpointing is a mechanism to reduce this
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Checkpointing

! Periodically, the database system writes out everything in the 
memory to disk
ê Goal is to get the database in a state that we know (not necessarily 

consistent state)

! Steps:
ê Stop all other activity in the database system
ê Write out the entire contents of the memory to the disk 

Ø Only need to write updated pages, so not so bad
Ø Entire === all updates, whether committed or not

ê Write out all the log records to the disk
ê Write out a special log record to disk 

Ø <CHECKPOINT LIST_OF_ACTIVE_TRANSACTIONS>
Ø The second component is the list of all active transactions in the 

system right now
ê Continue with the transactions again
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! Recovery from failure: Two phases
ê Redo phase:  replay updates of all transactions, whether they 

committed, aborted, or are incomplete
ê Undo phase: undo all incomplete transactions

! Redo phase (No difference for Undo phase):
1. Find last <checkpoint L> record, and set undo-list to L.

- If no checkpoint record, start at the beginning
2. Scan forward from above <checkpoint L> record

1. Whenever a  record <Ti, Xj,  V1,  V2> is found, redo it by writing 
V2  to Xj

2. Whenever a log record <Ti start> is found, add Ti  to undo-list
3. Whenever a log record <Ti commit> or <Ti abort> is found, 

remove Ti from undo-list

Recovery Algorithm (Cont.)
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Recap so far …

! Log-based recovery
ê Uses a log to aid during recovery

! UNDO()
ê Used for normal transaction abort/rollback, as well as during restart 

recovery

! REDO()
ê Used during restart recovery 

! Checkpoints
ê Used to reduce the restart recovery time
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Write-ahead logging

! We assumed that log records are written to disk as soon as 
generated
ê Too restrictive

! Write-ahead logging:
ê Before an update on a data item (say A) makes it to disk, the log 

records referring to the update must be forced to disk
ê How ?

Ø Each log record has a log sequence number (LSN)
– Monotonically increasing

Ø For each page in the memory, we maintain the LSN of the last log 
record that updated a record on this page
– pageLSN

Ø If a page P is to be written to disk, all the log records till 
pageLSN(P) are forced to disk
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Write-ahead logging

! Write-ahead logging (WAL) is sufficient for all our purposes
ê All the algorithms discussed before work

! Note the special case: 
ê A transaction is not considered committed, unless the <T, commit> 

record is on disk
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Other issues

! The system halts during checkpointing
ê Not acceptable
ê Advanced recovery techniques allow the system to continue 

processing while checkpointing is going on

! System may crash during recovery
ê Our simple protocol is actually fine
ê In general, this can be painful to handle

! B+-Tree and other indexing techniques
ê Strict 2PL is typically not followed (we didn’t cover this)
ê So physical logging is not sufficient; must have logical logging
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Other issues
! ARIES: Considered the canonical description of log-based 

recovery
ê Used in most systems
ê Has many other types of log records that simplify recovery 

significantly

! Loss of disk:
ê Can use a scheme similar to checkpoining to periodically dump the 

database onto tapes or optical storage
ê Techniques exist for doing this while the transactions are executing 

(called fuzzy dumps)

! Shadow paging:
ê Read up
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Recap

! STEAL vs NO STEAL, FORCE vs NO FORCE
ê We studied how to do STEAL and NO FORCE through log-based 

recovery scheme

Force

No Force

No Steal Steal

Desired

Trivial Force

No Force

No Steal Steal

REDO
UNDO

NO REDO
NO UNDO

NO REDO
UNDO

REDO
NO UNDO
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Recap

! ACID Properties
ê Atomicity and Durability :

Ø Logs, undo(), redo(), WAL etc

ê Consistency and Isolation:
Ø Concurrency schemes

ê Strong interactions:
Ø We had to assume Strict 2PL for proving correctness of recovery
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Instructor: Amol Deshpande
amol@umd.edu

Distributed Transactions

823

! Book Chapters
ê19.1-19.4, 19.6: at a fairly high level

! Key topics:
êDistributed databases and replication

êTransaction processing in distributed databases

ê2-Phase Commit

êBrief discussion of other protocols including Paxos

Distributed Transactions
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Distributed Database System

! A distributed database system consists of loosely coupled sites that share 
no physical component

! Database systems that run on each site are independent of each other
! Or not – lot of variations here

! Transactions may access data at one or more sites
! Because of replication, even updating a single data item involves a 

“distributed transaction” (to keep all replicas up to date)
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Data Replication

! A relation or fragment of a relation is replicated if it is stored 
redundantly in two or more sites

! Advantages:
! Availability: failures can be handled through replicas
! Parallelism: queries can be run on any replica
! Reduced data transfer: queries can go to the “closest” replica

! Disadvantages:
! Increased cost of updates: both computation as well as latency
! Increased complexity of concurrency control: need to update all 

copies of a data item/tuple

! Typically we use the term “data items”, which may be tuples or 
relations or relation partitions
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Distributed Transactions
" Transaction may access data at several sites

! As noted, single data item update is also a distributed transaction
" Each site has a local transaction manager responsible for:

! Maintaining a log for recovery purposes
! Coordinating the concurrent execution of the transactions

" Each site has a transaction coordinator, which is responsible for:
! Starting the execution of transactions that originate at the site.
! Distributing sub-transactions at appropriate sites for execution.
! Coordinating the termination of each transaction that originates at the site --

transaction may commit at all sites or abort at all sites.

TM1 TMn

computer 1 computer n

TC1 TCn transaction
coordinator

transaction
manager
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System Failure Modes

! Failures unique to distributed systems:
! Failure of a site.
! Loss of massages

4 Handled by network transmission control protocols such as 
TCP-IP

! Failure of a communication link
4 Handled by network protocols, by routing messages via 

alternative links
! Network partition

4 A network is said to be partitioned when it has been split into 
two or more subsystems that lack any connection between 
them
– Note: a subsystem may consist of a single node 

! Network partitioning and site failures are generally indistinguishable.
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Commit Protocols

! Commit protocols are used to ensure atomicity across sites
! a transaction which executes at multiple sites must either be 

committed at all the sites, or aborted at all the sites.
! not acceptable to have a transaction committed at one site and 

aborted at another
! Two-phase commit (2PC) protocol is widely used 
! Three-phase commit (3PC) protocol

! Handles some situations that 2PC doesn’t
! Not widely used

! Paxos
! Robust alternative to 2PC that handles more situations as well
! Was considered too expensive at one point, but widely used today

! RAFT: Alternative to Paxos
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Two Phase Commit Protocol (2PC)

! Assumes fail-stop model – failed sites simply stop working, and do 
not cause any other harm, such as sending incorrect messages to 
other sites.

! Execution of the protocol is initiated by the coordinator after the last 
step of the transaction has been reached.

! The protocol involves all the local sites at which the transaction 
executed

! Let T be a transaction initiated at site Si, and let the transaction 
coordinator at Si be Ci
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Two Phase Commit Protocol (2PC)
Overview Optimistic Concurrency Control Locking vs Optimistic Degrees of Consistency Locking in B-Trees Recovery Distributed DatabasesDangers of Replication Eventually Consistent Distributed Commit Protocols Paxos Consensus Commit Protocol Google Megastore VoltDB

Normal 2-Phase Commit

Coordinator Log Messages Subordinate Log
PREPARE!

prepare*/abort*
 VOTE YES/NO

commit*/abort*
COMMIT/ABORT!

commit*/abort*
 ACK

end

* ! forced on log (for durability/atomicity)
Always log before sending a message
Total cost:

subords: 2 forced log-writes (prepare/commit), 2 messages
(YES/ACK)
coord: 1 forced log write (commit), 1 async log write (end),
2 messages/subord (prepare/commit)

Amol Deshpande CMSC724: Transactions and ACID properties

Goal: Make sure all ”sites” commit or abort

Assumption: Some log records can be “forced” (denote * above) 
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Phase 1: Obtaining a Decision

! Coordinator asks all participants to prepare to commit transaction Ti.
! Ci adds the records <prepare T> to the log and forces log to 

stable storage
! sends prepare T messages to all sites at which T executed

! Upon receiving message, transaction manager at site determines if it 
can commit the transaction
! if not, add a record <no T> to the log and send abort T message 

to Ci

! if the transaction can be committed, then:
! add the record <ready T> to the log
! force all records for T to stable storage
! send ready T message to Ci
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Phase 2: Recording the Decision

! T can be committed of Ci received a ready T message from all the 
participating sites: otherwise T must be aborted.

! Coordinator adds a decision record, <commit T> or <abort T>, to the 
log and forces record onto stable storage. Once the record stable 
storage it is irrevocable (even if failures occur)

! Coordinator sends a message to each participant informing it of the 
decision (commit or abort)

! Participants take appropriate action locally.
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Handling of Failures - Site Failure

When site Si recovers, it examines its log to determine the fate of
transactions active at the time of the failure.
! Log contain <commit T> record: txn had completed, nothing to be done
! Log contains <abort T> record: txn had completed, nothing to be done
! Log contains <ready T> record: site must consult Ci to determine the 

fate of T.
! If T committed, redo (T); write <commit T> record
! If T aborted, undo (T)

! The log contains no log records concerning T:
! Implies that Sk failed before responding to the  prepare T message 

from Ci 

! since the failure of Sk precludes the sending of such a response, 
coordinator C1 must abort T

! Sk must execute undo (T)
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Handling of Failures- Coordinator Failure

" If coordinator fails while the commit protocol for T is executing then 
participating sites must decide on T’s fate:

1. If an active site contains a <commit T> record in its log, then T must be 
committed.

2. If an active site contains an <abort T> record in its log, then T must be 
aborted.

3. If some active participating site does not contain a <ready T> record in its 
log, then the failed coordinator Ci cannot have decided to commit T.  
! Can therefore abort T; however, such a site must reject any 

subsequent <prepare T> message from Ci

4. If none of the above cases holds, then all active sites must have a <ready 
T> record in their logs, but no additional control records (such as <abort 
T> of <commit T>). 
! In this case active sites must wait for Ci to recover, to find decision.

" Blocking problem: active sites may have to wait for failed coordinator to 
recover.
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Handling of Failures - Network Partition
! If the coordinator and all its participants remain in one partition, the 

failure has no effect on the commit protocol.
! If the coordinator and its participants belong to several partitions:

! Sites that are not in the partition containing the coordinator think 
the coordinator has failed, and execute the protocol to deal with 
failure of the coordinator.
4 No harm results, but sites may still have to wait for decision 

from coordinator.
! The coordinator and the sites are in the same partition as the 

coordinator think that the sites in the other partition have failed, and 
follow the usual commit protocol.

4 Again, no harm results
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More…
! Three-phase Commit

! 2PC can’t handle failure of a coordinator well – everything halts 
waiting for the coordinator to come back up

! Three-phase commit handles that through another phase

! Paxos and RAFT
! Solutions for the “consensus problem”: get a collection of 

distributed entities to ”choose” a single value
4 In case of transaction, you are choosing abort/commit

! Fairly complex, but well-understood today
! Widely used in most distributed systems today
! See the Wikipedia pages
! A nice recent paper: Paxos vs Raft: Have we reached 

consensus on distributed consensus? – Heidi Howard, 2020
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More…
! Bitcoin (and other cryptocurrencies)

! Fundamental problem is the same one, of obtaining “consensus”
4 But need to support a large number of entities, 1000s or more
4 Can’t assume full one-to-one communication

! Instead:
4 Choose a “leader” based on ”proof of work”

– Whoever solves a hard puzzle first becomes the “leader”
4 The ”leader” chooses the next “block” in the blockchain

– A block is basically a list of transactions to accept
4 Reward the puzzle solvers with money (“bitcoins”)

– So they have an incentive to keep solving puzzles
! Blockchain? 

4 Blockchain is a small part of bitcoin
4 A cryptographically designed chain of blocks that are immutable
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