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} Why ?
◦ Much data generated continuously (growing every day)
◦ Financial data
◦ Sensors, RFID 
◦ Network/systems monitoring 
◦ Video/Audio data
◦ etc ...

} Need to support: 
◦ High data rates
◦ Real-time processing with low latencies
◦ Support for temporal reasoning (time-series operations) 
◦ Data dissemination
◦ Distributed ? (at least data generation)
◦ etc...



} Continuous (SQL) queries
◦ E.g. moving average over last hour every 10 mins
◦ SQL extended to support “windows” over streams
◦ Proposed extensions: SEQUENCE, CQL, StreamSQL

} Pattern recognition
◦ Alert me when: A, then B within 10 mins
◦ How to specify ? StreamSQL has some support 

} Probabilistic modeling; Applying financial models
◦ Infer hidden variables
◦ Remove noise (from measured readings)
◦ Do complex analysis to decide whether to buy 
◦ We don’t even know how to specify these

} Multimedia data ?
◦ Online object detection, activity detection 
◦ Correlating events from different streams



} Use traditional DBMS ?
} Consider simplest case:
◦ Report moving average over last hour every 10 minutes
◦ 1. Insert all new items into database
◦ 2. Execute the query every 10 minutes

} Not easily generalizable to other tasks
◦ E.g. “alert me the moment moving average > 100” ?

} Typically 1000’s of such continuous queries
} Even for one query, too slow and inefficient
◦ Doesn’t reuse work from previous execution

} Application-level modules typically used for complex tasks



} Materialized Views
◦ Derived tables that must be kept up-to-date when source tables change

} Triggers ?
◦ Similar, but current trigger systems not designed for the required scale

} Publish-Subscribe Systems
◦ Similar concepts: Push-based, reactive execution
◦ Typically no complex queries
◦ Much focus on “dissemination”

} Major research systems (late 90’s-early 00’s):
◦ NiagaraCQ (Wisc), Telegraph, TelegraphCQ (Berkeley) STREAM (Stanford), 

Autora, Borealis, Medusa (Brown/Brandeis/MIT)

} Commercial?
◦ Different design points supported by different systems today
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} View: A derived relation defined as an SQL expression over base 
relations
◦ More generally, any derived product (e.g., an ML model) generated from a 

set of source datasets (e.g., a collection of images) using an automated 
query/program (e.g., a training program)

} Materialized views?
◦ Views, by definition, are just expressions

◦ Need to computed when required by running the query over base tables

◦ Materialization == pre-computation

� Benefits: much lower latencies when querying a view

� Drawbacks: need to ”maintain”, i.e., modify the materialized result when the 
base tables change



} ”Incremental” much faster in most cases
◦ i.e., figure out the changes to the materialized view given the changes to the base 

tables

} Many dimensions to consider
◦ What information is available/required for view maintenance?

� What if the materialized view itself is not available any more? (This situation is closer to 
the “data streams” scenario)

◦ What types of modifications need to be supported?

◦ How are the views expressed?

◦ …

} For each point in this space, we may 
have a different algorithm

Type of Modification

Expressiveness of View
Definition Language

Other Views

Insertions
Deletions

Updates
Sets of each

Arithmetic

Aggregation

Duplicates

Amount of Information

Difference
Recursion

Outer−Joins
Chronicle Algebra

Conjunctive
queries

     Base
Relations

Materialized
        View

  Integrity
Constraints

Group Updates
Change view definition

Subqueries
Union



} Relation: part(part_no, part_cost, contract)

} View:

} Some possibilities when inserting a new tuple “part(p1, 5000, 
c15)” into “part”
◦ Only the materialized view is available: We can check if p1 is already 

present in it, and insert if not

◦ Only the base table is available: 

� Check if there exists another tuple with part_no = p1 and cost >1000

� If yes, no need to insert into the view

� If no, insert into the view 

◦ If part_no is a key for part à insert p1 into the view



} Relation: part(part_no, part_cost, contract)

} View:

} Harder to handle deletions into “part” though
◦ e.g., if part(p1, 2000, c12) is deleted

◦ Access to the view alone is not sufficient

◦ Need to check if another tuple with p1 and cost > 1000 exists in parts 
table



} Relation: part(part_no, part_cost, contract), and 
supplier(supp_no, part_no, price)

} View:

} Insert: part(p1, 5000, c15)
◦ If supp_parts already contains p1, then no effect

◦ If supp_parts doesn’t contain p1, then need access to the supplier relation



} Incremental maintenance focuses on defining changes to the 
output in terms of changes to the inputs

} Base relation: link(S, D)

} View to define one-hop neighbors

} If a set of tuples inserted into link:

} Changes to the view: 



} Counting Algorithm [GMS93]
◦ Works for queries with UNION, negation, and aggregation (no joins)

◦ For each tuple in the view, keep track of the number of different derivations 
for that tuple 

◦ When an update is made, run the same query to decide how much the count 
for each tuple changes

◦ link = {(a, b), (b, c), (b, e), (a, d), (d, c)}

◦ hop = {(a, c), (a, e)}

� Counts maintained internally: 2 and 1 resp.

◦ Say, (a, b) is deleted from link

� The deletion ”counts”: (a, c) à -1, (a, e) à -1

� So we remove (a, e), but keep (a, c)

} General idea extensible to other types of queries, including joins



} Outer-join Views
◦ Need to handle NULLs carefully 

◦ e.g., a deletion from one of the tables may require insert into the view 
with padded NULLs

} Recursive Views
◦ Naturally more complex



} Not always possible to maintain a view without access to all the 
base relations

} No information: In some cases, can decide that an update does 
not affect a view
◦ However, if it does -- need to possible use the base relations to do the update

} Self-maintainable Views
◦ Can be maintained just with access to the view and constraints

◦ In some cases, access to a subset of the tables is sufficient
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} Differences from stored relation model
◦ Data elements arrive one at a time

◦ System has no control over the order of arrival

◦ Data streams potentially unbounded in size

◦ Access to past elements not provided (unless explicitly stored)

} Queries
◦ One-time queries: evaluated against a snapshot of the tables

◦ Continuous queries: evaluated continuously and itself produces a data 
stream



} Network packet traces being collected in a network for two 
links: C = customer link, B = backbone link
◦ src: IP address of the sender

◦ dest: IP address of destination

◦ id, len, time

} Query: Compute load on link B every minute

◦ Semantics: need to evaluate continuously as new tuples arrive

◦ Could be supported through use of “triggers”, but too heavy-weight

◦ Also, may want to employ approximation techniques for large volumes

The application domain that we use for more detailed examples is network traffic management, which
involves monitoring network packet header information across a set of routers to obtain information on
traffic flow patterns. Based on a description of Babu and Widom [10], we delve into this example in some
detail to help illustrate that continuous queries arise naturally in real applications and that conventional
DBMS technology does not adequately support such queries.

Consider the network traffic management system of a large network, e.g., the backbone network of an
Internet Service Provider (ISP) [30]. Such systems monitor a variety of continuous data streams that may be
characterized as unpredictable and arriving at a high rate, including both packet traces and network perfor-
mance measurements. Typically, current traffic-management tools either rely on a special-purpose system
that performs online processing of simple hand-coded continuous queries, or they just log the traffic data and
perform periodic offline query processing. Conventional DBMS’s are deemed inadequate to provide the kind
of online continuous query processing that would be most beneficial in this domain. A data stream system
that could provide effective online processing of continuous queries over data streams would allow network
operators to install, modify, or remove appropriate monitoring queries to support efficient management of
the ISP’s network resources.

Consider the following concrete setting. Network packet traces are being collected from a number of
links in the network. The focus is on two specific links: a customer link, C, which connects the network of
a customer to the ISP’s network, and a backbone link, B, which connects two routers within the backbone
network of the ISP. Let and denote two streams of packet traces corresponding to these two links. We
assume, for simplicity, that the traces contain just the five fields of the packet header that are listed below.

src: IP address of packet sender.

dest: IP address of packet destination.

id: Identification number given by sender so that destination can uniquely identify each packet.

len: Length of the packet.

time: Time when packet header was recorded.

Consider first the continuous query , which computes load on the link B averaged over one-minute
intervals, notifying the network operator when the load crosses a specified threshold . The functions get-
minute and notifyoperator have the natural interpretation.

: SELECT notifyoperator(sum(len))
FROM
GROUP BY getminute(time)
HAVING sum(len)

While the functionality of such a query may possibly be achieved in a DBMS via the use of triggers, we
are likely to prefer the use of special techniques for performance reasons. For example, consider the case
where the link B has a very high throughput (e.g., if it were an optical link). In that case, we may choose to
compute an approximate answer to by employing random sampling on the stream — a task outside the
reach of standard trigger mechanisms.

The second query isolates flows in the backbone link and determines the amount of traffic generated
by each flow. A flow is defined here as a sequence of packets grouped in time, and sent from a specific
source to a specific destination.
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} Network packet traces being collected in a network for two 
links: C = customer link, B = backbone link
◦ src: IP address of the sender

◦ dest: IP address of destination

◦ id, len, time

} Query: Isolate traffic for each flow on B

◦ getflowid() is a UDF that specifies how to group packets across time

◦ Somewhat clumsy syntax trying to express in SQL

: SELECT flowid, src, dest, sum(len) AS flowlen
FROM (SELECT src, dest, len, time

FROM
ORDER BY time )

GROUP BY src, dest, getflowid(src, dest, time)
AS flowid

Here getflowid is a user-defined function which takes the source IP address, the destination IP address,
and the timestamp of a packet, and returns the identifier of the flow to which the packet belongs. We assume
that the data in the view (or table expression) in the FROM clause is passed to the getflowid function in
the order defined by the ORDER BY clause.

Observe that handling over stream is particularly challenging due to the presence of GROUP BY
and ORDER BY clauses, which lead to “blocking” operators in a query execution plan.

Consider now the task of determining the fraction of the backbone link’s traffic that can be attributed to
the customer network. This query, , is an example of the kind of ad hoc continuous queries that may be
registered during periods of congestion to determine whether the customer network is the likely cause.

: (SELECT count (*)
FROM C, B
WHERE C.src = B.src and C.dest = B.dest

and C.id = B.id)
(SELECT count (*) FROM )

Observe that joins streams and on their keys to obtain a count of the number of common packets.
Since joining two streams could potentially require unbounded intermediate storage (for example if there is
no bound on the delay between a packet showing up on the two links), the user may prefer to compute an
approximate answer. One approximation technique would be to maintain bounded-memory synopses of the
two streams (see Section 6); alternatively, one could exploit aspects of the application semantics to bound
the required storage (e.g., we may know that joining tuples are very likely to occur within a bounded time
window).

Our final example, , is a continuous query for monitoring the source-destination pairs in the top 5
percent in terms of backbone traffic. For ease of exposition, we employ the WITH construct from SQL-
99 [87].

:WITH Load AS
(SELECT src, dest, sum(len) AS traffic
FROM
GROUP BY src, dest)

SELECT src, dest, traffic
FROM Load AS
WHERE (SELECT count(*)

FROM Load AS
WHERE .traffic .traffic)
(SELECT count(*) FROM Load)

ORDER BY traffic
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} Network packet traces being collected in a network for two 
links: C = customer link, B = backbone link
◦ src: IP address of the sender

◦ dest: IP address of destination

◦ id, len, time

} Query: Fraction of traffic that can be attributed to C

◦ Potentially very large intermediate tables
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} Network packet traces being collected in a network for two 
links: C = customer link, B = backbone link
◦ src: IP address of the sender

◦ dest: IP address of destination

◦ id, len, time

} Query: Top 5 percent traffic
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} At its simplest, a continuous query/task needs to specify:
◦ Frequency of execution: how often to execute the query/task

� All the time (e.g., an “anomaly detection” task) 
� Every so often (e.g., every minute, every day, etc)

◦ The ”scope” of the query/task: what data it operates on at any execution 
instance (could be different for different inputs) 
� The entire stream (i.e., all data ever received)
� A lower-sized, potentially bounded transformation of the stream (e.g., all distinct 

elements every received -- could be bounded in some cases)

� A window over the data (e.g., last one hour) -- usually called a “sliding” window

◦ What to do
� SQL query over the inputs (per the scope)

� Pattern detection (e.g., look for A à B within 10 seconds à C within 10 seconds)
� Arbitrary user-defined tasks (e.g., ML tasks)



} Key “intuitive” goal: process a newly arrived tuple before the 
next tuple arrives
◦ On average -- okay if there is a queue for short periods of time

◦ If not, the backlog will keep building up and system may have to drop 
tuples (Not acceptable)

} Data streams potentially unbounded in size è answering 
queries exactly may require unbounded memory
◦ Using ”external memory” (i.e., disks) doesn’t help

� Too slow

� Eventually run out of external memory as well

◦ Sliding windows and transformations help bound the memory 
requirements



} May have to consider approximations if not possible to solve the 
query/task exactly
◦ By maintaining a “summary” of the data stream so far

} A generic “summary” of the data streams characterized by two 
functions
◦ updateSummary() given a new tuple

◦ computeAnswer() using the summary

} Example of a summary: “random sample”
◦ Can update a random sample when a new tuple comes in (non-trivial but not difficult)

◦ Can compute an aggregate like “average”, “sum” at any point à an unbiased estimate of 
the sum/average over the entire stream



} Random samples don’t work well for many queries
◦ Bad estimates for “joins” -- too many missing tuples

◦ Can’t handle queries like number of distinct elements, number of triangles in a 
graph, etc.

} Can use other summaries like “histograms” in some cases

} Sketches
◦ Purpose-built summaries for specific tasks

◦ Much work over the last two decades on new sketching techniques

◦ Usually provide error guarantees



} Standard operators like sorting, aggregations, are problematic 
in data streams context
◦ Assuming we re-purpose an existing query processing architecture

◦ Less of an issue if sliding windows are being used

} Non-blocking operators like “symmetric” hash joins preferred

} ”Punctuations”: Assertions about the data elements in the 
stream that are yet to arrive
◦ e.g., you won’t see any more tuples with A = 10

◦ Can be used to finish computations in some cases 

◦ An interesting, but relatively-less-explored concept



} Consider an “ad hoc” (one-time) query that refers to data 
received in the past
◦ … that may have been thrown away during continuous processing

} Option 1: Don’t allow queries like this

} Option 2: Store all data ever received somewhere
◦ Probably the most common approach we would see today

◦ People are loath to throw away any data

} Option 3: Use summaries of data
◦ Depends on whether approximations are permissible



} Too many different considerations for how querying may be 
handled

} No single system that can handle all such cases efficiently

} Most modern systems focus on specific sets of use cases
◦ General purpose micro-batching systems (e.g., Spark Streaming): don’t do well with small 

batches

◦ Real-time anomaly, event, or pattern detection system: usually support a small set of 
patterns/queries/tasks, and build incremental techniques for those

◦ Approximate Aggregations: Use sketching or other summary techniques to monitor specific 
things (e.g., heavy hitters, distinct counts, etc), or build dashboards

◦ Materialized views maintenance: Incremental maintenance of a small set of views, 
sometimes in a lazy fashion -- no claims to real-time 

◦ …



} Extend SQL with sliding windows, time-based or length-based

that gives the system flexibility in selecting the optimal evaluation procedure to produce the desired answer.
Other methods for receiving queries from users are possible; for example, the Aurora system described
in [16] uses a graphical “boxes and arrows” interface for specifying data flow through the system. This
interface is intuitive and gives the user more control over the exact series of steps by which the query answer
is obtained than is provided by a declarative query language.

The main modification that we have made to standard SQL, in addition to allowing the FROM clause
to refer to streams as well as relations, is to extend the expressiveness of the query language for sliding
windows. It is possible to formulate sliding window queries in SQL by referring to timestamps explicitly,
but it is often quite awkward. SQL-99 [14, 81] introduces analytical functions that partially address the
shortcomings of SQL for expressing sliding window queries by allowing the specification of moving aver-
ages and other aggregation operations over sliding windows. However, the SQL-99 syntax is not sufficiently
expressive for data stream queries since it cannot be applied to non-aggregation operations such as joins.

The notion of sliding windows requires at least an ordering on data stream elements. In many cases,
the arrival order of the elements suffices as an “implicit timestamp” attached to each data element; how-
ever, sometimes it is preferable to use “explicit timestamps” provided as part of the data stream. For-
mally we say (following [16]) that a data stream consists of a set of (tuple, timestamp) pairs:

. The timestamp attribute could be a traditional timestamp or it could be a
sequence number — all that is required is that it comes from a totally ordered domain with a distance met-
ric. The ordering induced by the timestamps is used when selecting the data elements making up a sliding
window.

We extend SQL by allowing an optional window specification to be provided, enclosed in brackets,
after a stream (or subquery producing a stream) that is supplied in a query’s FROM clause. A window
specification consists of:

1. an optional partitioning clause, which partitions the data into several groups and maintains a separate
window for each group,

2. a window size, either in “physical” units (i.e., the number of data elements in the window) or in
“logical” units (i.e., the range of time covered by a window, such as 30 days), and

3. an optional filtering predicate.

As in SQL-99, physical windows are specified using the ROWS keyword (e.g., ROWS 50 PRECEDING),
while logical windows are specified via the RANGE keyword (e.g., RANGE 15 MINUTES PRECEDING).
In lieu of a formal grammar, we present several examples to illustrate our language extension.

The underlying source of data for our examples will be a stream of telephone call records, each with four
attributes: customer id, type, minutes, and timestamp. The timestamp attribute is the ordering
attribute for the records. Suppose a user wanted to compute the average call length, but considering only the
ten most recent long-distance calls placed by each customer. The query can be formulated as follows:

SELECT AVG(S.minutes)
FROM Calls S [PARTITION BY S.customer id

ROWS 10 PRECEDING
WHERE S.type = ’Long Distance’]

where the expression in braces defines a sliding window on the stream of calls.
Contrast the previous query to a similar one that computes the average call length considering only

long-distance calls that are among the last 10 calls of all types placed by each customer:
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SELECT AVG(S.minutes)
FROM Calls S [PARTITION BY S.customer id

ROWS 10 PRECEDING]
WHERE S.type = ’Long Distance’

The distinction between filtering predicates applied before calculating the sliding window cutoffs and pred-
icates applied after windowing motivates our inclusion of an optional WHERE clause within the window
specification.

Here is a slightly more complicated example returning the average length of the last 1000 telephone
calls placed by “Gold” customers:

SELECT AVG(V.minutes)
FROM (SELECT S.minutes

FROM Calls S, Customers T
WHERE S.customer id = T.customer id
AND T.tier = ’Gold’)
V [ROWS 1000 PRECEDING]

Notice that in this example, the stream of calls must be joined to the Customers relation before applying the
sliding window.

5.2 Timestamps in Streams

In the previous section, sliding windows are defined with respect to a timestamp or sequence number at-
tribute representing a tuple’s arrival time. This approach is unambiguous for tuples that come from a single
stream, but it is less clear what is meant when attempting to apply sliding windows to composite tuples that
are derived from tuples from multiple underlying streams (e.g., windows on the output of a join operator).
What should the timestamp of a tuple in the join result be when the timestamps of the tuples that were joined
to form the result tuple are different? Timestamp issues also arise when a set of distributed streams make up
a single logical stream, as in the web monitoring application described in Section 2.2, or in truly distributed
streams such as sensor networks when comparing timestamps across stream elements may be relevant.

In the previous section we introduced implicit timestamps, in which the system adds a special field
to each incoming tuple, and explicit timestamps, in which a data attribute is designated as the timestamp.
Explicit timestamps are used when each tuple corresponds to a real-world event at a particular time that
is of importance to the meaning of the tuple. Implicit timestamps are used when the data source does
not already include timestamp information, or when the exact moment in time associated with a tuple is
not important, but general considerations such as “recent” or “old” may be important. The distinction
between implicit and explicit timestamps is similar to that between transaction and valid time in the temporal
database literature [80].

Explicit timestamps have the drawback that tuples may not arrive in the same order as their timestamps
— tuples with later timestamps may come before tuples with earlier timestamps. This lack of guaranteed
ordering makes it difficult to perform sliding window computations that are defined in relation to explicit
timestamps, or any other processing based on order. However, as long as an input stream is “almost-sorted”
by timestamp, except for local perturbations, then out-of-order tuples can easily be corrected with little
buffering. It seems reasonable to assume that even when explicit timestamps are used, tuples will be deliv-
ered in roughly increasing timestamp order.

Let us now look at how to assign appropriate timestamps to tuples output by binary operators, using
join as an example. There are several possible approaches that could be taken; we discuss two. The first
approach, which fits better with implicit timestamps, is to provide no guarantees about the output order of
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that gives the system flexibility in selecting the optimal evaluation procedure to produce the desired answer.
Other methods for receiving queries from users are possible; for example, the Aurora system described
in [16] uses a graphical “boxes and arrows” interface for specifying data flow through the system. This
interface is intuitive and gives the user more control over the exact series of steps by which the query answer
is obtained than is provided by a declarative query language.

The main modification that we have made to standard SQL, in addition to allowing the FROM clause
to refer to streams as well as relations, is to extend the expressiveness of the query language for sliding
windows. It is possible to formulate sliding window queries in SQL by referring to timestamps explicitly,
but it is often quite awkward. SQL-99 [14, 81] introduces analytical functions that partially address the
shortcomings of SQL for expressing sliding window queries by allowing the specification of moving aver-
ages and other aggregation operations over sliding windows. However, the SQL-99 syntax is not sufficiently
expressive for data stream queries since it cannot be applied to non-aggregation operations such as joins.

The notion of sliding windows requires at least an ordering on data stream elements. In many cases,
the arrival order of the elements suffices as an “implicit timestamp” attached to each data element; how-
ever, sometimes it is preferable to use “explicit timestamps” provided as part of the data stream. For-
mally we say (following [16]) that a data stream consists of a set of (tuple, timestamp) pairs:

. The timestamp attribute could be a traditional timestamp or it could be a
sequence number — all that is required is that it comes from a totally ordered domain with a distance met-
ric. The ordering induced by the timestamps is used when selecting the data elements making up a sliding
window.

We extend SQL by allowing an optional window specification to be provided, enclosed in brackets,
after a stream (or subquery producing a stream) that is supplied in a query’s FROM clause. A window
specification consists of:

1. an optional partitioning clause, which partitions the data into several groups and maintains a separate
window for each group,

2. a window size, either in “physical” units (i.e., the number of data elements in the window) or in
“logical” units (i.e., the range of time covered by a window, such as 30 days), and

3. an optional filtering predicate.

As in SQL-99, physical windows are specified using the ROWS keyword (e.g., ROWS 50 PRECEDING),
while logical windows are specified via the RANGE keyword (e.g., RANGE 15 MINUTES PRECEDING).
In lieu of a formal grammar, we present several examples to illustrate our language extension.

The underlying source of data for our examples will be a stream of telephone call records, each with four
attributes: customer id, type, minutes, and timestamp. The timestamp attribute is the ordering
attribute for the records. Suppose a user wanted to compute the average call length, but considering only the
ten most recent long-distance calls placed by each customer. The query can be formulated as follows:

SELECT AVG(S.minutes)
FROM Calls S [PARTITION BY S.customer id

ROWS 10 PRECEDING
WHERE S.type = ’Long Distance’]

where the expression in braces defines a sliding window on the stream of calls.
Contrast the previous query to a similar one that computes the average call length considering only

long-distance calls that are among the last 10 calls of all types placed by each customer:
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Calls:

Average call length across the last 10 long-
distance calls made by each customer

Average call length across the long-distance calls, 
among the last 10 made by each customer

SELECT AVG(S.minutes)
FROM Calls S [PARTITION BY S.customer id

ROWS 10 PRECEDING]
WHERE S.type = ’Long Distance’

The distinction between filtering predicates applied before calculating the sliding window cutoffs and pred-
icates applied after windowing motivates our inclusion of an optional WHERE clause within the window
specification.

Here is a slightly more complicated example returning the average length of the last 1000 telephone
calls placed by “Gold” customers:

SELECT AVG(V.minutes)
FROM (SELECT S.minutes

FROM Calls S, Customers T
WHERE S.customer id = T.customer id
AND T.tier = ’Gold’)
V [ROWS 1000 PRECEDING]

Notice that in this example, the stream of calls must be joined to the Customers relation before applying the
sliding window.

5.2 Timestamps in Streams

In the previous section, sliding windows are defined with respect to a timestamp or sequence number at-
tribute representing a tuple’s arrival time. This approach is unambiguous for tuples that come from a single
stream, but it is less clear what is meant when attempting to apply sliding windows to composite tuples that
are derived from tuples from multiple underlying streams (e.g., windows on the output of a join operator).
What should the timestamp of a tuple in the join result be when the timestamps of the tuples that were joined
to form the result tuple are different? Timestamp issues also arise when a set of distributed streams make up
a single logical stream, as in the web monitoring application described in Section 2.2, or in truly distributed
streams such as sensor networks when comparing timestamps across stream elements may be relevant.

In the previous section we introduced implicit timestamps, in which the system adds a special field
to each incoming tuple, and explicit timestamps, in which a data attribute is designated as the timestamp.
Explicit timestamps are used when each tuple corresponds to a real-world event at a particular time that
is of importance to the meaning of the tuple. Implicit timestamps are used when the data source does
not already include timestamp information, or when the exact moment in time associated with a tuple is
not important, but general considerations such as “recent” or “old” may be important. The distinction
between implicit and explicit timestamps is similar to that between transaction and valid time in the temporal
database literature [80].

Explicit timestamps have the drawback that tuples may not arrive in the same order as their timestamps
— tuples with later timestamps may come before tuples with earlier timestamps. This lack of guaranteed
ordering makes it difficult to perform sliding window computations that are defined in relation to explicit
timestamps, or any other processing based on order. However, as long as an input stream is “almost-sorted”
by timestamp, except for local perturbations, then out-of-order tuples can easily be corrected with little
buffering. It seems reasonable to assume that even when explicit timestamps are used, tuples will be deliv-
ered in roughly increasing timestamp order.

Let us now look at how to assign appropriate timestamps to tuples output by binary operators, using
join as an example. There are several possible approaches that could be taken; we discuss two. The first
approach, which fits better with implicit timestamps, is to provide no guarantees about the output order of
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Average call length across the last 1000 calls 
made by Gold customers

Implicit assumption that 
customers is a static table
Otherwise, semantics can be 
tricky



} Option 1: Assign timestamps when they enter the system
◦ Not clear what happens if the DSMS itself is distributed across a network

◦ Also, what about “composite” tuples where the base tuples have different 
timestamps? 

� Usually use the latest timestamp (may have the user specify, but more tricky)

} Option 2: Assign timestamps at the source
◦ Clocks are usually not synchronized sufficiently, especially in IoT settings

◦ Need to worry about delays in tuples getting to the DSMS (e.g., how do you a 
sliding window is “complete”?)

} Similar issues studied in the context of temporal databases



} Similar to the standard operator model, but 
with continuously running operators

} Each operator maintains “synopses” to handle 
large volumes of data

} Adaptive operators to handle dynamicism
(similar motivation as eddies)
◦ Operators adapt to memory by using approximations

◦ Lot of open questions (some looked at in followup work)

} Scheduling of operators, and multiple query 
plans also complex

Figure 1: A portion of a query plan in our DSMS.

5.3 Query Processing Architecture of a DSMS

In this section, we describe the query processing architecture of our DSMS. So far we have focused on con-
tinuous queries only. When a query is registered, a query execution plan is produced that begins executing
and continues indefinitely. We have not yet addressed ad hoc queries registered after relevant streams have
begun (Section 4.6).

Query execution plans in our system consist of operators connected by queues. Operators can maintain
intermediate state in synopsis data structures. A portion of an example query plan is shown in Figure 1, with
one binary operator ( ) and one unary operator ( ). The two operators are connected by a queue ,
and operator has two input queues, and . Also shown in Figure 1 are two synopsis structures
used by operator , and , one per input. For example, could be a sliding window join
operator, which maintains a sliding window synopsis for each join input (Section 4.3). The system memory
is partitioned dynamically among the synopses and queues in query plans, along with the buffers used for
handling streams coming over the network and a cache for disk-resident data. Note that both Aurora [16]
and Eddies [8] use a single globally-shared queue for inter-operator data flow instead of separate queues
between operators as in Figure 1.

Operators in our system are scheduled for execution by a central scheduler. During execution, an op-
erator reads data from its input queues, updates the synopsis structures that it maintains, and writes results
to its output queues. (Our operators thus adhere to the update and computeAnswer model discussed
in Section 4.4.) The period of execution of an operator is determined dynamically by the scheduler and the
operator returns control back to the scheduler once its period expires. We are experimenting with different
policies for scheduling operators and for determining the period of execution. The period of execution may
be based on time, or it may be based on other quantities, such as the number of tuples consumed or pro-
duced. Both Aurora and Eddies have chosen to perform fine-grained scheduling where, in each step, the
scheduler chooses a tuple from the global queue and passes it to an operator for processing, an approach that
our scheduler could choose if appropriate.

We expect continuous queries and the data streams on which they operate to be long-running. During
the lifetime of a continuous query parameters such as stream data characteristics, stream flow rates, and
the number of concurrently running queries may vary considerably. To handle these fluctuations, all of our
operators are adaptive. So far we have focused primarily on adaptivity to available memory, although other
factors could be considered, including using disk to increase temporary storage at the expense of latency.
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} General setting:
◦ A stream of values: x1, x2, …, x_N, …

◦ Each value seen only once, in that order

◦ At all times N, compute function: f(x1, …, x_N), i.e., the prefix of the 
stream of size N

} Optimization goals:
◦ Memory required -- ideally logarithmic in N

◦ Time required for each new tuple -- ideally logarithmic in N

} Most techniques maintain (and update) a small summary 
structure that allows computing f in an unbiased manner



} For some function f, random samples work
◦ e.g., average, sum, etc.

} Reservoir Sampling algorithm to maintain a sample of size k:
◦ First k elements are the initial sample

◦ When we see the N^th element:

� Choose a random integer between 1 and N

� If <= k, then replace existing element at that position with the N^th element

◦ Can be proven to maintain a random sample of the prefix at all times

} Somewhat slow -- can be made more efficient by instead 
(randomly) computing how many elements to skip

} Also can be modified to handle “weights”



} Alon, Matias, Szegedy: Space Complexity of Approximating 
the Frequency Moments; STOC 1996

} Consider a stream: (1, 2, 3, 1, 5, 2, 1, 3, 4)

} Let m_i be the frequency of i in the stream 
◦ m1 =3,m2 =m3 =2,m4 =m5 =1. 

} Frequency moment F_k = Σ m_i^k
◦ F0 = 5 = number of distinct elements in the stream

◦ F1 = 9 = total number of elements in the stream (trivial)

◦ F2 = 19 = comes in up many places (e.g. self-join size of a relation)

◦ F_∞ = most frequent item’s multiplicity

} Flajolet-Martin technique is for F_0 



} Alon, Matias, Szegedy: Space Complexity of Approximating the 
Frequency Moments; STOC 1996

} Improves upon the F_0 computation

} Key contribution: a technique for F_2
◦ Hash every element x_i onto {-1, +1}

◦ Keep a running total: SUM x_i * hash(x_i)

◦ In the end, take square of the ”sum” as the estimator

◦ Can prove strong guarantees about it

◦ Hash functions need some properties

} Lot of work since then on other types of computations, better 
guarantees, etc.

} Techniques widely used in Google etc., for a variety of purposes



} Histograms, Wavelets, Heavy Hitters
◦ Used to get at other properties of data sets (e.g., distributions, most frequent 

elements, etc)

◦ Lot of work on specific techniques for maintaining those incrementally

} Not always possible to use sketching
◦ e.g., F_∞ requires storing the entire stream

◦ Can do better if the count is a high fraction of the entire stream (i.e., if there is 
significant skew)

} Key Takeaway: Sketching techniques can be used in many cases to 
drastically reduce the dataset sizes, and are quite practical



} Overview and Early Work

} Maintenance of Materialized Views

} Models and issues in data stream systems

} Discretized streams: fault-tolerant streaming computation at 
scale

} Apache Flink: Stream and Batch Processing in a Single Engine

} Incremental, Iterative Data Processing with Timely Dataflow

} MacroBase: Prioritizing Attention in Fast Data



} Need streaming computation models analogous to MapReduce 
for batch processing
◦ Applications: detecting trends, real-time personalization, failure 

detection, spam detection, advertising statistics,

} Challenges
◦ Computational high-level frameworks for distributed systems

◦ Machine failures and stragglers (slow nodes) cause latency issues

◦ Need to be able to recover quickly from faults

} Performance goals
◦ Scalability to 100s of nodes, with low cost

◦ Second-scale latency (fundamental limitation of micro-batching)

◦ Second-scale recovery from faults and stragglers



} Aurora (research), Storm, etc., followed a continuous operator model
◦ Better latencies and faster response -- but fault tolerance is tricky

◦ Especially in a distributed setting

◦ Can’t handle stragglers easily -- may block the whole system

mutable state 

synchronization 

primaries 

replicas 
 

node 1 node 2 

node 1’ node 2’ 

input 

(a) Continuous operator processing model. Each node con-
tinuously receives records, updates internal state, and emits
new records. Fault tolerance is typically achieved through
replication, using a synchronization protocol like Flux or
DPC [34, 5] to ensure that replicas of each node see records in
the same order (e.g., when they have multiple parent nodes).

t = 1: 

t = 2: 

D-Stream 1 D-Stream 2 

immutable 
dataset 

immutable 
dataset 

batch operation 

…
 

input 

(b) D-Stream processing model. In each time interval, the
records that arrive are stored reliably across the cluster to form
an immutable, partitioned dataset. This is then processed via
deterministic parallel operations to compute other distributed
datasets that represent program output or state to pass to the
next interval. Each series of datasets forms one D-Stream.

Figure 1: Comparison of traditional record-at-a-time stream processing (a) with discretized streams (b).

the state of operators on a lost, or slow, node. Previ-
ous systems use one of two schemes, replication and
upstream backup [20], which offer a sharp tradeoff be-
tween cost and recovery time.

In replication, which is common in database systems,
there are two copies of the processing graph, and input
records are sent to both. However, simply replicating the
nodes is not enough; the system also needs to run a syn-

chronization protocol, such as Flux [34] or Borealis’s
DPC [5], to ensure that the two copies of each operator
see messages from upstream parents in the same order.
For example, an operator that outputs the union of two
parent streams (the sequence of all records received on
either one) needs to see the parent streams in the same
order to produce the same output stream, so the two
copies of this operator need to coordinate. Replication
is thus costly, though it recovers quickly from failures.

In upstream backup, each node retains a copy of the
messages it sent since some checkpoint. When a node
fails, a standby machine takes over its role, and the
parents replay messages to this standby to rebuild its
state. This approach thus incurs high recovery times,
because a single node must recompute the lost state
by running data through the serial stateful operator
code. TimeStream [33] and MapReduce Online [11]
use this model. Popular message queueing systems, like
Storm [37], also use this approach, but typically only
provide “at-least-once” delivery for messages, relying
on the user’s code to handle state recovery.2

More importantly, neither replication nor upstream
backup handle stragglers. If a node runs slowly in the
replication model, the whole system is affected because

2 Storm’s Trident layer [26] automatically keeps state in a repli-
cated database instead, writing updates in batches. This is expensive,
as all updates must be replicated transactionally across the network.

of the synchronization required to have the replicas re-
ceive messages in the same order. In upstream backup,
the only way to mitigate a straggler is to treat it as a fail-
ure, which requires going through the slow state recov-
ery process mentioned above, and is heavy-handed for a
problem that may be transient.3 Thus, while traditional
streaming approaches work well at smaller scales, they
face substantial problems in a large commodity cluster.

3 Discretized Streams (D-Streams)
D-Streams avoid the problems with traditional stream
processing by structuring computations as a set of
short, stateless, deterministic tasks instead of continu-
ous, stateful operators. They then store the state in mem-
ory across tasks as fault-tolerant data structures (RDDs)
that can be recomputed deterministically. Decomposing
computations into short tasks exposes dependencies at a
fine granularity and allows powerful recovery techniques
like parallel recovery and speculation. Beyond fault tol-
erance, the D-Stream model gives other benefits, such as
powerful unification with batch processing.

3.1 Computation Model
We treat a streaming computation as a series of deter-
ministic batch computations on small time intervals. The
data received in each interval is stored reliably across the
cluster to form an input dataset for that interval. Once
the time interval completes, this dataset is processed via
deterministic parallel operations, such as map, reduce

and groupBy, to produce new datasets representing ei-
ther program outputs or intermediate state. In the for-
mer case, the results may be pushed to an external sys-

3 Note that a speculative execution approach as in batch systems
would be challenging to apply here because the operator code assumes
that it is fed inputs serially, so even a backup copy of an operator would
need to spend a long time recovering from its last checkpoint.



} Input data stream broken into batches (i.e., a form of “sliding windows”)

} Each batch seen as an RDD (resilient distributed dataset)

} Standard Spark operations done on RDDs
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Figure 2: High-level overview of the Spark Streaming
system. Spark Streaming divides input data streams
into batches and stores them in Spark’s memory. It
then executes a streaming application by generating
Spark jobs to process the batches.

tem in a distributed manner. In the latter case, the inter-
mediate state is stored as resilient distributed datasets

(RDDs) [43], a fast storage abstraction that avoids repli-
cation by using lineage for recovery, as we shall explain.
This state dataset may then be processed along with the
next batch of input data to produce a new dataset of up-
dated intermediate states. Figure 1(b) shows our model.

We implemented our system, Spark Streaming, based
on this model. We used Spark [43] as our batch process-
ing engine for each batch of data. Figure 2 shows a high-
level sketch of the computation model in the context of
Spark Streaming. This is explained in more detail later.

In our API, users define programs by manipulating
objects called discretized streams (D-Streams). A D-
Stream is a sequence of immutable, partitioned datasets
(RDDs) that can be acted on by deterministic transfor-

mations. These transformations yield new D-Streams,
and may create intermediate state in the form of RDDs.

We illustrate the idea with a Spark Streaming pro-
gram that computes a running count of view events by
URL. Spark Streaming exposes D-Streams through a
functional API similar to LINQ [42, 2] in the Scala pro-
gramming language.4 The code for our program is:

pageViews = readStream("http://...", "1s")
ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)

This code creates a D-Stream called pageViews by
reading an event stream over HTTP, and groups these
into 1-second intervals. It then transforms the event
stream to get a new D-Stream of (URL, 1) pairs called
ones, and performs a running count of these with a
stateful runningReduce transformation. The arguments
to map and runningReduce are Scala function literals.

4Other interfaces, such as streaming SQL, would also be possible.
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Figure 3: Lineage graph for RDDs in the view count
program. Each oval is an RDD, with partitions shown
as circles. Each sequence of RDDs is a D-Stream.

To execute this program, Spark Streaming will receive
the data stream, divide it into one second batches and
store them in Spark’s memory as RDDs (see Figure 2).
Additionally, it will invoke RDD transformations like
map and reduce to process the RDDs. To execute these
transformations, Spark will first launch map tasks to pro-
cess the events and generate the url-one pairs. Then it
will launch reduce tasks that take both the results of the
maps and the results of the previous interval’s reduces,
stored in an RDD. These tasks will produce a new RDD
with the updated counts. Each D-Stream in the program
thus turns into a sequence of RDDs.

Finally, to recover from faults and stragglers, both D-
Streams and RDDs track their lineage, that is, the graph
of deterministic operations used to build them [43].
Spark tracks this information at the level of partitions

within each distributed dataset, as shown in Figure 3.
When a node fails, it recomputes the RDD partitions that
were on it by re-running the tasks that built them from
the original input data stored reliably in the cluster. The
system also periodically checkpoints state RDDs (e.g.,

by asynchronously replicating every tenth RDD)5 to pre-
vent infinite recomputation, but this does not need to
happen for all data, because recovery is often fast: the
lost partitions can be recomputed in parallel on separate
nodes. In a similar way, if a node straggles, we can spec-
ulatively execute copies of its tasks on other nodes [12],
because they will produce the same result.

We note that the parallelism usable for recovery in D-
Streams is higher than in upstream backup, even if one
ran multiple operators per node. D-Streams expose par-
allelism across both partitions of an operator and time:
1. Much like batch systems run multiple tasks per node,

each timestep of a transformation may create multi-
ple RDD partitions per node (e.g., 1000 RDD parti-
tions on a 100-core cluster). When the node fails, we
can recompute its partitions in parallel on others.

5Since RDDs are immutable, checkpointing does not block the job.
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Figure 2: High-level overview of the Spark Streaming
system. Spark Streaming divides input data streams
into batches and stores them in Spark’s memory. It
then executes a streaming application by generating
Spark jobs to process the batches.

tem in a distributed manner. In the latter case, the inter-
mediate state is stored as resilient distributed datasets

(RDDs) [43], a fast storage abstraction that avoids repli-
cation by using lineage for recovery, as we shall explain.
This state dataset may then be processed along with the
next batch of input data to produce a new dataset of up-
dated intermediate states. Figure 1(b) shows our model.

We implemented our system, Spark Streaming, based
on this model. We used Spark [43] as our batch process-
ing engine for each batch of data. Figure 2 shows a high-
level sketch of the computation model in the context of
Spark Streaming. This is explained in more detail later.

In our API, users define programs by manipulating
objects called discretized streams (D-Streams). A D-
Stream is a sequence of immutable, partitioned datasets
(RDDs) that can be acted on by deterministic transfor-

mations. These transformations yield new D-Streams,
and may create intermediate state in the form of RDDs.

We illustrate the idea with a Spark Streaming pro-
gram that computes a running count of view events by
URL. Spark Streaming exposes D-Streams through a
functional API similar to LINQ [42, 2] in the Scala pro-
gramming language.4 The code for our program is:

pageViews = readStream("http://...", "1s")
ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)

This code creates a D-Stream called pageViews by
reading an event stream over HTTP, and groups these
into 1-second intervals. It then transforms the event
stream to get a new D-Stream of (URL, 1) pairs called
ones, and performs a running count of these with a
stateful runningReduce transformation. The arguments
to map and runningReduce are Scala function literals.

4Other interfaces, such as streaming SQL, would also be possible.
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Figure 3: Lineage graph for RDDs in the view count
program. Each oval is an RDD, with partitions shown
as circles. Each sequence of RDDs is a D-Stream.

To execute this program, Spark Streaming will receive
the data stream, divide it into one second batches and
store them in Spark’s memory as RDDs (see Figure 2).
Additionally, it will invoke RDD transformations like
map and reduce to process the RDDs. To execute these
transformations, Spark will first launch map tasks to pro-
cess the events and generate the url-one pairs. Then it
will launch reduce tasks that take both the results of the
maps and the results of the previous interval’s reduces,
stored in an RDD. These tasks will produce a new RDD
with the updated counts. Each D-Stream in the program
thus turns into a sequence of RDDs.

Finally, to recover from faults and stragglers, both D-
Streams and RDDs track their lineage, that is, the graph
of deterministic operations used to build them [43].
Spark tracks this information at the level of partitions

within each distributed dataset, as shown in Figure 3.
When a node fails, it recomputes the RDD partitions that
were on it by re-running the tasks that built them from
the original input data stored reliably in the cluster. The
system also periodically checkpoints state RDDs (e.g.,

by asynchronously replicating every tenth RDD)5 to pre-
vent infinite recomputation, but this does not need to
happen for all data, because recovery is often fast: the
lost partitions can be recomputed in parallel on separate
nodes. In a similar way, if a node straggles, we can spec-
ulatively execute copies of its tasks on other nodes [12],
because they will produce the same result.

We note that the parallelism usable for recovery in D-
Streams is higher than in upstream backup, even if one
ran multiple operators per node. D-Streams expose par-
allelism across both partitions of an operator and time:
1. Much like batch systems run multiple tasks per node,

each timestep of a transformation may create multi-
ple RDD partitions per node (e.g., 1000 RDD parti-
tions on a 100-core cluster). When the node fails, we
can recompute its partitions in parallel on others.

5Since RDDs are immutable, checkpointing does not block the job.

Create batches of 1s each
Compute counts for each URL

Each operation creates a new D-Stream
Internally stored as a collection of RDDs



} Builds upon the fault tolerance of RDDs, through use of “lineage” graphs

} Additional “checkpointing” to limit recomputations
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Figure 2: High-level overview of the Spark Streaming
system. Spark Streaming divides input data streams
into batches and stores them in Spark’s memory. It
then executes a streaming application by generating
Spark jobs to process the batches.

tem in a distributed manner. In the latter case, the inter-
mediate state is stored as resilient distributed datasets

(RDDs) [43], a fast storage abstraction that avoids repli-
cation by using lineage for recovery, as we shall explain.
This state dataset may then be processed along with the
next batch of input data to produce a new dataset of up-
dated intermediate states. Figure 1(b) shows our model.

We implemented our system, Spark Streaming, based
on this model. We used Spark [43] as our batch process-
ing engine for each batch of data. Figure 2 shows a high-
level sketch of the computation model in the context of
Spark Streaming. This is explained in more detail later.

In our API, users define programs by manipulating
objects called discretized streams (D-Streams). A D-
Stream is a sequence of immutable, partitioned datasets
(RDDs) that can be acted on by deterministic transfor-

mations. These transformations yield new D-Streams,
and may create intermediate state in the form of RDDs.

We illustrate the idea with a Spark Streaming pro-
gram that computes a running count of view events by
URL. Spark Streaming exposes D-Streams through a
functional API similar to LINQ [42, 2] in the Scala pro-
gramming language.4 The code for our program is:

pageViews = readStream("http://...", "1s")
ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)

This code creates a D-Stream called pageViews by
reading an event stream over HTTP, and groups these
into 1-second intervals. It then transforms the event
stream to get a new D-Stream of (URL, 1) pairs called
ones, and performs a running count of these with a
stateful runningReduce transformation. The arguments
to map and runningReduce are Scala function literals.

4Other interfaces, such as streaming SQL, would also be possible.
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To execute this program, Spark Streaming will receive
the data stream, divide it into one second batches and
store them in Spark’s memory as RDDs (see Figure 2).
Additionally, it will invoke RDD transformations like
map and reduce to process the RDDs. To execute these
transformations, Spark will first launch map tasks to pro-
cess the events and generate the url-one pairs. Then it
will launch reduce tasks that take both the results of the
maps and the results of the previous interval’s reduces,
stored in an RDD. These tasks will produce a new RDD
with the updated counts. Each D-Stream in the program
thus turns into a sequence of RDDs.

Finally, to recover from faults and stragglers, both D-
Streams and RDDs track their lineage, that is, the graph
of deterministic operations used to build them [43].
Spark tracks this information at the level of partitions

within each distributed dataset, as shown in Figure 3.
When a node fails, it recomputes the RDD partitions that
were on it by re-running the tasks that built them from
the original input data stored reliably in the cluster. The
system also periodically checkpoints state RDDs (e.g.,

by asynchronously replicating every tenth RDD)5 to pre-
vent infinite recomputation, but this does not need to
happen for all data, because recovery is often fast: the
lost partitions can be recomputed in parallel on separate
nodes. In a similar way, if a node straggles, we can spec-
ulatively execute copies of its tasks on other nodes [12],
because they will produce the same result.

We note that the parallelism usable for recovery in D-
Streams is higher than in upstream backup, even if one
ran multiple operators per node. D-Streams expose par-
allelism across both partitions of an operator and time:
1. Much like batch systems run multiple tasks per node,

each timestep of a transformation may create multi-
ple RDD partitions per node (e.g., 1000 RDD parti-
tions on a 100-core cluster). When the node fails, we
can recompute its partitions in parallel on others.

5Since RDDs are immutable, checkpointing does not block the job.



} Implicit vs explicit timestamps
◦ Implicit timestamps usually assigned when the record enters the system

◦ Explicit timestamps usually assigned at the source

} Because of network delays, windows on explicit timestamps are difficult 

} Options for doing windows on explicit timestamps
◦ Wait for a limited “slack time” to see if more records arrive with the timestamp in a window

◦ Issue “corrections” when older records arrive

� The downstream operators need to be able to understand these corrections



} words.window(“5s”): Create a D-Stream with sliding windows of 5s

} Incremental aggregation
◦ Variants of “reduceByWindow” operation
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Figure 4: reduceByWindow execution for the
associative-only and associative+invertible versions
of the operator. Both versions compute a per-interval
count only once, but the second avoids re-summing
each window. Boxes denote RDDs, while arrows show
the operations used to compute window [t, t +5).

tains the state incrementally (Figure 4(b)):
pairs.reduceByWindow("5s", (a,b) => a+b, (a,b) => a-b)

State tracking: Often, an application has to track states

for various objects in response to a stream of events indi-
cating state changes. For example, a program monitoring
online video delivery may wish to track the number of
active sessions, where a session starts when the system
receives a “join” event for a new client and ends when it
receives an “exit” event. It can then ask questions such
as “how many sessions have a bitrate above X .”
D-Streams provide a track operation that transforms
streams of (Key, Event) records into streams of (Key,
State) records based on three arguments:
• An initialize function for creating a State from the

first Event for a new key.
• An update function for returning a new State given

an old State and an Event for its key.
• A timeout for dropping old states.

For example, one could count the active sessions from a
stream of (ClientID, Event) pairs called as follows:

sessions = events.track(
(key, ev) => 1, // initialize function
(key, st, ev) => // update function
ev == Exit ? null : 1,

"30s") // timeout
counts = sessions.count() // a stream of ints

This code sets each client’s state to 1 if it is active and
drops it by returning null from update when it leaves.
Thus, sessions contains a (ClientID, 1) element for
each active client, and counts counts the sessions.

These operators are all implemented using the batch
operators in Spark, by applying them to RDDs from dif-
ferent times in parent streams. For example, Figure 5
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D-Stream of 
(Key, State) pairs 
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groupBy + map 

t = 1: 

t = 2: 

t = 3: 
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. . . 

Figure 5: RDDs created by the track operation.

shows the RDDs built by track, which works by group-
ing the old states and the new events for each interval.

Finally, the user calls output operators to send results
out of Spark Streaming into external systems (e.g., for
display on a dashboard). We offer two such operators:
save, which writes each RDD in a D-Stream to a storage
system (e.g., HDFS or HBase), and foreachRDD, which
runs a user code snippet (any Spark code) on each RDD.
For example, a user can print the top K counts with
counts.foreachRDD(rdd => print(rdd.top(K))).

3.4 Consistency Semantics

One benefit of D-Streams is that they provide clean con-
sistency semantics. Consistency of state across nodes
can be a problem in streaming systems that process
each record eagerly. For instance, consider a system that
counts page views by country, where each page view
event is sent to a different node responsible for aggre-
gating statistics for its country. If the node responsible
for England falls behind the node for France, e.g., due to
load, then a snapshot of their states would be inconsis-
tent: the counts for England would reflect an older prefix
of the stream than the counts for France, and would gen-
erally be lower, confusing inferences about the events.
Some systems, like Borealis [5], synchronize nodes to
avoid this problem, while others, like Storm, ignore it.

With D-Streams, the consistency semantics are clear,
because time is naturally discretized into intervals, and
each interval’s output RDDs reflect all of the input re-
ceived in that and previous intervals. This is true regard-
less of whether the output and state RDDs are distributed
across the cluster—users do not need to worry about
whether nodes have fallen behind each other. Specifi-
cally, the result in each output RDD, when computed,
is the same as if all the batch jobs on previous inter-
vals had run in lockstep and there were no stragglers
and failures, simply due to the determinism of computa-
tions and the separate naming of datasets from different
intervals. Thus, D-Streams provide consistent, “exactly-
once” processing across the cluster.

3.5 Unification with Batch & Interactive Processing

Because D-Streams follow the same processing model,
data structures (RDDs), and fault tolerance mechanisms
as batch systems, the two can seamlessly be combined.



} State tracking: Transform a stream of (key, event) into a stream of (key, 
state) records

} Doesn’t appear to be there in the latest D-Stream API
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Figure 4: reduceByWindow execution for the
associative-only and associative+invertible versions
of the operator. Both versions compute a per-interval
count only once, but the second avoids re-summing
each window. Boxes denote RDDs, while arrows show
the operations used to compute window [t, t +5).

tains the state incrementally (Figure 4(b)):
pairs.reduceByWindow("5s", (a,b) => a+b, (a,b) => a-b)

State tracking: Often, an application has to track states

for various objects in response to a stream of events indi-
cating state changes. For example, a program monitoring
online video delivery may wish to track the number of
active sessions, where a session starts when the system
receives a “join” event for a new client and ends when it
receives an “exit” event. It can then ask questions such
as “how many sessions have a bitrate above X .”
D-Streams provide a track operation that transforms
streams of (Key, Event) records into streams of (Key,
State) records based on three arguments:
• An initialize function for creating a State from the

first Event for a new key.
• An update function for returning a new State given

an old State and an Event for its key.
• A timeout for dropping old states.

For example, one could count the active sessions from a
stream of (ClientID, Event) pairs called as follows:

sessions = events.track(
(key, ev) => 1, // initialize function
(key, st, ev) => // update function
ev == Exit ? null : 1,

"30s") // timeout
counts = sessions.count() // a stream of ints

This code sets each client’s state to 1 if it is active and
drops it by returning null from update when it leaves.
Thus, sessions contains a (ClientID, 1) element for
each active client, and counts counts the sessions.

These operators are all implemented using the batch
operators in Spark, by applying them to RDDs from dif-
ferent times in parent streams. For example, Figure 5
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Figure 5: RDDs created by the track operation.

shows the RDDs built by track, which works by group-
ing the old states and the new events for each interval.

Finally, the user calls output operators to send results
out of Spark Streaming into external systems (e.g., for
display on a dashboard). We offer two such operators:
save, which writes each RDD in a D-Stream to a storage
system (e.g., HDFS or HBase), and foreachRDD, which
runs a user code snippet (any Spark code) on each RDD.
For example, a user can print the top K counts with
counts.foreachRDD(rdd => print(rdd.top(K))).

3.4 Consistency Semantics

One benefit of D-Streams is that they provide clean con-
sistency semantics. Consistency of state across nodes
can be a problem in streaming systems that process
each record eagerly. For instance, consider a system that
counts page views by country, where each page view
event is sent to a different node responsible for aggre-
gating statistics for its country. If the node responsible
for England falls behind the node for France, e.g., due to
load, then a snapshot of their states would be inconsis-
tent: the counts for England would reflect an older prefix
of the stream than the counts for France, and would gen-
erally be lower, confusing inferences about the events.
Some systems, like Borealis [5], synchronize nodes to
avoid this problem, while others, like Storm, ignore it.

With D-Streams, the consistency semantics are clear,
because time is naturally discretized into intervals, and
each interval’s output RDDs reflect all of the input re-
ceived in that and previous intervals. This is true regard-
less of whether the output and state RDDs are distributed
across the cluster—users do not need to worry about
whether nodes have fallen behind each other. Specifi-
cally, the result in each output RDD, when computed,
is the same as if all the batch jobs on previous inter-
vals had run in lockstep and there were no stragglers
and failures, simply due to the determinism of computa-
tions and the separate naming of datasets from different
intervals. Thus, D-Streams provide consistent, “exactly-
once” processing across the cluster.

3.5 Unification with Batch & Interactive Processing

Because D-Streams follow the same processing model,
data structures (RDDs), and fault tolerance mechanisms
as batch systems, the two can seamlessly be combined.
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Figure 4: reduceByWindow execution for the
associative-only and associative+invertible versions
of the operator. Both versions compute a per-interval
count only once, but the second avoids re-summing
each window. Boxes denote RDDs, while arrows show
the operations used to compute window [t, t +5).

tains the state incrementally (Figure 4(b)):
pairs.reduceByWindow("5s", (a,b) => a+b, (a,b) => a-b)

State tracking: Often, an application has to track states

for various objects in response to a stream of events indi-
cating state changes. For example, a program monitoring
online video delivery may wish to track the number of
active sessions, where a session starts when the system
receives a “join” event for a new client and ends when it
receives an “exit” event. It can then ask questions such
as “how many sessions have a bitrate above X .”
D-Streams provide a track operation that transforms
streams of (Key, Event) records into streams of (Key,
State) records based on three arguments:
• An initialize function for creating a State from the

first Event for a new key.
• An update function for returning a new State given

an old State and an Event for its key.
• A timeout for dropping old states.

For example, one could count the active sessions from a
stream of (ClientID, Event) pairs called as follows:

sessions = events.track(
(key, ev) => 1, // initialize function
(key, st, ev) => // update function
ev == Exit ? null : 1,

"30s") // timeout
counts = sessions.count() // a stream of ints

This code sets each client’s state to 1 if it is active and
drops it by returning null from update when it leaves.
Thus, sessions contains a (ClientID, 1) element for
each active client, and counts counts the sessions.

These operators are all implemented using the batch
operators in Spark, by applying them to RDDs from dif-
ferent times in parent streams. For example, Figure 5
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Figure 5: RDDs created by the track operation.

shows the RDDs built by track, which works by group-
ing the old states and the new events for each interval.

Finally, the user calls output operators to send results
out of Spark Streaming into external systems (e.g., for
display on a dashboard). We offer two such operators:
save, which writes each RDD in a D-Stream to a storage
system (e.g., HDFS or HBase), and foreachRDD, which
runs a user code snippet (any Spark code) on each RDD.
For example, a user can print the top K counts with
counts.foreachRDD(rdd => print(rdd.top(K))).

3.4 Consistency Semantics

One benefit of D-Streams is that they provide clean con-
sistency semantics. Consistency of state across nodes
can be a problem in streaming systems that process
each record eagerly. For instance, consider a system that
counts page views by country, where each page view
event is sent to a different node responsible for aggre-
gating statistics for its country. If the node responsible
for England falls behind the node for France, e.g., due to
load, then a snapshot of their states would be inconsis-
tent: the counts for England would reflect an older prefix
of the stream than the counts for France, and would gen-
erally be lower, confusing inferences about the events.
Some systems, like Borealis [5], synchronize nodes to
avoid this problem, while others, like Storm, ignore it.

With D-Streams, the consistency semantics are clear,
because time is naturally discretized into intervals, and
each interval’s output RDDs reflect all of the input re-
ceived in that and previous intervals. This is true regard-
less of whether the output and state RDDs are distributed
across the cluster—users do not need to worry about
whether nodes have fallen behind each other. Specifi-
cally, the result in each output RDD, when computed,
is the same as if all the batch jobs on previous inter-
vals had run in lockstep and there were no stragglers
and failures, simply due to the determinism of computa-
tions and the separate naming of datasets from different
intervals. Thus, D-Streams provide consistent, “exactly-
once” processing across the cluster.

3.5 Unification with Batch & Interactive Processing

Because D-Streams follow the same processing model,
data structures (RDDs), and fault tolerance mechanisms
as batch systems, the two can seamlessly be combined.



} Clean consistency semantics
◦ Modulo the timestamp issues mentioned earlier

} Unification of batch and interactive processing

Aspect D-Streams Continuous proc. systems

Latency 0.5–2 s 1–100 ms unless records
are batched for consistency

Consis-
tency

Records processed
atomically with in-
terval they arrive in

Some systems wait a short
time to sync operators be-
fore proceeding [5, 33]

Late
records

Slack time or app-
level correction

Slack time, out of order
processing [23, 36]

Fault
recovery

Fast parallel recov-
ery

Replication or serial recov-
ery on one node

Straggler
recovery

Possible via specu-
lative execution Typically not handled

Mixing
w/ batch

Simple unification
through RDD APIs

In some DBs [15]; not in
message queueing systems

Table 1: Comparing D-Streams with record-at-a-
time systems.

Spark Streaming provides several powerful features to
unify streaming and batch processing.

First, D-Streams can be combined with static RDDs
computed using a standard Spark job. For instance, one
can join a stream of message events against a precom-
puted spam filter, or compare them with historical data.

Second, users can run a D-Stream program on previ-
ous historical data using a “batch mode.” This makes it
easy compute a new streaming report on past data.

Third, users run ad-hoc queries on D-Streams interac-

tively by attaching a Scala console to their Spark Stream-
ing program and running arbitrary Spark operations on
the RDDs there. For example, the user could query the
most popular words in a time range by typing:

counts.slice("21:00", "21:05").topK(10)

Discussions with developers who have written both
offline (Hadoop-based) and online processing applica-
tions show that these features have significant practical
value. Simply having the data types and functions used
for these programs in the same codebase saves substan-
tial development time, as streaming and batch systems
currently have separate APIs. The ability to also query
state in the streaming system interactively is even more
attractive: it makes it simple to debug a running compu-
tation, or to ask queries that were not anticipated when
defining the aggregations in the streaming job, e.g., to
troubleshoot an issue with a website. Without this abil-
ity, users typically need to wait tens of minutes for the
data to make it into a batch cluster, even though all the
relevant state is in memory on stream processing nodes.

3.6 Summary

To end our overview of D-Streams, we compare them
with continuous operator systems in Table 1. The main
difference is that D-Streams divide work into small, de-
terministic tasks operating on batches. This raises their
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Figure 6: Components of Spark Streaming, showing
what we added and modified over Spark.

minimum latency, but lets them employ highly efficient
recovery techniques. In fact, some continuous operator
systems, like TimeStream and Borealis [33, 5], also de-
lay records, in order to deterministically execute opera-
tors that have multiple upstream parents (by waiting for
periodic “punctuations” in streams) and to provide con-
sistency. This raises their latency past the millisecond
scale and into the second scale of D-Streams.

4 System Architecture
We have implemented D-Streams in a system called
Spark Streaming, based on a modified version of the
Spark processing engine [43]. Spark Streaming consists
of three components, shown in Figure 6:
• A master that tracks the D-Stream lineage graph and

schedules tasks to compute new RDD partitions.
• Worker nodes that receive data, store the partitions

of input and computed RDDs, and execute tasks.
• A client library used to send data into the system.

As shown in the figure, Spark Streaming reuses many
components of Spark, but we also modified and added
multiple components to enable streaming. We discuss
those changes in Section 4.2.

From an architectural point of view, the main differ-
ence between Spark Streaming and traditional streaming
systems is that Spark Streaming divides its computations
into short, stateless, deterministic tasks, each of which
may run on any node in the cluster, or even on multi-
ple nodes. Unlike the rigid topologies in traditional sys-
tems, where moving part of the computation to another
machine is a major undertaking, this approach makes it
straightforward to balance load across the cluster, react
to failures, or launch speculative copies of slow tasks.
It matches the approach used in batch systems, such as
MapReduce, for the same reasons. However, tasks in
Spark Streaming are far shorter, usually just 50–200 ms,
due to running on in-memory RDDs.

All state in Spark Streaming is stored in fault-tolerant
data structures (RDDs), instead of being part of a long-
running operator process as in previous systems. RDD
partitions can reside on any node, and can even be com-



} Master: tracks the D-Stream lineage graphs and schedules

} All state is in the standard Spark RDDs

Aspect D-Streams Continuous proc. systems

Latency 0.5–2 s 1–100 ms unless records
are batched for consistency

Consis-
tency

Records processed
atomically with in-
terval they arrive in

Some systems wait a short
time to sync operators be-
fore proceeding [5, 33]

Late
records

Slack time or app-
level correction

Slack time, out of order
processing [23, 36]

Fault
recovery

Fast parallel recov-
ery

Replication or serial recov-
ery on one node

Straggler
recovery

Possible via specu-
lative execution Typically not handled

Mixing
w/ batch

Simple unification
through RDD APIs

In some DBs [15]; not in
message queueing systems

Table 1: Comparing D-Streams with record-at-a-
time systems.

Spark Streaming provides several powerful features to
unify streaming and batch processing.

First, D-Streams can be combined with static RDDs
computed using a standard Spark job. For instance, one
can join a stream of message events against a precom-
puted spam filter, or compare them with historical data.

Second, users can run a D-Stream program on previ-
ous historical data using a “batch mode.” This makes it
easy compute a new streaming report on past data.

Third, users run ad-hoc queries on D-Streams interac-

tively by attaching a Scala console to their Spark Stream-
ing program and running arbitrary Spark operations on
the RDDs there. For example, the user could query the
most popular words in a time range by typing:

counts.slice("21:00", "21:05").topK(10)

Discussions with developers who have written both
offline (Hadoop-based) and online processing applica-
tions show that these features have significant practical
value. Simply having the data types and functions used
for these programs in the same codebase saves substan-
tial development time, as streaming and batch systems
currently have separate APIs. The ability to also query
state in the streaming system interactively is even more
attractive: it makes it simple to debug a running compu-
tation, or to ask queries that were not anticipated when
defining the aggregations in the streaming job, e.g., to
troubleshoot an issue with a website. Without this abil-
ity, users typically need to wait tens of minutes for the
data to make it into a batch cluster, even though all the
relevant state is in memory on stream processing nodes.

3.6 Summary

To end our overview of D-Streams, we compare them
with continuous operator systems in Table 1. The main
difference is that D-Streams divide work into small, de-
terministic tasks operating on batches. This raises their
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what we added and modified over Spark.

minimum latency, but lets them employ highly efficient
recovery techniques. In fact, some continuous operator
systems, like TimeStream and Borealis [33, 5], also de-
lay records, in order to deterministically execute opera-
tors that have multiple upstream parents (by waiting for
periodic “punctuations” in streams) and to provide con-
sistency. This raises their latency past the millisecond
scale and into the second scale of D-Streams.

4 System Architecture
We have implemented D-Streams in a system called
Spark Streaming, based on a modified version of the
Spark processing engine [43]. Spark Streaming consists
of three components, shown in Figure 6:
• A master that tracks the D-Stream lineage graph and

schedules tasks to compute new RDD partitions.
• Worker nodes that receive data, store the partitions

of input and computed RDDs, and execute tasks.
• A client library used to send data into the system.

As shown in the figure, Spark Streaming reuses many
components of Spark, but we also modified and added
multiple components to enable streaming. We discuss
those changes in Section 4.2.

From an architectural point of view, the main differ-
ence between Spark Streaming and traditional streaming
systems is that Spark Streaming divides its computations
into short, stateless, deterministic tasks, each of which
may run on any node in the cluster, or even on multi-
ple nodes. Unlike the rigid topologies in traditional sys-
tems, where moving part of the computation to another
machine is a major undertaking, this approach makes it
straightforward to balance load across the cluster, react
to failures, or launch speculative copies of slow tasks.
It matches the approach used in batch systems, such as
MapReduce, for the same reasons. However, tasks in
Spark Streaming are far shorter, usually just 50–200 ms,
due to running on in-memory RDDs.

All state in Spark Streaming is stored in fault-tolerant
data structures (RDDs), instead of being part of a long-
running operator process as in previous systems. RDD
partitions can reside on any node, and can even be com-



} Parallel Recovery
◦ If a node fails, RDDs are recomputed using lineage graphs

} Straggler mitigation
◦ Can use speculative backup copies

◦ Determinism allows for a exploring different options

} Master recovery
◦ In standard Spark, ”master” (”driver”) is not fault-tolerant

◦ Use checkpointing at the master to recover 

◦ Some issues with output operations (i.e., how to guarantee that outputs 
are not repeated)



} Overview and Early Work

} Maintenance of Materialized Views

} Models and issues in data stream systems

} Discretized streams: fault-tolerant streaming computation at 
scale

} Apache Flink: Stream and Batch Processing in a Single Engine

} Incremental, Iterative Data Processing with Timely Dataflow

} MacroBase: Prioritizing Attention in Fast Data



} Large-scale data processing primarily batch-oriented

} Patterns like “Lambda Architecture” still have high latencies

} Need a unifying architecture/system that supports both batch 
processing and stream processing



} Two APIs supported by the same engine
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Figure 1: The Flink software stack.
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Figure 2: The Flink process model.

APIs, Flink bundles domain-specific libraries and APIs that generate DataSet and DataStream API programs,
currently, FlinkML for machine learning, Gelly for graph processing and Table for SQL-like operations.

As depicted in Figure 2, a Flink cluster comprises three types of processes: the client, the Job Manager, and
at least one Task Manager. The client takes the program code, transforms it to a dataflow graph, and submits
that to the JobManager. This transformation phase also examines the data types (schema) of the data exchanged
between operators and creates serializers and other type/schema specific code. DataSet programs additionally
go through a cost-based query optimization phase, similar to the physical optimizations performed by relational
query optimizers (for more details see Section 4.1).

The JobManager coordinates the distributed execution of the dataflow. It tracks the state and progress of each
operator and stream, schedules new operators, and coordinates checkpoints and recovery. In a high-availability
setup, the JobManager persists a minimal set of metadata at each checkpoint to a fault-tolerant storage, such that
a standby JobManager can reconstruct the checkpoint and recover the dataflow execution from there. The actual
data processing takes place in the TaskManagers. A TaskManager executes one or more operators that produce
streams, and reports on their status to the JobManager. The TaskManagers maintain the buffer pools to buffer or
materialize the streams, and the network connections to exchange the data streams between operators.

3 The Common Fabric: Streaming Dataflows
Although users can write Flink programs using a multitude of APIs, all Flink programs eventually compile down
to a common representation: the dataflow graph. The dataflow graph is executed by Flink’s runtime engine, the
common layer underneath both the batch processing (DataSet) and stream processing (DataStream) APIs.

3.1 Dataflow Graphs
The dataflow graph as depicted in Figure 3 is a directed acyclic graph (DAG) that consists of: (i) stateful
operators and (ii) data streams that represent data produced by an operator and are available for consumption
by operators. Since dataflow graphs are executed in a data-parallel fashion, operators are parallelized into
one or more parallel instances called subtasks and streams are split into one or more stream partitions (one
partition per producing subtask). The stateful operators, which may be stateless as a special case implement
all of the processing logic (e.g., filters, hash joins and stream window functions). Many of these operators
are implementations of textbook versions of well known algorithms. In Section 4, we provide details on the
implementation of windowing operators. Streams distribute data between producing and consuming operators
in various patterns, such as point-to-point, broadcast, re-partition, fan-out, and merge.
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Figure 2: The Flink process model.

APIs, Flink bundles domain-specific libraries and APIs that generate DataSet and DataStream API programs,
currently, FlinkML for machine learning, Gelly for graph processing and Table for SQL-like operations.

As depicted in Figure 2, a Flink cluster comprises three types of processes: the client, the Job Manager, and
at least one Task Manager. The client takes the program code, transforms it to a dataflow graph, and submits
that to the JobManager. This transformation phase also examines the data types (schema) of the data exchanged
between operators and creates serializers and other type/schema specific code. DataSet programs additionally
go through a cost-based query optimization phase, similar to the physical optimizations performed by relational
query optimizers (for more details see Section 4.1).

The JobManager coordinates the distributed execution of the dataflow. It tracks the state and progress of each
operator and stream, schedules new operators, and coordinates checkpoints and recovery. In a high-availability
setup, the JobManager persists a minimal set of metadata at each checkpoint to a fault-tolerant storage, such that
a standby JobManager can reconstruct the checkpoint and recover the dataflow execution from there. The actual
data processing takes place in the TaskManagers. A TaskManager executes one or more operators that produce
streams, and reports on their status to the JobManager. The TaskManagers maintain the buffer pools to buffer or
materialize the streams, and the network connections to exchange the data streams between operators.

3 The Common Fabric: Streaming Dataflows
Although users can write Flink programs using a multitude of APIs, all Flink programs eventually compile down
to a common representation: the dataflow graph. The dataflow graph is executed by Flink’s runtime engine, the
common layer underneath both the batch processing (DataSet) and stream processing (DataStream) APIs.

3.1 Dataflow Graphs
The dataflow graph as depicted in Figure 3 is a directed acyclic graph (DAG) that consists of: (i) stateful
operators and (ii) data streams that represent data produced by an operator and are available for consumption
by operators. Since dataflow graphs are executed in a data-parallel fashion, operators are parallelized into
one or more parallel instances called subtasks and streams are split into one or more stream partitions (one
partition per producing subtask). The stateful operators, which may be stateless as a special case implement
all of the processing logic (e.g., filters, hash joins and stream window functions). Many of these operators
are implementations of textbook versions of well known algorithms. In Section 4, we provide details on the
implementation of windowing operators. Streams distribute data between producing and consuming operators
in various patterns, such as point-to-point, broadcast, re-partition, fan-out, and merge.
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} Directed Acyclic Graphs: Stateful Operators + Streams between them
◦ Similar to a typical database query engine

◦ Each operator may be partitioned across machines à streams are partitioned 
across machines

◦ Data may need to be “shuffled” across machines (e.g., for a groupby)
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Figure 3: A simple dataflow graph.
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Figure 4: The effect of buffer-timeout
in latency and throughput.

3.2 Data Exchange through Intermediate Data Streams

Flink’s intermediate data streams are the core abstraction for data-exchange between operators. An intermediate
data stream represents a logical handle to the data that is produced by an operator and can be consumed by one
or more operators. Intermediate streams are logical in the sense that the data they point to may or may not be
materialized on disk. The particular behavior of a data stream is parameterized by the higher layers in Flink
(e.g., the program optimizer used by the DataSet API).

Pipelined and Blocking Data Exchange. Pipelined intermediate streams exchange data between concurrently
running producers and consumers resulting in pipelined execution. As a result, pipelined streams propagate
back pressure from consumers to producers, modulo some elasticity via intermediate buffer pools, in order
to compensate for short-term throughput fluctuations. Flink uses pipelined streams for continuous streaming
programs, as well as for many parts of batch dataflows, in order to avoid materialization when possible. Blocking
streams on the other hand are applicable to bounded data streams. A blocking stream buffers all of the producing
operator’s data before making it available for consumption, thereby separating the producing and consuming
operators into different execution stages. Blocking streams naturally require more memory, frequently spill to
secondary storage, and do not propagate backpressure. They are used to isolate successive operators against
each other (where desired) and in situations where plans with pipeline-breaking operators, such as sort-merge
joins may cause distributed deadlocks.

Balancing Latency and Throughput. Flink’s data-exchange mechanisms are implemented around the ex-
change of buffers. When a data record is ready on the producer side, it is serialized and split into one or more
buffers (a buffer can also fit multiple records) that can be forwarded to consumers. A buffer is sent to a consumer
either i) as soon as it is full or ii) when a timeout condition is reached. This enables Flink to achieve high
throughput by setting the size of buffers to a high value (e.g., a few kilobytes), as well as low latency by setting
the buffer timeout to a low value (e.g., a few milliseconds). Figure 4 shows the effect of buffer-timeouts on the
throughput and latency of delivering records in a simple streaming grep job on 30 machines (120 cores). Flink
can achieve an observable 99th-percentile latency of 20ms. The corresponding throughput is 1.5 million events
per second. As we increase the buffer timeout, we see an increase in latency with an increase in throughput,
until full throughput is reached (i.e., buffers fill up faster than the timeout expiration). At a buffer timeout of
50ms, the cluster reaches a throughput of more than 80 million events per second with a 99th-percentile latency
of 50ms.

Control Events. Apart from exchanging data, streams in Flink communicate different types of control events.
These are special events injected in the data stream by operators, and are delivered in-order along with all other
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} Pipelined streams
◦ Both consumer and producer running simultaneously 

◦ Helps avoid “materialization”

} …vs Blocking streams
◦ Need to write out intermediate results somewhere (potentially on disks)

} Use “buffers” to send data around -- configurable buffer size and timeouts
◦ Large buffers à high latencies, higher throughputs

◦ Large timeouts à high latencies, higher throughputs
SRC1 IS1

SRC2

OP1

SNK2IS2

Stateful	Operator Materialized	Intermediate
Data	Stream
(blocking	data	exchange)

SNK1IS3

Transient	Intermediate
Data	Stream	(pipelined	data	exchange)

Control	Event
Data	Record
Operator	State

Figure 3: A simple dataflow graph.

0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

0 5 10 50 100

Th
ro
ug
hp

ut
	

(A
ve
ra
ge
	in
	m
ill
io
ns
	of
	e
ve
nt
s/
se
c)

La
te
nc
y

99
th
-p
er
ce
nt
ile
	in
	m
ill
ise

co
nd

s

Buffer timeout (milliseconds)

Figure 4: The effect of buffer-timeout
in latency and throughput.

3.2 Data Exchange through Intermediate Data Streams

Flink’s intermediate data streams are the core abstraction for data-exchange between operators. An intermediate
data stream represents a logical handle to the data that is produced by an operator and can be consumed by one
or more operators. Intermediate streams are logical in the sense that the data they point to may or may not be
materialized on disk. The particular behavior of a data stream is parameterized by the higher layers in Flink
(e.g., the program optimizer used by the DataSet API).

Pipelined and Blocking Data Exchange. Pipelined intermediate streams exchange data between concurrently
running producers and consumers resulting in pipelined execution. As a result, pipelined streams propagate
back pressure from consumers to producers, modulo some elasticity via intermediate buffer pools, in order
to compensate for short-term throughput fluctuations. Flink uses pipelined streams for continuous streaming
programs, as well as for many parts of batch dataflows, in order to avoid materialization when possible. Blocking
streams on the other hand are applicable to bounded data streams. A blocking stream buffers all of the producing
operator’s data before making it available for consumption, thereby separating the producing and consuming
operators into different execution stages. Blocking streams naturally require more memory, frequently spill to
secondary storage, and do not propagate backpressure. They are used to isolate successive operators against
each other (where desired) and in situations where plans with pipeline-breaking operators, such as sort-merge
joins may cause distributed deadlocks.

Balancing Latency and Throughput. Flink’s data-exchange mechanisms are implemented around the ex-
change of buffers. When a data record is ready on the producer side, it is serialized and split into one or more
buffers (a buffer can also fit multiple records) that can be forwarded to consumers. A buffer is sent to a consumer
either i) as soon as it is full or ii) when a timeout condition is reached. This enables Flink to achieve high
throughput by setting the size of buffers to a high value (e.g., a few kilobytes), as well as low latency by setting
the buffer timeout to a low value (e.g., a few milliseconds). Figure 4 shows the effect of buffer-timeouts on the
throughput and latency of delivering records in a simple streaming grep job on 30 machines (120 cores). Flink
can achieve an observable 99th-percentile latency of 20ms. The corresponding throughput is 1.5 million events
per second. As we increase the buffer timeout, we see an increase in latency with an increase in throughput,
until full throughput is reached (i.e., buffers fill up faster than the timeout expiration). At a buffer timeout of
50ms, the cluster reaches a throughput of more than 80 million events per second with a 99th-percentile latency
of 50ms.

Control Events. Apart from exchanging data, streams in Flink communicate different types of control events.
These are special events injected in the data stream by operators, and are delivered in-order along with all other
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} Special events designed to control different aspects
} Examples:
◦ Checkpoint barriers: coordinate checkpoints

◦ Watermarks: information about “event-time” (also see “Timely 
Dataflow”)

◦ Iteration barriers: for bulk-synchronous processing

} Control events need to be delivered ”in order”
◦ Okay for unary operators that work on a single stream

◦ But not for operators that have more than one input (including different 
partitions of the same stream)

� Left to the operator logic to deal with this



} Two Issues
◦ Exactly-once-processing semantics

◦ Recovery from failures

} Checkpointing and Partial re-execution
◦ Take snapshots on a periodic basis of the operator state, to bound 

recovery time

◦ If a machine goes down, can replay from the last checkpoint 

◦ Assumes that the input sources are “replayable”

} Challenge
◦ Taking a snapshot without a complete halt of the operators



} Insert “barrier” control events into the stream

} Each operator aligns across all of its input, and then takes 
snapshot, and then forwards the barrier to its downstream

} Only need to checkpoint the operator state
◦ And not the streams/queues

Figure 5: Asynchronous Barrier Snapshotting.

data records and events within a stream partition. The receiving operators react to these events by performing
certain actions upon their arrival. Flink uses lots of special types of control events, including:
• checkpoint barriers that coordinate checkpoints by dividing the stream into pre-checkpoint and post-

checkpoint (discussed in Section 3.3),
• watermarks signaling the progress of event-time within a stream partition (discussed in Section 4.1),
• iteration barriers signaling that a stream partition has reached the end of a superstep, in Bulk/Stale-

Synchronous-Parallel iterative algorithms on top of cyclic dataflows (discussed in Section 5.3).

As mentioned above, control events assume that a stream partition preserves the order of records. To this end,
unary operators in Flink that consume a single stream partition, guarantee a FIFO order of records. However,
operators receiving more than one stream partition merge the streams in arrival order, in order to keep up with
the streams’ rates and avoid back pressure. As a result, streaming dataflows in Flink do not provide ordering
guarantees after any form of repartitioning or broadcasting and the responsibility of dealing with out-of-order
records is left to the operator implementation. We found that this arrangement gives the most efficient design, as
most operators do not require deterministic order (e.g., hash-joins, maps), and operators that need to compensate
for out-of-order arrivals, such as event-time windows can do that more efficiently as part of the operator logic.

3.3 Fault Tolerance
Flink offers reliable execution with strict exactly-once-processing consistency guarantees and deals with failures
via checkpointing and partial re-execution. The general assumption the system makes to effectively provide
these guarantees is that the data sources are persistent and replayable. Examples of such sources are files and
durable message queues (e.g., Apache Kafka). In practice, non-persistent sources can also be incorporated by
keeping a write-ahead log within the state of the source operators.

The checkpointing mechanism of Apache Flink builds on the notion of distributed consistent snapshots
to achieve exactly-once-processing guarantees. The possibly unbounded nature of a data stream makes re-
computation upon recovery impractical, as possibly months of computation will need to be replayed for a long-
running job. To bound recovery time, Flink takes a snapshot of the state of operators, including the current
position of the input streams at regular intervals.

The core challenge lies in taking a consistent snapshot of all parallel operators without halting the execution
of the topology. In essence, the snapshot of all operators should refer to the same logical time in the computation.
The mechanism used in Flink is called Asynchronous Barrier Snapshotting (ABS [7]). Barriers are control
records injected into the input streams that correspond to a logical time and logically separate the stream to the
part whose effects will be included in the current snapshot and the part that will be snapshotted later.

An operator receives barriers from upstream and first performs an alignment phase, making sure that the
barriers from all inputs have been received. Then, the operator writes its state (e.g., contents of a sliding window,
or custom data structures) to durable storage (e.g., the storage backend can be an external system such as HDFS).
Once the state has been backed up, the operator forwards the barrier downstream. Eventually, all operators will
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} Iterations needed for ML/Graph Analytics

} Supported through explicit mechanism and a feedback loop

Figure 6: The iteration model of Apache Flink.

already entered an operator. The watermarks aid the execution engine in processing events in the correct event
order and serialize operations, such as window computations via a unified measure of progress.

Watermarks originate at the sources of a topology, where we can determine the time inherent in future
elements. The watermarks propagate from the sources throughout the other operators of the data flow. Operators
decide how they react to watermarks. Simple operations, such as map or filter just forward the watermarks they
receive, while more complex operators that do calculations based on watermarks (e.g., event-time windows)
first compute results triggered by a watermark and then forward it. If an operation has more than one input, the
system only forwards the minimum of the incoming watermarks to the operator thereby ensuring correct results.

Flink programs that are based on processing-time rely on local machine clocks, and hence possess a less
reliable notion of time, which can lead to inconsistent replays upon recovery. However, they exhibit lower
latency. Programs that are based on event-time provide the most reliable semantics, but may exhibit latency
due to event-time-processing-time lag. Flink includes a third notion of time as a special case of event-time
called ingestion-time, which is the time that events enter Flink. That achieves a lower processing latency than
event-time and leads to more accurate results in comparison to processing-time.

4.2 Stateful Stream Processing
While most operators in Flink’s DataStream API look like functional, side-effect-free operators, they provide
support for efficient stateful computations. State is critical to many applications, such as machine-learning
model building, graph analysis, user session handling, and window aggregations. There is a plethora of different
types of states depending on the use case. For example, the state can be something as simple as a counter or
a sum or more complex, such as a classification tree or a large sparse matrix often used in machine-learning
applications. Stream windows are stateful operators that assign records to continuously updated buckets kept in
memory as part of the operator state.

In Flink state is made explicit and is incorporated in the API by providing: i) operator interfaces or an-
notations to statically register explicit local variables within the scope of an operator and ii) an operator-state
abstraction for declaring partitioned key-value states and their associated operations. Users can also configure
how the state is stored and checkpointed using the StateBackend abstractions provided by the system, thereby
allowing highly flexible custom state management in streaming applications. Flink’s checkpointing mechanism
(discussed in Section 3.3) guarantees that any registered state is durable with exactly-once update semantics.

4.3 Stream Windows
Incremental computations over unbounded streams are often evaluated over continuously evolving logical views,
called windows. Apache Flink incorporates windowing within a stateful operator that is configured via a flexible
declaration composed out of three core functions: a window assigner and optionally a trigger and an evictor.
All three functions can be selected among a pool of common predefined implementations (e.g., sliding time
windows) or can be explicitly defined by the user (i.e., user-defined functions).

More specifically, the assigner is responsible for assigning each record to logical windows. For example,
this decision can be based on the timestamp of a record when it comes to event-time windows. Note that in
the case of sliding windows, an element can belong to multiple logical windows. An optional trigger defines
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} Event-time vs processing-time (implicit vs explicit timestamps)
◦ Deal with ”skew” with special watermark events

◦ Data sources insert ”time” watermarks into the streams

◦ Windowing operators reason about these watermarks to decide if the 
windows are “complete”

◦ Using “processing-time” leads to lower latencies, but potentially inconsistent 
execution

} Also has a notion of “ingestion-time” (special case of event-time)
◦ In-between event-time and processing-time

◦ Leads to more consistent execution



} Stateful Processing
◦ Operator state made explicit in the APIs

◦ Checkpointing mechanism automatically handles such state

} Stream Windows
◦ Flexible interface to define new types of windows

◦ Supports standard sliding-time windows, etc.

when the operation associated with the window definition is performed. Finally, an optional evictor determines
which records to retain within each window. Flink’s window assignment process is uniquely capable of covering
all known window types such as periodic time- and count-windows, punctuation, landmark, session and delta
windows. Note that Flink’s windowing capabilities incorporate out-of-order processing seamlessly, similarly
to Google Cloud Dataflow [3] and, in principle, subsume these windowing models. For example, below is a
window definition with a range of 6 seconds that slides every 2 seconds (the assigner). The window results are
computed once the watermark passes the end of the window (the trigger).

stream
.window(SlidingTimeWindows.of(Time.of(6, SECONDS), Time.of(2, SECONDS))
.trigger(EventTimeTrigger.create())

A global window creates a single logical group. The following example defines a global window (i.e., the
assigner) that invokes the operation on every 1000 events (i.e., the trigger) while keeping the last 100 elements
(i.e., the evictor).

stream
.window(GlobalWindow.create())
.trigger(Count.of(1000))
.evict(Count.of(100))

Note that if the stream above is partitioned on a key before windowing, the window operation above is local
and thus does not require coordination between workers. This mechanism can be used to implement a wide
variety of windowing functionality [3].

4.4 Asynchronous Stream Iterations
Loops in streams are essential for several applications, such as incrementally building and training machine
learning models, reinforcement learning and graph approximations [9, 15]. In most such cases, feedback loops
need no coordination. Asynchronous iterations cover the communication needs for streaming applications and
differ from parallel optimisation problems that are based on structured iterations on finite data. As presented in
Section 3.4 and Figure 6, the execution model of Apache Flink already covers asynchronous iterations, when
no iteration control mechanism is enabled. In addition, to comply with fault-tolerance guarantees, feedback
streams are treated as operator state within the implicit-iteration head operator and are part of a global snapshot
[7]. The DataStream API allows for an explicit definition of feedback streams and can trivially subsume support
for structured loops over streams [23] as well as progress tracking [9].

5 Batch Analytics on Top of Dataflows
A bounded data set is a special case of an unbounded data stream. Thus, a streaming program that inserts all of
its input data in a window can form a batch program and batch processing should be fully covered by Flink’s
features that were presented above. However, i) the syntax (i.e., the API for batch computation) can be simplified
(e.g., there is no need for artificial global window definitions) and ii) programs that process bounded data sets are
amenable to additional optimizations, more efficient book-keeping for fault-tolerance, and staged scheduling.

Flink approaches batch processing as follows:
• Batch computations are executed by the same runtime as streaming computations. The runtime executable

may be parameterized with blocked data streams to break up large computations into isolated stages that
are scheduled successively.
• Periodic snapshotting is turned off when its overhead is high. Instead, fault recovery can be achieved by

replaying the lost stream partitions from the latest materialized intermediate stream (possibly the source).
• Blocking operators (e.g., sorts) are simply operator implementations that happen to block until they have

consumed their entire input. The runtime is not aware of whether an operator is blocking or not. These
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consumed their entire input. The runtime is not aware of whether an operator is blocking or not. These
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} Simplified API, but the same dataflow engine

} Periodic snapshotting turned off -- can replay from the beginning

} Query Optimization
◦ Incorporates some of the standard query optimization methods, primarily 

focusing on data movement

◦ Operators are black-boxes -- hard to optimize

} Batch Iterations
◦ Recall PageRank in GraphX

◦ Can be done through use of control events, and support for iterations



} Overview and Early Work

} Maintenance of Materialized Views

} Models and issues in data stream systems

} Discretized streams: fault-tolerant streaming computation at 
scale

} Apache Flink: Stream and Batch Processing in a Single Engine

} Incremental, Iterative Data Processing with Timely Dataflow

} MacroBase: Prioritizing Attention in Fast Data



} Common abstraction to support many different use cases, 
including low latency, high throughput, and iterative 
computations

} Challenges:
◦ Asynchronous, distributed, tuple-at-a-time computation à low latencies, but 

consistency issues

◦ Carefully coordinated execution à high throughputs, but high latencies

} Key ideas: 
◦ Timely dataflow, through use of “virtual timestamps”

◦ Fault tolerance through checkpointing

} Implemented in the NAIAD system



} Separate tasks would have been done using three different systems
◦ Clustering algorithm to generate a model: using MapReduce/Spark

◦ Handling recent updates: MillWheel/Storm/Flink, but approximate only

◦ Queries: Another application that looks up user queries against the model
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achieves our desiderata (Section 2). We then discuss 
some applications that we have built on Naiad, including 
graph computation (Section 3) and differential dataflow 
(Section 4). Finally we discuss lessons learned and open 
questions (Section 5). Some of the material in this article was 
previously published at SOSP 2013 in a paper that describes 
Naiad in more detail.19

2. SYSTEM DESIGN AND IMPLEMENTATION
Figure 1 illustrates one type of application that motivated 
timely dataflow, since it mixes high-throughput iterative 
processing on large volumes of data with fine-grained, low-
latency reads and updates of distributed state. Updates 
continually arrive at the left, reflecting activity in a social 
network. The dashed rectangle surrounds an iterative clus-
tering algorithm that incrementally maintains a view of 
conversation topics, aggregated by the dynamic community 
structure that the recent activity implies. At the top, incom-
ing queries request topic recommendations that are tailored 
to particular users and their community interests: these 
queries are joined with the freshest available clustering to 
provide high quality and up-to-date results. Before Naiad, 
no existing system could implement all of these features 
with acceptable performance. A standard solution might 
be to write the clustering algorithm in the language of a 
batch system like MapReduce6 or Spark27 and re-run it from 
scratch every few hours, storing the output in a distributed 
datastore like Bigtable.5 A separate program might target a 
low-latency streaming system like MillWheel3 and perform 
a simpler non-iterative categorization of recent updates, 
saving fresh but approximate recommendations to another 
table of the distributed store. A third program would accept 
user queries, perform lookups against the batch and fresh 
data tables, combine them and return results. While this 
kind of hybrid approach has been widely deployed, a single 
program on a single system would be simpler to write and 
maintain, and it would be much easier to reason about the 
consistency of its outputs.

Combining these disparate requirements in a high- 
performance system is challenging, and a crucial first step 
was to design suitable abstractions to structure the neces-
sary computation. This section starts by explaining the 

computational model we arrived at, the abstractions we 
chose, and the reasoning behind them.

2.1. Dataflow
Our first choice was to represent every program as a data-
flow graph. Dataflow is a common approach for distributed 
data processing6, 13, 27 because it explicitly encapsulates the 
boundaries between computations: the nodes of a data-
flow graph represent subcomputations, and the directed 
edges represent the paths along which data is communi-
cated between them. As a result, a system that represents 
its programs using dataflow can automatically determine 
subcomputations that can be executed in parallel. It then 
has a large degree of flexibility in scheduling them, and it 
can—at least in principle—place, move, and restart nodes 
independently without changing the semantics of the over-
all computation.

We based our design on stateful dataflow, in which every 
node can maintain mutable state, and edges carry a poten-
tially unbounded stream of messages. Although statefulness 
complicates fault tolerance, we believe that it is essential 
for low-latency computation. Incremental or iterative com-
putations may hold very large indexed data structures in 
memory and it is essential that an application be able to 
rapidly query and update these data structures in response 
to dataflow messages, without the overhead of saving and 
restoring state between invocations. We chose to require 
state to be private to a node to simplify distributed place-
ment and parallel execution. One consequence of adopting 
stateful dataflow is that loops can be implemented effi-
ciently using cycles in the dataflow graph (with messages 
returning around a loop to the node that stores the state). 
In contrast, stateless systems20, 27 implement iteration using 
acyclic dataflow graphs by dynamically unrolling loops and 
other control flow as they execute.

Having settled on stateful dataflow we attempted to 
minimize the number of execution mechanisms, in order 
to make timely dataflow systems easier to reason about 
and optimize. For example, we adopted the convention that 
all computation in nodes occurs in single-threaded event 
handlers, which the runtime invokes explicitly. With this 
convention all scheduling decisions are centralized in a 
common runtime, making CPU usage more predictable and 
allowing the system builder to aggressively optimize perfor-
mance and control latency. It also simplifies the implemen-
tation of individual nodes: because the system guarantees 
that all event handlers will run in a single thread, the appli-
cation programmer can ignore the complexities of concur-
rent programming. By encouraging single-threaded node 
implementations we push programmers to obtain paral-
lelism by adding nodes to the dataflow graph, and force the 
system builder to ensure low overhead when scheduling a 
node’s computation. The resulting system should be able to 
interleave many short-lived invocations of different nodes, 
and be well-suited to performing fine-grained updates with 
low latency.

Data-parallelism is a standard approach for constructing 
parallel dataflow graphs from operators whose inputs and 
outputs are collections of records. A data-parallel operator 

Figure 1. An application that supports real-time queries on 
continually updated data. The dashed rectangle represents iterative 
processing that incrementally updates as new data arrive.

Low-latency query
responses are delivered

Updates to
data arrive

Complex processing 
incrementally re-

executes to reflect 
changed data

User queries
are received

Queries are 
joined with 

processed data



} Starting point: Standard Stateful Dataflow Model
◦ Represent computation as a DAG

◦ Each node can maintain arbitrary state, private to the node

◦ Support low latencies, and iterations (through cycles)

} Single-threaded node implementation
◦ Simplifies implementation and optimization

} Data Parallelism
◦ Split records across parallel subtasks based on a key



} Main difference: use of logical timestamps

Applications 

Timely Dataflow

Distributed Runtime

Graph assembly
Libraries
DSLs

(Sec 4)

(Sec 2)

(Sec 3)

(Sec 6)

Figure 2: The Naiad software stack exposes a low-
level graph assembly interface, upon which high-
level libraries, DSLs, and applications can be built.

Together, the first two features are needed to execute it-
erative and incremental computations with low latency.
The third feature makes it possible to produce consistent
results, at both outputs and intermediate stages of com-
putations, in the presence of streaming or iteration.

Timely dataflow exposes a principled set of low-level
primitives to the programmer, who can use those prim-
itives to build higher-level programming abstractions.
Timely dataflow graphs are directed and may include cy-
cles. Stateful vertices asynchronously receive messages
and notifications of global progress. Edges carry records
with logical timestamps that enable global progress to be
measured. Unlike the timestamps used in previous sys-
tems [3, 5, 9], these logical timestamps reflect structure
in the graph topology such as loops, and make the model
suitable for tracking progress in iterative algorithms. We
show that these primitives are sufficient to express exist-
ing frameworks as composable and efficient libraries.

Naiad is our prototype implementation of timely
dataflow for data parallel computation in a distributed
cluster. Like others [16, 42, 43] we target problems
for which the working set fits in the aggregate RAM of
the cluster, in line with our goal of a low-latency sys-
tem. Practical challenges arise when supporting appli-
cations that demand a mix of high-throughput and low-
latency computation. These challenges include coor-
dinating distributed processes with low overhead, and
engineering the system to avoid stalls—from diverse
sources such as lock contention, dropped packets, and
garbage collection—that disproportionately affect com-
putations that coordinate frequently.

We evaluate Naiad against several batch and incre-
mental workloads, and use microbenchmarks to investi-
gate the performance of its underlying mechanisms. Our
prototype implementation outperforms general-purpose
batch processors, and often outperforms state-of-the-
art asynchronous systems which provide few semantic
guarantees. To demonstrate the expressiveness of the
model and the power of our high-level libraries, we build
a complex application based on the dataflow in Figure 1
using tens of lines of code (see §6.4). The resulting ap-
plication responds to queries with 4–100 ms latency.

B C

F

A D

Loop context

Streaming context

In OutEI

Figure 3: This simple timely dataflow graph (§2.1)
shows how a loop context nests within the top-level
streaming context.

2 Timely dataflow

Timely dataflow is a computational model based on a di-
rected graph in which stateful vertices send and receive
logically timestamped messages along directed edges.
The dataflow graph may contain nested cycles, and the
timestamps reflect this structure in order to distinguish
data that arise in different input epochs and loop itera-
tions. The resulting model supports concurrent execu-
tion of different epochs and iterations, and explicit ver-
tex notification after all messages with a specified time-
stamp have been delivered. In this section we define the
structure of timely dataflow graphs, introduce the low-
level vertex programming model, and explain how to ef-
ficiently reason about the delivery of vertex notifications.

2.1 Graph structure

A timely dataflow graph has input vertices and output
vertices, where each input receives a sequence of mes-
sages from an external producer, and each output emits a
sequence of messages back to an external consumer. The
external producer labels each message with an integer
epoch, and notifies the input vertex when it will not re-
ceive any more messages with a given epoch label. The
producer may also “close” an input vertex to indicate
that it will receive no more messages from any epoch.
Each output message is labeled with its epoch, and the
output vertex signals the external consumer when it will
not output any more messages from a given epoch, and
when all output is complete.

Timely dataflow graphs are directed graphs with the
constraint that the vertices are organized into possi-
bly nested loop contexts, with three associated system-
provided vertices. Edges entering a loop context must
pass through an ingress vertex and edges leaving a loop
context must pass through an egress vertex. Addition-
ally, every cycle in the graph must be contained entirely
within some loop context, and include at least one feed-

back vertex that is not nested within any inner loop con-
texts. Figure 3 shows a single loop context with ingress
(‘I’), egress (‘E’), and feedback (‘F’) vertices labeled.

440

From SOSP 13 Paper

External producer: labels each message with an “epoch”
inserts control messages saying “no more tuples from an epoch”



} Nested Loops, each with a “feedback” vertex (F)

} Every message has a logical timestamp:

} For each loop, ingress, egress, and feedback vertices modify 
timestamps

This restricted looping structure allows us to design
logical timestamps based on the dataflow graph struc-
ture. Every message bears a logical timestamp of type

Timestamp : (

epoch
︷ ︸︸ ︷

e ∈ N,

loop counters
︷ ︸︸ ︷

〈c1, . . . ,ck〉 ∈ N
k)

where there is one loop counter for each of the k loop
contexts that contain the associated edge. These loop
counters explicitly distinguish different iterations, and
allow a system to track forward progress as messages
circulate around the dataflow graph.

The ingress, egress, and feedback vertices act only on
the timestamps of messages passing through them. The
vertices adjust incoming timestamps as follows:

Vertex Input timestamp Output timestamp
Ingress (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck,0〉)

Egress (e,〈c1, . . . ,ck,ck+1〉) (e,〈c1, . . . ,ck〉)

Feedback (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck +1〉)

For two timestamps t1 = (x1,!c1) and t2 = (x2,!c2)
within the same loop context, we order t1 ≤ t2 if and
only if both x1 ≤ x2 and!c1 ≤!c2, where the latter uses the
lexicographic ordering on integer sequences. This order
corresponds to the constraint on future times at which
one message could result in another, a concept that we
formalize in the following subsections.

2.2 Vertex computation

Timely dataflow vertices send and receive timestamped
messages, and may request and receive notification that
they have received all messages bearing a specific time-
stamp. Each vertex v implements two callbacks:

v.ONRECV(e : Edge, m : Message, t : Timestamp)
v.ONNOTIFY(t : Timestamp).

A vertex may invoke two system-provided methods in
the context of these callbacks:

this.SENDBY(e : Edge, m : Message, t : Timestamp)
this.NOTIFYAT(t : Timestamp).

Each call to u.SENDBY(e,m, t) results in a correspond-
ing invocation of v.ONRECV(e,m, t), where e is an
edge from u to v, and each call to v.NOTIFYAT(t) re-
sults in a corresponding invocation of v.ONNOTIFY(t).
The invocations of ONRECV and ONNOTIFY are
queued, and for the most part the model is flex-
ible about the order in which they may be deliv-
ered. However, a timely dataflow system must guar-
antee that v.ONNOTIFY(t) is invoked only after no
further invocations of v.ONRECV(e,m, t ′), for t ′ ≤ t,
will occur. v.ONNOTIFY(t) is an indication that all
v.ONRECV(e,m, t) invocations have been delivered to

class DistinctCount<S,T> : Vertex<T>

{

Dictionary<T, Dictionary<S,int>> counts;

void OnRecv(Edge e, S msg, T time)

{

if (!counts.ContainsKey(time)) {

counts[time] = new Dictionary<S,int>();

this.NotifyAt(time);

}

if (!counts[time].ContainsKey(msg)) {

counts[time][msg] = 0;

this.SendBy(output1, msg, time);

}

counts[time][msg]++;

}

void OnNotify(T time)

{

foreach (var pair in counts[time])

this.SendBy(output2, pair, time);

counts.Remove(time);

}

}

Figure 4: An example vertex with one input and
two outputs, producing the distinct input records on
output1, and a count for each one on output2.
The distinct records may be sent as soon as they are
seen, but the counts must wait until all records bear-
ing that time have been received.

the vertex, and is an opportunity for the vertex to finish
any work associated with time t.

The ONRECV and ONNOTIFY methods may contain
arbitrary code and modify arbitrary per-vertex state, but
do have an important constraint on their execution: when
invoked with a timestamp t, the methods may only call
SENDBY or NOTIFYAT with times t ′ ≥ t. This rule guar-
antees that messages are not sent “backwards in time”
and is crucial to support notification as described above.

As an example, Figure 4 contains code for a vertex
with one input and two outputs. The first output is the
set, at each time, of distinct elements observed in the in-
put, and the second output counts how often each distinct
input is observed at that time. The ONRECV method
may send elements on the first output as soon as they
are first observed, allowing for low latency, but to en-
sure correctness the vertex must use ONNOTIFY to delay
sending the counts until all inputs have been observed.

2.3 Achieving timely dataflow

In order to deliver notifications correctly, a timely
dataflow system must reason about the impossibility of
future messages bearing a given timestamp. In this sub-
section we lay a foundation for reasoning about the safe
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This restricted looping structure allows us to design
logical timestamps based on the dataflow graph struc-
ture. Every message bears a logical timestamp of type

Timestamp : (

epoch
︷ ︸︸ ︷

e ∈ N,

loop counters
︷ ︸︸ ︷

〈c1, . . . ,ck〉 ∈ N
k)

where there is one loop counter for each of the k loop
contexts that contain the associated edge. These loop
counters explicitly distinguish different iterations, and
allow a system to track forward progress as messages
circulate around the dataflow graph.

The ingress, egress, and feedback vertices act only on
the timestamps of messages passing through them. The
vertices adjust incoming timestamps as follows:

Vertex Input timestamp Output timestamp
Ingress (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck,0〉)

Egress (e,〈c1, . . . ,ck,ck+1〉) (e,〈c1, . . . ,ck〉)

Feedback (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck +1〉)

For two timestamps t1 = (x1,!c1) and t2 = (x2,!c2)
within the same loop context, we order t1 ≤ t2 if and
only if both x1 ≤ x2 and!c1 ≤!c2, where the latter uses the
lexicographic ordering on integer sequences. This order
corresponds to the constraint on future times at which
one message could result in another, a concept that we
formalize in the following subsections.

2.2 Vertex computation

Timely dataflow vertices send and receive timestamped
messages, and may request and receive notification that
they have received all messages bearing a specific time-
stamp. Each vertex v implements two callbacks:

v.ONRECV(e : Edge, m : Message, t : Timestamp)
v.ONNOTIFY(t : Timestamp).

A vertex may invoke two system-provided methods in
the context of these callbacks:

this.SENDBY(e : Edge, m : Message, t : Timestamp)
this.NOTIFYAT(t : Timestamp).

Each call to u.SENDBY(e,m, t) results in a correspond-
ing invocation of v.ONRECV(e,m, t), where e is an
edge from u to v, and each call to v.NOTIFYAT(t) re-
sults in a corresponding invocation of v.ONNOTIFY(t).
The invocations of ONRECV and ONNOTIFY are
queued, and for the most part the model is flex-
ible about the order in which they may be deliv-
ered. However, a timely dataflow system must guar-
antee that v.ONNOTIFY(t) is invoked only after no
further invocations of v.ONRECV(e,m, t ′), for t ′ ≤ t,
will occur. v.ONNOTIFY(t) is an indication that all
v.ONRECV(e,m, t) invocations have been delivered to

class DistinctCount<S,T> : Vertex<T>

{

Dictionary<T, Dictionary<S,int>> counts;

void OnRecv(Edge e, S msg, T time)

{

if (!counts.ContainsKey(time)) {

counts[time] = new Dictionary<S,int>();

this.NotifyAt(time);

}

if (!counts[time].ContainsKey(msg)) {

counts[time][msg] = 0;

this.SendBy(output1, msg, time);

}

counts[time][msg]++;

}

void OnNotify(T time)

{

foreach (var pair in counts[time])

this.SendBy(output2, pair, time);

counts.Remove(time);

}

}

Figure 4: An example vertex with one input and
two outputs, producing the distinct input records on
output1, and a count for each one on output2.
The distinct records may be sent as soon as they are
seen, but the counts must wait until all records bear-
ing that time have been received.

the vertex, and is an opportunity for the vertex to finish
any work associated with time t.

The ONRECV and ONNOTIFY methods may contain
arbitrary code and modify arbitrary per-vertex state, but
do have an important constraint on their execution: when
invoked with a timestamp t, the methods may only call
SENDBY or NOTIFYAT with times t ′ ≥ t. This rule guar-
antees that messages are not sent “backwards in time”
and is crucial to support notification as described above.

As an example, Figure 4 contains code for a vertex
with one input and two outputs. The first output is the
set, at each time, of distinct elements observed in the in-
put, and the second output counts how often each distinct
input is observed at that time. The ONRECV method
may send elements on the first output as soon as they
are first observed, allowing for low latency, but to en-
sure correctness the vertex must use ONNOTIFY to delay
sending the counts until all inputs have been observed.

2.3 Achieving timely dataflow

In order to deliver notifications correctly, a timely
dataflow system must reason about the impossibility of
future messages bearing a given timestamp. In this sub-
section we lay a foundation for reasoning about the safe
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} Each vertex implements two callbacks

} And may use two methods:

} Requires a guarantee that:
◦ After invoking v.OnNotify(t), no calls will be made to: v.OnRecv(e, m, t’<=t)

This restricted looping structure allows us to design
logical timestamps based on the dataflow graph struc-
ture. Every message bears a logical timestamp of type

Timestamp : (

epoch
︷ ︸︸ ︷

e ∈ N,

loop counters
︷ ︸︸ ︷

〈c1, . . . ,ck〉 ∈ N
k)

where there is one loop counter for each of the k loop
contexts that contain the associated edge. These loop
counters explicitly distinguish different iterations, and
allow a system to track forward progress as messages
circulate around the dataflow graph.

The ingress, egress, and feedback vertices act only on
the timestamps of messages passing through them. The
vertices adjust incoming timestamps as follows:

Vertex Input timestamp Output timestamp
Ingress (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck,0〉)

Egress (e,〈c1, . . . ,ck,ck+1〉) (e,〈c1, . . . ,ck〉)

Feedback (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck +1〉)

For two timestamps t1 = (x1,!c1) and t2 = (x2,!c2)
within the same loop context, we order t1 ≤ t2 if and
only if both x1 ≤ x2 and!c1 ≤!c2, where the latter uses the
lexicographic ordering on integer sequences. This order
corresponds to the constraint on future times at which
one message could result in another, a concept that we
formalize in the following subsections.

2.2 Vertex computation

Timely dataflow vertices send and receive timestamped
messages, and may request and receive notification that
they have received all messages bearing a specific time-
stamp. Each vertex v implements two callbacks:

v.ONRECV(e : Edge, m : Message, t : Timestamp)
v.ONNOTIFY(t : Timestamp).

A vertex may invoke two system-provided methods in
the context of these callbacks:

this.SENDBY(e : Edge, m : Message, t : Timestamp)
this.NOTIFYAT(t : Timestamp).

Each call to u.SENDBY(e,m, t) results in a correspond-
ing invocation of v.ONRECV(e,m, t), where e is an
edge from u to v, and each call to v.NOTIFYAT(t) re-
sults in a corresponding invocation of v.ONNOTIFY(t).
The invocations of ONRECV and ONNOTIFY are
queued, and for the most part the model is flex-
ible about the order in which they may be deliv-
ered. However, a timely dataflow system must guar-
antee that v.ONNOTIFY(t) is invoked only after no
further invocations of v.ONRECV(e,m, t ′), for t ′ ≤ t,
will occur. v.ONNOTIFY(t) is an indication that all
v.ONRECV(e,m, t) invocations have been delivered to

class DistinctCount<S,T> : Vertex<T>

{

Dictionary<T, Dictionary<S,int>> counts;

void OnRecv(Edge e, S msg, T time)

{

if (!counts.ContainsKey(time)) {

counts[time] = new Dictionary<S,int>();

this.NotifyAt(time);

}

if (!counts[time].ContainsKey(msg)) {

counts[time][msg] = 0;

this.SendBy(output1, msg, time);

}

counts[time][msg]++;

}

void OnNotify(T time)

{

foreach (var pair in counts[time])

this.SendBy(output2, pair, time);

counts.Remove(time);

}

}

Figure 4: An example vertex with one input and
two outputs, producing the distinct input records on
output1, and a count for each one on output2.
The distinct records may be sent as soon as they are
seen, but the counts must wait until all records bear-
ing that time have been received.

the vertex, and is an opportunity for the vertex to finish
any work associated with time t.

The ONRECV and ONNOTIFY methods may contain
arbitrary code and modify arbitrary per-vertex state, but
do have an important constraint on their execution: when
invoked with a timestamp t, the methods may only call
SENDBY or NOTIFYAT with times t ′ ≥ t. This rule guar-
antees that messages are not sent “backwards in time”
and is crucial to support notification as described above.

As an example, Figure 4 contains code for a vertex
with one input and two outputs. The first output is the
set, at each time, of distinct elements observed in the in-
put, and the second output counts how often each distinct
input is observed at that time. The ONRECV method
may send elements on the first output as soon as they
are first observed, allowing for low latency, but to en-
sure correctness the vertex must use ONNOTIFY to delay
sending the counts until all inputs have been observed.

2.3 Achieving timely dataflow

In order to deliver notifications correctly, a timely
dataflow system must reason about the impossibility of
future messages bearing a given timestamp. In this sub-
section we lay a foundation for reasoning about the safe
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This restricted looping structure allows us to design
logical timestamps based on the dataflow graph struc-
ture. Every message bears a logical timestamp of type

Timestamp : (
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︷ ︸︸ ︷

e ∈ N,

loop counters
︷ ︸︸ ︷

〈c1, . . . ,ck〉 ∈ N
k)

where there is one loop counter for each of the k loop
contexts that contain the associated edge. These loop
counters explicitly distinguish different iterations, and
allow a system to track forward progress as messages
circulate around the dataflow graph.

The ingress, egress, and feedback vertices act only on
the timestamps of messages passing through them. The
vertices adjust incoming timestamps as follows:

Vertex Input timestamp Output timestamp
Ingress (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck,0〉)
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For two timestamps t1 = (x1,!c1) and t2 = (x2,!c2)
within the same loop context, we order t1 ≤ t2 if and
only if both x1 ≤ x2 and!c1 ≤!c2, where the latter uses the
lexicographic ordering on integer sequences. This order
corresponds to the constraint on future times at which
one message could result in another, a concept that we
formalize in the following subsections.

2.2 Vertex computation

Timely dataflow vertices send and receive timestamped
messages, and may request and receive notification that
they have received all messages bearing a specific time-
stamp. Each vertex v implements two callbacks:

v.ONRECV(e : Edge, m : Message, t : Timestamp)
v.ONNOTIFY(t : Timestamp).

A vertex may invoke two system-provided methods in
the context of these callbacks:

this.SENDBY(e : Edge, m : Message, t : Timestamp)
this.NOTIFYAT(t : Timestamp).

Each call to u.SENDBY(e,m, t) results in a correspond-
ing invocation of v.ONRECV(e,m, t), where e is an
edge from u to v, and each call to v.NOTIFYAT(t) re-
sults in a corresponding invocation of v.ONNOTIFY(t).
The invocations of ONRECV and ONNOTIFY are
queued, and for the most part the model is flex-
ible about the order in which they may be deliv-
ered. However, a timely dataflow system must guar-
antee that v.ONNOTIFY(t) is invoked only after no
further invocations of v.ONRECV(e,m, t ′), for t ′ ≤ t,
will occur. v.ONNOTIFY(t) is an indication that all
v.ONRECV(e,m, t) invocations have been delivered to

class DistinctCount<S,T> : Vertex<T>

{

Dictionary<T, Dictionary<S,int>> counts;

void OnRecv(Edge e, S msg, T time)

{

if (!counts.ContainsKey(time)) {

counts[time] = new Dictionary<S,int>();

this.NotifyAt(time);

}

if (!counts[time].ContainsKey(msg)) {

counts[time][msg] = 0;

this.SendBy(output1, msg, time);

}

counts[time][msg]++;

}

void OnNotify(T time)

{

foreach (var pair in counts[time])

this.SendBy(output2, pair, time);

counts.Remove(time);

}

}

Figure 4: An example vertex with one input and
two outputs, producing the distinct input records on
output1, and a count for each one on output2.
The distinct records may be sent as soon as they are
seen, but the counts must wait until all records bear-
ing that time have been received.

the vertex, and is an opportunity for the vertex to finish
any work associated with time t.

The ONRECV and ONNOTIFY methods may contain
arbitrary code and modify arbitrary per-vertex state, but
do have an important constraint on their execution: when
invoked with a timestamp t, the methods may only call
SENDBY or NOTIFYAT with times t ′ ≥ t. This rule guar-
antees that messages are not sent “backwards in time”
and is crucial to support notification as described above.

As an example, Figure 4 contains code for a vertex
with one input and two outputs. The first output is the
set, at each time, of distinct elements observed in the in-
put, and the second output counts how often each distinct
input is observed at that time. The ONRECV method
may send elements on the first output as soon as they
are first observed, allowing for low latency, but to en-
sure correctness the vertex must use ONNOTIFY to delay
sending the counts until all inputs have been observed.

2.3 Achieving timely dataflow

In order to deliver notifications correctly, a timely
dataflow system must reason about the impossibility of
future messages bearing a given timestamp. In this sub-
section we lay a foundation for reasoning about the safe
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Timestamp : (

epoch
︷ ︸︸ ︷

e ∈ N,

loop counters
︷ ︸︸ ︷

〈c1, . . . ,ck〉 ∈ N
k)
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For two timestamps t1 = (x1,!c1) and t2 = (x2,!c2)
within the same loop context, we order t1 ≤ t2 if and
only if both x1 ≤ x2 and!c1 ≤!c2, where the latter uses the
lexicographic ordering on integer sequences. This order
corresponds to the constraint on future times at which
one message could result in another, a concept that we
formalize in the following subsections.

2.2 Vertex computation

Timely dataflow vertices send and receive timestamped
messages, and may request and receive notification that
they have received all messages bearing a specific time-
stamp. Each vertex v implements two callbacks:

v.ONRECV(e : Edge, m : Message, t : Timestamp)
v.ONNOTIFY(t : Timestamp).

A vertex may invoke two system-provided methods in
the context of these callbacks:

this.SENDBY(e : Edge, m : Message, t : Timestamp)
this.NOTIFYAT(t : Timestamp).

Each call to u.SENDBY(e,m, t) results in a correspond-
ing invocation of v.ONRECV(e,m, t), where e is an
edge from u to v, and each call to v.NOTIFYAT(t) re-
sults in a corresponding invocation of v.ONNOTIFY(t).
The invocations of ONRECV and ONNOTIFY are
queued, and for the most part the model is flex-
ible about the order in which they may be deliv-
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further invocations of v.ONRECV(e,m, t ′), for t ′ ≤ t,
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ing that time have been received.
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arbitrary code and modify arbitrary per-vertex state, but
do have an important constraint on their execution: when
invoked with a timestamp t, the methods may only call
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antees that messages are not sent “backwards in time”
and is crucial to support notification as described above.

As an example, Figure 4 contains code for a vertex
with one input and two outputs. The first output is the
set, at each time, of distinct elements observed in the in-
put, and the second output counts how often each distinct
input is observed at that time. The ONRECV method
may send elements on the first output as soon as they
are first observed, allowing for low latency, but to en-
sure correctness the vertex must use ONNOTIFY to delay
sending the counts until all inputs have been observed.
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} Question: How to “correctly” invoke the “onNotify()” callbacks?
◦ i.e., how do we know that no more events with time “t” will be generated?

◦ In a distributed setting, by any node?

} Dataflow graph puts constraints on the timestamps that could be 
generated in future

} Combine that with a count of how many unprocessed events are still 
there

} Implemented as an “out-of-band” mechanism
◦ Unlike Flink, which uses special control messages sent in the same fashion as 

normal messages

◦ Lower overheads in using “out-of-band”, especially #messages that are needed



} Example Naiad Program

gates messages at the application level, it can maintain
high throughput despite these options.

Our evaluation cluster has a switched Gigabit Ethernet
network with a simple topology: one core switch, and
two top-of-rack switches with 32 ports each. Despite
over-provisioning the inter-switch links with a 40 Gbps
uplink and enabling 802.3x flow control, we observe
packet loss at the NIC receive queues during incast traf-
fic patterns [31]. It is likely that Datacenter TCP [6]
would be beneficial for our workload, but the rack
switches in our cluster lack necessary support for ex-
plicit congestion notification.

Since Naiad controls all aspects of data exchange, it
is likely that a specialized transport protocol would pro-
vide better performance than TCP over Ethernet. We
are investigating the use of RDMA over InfiniBand,
which has the potential to reduce micro-stragglers using
mechanisms such as microsecond message latency, reli-
able multicast, and user-space access to message buffers.
These mechanisms will avoid TCP-related timers in the
operating system, but achieving optimal performance
will require attention to quality of service [35].

Data structure contention To scale out within a sin-
gle machine, most data structures in Naiad—in par-
ticular the vertex state—are accessed from a single
worker thread. Nevertheless, coordination is required
to exchange messages between workers, and Naiad uses
.NET concurrent queues and lightweight spinlocks for
this purpose. These primitives back off by sleeping for
1 ms when contention is detected. Since the default
timer granularity on Windows is 15.6 ms, with typical
scheduling quanta of 100 ms or more, backing off can
result in very high latency for concurrent access to a
contended shared data structure. Decreasing the clock
granularity to 1 ms reduces the impact of these stalls.

Garbage collection The .NET runtime, on which we
implemented Naiad, uses a mark-and-sweep garbage
collector (GC) to reclaim memory. While the .NET GC
is concurrent, it can suspend thread execution during
some allocations and lead to micro-stragglers.

To lower the cost of garbage collection, we engineered
the system to trigger the GC less frequently, and shorten
pauses due to collection. The Naiad runtime and the li-
braries that we have built on top of it avoid object al-
location wherever possible, using buffer pools to recy-
cle message buffers and transient operator state (such as
queues). We use value types extensively, because an ar-
ray of value-typed objects can be allocated as a single
region of memory with a single pointer, and the GC cost
is proportional to the number of pointers (rather than
objects). The .NET runtime supports structured value
types, enabling their use for many Naiad data structures.

4 Writing programs with Naiad

Although one can write Naiad programs directly against
its timely dataflow abstraction, many users find simpler,
higher-level interfaces easier to use. Examples include
SQL, MapReduce [15], LINQ [41], Pregel’s vertex-
program abstraction [27], and PowerGraph’s GAS ab-
straction [16]. We designed Naiad so that common
timely dataflow patterns can be collected into libraries,
allowing users to draw from these libraries when they
meet their needs and to construct new timely dataflow
vertices when they do not, all within the same pro-
gram. This section first shows a simple Naiad program
to highlight the common structure of applications built
on Naiad, then discusses some of the libraries we have
built, and finally sketches the process of writing libraries
and custom vertices using the low-level Naiad API.

4.1 A prototypical Naiad program

All Naiad programs follow a common pattern: first de-
fine a dataflow graph, consisting of input stages, com-
putational stages, and output stages; and then repeat-
edly supply the input stages with data. Input and output
stages follow a push-based model, in which the user sup-
plies new data for each input epoch, and Naiad invokes
a user-supplied callback for each epoch of output data.
The following example fragment uses our library for in-
cremental computation [28], which allows the program-
mer to use patterns familiar from LINQ to implement an
incrementally updatable MapReduce computation:

// 1a. Define input stages for the dataflow.

var input = controller.NewInput<string>();

// 1b. Define the timely dataflow graph.

// Here, we use LINQ to implement MapReduce.

var result = input.SelectMany(y => map(y))

.GroupBy(y => key(y),

(k, vs) => reduce(k, vs));

// 1c. Define output callbacks for each epoch

result.Subscribe(result => { ... });

// 2. Supply input data to the query.

input.OnNext(/* 1st epoch data */);

input.OnNext(/* 2nd epoch data */);

input.OnNext(/* 3rd epoch data */);

input.OnCompleted();

Step 1a defines the source of data, and Step 1c defines
what to do with output data when produced. Step 1b
constructs a timely dataflow graph using SelectMany
and GroupBy library calls, which assemble stages of
pre-defined vertices and behave as their LINQ counter-
parts: SelectMany applies its argument function to
each message, and GroupBy collates the results by a
key function before applying its reduction function.
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} Uses deferred (lazy) evaluation

} Same program can be run on one machine, or multiple machines
◦ Uses shared memory for local workers, and TCP for remote workers

} Run-time code generation, value types, to reduce overheads

} Layered programming abstractions
◦ Raw API in addition to framework libraries
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} Iterative graph algorithms difficult to do in a distributed fashion
◦ Map-Reduce not a good abstraction for programming

◦ Requires too much communication across the nodes (graphs are hard to partition)

} Gather-Apply-Scatter Abstraction (GraphX)
◦ Gather: values from neighbors

◦ Apply: an update to the node’s state

◦ Scatter: new value to the neighbors

} Can be done as a Join followed by an Aggregate in MR (or SQL)
◦ Pagerank is 9 lines of code in GraphLINQ (not much longer in Spark RDD either though)
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algorithms typically require efficient communication, coor-
dination at fine granularity, and the ability to express iterative 
algorithms. These challenges have spurred research into spe-
cialized distributed graph-processing systems11 and—more 
recently—attempts to adapt dataflow systems for graph pro-
cessing.12 We used a variety of graph algorithms to evaluate 
both the expressiveness of the timely dataflow programming 
model and the performance of our Naiad implementation. 
To avoid confusion in this section we use the term “operator” 
for dataflow nodes, and “graph,” “node,” and “edge” refer to 
elements of the graph that is being analyzed by a program 
running on Naiad unless otherwise qualified.

To understand how we implement graph algorithms on 
Naiad, it is instructive to consider the Gather-Apply-Scatter 
(GAS) abstraction of Gonzalez et al.11 In the GAS abstraction, 
a graph algorithm is expressed as the computation at a node 
in the graph that (i) gathers values from its neighbors, (ii) 
applies an update to the node’s state, and (iii) scatters the new 
value to its neighbors. Figure 3 shows how we express this 
abstraction as a timely dataflow graph. The first step is to load 
and partition the edges of the graph (1). This step might use 
a simple hash of the node ID, or a more advanced partition-
ing scheme that attempts to reduce the number of edges that 
cross partition boundaries. The core of the computation is a 
set of stateful graph-join operators (2), which store the graph 
in an efficient in-memory data structure that is optimized for 
random node lookup. The graph-join effectively computes 
the inner join of its two inputs—the static (src, dst) edge rela-
tion, and the iteratively updating (src, val) state relation—and 
has the effect of scattering the updated state values along the 
edges of the graph. A set of stateful node-aggregate operators 
(3) perform the gather and apply steps: they store the current 
state of each node in the graph, gather incoming updates 
from the neighbors (i.e., the output of the graph-join), apply 
the final value to each node’s state, and produce it as output. 
To perform an iterative computation, the node-aggregate 
operators take the initial value for each node in the first itera-
tion (4), feed updated state values around the back-edge of the 
loop (5), and produce the final value for each node after the 
algorithm reaches a fixed point (6).

Depending on the nature of the algorithm, it may be pos-
sible to run completely asynchronously, or synchronize after 
each iteration. In our experience, the most efficient imple-
mentation of graph algorithms like PageRank or weakly 

The delivery of notifications defines the critical path for 
a Naiad computation, and the protocol as implemented can 
dispatch notifications across a cluster in a single network 
round-trip. Figure 2 shows that, using the protocol, a simple 
microbenchmark of notifications in a tight loop performs 
a global barrier across 64 servers (connected by Gigabit 
Ethernet) with a median latency of just 750 ms.

Layering programming abstractions. We wanted to en-
sure that Naiad would be easy to use for beginners, while 
still flexible enough to allow experienced programmers to 
customize performance-critical node implementations. 
We therefore adopted a layered model for writing Naiad 
programs. The lowest layer exposes the raw timely dataflow 
interfaces for completely custom nodes. Higher layers are 
structured as framework libraries that hide node implemen-
tations behind sets of data-parallel operators with related 
functionality whose inputs and outputs are distributed col-
lections of C# objects.

We modeled many of our libraries on the distributed 
query libraries in DryadLINQ,26 with the added support for 
graph processing and incremental computation that we 
discuss in the following sections. Within libraries we can 
often re-use common implementations; for example most 
of the LINQ operators in Naiad build on unary and binary 
forms of a generic buffering operator with an OnRecv call-
back that adds records to a list indexed by timestamp, and 
an OnNotify(t) method that applies the appropriate trans-
formation to the list or lists for time t. In many cases we 
were able to specialize the implementation of operators that 
require less coordination: for example Concat immediately 
forwards records from either of its inputs, Select trans-
forms and outputs data without buffering, and Distinct 
outputs a record as soon as it is seen for the first time.

The ease of implementing new frameworks as libraries 
on Naiad enabled us to experiment with various distributed 
processing patterns. In the following sections, we elabo-
rate on the frameworks that we built for graph processing 
(Section 3) and differential dataflow (Section 4).

3. GRAPH PROCESSING ON NAIAD
It is challenging to implement high-performance graph algo-
rithms on many data processing systems. Distributed graph 

Figure 2. The median latency of a global barrier implemented using 
notifications in a cycle is just 750 µs on 64 machines. Error bars 
show the 95th percentile latencies in each configuration.
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Figure 3. Illustration of a graph algorithm as a timely dataflow graph.
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an edge-based partitioning in the spirit of PowerGraph’s 
edge partitioning with a vertex cut objective, but based on a 
space-filling curve16; it outperforms PowerGraph by a factor 
of 5, taking just 1.03 s per iteration on 49 machines. Figure 4  
plots a single-threaded baseline for the PageRank opera-
tion, using a late-2014 MacBook Pro with 16 GB of RAM: 
using a similar data layout to the advanced Naiad imple-
mentation, this implementation takes 5.25 s per iteration.

4. DIFFERENTIAL DATAFLOW
Differential dataflow is a computational framework that we 
developed to efficiently execute and incrementally update 
iterative data-parallel computatations. The framework com-
prises algorithms, data structures, and dataflow graph con-
structs layered atop a timely dataflow system.17

4.1. Incremental view maintenance
Differential dataflow is a generalization of incremental 
view maintenance, a useful technique from database sys-
tems. Incremental view maintenance can be implemented 
as a dataflow graph of data-parallel nodes. Each node con-
tinually receives records and maintains the correct output 
for their accumulation. Because the node implementa-
tions are data-parallel, they only need to revisit previously 
received input records with the same keys as newly arriv-
ing inputs. Looking at only these records, the node can 
determine how the output must be corrected (if at all) to 
reflect the new input. By producing and communicating 
only changed output records, the node informs down-
stream nodes of the relatively few keys they must recon-
sider. The system as a whole performs work only when and 
where actual changes occur.

Incremental view maintenance is the basis for many suc-
cessful stream processing systems3 and graph processing sys-
tems.8 In a stream processing system, a small per-record update 
time means that the system can execute with very low latency 
compared to batch systems. In an incremental graph process-
ing system, the time to perform a round of message exchanges 
depends only on the number of messages exchanged rather 
than the total number of nodes or edges. Despite its value for 
both stream and graph processing systems, incremental view 
maintenance is not suitable for combining the two.

4.2. From incremental to differential dataflow
Differential dataflow provides the ability to combine 
incremental and iterative updates by removing the 
implicit assumption that time is totally ordered; instead 
it indexes and accumulates records according to par-
tially ordered timestamps. Consider a graph processing 
system that accepts incremental updates to its node and 
edge sets, and correctly updates the output of an iterative 
computation. This system must deal with multiple types 
of updates, due to both iterations progressing and inputs 
changing; differential dataflow distinguishes these types 
of updates using multi-dimensional logical timestamps. 
When a new record arrives, the implementation constructs 
the accumulation needed to determine the new output 
from all records with timestamps less than or equal to 
that of the new record. Concretely, consider the example 

connected components uses OnRecv to aggregate incom-
ing values to the node-aggregate operator asynchronously, 
and OnNotify to produce new aggregated states for the 
nodes synchronously in each iteration. Because it is possible 
to coordinate at timescales as short as a millisecond, more 
complex graph algorithms benefit from dividing iterations 
into synchronous sub-iterations, using the prioritization 
technique that we briefly describe in Section 4.

Motivated by the dataflow in Figure 3, we implemented 
the GraphLINQ framework on Naiad. GraphLINQ extends 
the LINQ programming model—with its higher-order declar-
ative operators over collections, such as Select, Where, 
and GroupBy—with GraphJoin, NodeAggregate, and 
Iterate operators that implement the specialized data-
flow nodes depicted in Figure 3. GraphLINQ allows the 
programmer to use standard LINQ operators to define the 
dataflow computation that loads, parses, and partitions  
the input data as a graph, and then specify a graph algorithm 
declaratively. A simple implementation of PageRank is just 
nine lines of GraphLINQ code.

When implementing graph algorithms on a dataflow 
system, a common concern is that the generality of the 
system will impose a performance penalty over a special-
ized system. To evaluate this overhead, we measured the 
performance of several implementations of PageRank on a 
publicly available crawl of the Twitter follower graph, with 
42 million nodes and 1.5 billion edges.c Figure 4 compares 
two Naiad implementations of PageRank to the published 
results for PowerGraph,11 which were measured on com-
parable hardware.d We present two different implementa-
tions of PageRank on Naiad. The first (“Naiad Vertex”) uses 
a simple hash function to partition the nodes of the Twitter 
graph between the workers, and performs all processing 
for each node on a single worker; this implementation per-
forms similarly to the best PowerGraph implementation, 
taking approximately 5.55 s per iteration on 64 machines. 
The more advanced (“Naiad Edge”) implementation uses 
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Figure 4. Time per iteration for PageRank on the Twitter follower 
graph, as the number of machines is varied.

c http://an.kaist.ac.kr/traces/WWW2010.html.
d The Naiad results were computed using two racks of 32 servers, each with 
two quad-core 2.1 GHz AMD Opteron processors, 16 GB of RAM, and an Nvidia 
NForce Gigabit Ethernet NIC. The PowerGraph results were computed using 
64 Amazon EC2 cc1.4xlarge instances, each with two quad-core Intel 
Xeon X5570 processors, 23 GB of RAM, and 10Gbit/s networking.11



} Goal: Incremental update of the iterative computation
◦ Generalization of incremental view maintenance

} Can be handled through partially ordered timestamps
◦ Timestamps of the type: (epoch_no, iteration_nos)

} Same framework for both iterations and incremental changes à higher 
composability 



} Harder because of asynchrony and non-determinism

} Uses global checkpoints, but details still to be worked out
◦ (Not sure if there was followup work)



} Overview and Early Work

} Maintenance of Materialized Views

} Models and issues in data stream systems

} Discretized streams: fault-tolerant streaming computation at 
scale

} Apache Flink: Stream and Batch Processing in a Single Engine

} Incremental, Iterative Data Processing with Timely Dataflow

} MacroBase: Prioritizing Attention in Fast Data



} Very high data volumes: > 12M events per second
◦ Mostly machine generated: IoT, Sensors, Machine logs, etc.

} Dataflow processing engines leave the development of 
analytics/operators to the users

} Macrobase :
◦ A layer on top of dataflow engines to support classification and 

explanation

◦ … to prioritize attention to important events in fast data

◦ Uses sampling and sketching techniques to handle the scale



} Two core classes of operators
◦ Classification: Label individual data points 

◦ Explanation: Group and aggregate multiple data points

} All operators must operate on streams

The most severe problems in the CMT application are caught by
quality assurance and customer service, but many behaviors are
more pernicious. For example, Apple iOS 9.0 beta 1 introduced a
buggy Bluetooth stack that prevented iOS devices from connecting
to CMT’s sensors. Few devices ran these versions, so the overall fail-
ure rate was low; as a result, CMT’s data volume and heterogeneous
install base (which includes the 24K distinct device types in the
Android ecosystem) obscured a potentially serious widespread issue
in later releases of the application. Given low storage costs, CMT
records all of the data required to perform analytic monitoring to
detect such behaviors, yet CMT’s engineers report they have lacked
a solution for doing so in a timely and efficient manner.

In this paper, we report on our experiences deploying MacroBase
at CMT, where the system has highlighted interesting behaviors
such as those above, in production.

Datacenter operation. Datacenter and server operation repre-
sents one of the highest-volume data sources today. In addition
to the billion-plus events per minute volumes reported at Twitter
and LinkedIn, engineers reported a similar need to quickly identify
misbehaving servers, applications, and virtual machines.

For example, Amazon AWS recently suffered a failure in its
DynamoDB service, resulting in outages at sites including Netflix
and Reddit. The Amazon engineers reported that “after we addressed
the key issue...we were left with a low overall error rate, hovering
between 0.15-0.25%. We knew there would be some cleanup to do
after the event,” and therefore the engineers deferred maintenance.
However, the engineers “did not realize soon enough that this low
overall error rate was giving some customers disproportionately
high error rates” due to a misbehaving server partition [3].

This public postmortem is representative of many scenarios de-
scribed by system operators in interviews. At a major social network,
engineers reported that the challenge of identifying transient slow-
downs and failures across hosts and containers is exacerbated by
the heterogeneity of workload tasks. Failure postmortems can take
hours to days, and, due to the labor-intensive nature of manual anal-
ysis, engineers report an inability to efficiently and reliably identify
slowdowns, leading to suspected inefficiency.

Unlike the CMT use case, we do not directly present results over
production data from these scenarios. However, datacenter telemetry
is an area of ongoing activity within the MacroBase project.

Industrial monitoring. Increased sensor availability has spurred
interest in and collection of fast data in industrial deployments.
While many industrial systems already rely on legacy analytics
systems, several industrial application operators we encountered
reported a desire for analytics and alerting that can adapt to new
sensors and changing conditions. These industrial scenarios can
have important consequences. For example, an explosion and fire in
July 2010 killed two workers at Horsehead Holding Corp.’s Monaca,
PA, zinc manufacturing plant. The US Chemical Safety board’s
postmortem revealed that “the high rate-of-change alarm warned that
the [plant] was in imminent danger 10 minutes before it exploded,
but there appears to have been no specific alarm to draw attention of
the operator to the subtle but dangerous temperature changes that
were taking place much (i.e. hours) earlier.” The auditor noted that
“it should be possible to design a more modern control system that
could draw attention to trends that are potentially hazardous” [48].

In this paper, we illustrate the potential to draw attention to un-
usual behaviors within electrical utilities.

3. MacroBase ARCHITECTURE AND APIS
As a fast data analytics engine, MacroBase filters and aggregates

large, high-volume streams of potentially heterogeous data. As a

DATA TYPES
Point := (array<double> metrics, array<varchar> attributes)
Explanation := (array<varchar> attributes, stats statistics)
OPERATOR INTERFACE
Operator Type Signature

Ingestor external data source(s) ! stream<Point>

Transformer stream<Point> ! stream<Point>

Classifier stream<Point> ! stream<(label, Point)>

Explainer stream<(label, Point)> ! stream<Explanation>

Pipeline Ingestor ! stream<Explanation>

Table 1: MacroBase’s core data and operator types. Each op-
erator implements a strongly typed, stream-oriented dataflow
interface specific to a given pipeline stage. A pipeline can uti-
lize multiple operators of each type via transformations, such
as group-by and one-to-many stream replication, as long as the
pipeline ultimately returns a single stream of explanations.

result, MacroBase’s architecture is designed for high-performance
execution as well as flexible operation across domains using an
array of classification and explanation operators. In this section, we
describe MacroBase’s query processing architecture, approach to
extensibility, and interaction modes.

3.1 Core Concepts
To prioritize attention, MacroBase executes streaming analytics

operators that help filter and aggregate the stream. To do so, it
combines two classes of operators:

Classification. Classification operators examine individual data
points and label them according to user-specified classes. For exam-
ple, MacroBase can classify an input stream of power drain readings
into two classes: points representing statistically “normal” readings
and abnormal “outlying” readings.

At scale, surfacing even a handful of raw data points per second
can overwhelm end users, especially if each data point contains
multi-dimensional and/or categorical information. As a result, Mac-
roBase employs a second type of operator:

Explanation. Explanation operators group and aggregate multiple
data points. For example, MacroBase can describe commonalities
among points in a class, as well as differences between classes.
Each result returned by an explanation operator can represent many
individual classification outputs, further prioritizing attention.

As we discuss in Section 7, classification and explanation are
core topics in several communities including statistics and machine
learning. Our goal in MacroBase is to develop core operators for
each task that are able to execute quickly over streaming data that
may change over time and can be composed as part of end-to-end
pipelines. Conventional relational analytics have a well-defined
set of composable, reusable operators; despite pressing application
demands at scale, the same cannot be said of classification and expla-
nation today. Identifying these operators and combining them with
appropriate domain-specific feature extraction operators enables
reuse beyond one-off, ad-hoc analyses.

Thematically, our focus is on developing operators that deliver
more information using less output. This score-and-aggregate strat-
egy is reminiscent of many data-intensive domains, including search.
However, as we show, adapting these operators for use in efficient,
extensible fast data pipelines requires design modifications and even
enables new optimizations. When employed in a system designed
for extensibility, a small number of optimized, composable operators
can execute across domains.
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Figure 1: MacroBase’s default analytics pipeline: MacroBase ingests streaming data as a series of points, which are scored and
classified, aggregated by an explanation operator, then ranked and presented to end users.
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Figure 2: MDP: MacroBase’s default streaming classification
(Section 4) and explanation (Section 5) operators.

Third, users can write their own feature transformation, classifi-
cation, and explanation operators, as well as new pipelines. This
third option is the most labor-intensive, but is also the interface
with which MacroBase’s maintainers author new pipelines. These
interfaces have proven useful to non-experts: a master’s student at
Stanford and a master’s student at MIT each implemented and tested
a new outlier detector operator in less than a week of part-time work,
and MacroBase’s core maintainers currently require less than an
afternoon of work to author and test a new pipeline.

By providing a set of interfaces with which to extend pipelines
(with varying expertise required), MacroBase places emphasis on
“pay as you go” deployment [11]. MacroBase’s Default Pipeline
(MDP, which we illustrate in Figure 2 and describe in the following
two sections) is optimized for efficient, accurate execution over a
variety of data types without relying on labeled data or rules. It
foregoes domain-specific feature extraction and instead operates di-
rectly on raw input metrics. However, as we illustrate in Section 6.4,
this interface design enables users to incorporate more sophisticated
features such as domain-specific feature transformation, time-series
analysis, and supervised models.

In this paper, we present MacroBase’s interfaces using an object-
oriented interface, reflecting their current implementation. However,
each of MacroBase’s operator types is compatible with existing
stream-to-relation semantics [9], theoretically allowing additional
relational and stream-based processing between stages. Realizing
this mapping and the potential for higher-level declarative interfaces
above MacroBase’s pipelines are promising areas for future work.

Operating modes. MacroBase supports three operating modes.
First, MacroBase’s graphical front-end allows users to interactively
explore their data by configuring different inputs and selecting dif-
ferent combinations of metrics and attributes. This is typically the
first step in interacting with the engine. Second, MacroBase can
execute one-shot queries that can be run programmatically in a sin-
gle pass over the data. Third, MacroBase can execute streaming
queries that can be run programmatically over a potentially infinite
stream of data. In streaming mode, MacroBase continuously ingests
data points and supports exponentially decaying averages that give
precedence to more recent points (e.g., decreasing the importance
of points at a rate of 50% every hour). MacroBase continuously
re-renders query results, and if desired, triggers automated alerting
for downstream consumers.

Figure 3: Discriminative power of estimators under contami-
nation by outliers (high scores better). Robust methods (MCD,
MAD) outperform the Z-score-based approach.

4. MDP CLASSIFICATION
MacroBase’s classification operators label input data points, and,

by default, identify data points that exhibit deviant behavior. While
MacroBase allows users to configure their own operators, in this
section, we focus on the design of MacroBase’s default classification
operators in MDP, which use robust estimation procedures to fit
a distribution to data streams and identify the least likely points
with the distribution using quantile estimation. To enable streaming
execution, we introduce the Adaptable Damped Reservoir, which
MacroBase uses for model retraining and quantile estimation.

4.1 Robust Distribution Estimation
MDP relies on unsupervised density-based classification to iden-

tify points that are abnormal relative to a population. However,
a small number of anomalous points can have a large impact on
density estimation. As an example, consider the Z-Score of a point
drawn from a univariate sample, which measures the number of
standard deviations that the point lies away from the sample mean.
This provides a normalized way to measure the “outlying”-ness of a
point (e.g., a Z-Score of three indicates the point lies three standard
deviations from the mean). However, the Z-Score is not robust to
outliers: a single outlying value can skew the mean and standard
deviation by an unbounded amount, limiting its utility.

To address this challenge, MacroBase’s MDP pipeline leverages
robust statistical estimation [46], a branch of statistics that pertains to
finding statistical distributions for data that is mostly well-behaved
but may contain a number of ill-behaved data points. Given a
distribution that reliably fits most of the data, we can measure each
point’s distance from this distribution in order to find outliers [57].

For univariate data, a robust variant of the Z-Score is to use the
median and the Median Absolute Deviation (MAD), in place of
mean and standard deviation, as measures of the location and scatter
of the distribution. The MAD measures the median of the absolute
distance from each point in the sample to the sample median. Since
the median itself is resistant to outliers, each outlying data point has
limited impact on the MAD score of all other points in the sample.

For multivariate data, the Minimum Covariance Determinant
(MCD) provides similar robust estimates for location and spread [47].
The MCD estimator finds the tightest group of points that best repre-
sents a sample, and summarizes the set of points according to its lo-
cation µ and scatter C (i.e., covariance) in metric space. Given these
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(Section 4) and explanation (Section 5) operators.

Third, users can write their own feature transformation, classifi-
cation, and explanation operators, as well as new pipelines. This
third option is the most labor-intensive, but is also the interface
with which MacroBase’s maintainers author new pipelines. These
interfaces have proven useful to non-experts: a master’s student at
Stanford and a master’s student at MIT each implemented and tested
a new outlier detector operator in less than a week of part-time work,
and MacroBase’s core maintainers currently require less than an
afternoon of work to author and test a new pipeline.

By providing a set of interfaces with which to extend pipelines
(with varying expertise required), MacroBase places emphasis on
“pay as you go” deployment [11]. MacroBase’s Default Pipeline
(MDP, which we illustrate in Figure 2 and describe in the following
two sections) is optimized for efficient, accurate execution over a
variety of data types without relying on labeled data or rules. It
foregoes domain-specific feature extraction and instead operates di-
rectly on raw input metrics. However, as we illustrate in Section 6.4,
this interface design enables users to incorporate more sophisticated
features such as domain-specific feature transformation, time-series
analysis, and supervised models.

In this paper, we present MacroBase’s interfaces using an object-
oriented interface, reflecting their current implementation. However,
each of MacroBase’s operator types is compatible with existing
stream-to-relation semantics [9], theoretically allowing additional
relational and stream-based processing between stages. Realizing
this mapping and the potential for higher-level declarative interfaces
above MacroBase’s pipelines are promising areas for future work.

Operating modes. MacroBase supports three operating modes.
First, MacroBase’s graphical front-end allows users to interactively
explore their data by configuring different inputs and selecting dif-
ferent combinations of metrics and attributes. This is typically the
first step in interacting with the engine. Second, MacroBase can
execute one-shot queries that can be run programmatically in a sin-
gle pass over the data. Third, MacroBase can execute streaming
queries that can be run programmatically over a potentially infinite
stream of data. In streaming mode, MacroBase continuously ingests
data points and supports exponentially decaying averages that give
precedence to more recent points (e.g., decreasing the importance
of points at a rate of 50% every hour). MacroBase continuously
re-renders query results, and if desired, triggers automated alerting
for downstream consumers.

Figure 3: Discriminative power of estimators under contami-
nation by outliers (high scores better). Robust methods (MCD,
MAD) outperform the Z-score-based approach.

4. MDP CLASSIFICATION
MacroBase’s classification operators label input data points, and,

by default, identify data points that exhibit deviant behavior. While
MacroBase allows users to configure their own operators, in this
section, we focus on the design of MacroBase’s default classification
operators in MDP, which use robust estimation procedures to fit
a distribution to data streams and identify the least likely points
with the distribution using quantile estimation. To enable streaming
execution, we introduce the Adaptable Damped Reservoir, which
MacroBase uses for model retraining and quantile estimation.

4.1 Robust Distribution Estimation
MDP relies on unsupervised density-based classification to iden-

tify points that are abnormal relative to a population. However,
a small number of anomalous points can have a large impact on
density estimation. As an example, consider the Z-Score of a point
drawn from a univariate sample, which measures the number of
standard deviations that the point lies away from the sample mean.
This provides a normalized way to measure the “outlying”-ness of a
point (e.g., a Z-Score of three indicates the point lies three standard
deviations from the mean). However, the Z-Score is not robust to
outliers: a single outlying value can skew the mean and standard
deviation by an unbounded amount, limiting its utility.

To address this challenge, MacroBase’s MDP pipeline leverages
robust statistical estimation [46], a branch of statistics that pertains to
finding statistical distributions for data that is mostly well-behaved
but may contain a number of ill-behaved data points. Given a
distribution that reliably fits most of the data, we can measure each
point’s distance from this distribution in order to find outliers [57].

For univariate data, a robust variant of the Z-Score is to use the
median and the Median Absolute Deviation (MAD), in place of
mean and standard deviation, as measures of the location and scatter
of the distribution. The MAD measures the median of the absolute
distance from each point in the sample to the sample median. Since
the median itself is resistant to outliers, each outlying data point has
limited impact on the MAD score of all other points in the sample.

For multivariate data, the Minimum Covariance Determinant
(MCD) provides similar robust estimates for location and spread [47].
The MCD estimator finds the tightest group of points that best repre-
sents a sample, and summarizes the set of points according to its lo-
cation µ and scatter C (i.e., covariance) in metric space. Given these
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(e.g., 99th percentile of scores).4 A sample of size O( 1
e2 log( 1

d ))
yields an e-approximation of an arbitrary quantile with probability
1�d [15], so a ADR of size 20K provides an e = 1% approximation
with 99% probability (d = 1%).

5. MDP EXPLANATION
MDP’s explanation operators produce explanations to contextual-

ize and differentiate inliers and outliers according to their attributes.
In this section, we discuss how MacroBase performs this task by
using a metric from epidemiology, the relative risk ratio (risk ratio),
using a range of data structures. We again begin with a discussion of
MDP’s batch-oriented operation and introduce a cardinality-based
optimization, then discuss how MacroBase executes streaming ex-
planation via the Amortized Maintenance Counter sketch.

5.1 Semantics: Support and Risk Ratio
MacroBase produces explanations that describe attributes com-

mon to outliers but relatively uncommon to inliers. To identify
combinations of attribute values that are relatively common in out-
liers, MDP finds combinations with high risk ratio (or relative risk

ratio). This ratio is a standard diagnostic measure used in epidemi-
ology, and is used to determine potential causes for disease [60].
Formally, given an attribute combination appearing ao times in the
outliers and ai times in the inliers, where there are bo other outliers
and bi other inliers, the risk ratio is defined as:

risk ratio =
ao/(ao +ai)

bo/(bo +bi)

Intuitively, the risk ratio quantifies how much more likely a data
point is to be an outlier if it is of a specific attribute combination,
as opposed to the general population. To eliminate explanations
corresponding to rare but non-systemic combinations, MDP finds
combinations with high support, or occurrence (by relative count)
in outliers. To facilitate these two tests, MDP accepts a minimum
risk ratio and level of outlier support as input parameters. As an
example, MDP may find that 500 of 890 records flagged as outliers
correspond to iPhone 6 devices (outlier support of 56.2%), but, if
80191 of 90922 records flagged as inliers also correspond to iPhone
6 devices (inlier support of 88.2%), we are likely uninterested in
iPhone 6 as it has a low risk ratio of 0.1767. MDP reports explana-
tions in the form of combinations of attributes, each subset of which
has risk ratio and support above threshold.

5.2 Basic Explanation Strategy
A naïve solution to computing the risk ratio for various attribute

sets is to search twice, once over all inlier points and once over
all outlier points, and then look for differences between the inlier
and outlier sets. As we experimentally demonstrate in Section 6,
this is inefficient as it wastes times searching over attributes in
inliers that are eventually filtered due to insufficient outlier support.
Moreover, the number of outliers is much smaller than the inliers,
so processing the two sets independently ignores the possibility of
additional pruning. To reduce this wasted effort, MacroBase takes
advantage of both the cardinality imbalance between inliers and
outliers as well as the joint explanation of each set.

Optimization: Exploit cardinality imbalance. The cardinality
of the outlier set is by definition much smaller than that of the inlier
set. Therefore, instead of searching the outlier supports and the

4This enables a simple mechanism for detecting quantile drift: if the propor-
tion of outlier points significantly deviates from the target percentile (i.e.,
via application of a binomial proportion confidence interval), MDP should
recompute the quantile.

Algorithm 2 MDP’s Outlier-Aware Explanation Strategy
given: minimum risk ratio r, minimum support s,

set of outliers O, set of inliers I

1: find attributes w/ support � s in O and risk ratio � r in O, I
2: mine FP-tree over O using only attributes from (1)
3: filter (2) by removing patterns w/ risk ratio < r in I; return

inlier supports separately, MDP first finds outlier attribute sets with
minimum support and subsequently searches the inlier attributes,
while only searching for attributes that were supported in the outliers.
This reduces the space of inlier attributes to explore.

Optimization: Individual item ratios are cheap. We have found
that many important attribute combinations (i.e., with high risk ra-
tio) can be explained by a small number of attributes (typically,
one or two, which can be tested inexpensively). Moreover, while
computing risk ratios for all attribute combinations is expensive
(combinatorial), computing risk ratios for single attributes is in-
expensive: we can compute support counts over both inliers and
outliers via a single pass over the attributes. Accordingly, MDP
first computes risk ratios for single attribute values, then computes
support of combinations whose members have sufficient risk ratios.

In contrast with [54], this optimization for risk ratio computation
is enabled by the fact that we wish to find combinations of attributes
whose subsets are each supported and have minimum risk ratio. If a
set of attributes is correlated, reporting them as a group helps avoid
overwhelming the user with explanations.

Algorithms and Data Structures. In the one-pass batch setting,
single attribute value counting is straightforward, requiring a single
pass over the data; the streaming setting below is more interesting.
We experimented with several itemset mining techniques that use dy-
namic programming to prune the search over attribute combinations
with sufficient support and ultimately decided on prefix-tree-based
approaches inspired by FPGrowth [40]. In brief, the FPGrowth
algorithm maintains a frequency-descending prefix tree of attributes
that can subsequently be mined by recursively generating a set of
“conditional” trees. Corroborating recent benchmarks [34], the FP-
Growth algorithm was fast and proved extensible in our streaming
implementation below.

End result. The result is a three-stage process (Algorithm 2).
MDP first calculates the attribute values with minimum risk ratio
(support counting, followed by a filtering pass based on risk ratio).
From the first stage’s outlier attribute values, MDP then computes
supported outlier attribute combinations. Finally, MDP computes
the risk ratio for each attribute combination based on their support in
the inliers (support counting, followed by a filtering pass to exclude
any attribute combinations with insufficient risk ratio).

Significance. We discuss confidence intervals on MDP explana-
tions as well as quality improvements achievable by processing large
data volumes in Appendix B.

5.3 Streaming Explanation
As in MDP detection, streaming explanation generation is more

challenging. We present the MDP implementation of single-attribute
streaming explanation then extend the approach to multi-attribute
streaming explanation.

Implementation: Single Attribute Summarization. To begin,
we find individual attributes with sufficient support and risk ratio
while respecting both changes in the stream and limiting the overall
amount of memory required to store support counts. The problem
of maintaining a count of frequent items (i.e., heavy hitters, or
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d ))
yields an e-approximation of an arbitrary quantile with probability
1�d [15], so a ADR of size 20K provides an e = 1% approximation
with 99% probability (d = 1%).

5. MDP EXPLANATION
MDP’s explanation operators produce explanations to contextual-

ize and differentiate inliers and outliers according to their attributes.
In this section, we discuss how MacroBase performs this task by
using a metric from epidemiology, the relative risk ratio (risk ratio),
using a range of data structures. We again begin with a discussion of
MDP’s batch-oriented operation and introduce a cardinality-based
optimization, then discuss how MacroBase executes streaming ex-
planation via the Amortized Maintenance Counter sketch.

5.1 Semantics: Support and Risk Ratio
MacroBase produces explanations that describe attributes com-

mon to outliers but relatively uncommon to inliers. To identify
combinations of attribute values that are relatively common in out-
liers, MDP finds combinations with high risk ratio (or relative risk

ratio). This ratio is a standard diagnostic measure used in epidemi-
ology, and is used to determine potential causes for disease [60].
Formally, given an attribute combination appearing ao times in the
outliers and ai times in the inliers, where there are bo other outliers
and bi other inliers, the risk ratio is defined as:

risk ratio =
ao/(ao +ai)

bo/(bo +bi)

Intuitively, the risk ratio quantifies how much more likely a data
point is to be an outlier if it is of a specific attribute combination,
as opposed to the general population. To eliminate explanations
corresponding to rare but non-systemic combinations, MDP finds
combinations with high support, or occurrence (by relative count)
in outliers. To facilitate these two tests, MDP accepts a minimum
risk ratio and level of outlier support as input parameters. As an
example, MDP may find that 500 of 890 records flagged as outliers
correspond to iPhone 6 devices (outlier support of 56.2%), but, if
80191 of 90922 records flagged as inliers also correspond to iPhone
6 devices (inlier support of 88.2%), we are likely uninterested in
iPhone 6 as it has a low risk ratio of 0.1767. MDP reports explana-
tions in the form of combinations of attributes, each subset of which
has risk ratio and support above threshold.

5.2 Basic Explanation Strategy
A naïve solution to computing the risk ratio for various attribute

sets is to search twice, once over all inlier points and once over
all outlier points, and then look for differences between the inlier
and outlier sets. As we experimentally demonstrate in Section 6,
this is inefficient as it wastes times searching over attributes in
inliers that are eventually filtered due to insufficient outlier support.
Moreover, the number of outliers is much smaller than the inliers,
so processing the two sets independently ignores the possibility of
additional pruning. To reduce this wasted effort, MacroBase takes
advantage of both the cardinality imbalance between inliers and
outliers as well as the joint explanation of each set.

Optimization: Exploit cardinality imbalance. The cardinality
of the outlier set is by definition much smaller than that of the inlier
set. Therefore, instead of searching the outlier supports and the

4This enables a simple mechanism for detecting quantile drift: if the propor-
tion of outlier points significantly deviates from the target percentile (i.e.,
via application of a binomial proportion confidence interval), MDP should
recompute the quantile.

Algorithm 2 MDP’s Outlier-Aware Explanation Strategy
given: minimum risk ratio r, minimum support s,

set of outliers O, set of inliers I

1: find attributes w/ support � s in O and risk ratio � r in O, I
2: mine FP-tree over O using only attributes from (1)
3: filter (2) by removing patterns w/ risk ratio < r in I; return

inlier supports separately, MDP first finds outlier attribute sets with
minimum support and subsequently searches the inlier attributes,
while only searching for attributes that were supported in the outliers.
This reduces the space of inlier attributes to explore.

Optimization: Individual item ratios are cheap. We have found
that many important attribute combinations (i.e., with high risk ra-
tio) can be explained by a small number of attributes (typically,
one or two, which can be tested inexpensively). Moreover, while
computing risk ratios for all attribute combinations is expensive
(combinatorial), computing risk ratios for single attributes is in-
expensive: we can compute support counts over both inliers and
outliers via a single pass over the attributes. Accordingly, MDP
first computes risk ratios for single attribute values, then computes
support of combinations whose members have sufficient risk ratios.

In contrast with [54], this optimization for risk ratio computation
is enabled by the fact that we wish to find combinations of attributes
whose subsets are each supported and have minimum risk ratio. If a
set of attributes is correlated, reporting them as a group helps avoid
overwhelming the user with explanations.

Algorithms and Data Structures. In the one-pass batch setting,
single attribute value counting is straightforward, requiring a single
pass over the data; the streaming setting below is more interesting.
We experimented with several itemset mining techniques that use dy-
namic programming to prune the search over attribute combinations
with sufficient support and ultimately decided on prefix-tree-based
approaches inspired by FPGrowth [40]. In brief, the FPGrowth
algorithm maintains a frequency-descending prefix tree of attributes
that can subsequently be mined by recursively generating a set of
“conditional” trees. Corroborating recent benchmarks [34], the FP-
Growth algorithm was fast and proved extensible in our streaming
implementation below.

End result. The result is a three-stage process (Algorithm 2).
MDP first calculates the attribute values with minimum risk ratio
(support counting, followed by a filtering pass based on risk ratio).
From the first stage’s outlier attribute values, MDP then computes
supported outlier attribute combinations. Finally, MDP computes
the risk ratio for each attribute combination based on their support in
the inliers (support counting, followed by a filtering pass to exclude
any attribute combinations with insufficient risk ratio).

Significance. We discuss confidence intervals on MDP explana-
tions as well as quality improvements achievable by processing large
data volumes in Appendix B.

5.3 Streaming Explanation
As in MDP detection, streaming explanation generation is more

challenging. We present the MDP implementation of single-attribute
streaming explanation then extend the approach to multi-attribute
streaming explanation.

Implementation: Single Attribute Summarization. To begin,
we find individual attributes with sufficient support and risk ratio
while respecting both changes in the stream and limiting the overall
amount of memory required to store support counts. The problem
of maintaining a count of frequent items (i.e., heavy hitters, or


