
Instructor: Amol Deshpande
amol@cs.umd.edu

} Provide a systematic way to answer many of these questions…
} Aim is to allow easy management of high volumes of data
◦ Storing , Updating, Querying, Analyzing ….

} What is a Database ?
◦ A large, integrated collection of (mostly structured) data
◦ Typically models and captures information about a real-world enterprise
� Entities (e.g. courses, students)
� Relationships (e.g. John is taking CMSC 424)

� Usually also contains:
� Knowledge of constraints on the data (e.g. course capacities)
� Business logic (e.g. pre-requisite rules)
� Encoded as part of the data model (preferable) or through external programs

} Data modeling
◦ Data model: A collection of concepts that describes how data is represented and

accessed
◦ Schema: A description of a specific collection of data, using a given data model

◦ Some examples of data models that we will see
� Relational, Entity-relationship model, XML…
� Object-oriented, object-relational, semantic data model, RDF…

◦ Why so many models ?
� Tension between descriptive power and ease of use/efficiency
� More powerful models à more data can be represented
� More powerful models à harder to use, to query, and less efficient

} Also called “Data Independence”

} Probably the most important purpose of a DBMS
} Goal: Hiding low-level details from the users of the

system
◦ Alternatively: the principle that
� applications and users should be insulated from how data is

structured and stored

} Through use of logical abstractions

Logical
Level

Physical
Level

View Level

View 1 View 2 View n…

How data is actually stored ?
e.g. are we using disks ? Which
file system ?

What data is stored ?
describe data properties such as
data semantics, data relationships

What data users and
application programs
see ?

Logical
Level

Physical
Level

View Level

View 1 View 2 View n…
Logical Data Independence
Protection from logical changes
to the schema

Physical Data Independence
Protection from changes to the
physical structure of the data

} A DBMS is a software system designed to store, manage,
facilitate access to databases

} Provides:
◦ Data Definition Language (DDL)
� For defining and modifying the schemas
◦ Data Manipulation Language (DML)
� For retrieving, modifying, analyzing the data itself
◦ Guarantees about correctness in presence of failures and concurrency, data

semantics etc.

} Common use patterns
◦ Handling transactions (e.g. ATM Transactions, flight reservations)
◦ Archival (storing historical data)
◦ Analytics (e.g. identifying trends, Data Mining)

} representing information
◦ data modeling

◦ semantic constraints

} languages and systems for querying data
◦ complex queries & query semantics
◦ over massive data sets

} concurrency control for data manipulation
◦ ensuring transactional semantics

} reliable data storage
◦ maintain data semantics even if you pull the plug

◦ fault tolerance

} representing information
◦ data modeling: relational models, E/R models

◦ semantic constraints: integrity constraints, triggers

} languages and systems for querying data
◦ complex queries & query semantics: SQL
◦ over massive data sets: indexes, query processing, optimization

} concurrency control for data manipulation
◦ ensuring transactional semantics: ACID properties

} reliable data storage
◦ maintain data semantics even if you pull the plug: durability

◦ fault tolerance: RAID

} Most widely used model today
} Main concepts:
◦ relation: basically a table with rows and columns
◦ schema (of the relation): description of the columns

} Example:
courses(dept char(4), courseID integer, name varchar(80), instructor varchar(80))
students(sid char(9), name varchar(80), …)
enrolled(sid char(9), courseID integer, …)

} This is pretty much the only construct

Dept CourseID Name Instructo
r

CMSC 424 … …

CMSC 427 … …

An instance of the courses relation

} More powerful model, commonly used during conceptual design
◦ Easier and more intuitive for users to work with in the beginning

} Has two main constructs:
◦ Entities: e.g. courses, students
◦ Relationships: e.g. enrolled

} Diagrammatic representation

course enrolled

dept

name

courseID

instructor

student

name

sid
semester

} Example schema: R(A, B)
} Practical languages
◦ SQL
� select A from R where B = 5;
◦ Datalog (sort of practical) – Has seen a resurgence in recent years
� q(A) :- R(A, 5)

} Formal languages
◦ Relational algebra

πA (sB=5 (R)) -- You will encounter this in many papers
◦ Tuple relational calculus

{ t : {A} | ∃ s : {A, B} (R(A, B) ∧ s.B = 5) }
◦ Domain relational calculus
� Similar to tuple relational calculus

} Important thing to keep in mind:
◦ SQL is not SET semantics, it is BAG semantics
◦ i.e., duplicates are not eliminated by default
� With the exception of UNION, INTERSECTION, MINUS

◦ Relational model is SET semantics
� Duplicates cannot exist by definition

} Relational algebra: Six basic operators
◦ Select (σ), Project (π), Carterisan Product (×)
◦ Set union (U), Set difference (-)
◦ Rename (r)

} Tables: r(A, B), s(B, C)

name Symbol SQL Equivalent RA expression

cross product × select * from r, s; r × s

natural join ⋈ natural join πr.A, r.B, s.Csr.B = s.B(r x s)

theta join ⋈θ from .. where θ; sθ(r x s)

equi-join ⋈θ (theta must be equality)

left outer join r ⟕ s left outer join (with “on”) (see previous slide)

full outer join r ⟗ s full outer join (with “on”) -

(left) semijoin r ⋉ s none πr.A, r.B(r ⋈ s)

(left) antijoin r ⊲ s none r - πr.A, r.B(r ⋈ s)

} Goal: What is a “good” schema for a database? How to
define and achieve that

} Problems to avoid:
◦ Repetition of information
� For example, a table:

� accounts(owner_SSN, account_no, owner_name, owner_address, balance)
� Inherently repeats information if a customer is allowed to have more

than one account
◦ Avoid set-valued attributes

1. Encode and list all our knowledge about the schema

◦ Functional dependencies (FDs)

SSN à name (means: SSN “implies” name)

◦ If two tuples have the same “SSN”, they must have the same “name”

movietitle à length ???? Not true.

◦ But, (movietitle, movieYear) à length --- True.

2. Define a set of rules that the schema must follow to be considered good

◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …

◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

See 424 class notes for more

} SQL supports defining integrity constraints over the data
◦ Basically a property that must always be valid
◦ E.g., a customer must have an SSN, a customer with a loan must

have a sufficiently high balance in checking account, etc.

} Triggers
◦ If something happens, then execute something
� E.g., if a tuple inserted in table R, then update table S as well
◦ Quite frequently used in practice, and surprising not as well

optimized for large numbers

} Storage:
◦ Need to be cognizant of the memory hierarchy
� Many of traditional DBMS decisions are based on:

� Disks are cheap, memory is expensive
� Disks much faster to access sequentially than randomly

� Much work in recent years on revisiting the design decisions…
◦ RAID: Surviving failures through redundancy

} Indexes
◦ One of the biggest keys to efficiency, and heavily used
◦ B+-trees most popular and pretty much the only ones used in

most systems
◦ Others: R-trees, kD-trees, …

1. Parsing and translation
2. Optimization
3. Evaluation

} Parallel and Distributed Environments
◦ Shared-nothing vs Shared-memory vs Shared-disk
◦ Speedup vs Scaleup

} How to ”parallelize” different relational operations
} Motivation for emergence of NoSQL Systems
} Map-reduce Framework for Large-scale Data Analysis
} Apache Spark: Resilient Distributed Dataset (RDD) Abstraction
} MongoDB
◦ JSON Data Model
◦ MongoDB Query Language

} Transaction: A sequence of database actions enclosed
within special tags

} Properties:
◦ Atomicity: Entire transaction or nothing
◦ Consistency: Transaction, executed completely, takes database from

one consistent state to another
◦ Isolation: Concurrent transactions appear to run in isolation
◦ Durability: Effects of committed transactions are not lost

} Consistency: programmer needs to guarantee that
� DBMS can do a few things, e.g., enforce constraints on the data

} Rest: DBMS guarantees

} Atomicity: Through “logging” of all operations to “stable
storage”, and reversing if the transaction did not finish

} Isolation:
◦ Locking-based mechanisms
◦ Multi-version concurrency control

} Durability: Through “logging” of all operations to “stable
storage”, and repeating if needed

} Some key concepts:
◦ Serializability, Recoverability, Snapshot Isolation, Two-phase

locking, Write-ahead logging, …

