CMSC 724: Database Management Systems Data Streams and Dataflow Engines

Instructor: Amol Deshpande amol@cs.umd.edu

Outline

- DataHub: Overview
- OrpheusDB
- TardisDB
- Forkbase

Collaborative Data Science

Widespread use of "data science" in many many domains

A typical data analysis workflow

Collaborative Data Science

- Widespread use of "data science" in many many domains
- Increasingly the "pain point" is managing the process, especially during collaborative analysis
 - Many private copies of the datasets
 Massive redundancy
 - No easy way to keep track of dependencies between datasets
 - Manual intervention needed for resolving conflicts
 - No efficient organization or management of datasets
 - No way to analyze/compare/query versions of a dataset
- Ad hoc data management systems (e.g., Dropbox) used
 - Much of the data is unstructured so typically can't use DBs
 - The process of data science itself is quite ad hoc and exploratory
 - Scientists/researchers/analysts are pretty much on their own

DataHub: A Collaborative Data Science Platform

The one-stop solution for collaborative data science and dataset version management

http://data-hub.org

Work being done in collaboration with Sam Madden (MIT) and Aditya Parameswaran (UIUC)

- a dataset management system import, search, query, analyze a large number of (public) datasets
- a dataset version control system branch, update, merge, transform large structured or unstructured datasets
- an app ecosystem and hooks for external applications (Matlab, R, iPython Notebook, etc)

DataHub Architecture

Can we use Version Control Systems (e.g., Git)?

No, because they typically use fairly simple algorithms and are optimized to work for code-like data

Can we use Version Control Systems (e.g., Git)?

 No, because they typically use fairly simple algorithms and are optimized to work for code-like data
 Git ends up using large amounts of RAM for large files

Can we use Version Control Systems (e.g., Git)?

- X No, because they typically use fairly simple algorithms and are optimized to work for code-like data
- **K** Git ends up using large amounts of RAM for large files
- X Querying and retrieval functionalities are primitive, and revolve around single version and metadata retrieval
- × No way to specify queries like:
 - identify all datasets derived of dataset A that satisfy property P
 - identify all predecessor versions of version A that differ from it by a large number of records
 - rank a set of versions according to a scoring function
 - find the version where the result of an aggregate query is above a threshold
 - find parent records of all records in version A that satisfy certain property

DSVC Data Model [CIDR 2015]

- Schema-later Data Representation
 - Base model is that of key-value pairs
- Version Graph
 - Information about how versions are created and relate to each other
- Versioning API
 - create, branch, merge, commit, rollback, checkout
 - "hooks" to run scripts before/after/during "commits"
- Transaction mode (similar to a typical server-based DBMS), vs local mode (similar to "git")
 - Former is not straightforward to do

Query Language[CIDR 2015]

- [[Note: A more comprehensive proposal in
- Supports queries on the datasets within a v queries about the version graph
- Ability to mix those two as well

SELECT * FROM R(v124), R(v135) WHERE R(v124).id = R(v135).id

SELECT * FROM S(SELECT MIN(VR1.VNUM) FROM VERSIONS(R) VR1, VERSIONS(R) VR2 WHERE DISTANCE(R,VR1.VNUM,VR2.VNUM)=1 AND DIFF_RECS(R,VR1.VNUM,VR2.VNUM)>100)

Dataset Versioning and Compression

- Many different "overlap" structures
 - Dependent heavily on the type of data, and the types of modifications on them
- Varying computational environments
 - Distributed vs centralized
 - "Check out" or "in situ" processing
- Different "retrieval" requirements
 - Full versions vs small portions of versions
 - Analysis across one version or many versions
- Need support for ACID transactions and rich querying
 - For operation databases, or data warehouses

Scenario 1: Relational Database

Challenges

- Not feasible to "check out" locally need to support "in situ" processing
- Need to maintain many branches simultaneously in a single server
- Need to redesign internal data structures, transaction engines, etc.

Scenario 2: Files in Data Lakes

Requirements

- Create branch of a dataset or a group of them
- "Check out" to a local environment, and "check in" modified versions
- Run analysis tasks against specific versions or across versions efficiently

Challenges

- Very large files of different types
- Files may be individually sharded

Scenario 3: Distributed Document Store

- Need to support "key-based" retrieval
- Documents typically large (in MBs), with small changes

Scenario 1: Relational Databases

Modified the "storage manager" for MIT SimpleDB RDBMS

Supports branching and merging, and queries across versions (e.g., diffs)

Storage Strategies

<u>Key Observation</u>: Differences across versions/branches are presence or absence of individual tuples (or tuple attributes)

Can be captured as a binary "membership" matrix

	E	Brand	ches			
	B1	B2	B 3	•••		
t1	1	0	0	0	0	
t2	0	1	0	0	0	
t3	0	0	0	0	1	
	0	0	0	1	0	
	1	0	0	0	0	
	0	1	0	0	0	
	0	1	0	0	0	
	0	1	0	0	0	
	0	0	0	0	1	
	1	0	0	0	0	
	t1 t2 t3 	B1 t1 1 t2 0 t3 0 0 1 0 0 0 0 0 1	B1 B2 t1 1 0 t2 0 1 t3 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	B1B2B3t1100t2010t3000000100100010010001000000100010001000	B1 B2 B3 t1 1 0 0 0 t2 0 1 0 0 t3 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0	B1 B2 B3 t1 1 0 0 0 t2 0 1 0 0 0 t3 0 0 0 1 0 t41 0 0 0 1 0 t43 0 0 0 1 0 t43 0 0 0 1 0 t43 0 0 0 0 0 t40 1 0 0 0 0 t40 1 0 0 0 0 t40 0 0 0 0 1 t40 0 0 0 0 0 t41 0 0 <td< th=""></td<>

Typically: tall and narrow # branches << # tuples

Compressing binary matrixes is a well-studied problem (NP-Hard in general)

However, we need to support:

- Efficient updates
- Retrieval of one or more versions
- Queries on specific columns (branches)
- Queries across pairs or groups of versions

Tuple-first Storage Strategies

Compressed bitmap per branch, vs per tuple

- Also need to consider how the bitmaps will be compressed (e.g., runlength encoding) and how they will be mapped to memory block
- Commit operations easier for bitmap-per-branch, but tuple inserts faster in bitmap-per-tuple
- Queries across branches, including "merges", can exploit bitmap operations

Version-first Storage Strategies

- Use "deltas" across versions (i.e., tuple differences)
- Better when changes across versions are small
- Performance of queries across versions poor

Some Experimental Results

	Data Size (GB)	Load Time (sec)	Repo Size (MB)	Checkout Avg. (ms)	Commit Avg. (ms)
git	1	615	375	2100	5400
Decibel	1	7	1002	4	5
git	2	16204	5620	242000	31400
Decibel	2	12	2011	8	6

Comparing git and Decibel (Hybrid)

Single-version Scan on a Flat Version Graph

Multi-version Scan on a Deep Version Graph

Open Research Questions

- Handling schema changes
 - Would like to version schemas along with data
 - More complex compression problems
- Better compression algorithms for more efficient handling of large numbers of versions
- Handling deletes and merges more cleanly
 - Especially conflicts during merges
- Interactions with other database components
 - Concurrency, Recovery, Query Processing and Optimization, etc.

Scenario 2: Files in Data Lakes

DEX: Delta-oriented EXecution Engine

[VLDB'15, VLDB'16, SIGMOD'17]

Built as a "git" extension Supports standard checkout/commit etc., operations against files

Storage cost is the space required to store a set of versions

Recreation cost is the time* required to access a version

A delta between versions is a file which allows constructing one version given the other

Example: Unix diff, xdelta, XOR, etc.

A delta has its own storage cost and recreation cost, which, in general, are independent of each other

Storage-Recreation Tradeoff

Storage-Recreation Tradeoff

Given

- 1) a set of versions
- 2) partial information about deltas between versions
- Find a Storage Solution that:
- minimizes total recreation cost given a storage budget, or
- minimizes max recreation cost given a storage budget

	Storage Cost	Recreation Cost	Undirected Case, $\Delta = \Phi$	Directed Case, $\Delta = \Phi$	Directed Case, $\Delta \neq \Phi$
P1	min C	R _i < ∞, ∀ i PTime, Minimum Cost Arborescence		scence (MCA)	
P2	C < ∞	min {max {R _i 1 ≤ i ≤ n}}	PTime, S	hortest Path Tr	ee (SPT)
P3	C≤β	min { $\sum_{i=1}^{n} R_i$ }	NP-hard,	NP-hard, LM	IG Algorithm
P4	C≤β	min {max {R _i 1 ≤ i ≤ n}}	LAST* Alg	NP-hard, M	P Algorithm
P5	min C	$\sum_{i=1}^{n} R_{i} \leq \theta$	NP-hard,	NP-hard, LM	IG Algorithm
P6	min C	$\max \{R_i \mid 1 \le i \le n\} \le \theta$	LAST* Alg	NP-hard, M	P Algorithm

Baselines

Minimum Cost Arborescence (MCA) Edmonds' algorithm Time complexity = O(E + V logV) Shortest Path Tree (SPT) Dijkstra's algorithm Time complexity = O(E logV)

Scenario 3: Distributed Document Store

RStore

Designed as a wrapper on top of a key-value store to support versioning Key design goal of not modifying the key-value store

Data Model

 V_0

 V_1

Data Model: Composite Keys

 V_0

 V_1

RStore: Architecture

- Designed to support a wide range of retrieval queries, including partial version retrieval
- Based on creating chunks of similar records to minimize storage footprint
 - Employs several different partitioning algorithms to create chunks
- Results in much fewer queries to the back-end key value store
 - ... by minimizing the number of chunks that a version spans

Outline

- DataHub: Overview
- OrpheusDB
- TardisDB
- Forkbase

Motivation

- ▶ Database systems don't support versioning → entire datasets get copied during collaborative work
 - e.g., gene annotation datasets, or protein interaction networks
- OrpheusDB: Bolt-on versioning for RDBMS
 - Support versioning on top of an RDBMS, without modifications
 - Allow standard SQL-based querying of the tables within the versions

Storage Options (1)

a. Table with Versioned Records

Protein1	Protein2	Neighb orhood	Cooccu rrence	Coexpr ession	vid
ENSP273047	ENSP261890	0	53	0	<i>v</i> ₁
ENSP273047	ENSP261890	0	53	83	<i>v</i> ₃
ENSP273047	ENSP261890	0	53	83	v_4
ENSP273047	ENSP235932	0	87	0	<i>v</i> ₁
ENSP273047	ENSP235932	0	87	0	<i>v</i> ₂
ENSP273047	ENSP235932	0	87	0	v_4
ENSP300413	ENSP274242	426	0	164	<i>v</i> ₁
ENSP300413	ENSP274242	426	0	164	<i>v</i> ₂
ENSP300413	ENSP274242	426	0	164	<i>v</i> ₃
ENSP300413	ENSP274242	426	0	164	v_4
ENSP309334	ENSP346022	0	227	975	<i>v</i> ₂
ENSP309334	ENSP346022	0	227	975	v_4
ENSP332973	ENSP300134	0	0	83	<i>v</i> ₃
ENSP332973	ENSP300134	0	0	83	v_4
ENSP472847	ENSP365773	225	0	73	<i>v</i> ₃
ENSP472847	ENSP365773	225	0	73	v_4

- Simple and supports querying individual versions
- High duplication -- a tuple in 100 versions is copied 100 times
- A simple "branch" requires a full copy of the tuples in that version
- Approach taken by temporal databases
 - Store a timestamp with each tuple
 - Doesn't work with branching etc.

Storage Options (2)

Protein1	Protein2	Neighb orhood	Cooccu rrence	Coexpr ession	vlist
ENSP273047	ENSP261890	0	53	0	$\{\mathbf{v}_1\}$
ENSP273047	ENSP261890	0	53	83	$\{\mathbf{v}_{3},\mathbf{v}_{4}\}$
ENSP273047	ENSP235932	0	87	0	$\{\boldsymbol{v}_{1,}\boldsymbol{v}_{2,}\boldsymbol{v}_{4}\}$
ENSP300413	ENSP274242	426	0	164	$\{v_{1}, v_{2}, v_{3}, v_{4}\}$
ENSP309334	ENSP346022	0	227	975	$\{\mathbf{v}_{2},\mathbf{v}_{4}\}$
ENSP332973	ENSP300134	0	0	83	$\{\boldsymbol{v}_{3},\boldsymbol{v}_{4}\}$
ENSP472847	ENSP365773	225	0	73	$\{\boldsymbol{v}_{3},\boldsymbol{v}_{4}\}$
1					, γ
	data attributes			versi	oning attribute

b. Combined Table

- Requires efficient support for querying over arrays
- A simple "branch" requires modifying the arrays for all tuples in that version

Storage Options (3)

- Separate out the versioning information in a different set of tables
- Need to do a join to retrieve the version information
- Option 1: store a version list each record
 - A new version will require updating many tuples
- Option 2: store a record list with each version

rid	Protein1	Protein2	Neighb orhood	Cooccu rrence	Coexpr ession
r_1	ENSP273047	ENSP261890	0	53	0
r_2	ENSP273047	ENSP235932	0	87	0
r ₃	ENSP300413	ENSP274242	426	0	164
r ₄	ENSP309334	ENSP346022	0	227	975
r_5	ENSP273047	ENSP261890	0	53	83
r_6	ENSP332973	ENSP300134	0	0	83
r_7	ENSP472847	ENSP365773	225	0	73

c. Data Table + Versioning Table

 \bowtie

	rid	vlist
	r_1	$\{v_1\}$
	r_2	$\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{4}\}$
	r ₃	$\{v_{1,}v_{2,}v_{3,}v_{4}\}$
	r_4	$\{\mathbf{v}_{2},\mathbf{v}_{4}\}$
	r_5	$\{\mathbf{v}_{3},\mathbf{v}_{4}\}$
	r ₆	$\{\boldsymbol{v}_{3},\boldsymbol{v}_{4}\}$
	r ₇	$\{\boldsymbol{v}_{3},\boldsymbol{v}_{4}\}$
θ)	c.i	. Split-by-vlist
	vid	rlist
	V.	$\{r_1, r_2, r_2\}$

 v_2

 V_3

 $\frac{v_4}{c.ii. \text{ Split-by-rlist}}$

 $\frac{\{r_{2},r_{3},r_{4}\}}{\{r_{3},r_{5},r_{6},r_{7}\}}$

OrpheusDB Version Control API

Collaborative Versioned Dataset (CVD)

- A relation + versions of that relation
- Version graph: DAG that maintains derivation information
- All tuples/records in a CVD are "immutable"
- Each relation assumed to have a "primary key"

APIs:

- checkout: materialize a version as a regular table within the database
 - Only the user who issue checkout has access to the table
 - Can support "merge" operation to generate a single table as a union of multiple versions of the table

OrpheusDB Version Control API

APIs:

- commit: Add a modified table as new version to the CVD
 - Need to figure out which records changed from the parent (original) version
 - Use "primary key" for this purpose
 - Any changes from the parent version result in a new records in the CVD (all records are immutable in the CVD)
 - If `checkout` was done with multiple versions, then the new version has all of those as parents
- Can do checkout to, and commit from, a CSV file
 - Need additional information to do the mappings
- diff: compare two version and output the difference
- init, create_user, config, etc...

OrpheusDB Version Control API

SQL Commands

 Can directly run SQL queries on specific version, without having to materialize it

SELECT ... FROM VERSION [vid] OF CVD [cvd], ...

SELECT * FROM VERSION 1, 2 OF CVD Interaction WHERE coexpression > 80 LIMIT 50;

 Additional constructs to apply an aggregate across versions, identify versions with a specific property, etc.

System Architecture

Implemented as a layer on top of a relational database

Storing CVDs

Five approaches

- Combined table (1(b))
- Split-by-vlist
- Split-by-rlist

Protein1	Protein2	Neighb orhood	Cooccu rrence	Coexpr ession	vlist
ENSP273047	ENSP261890	0	53	0	$\{v_1\}$
ENSP273047	ENSP261890	0	53	83	$\{v_{3}, v_{4}\}$
ENSP273047	ENSP235932	0	87	0	$\{\boldsymbol{v}_{1,}\boldsymbol{v}_{2,}\boldsymbol{v}_{4}\}$
ENSP300413	ENSP274242	426	0	164	$\{v_{1}, v_{2}, v_{3}, v_{4}\}$
ENSP309334	ENSP346022	0	227	975	$\{\boldsymbol{v}_{2},\boldsymbol{v}_{4}\}$
ENSP332973	ENSP300134	0	0	83	$\{\boldsymbol{v}_{3},\boldsymbol{v}_{4}\}$
ENSP472847	ENSP365773	225	0	73	$\{\boldsymbol{v}_3, \boldsymbol{v}_4\}$
i.					· · ·

data attributes

versioning attribute

rid	Protein1	Protein2	Neighb orhood	Cooccu rrence	Coexpr ession
r_1	ENSP273047	ENSP261890	0	53	0
r ₂	ENSP273047	ENSP235932	0	87	0
r ₃	ENSP300413	ENSP274242	426	0	164
r_4	ENSP309334	ENSP346022	0	227	975
r_5	ENSP273047	ENSP261890	0	53	83
r ₆	ENSP332973	ENSP300134	0	0	83
r_7	ENSP472847	ENSP365773	225	0	73

c. Data Table + Versioning Table

Mé

	rid	vlist
	r_1	$\{\mathbf{v}_1\}$
	r_2	$\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_4\}$
ſ	r ₃	$\{v_{1}, v_{2}, v_{3}, v_{4}\}$
	r_4	$\{\mathbf{v}_{2},\mathbf{v}_{4}\}$
	r_5	$\{\mathbf{v}_{3},\mathbf{v}_{4}\}$
	r_6	$\{\mathbf{v}_{3},\mathbf{v}_{4}\}$
/	r ₇	$\{\mathbf{v}_{3},\mathbf{v}_{4}\}$

c.i. Split-by-vlist

vid	rlist
<i>v</i> ₁	$\{r_{1,}r_{2,}r_{3}\}$
<i>v</i> ₂	$\{r_{2}, r_{3}, r_{4}\}$
<i>v</i> ₃	$\{r_{3,}r_{5,}r_{6,}r_{7}\}$
v_4	$\{r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\}$

c.ii. Split-by-rlist

Storing CVDs

Five approaches

- Combined table (1(b))
- Split-by-vlist
- Split-by-rlist

Command	SQL Translation with combined-table	SQL Translation with Split-by-vlist	SQL Translation with Split-by-rlist
CHECKOUT	SELECT * into T' FROM T WHERE ARRAY[v_i] <@ vlist	SELECT * into T' FROM dataTable, (SELECT rid AS rid _tmp FROM versioningTable WHERE ARRAY[v_i] <@ vlist) AS tmp WHERE rid = rid _tmp	SELECT * into T' FROM dataTable, (SELECT unnest(rlist) AS rid_tmp FROM versioningTable WHERE vid = v_i) AS tmp WHERE rid = rid_tmp
COMMIT	UPDATE T SET vlist=vlist+ v_j WHERE rid in (SELECT rid FROM T')	UPDATE versioningTable SET vlist=vlist+ v_j WHERE rid in (SELECT rid FROM T')	INSERT INTO versioningTable VALUES (v_j , ARRAY[SELECT rid FROM T'])

Table 1: SQL Queries for Checkout and Commit Commands with Different Data Models

Storing CVDs

Five approaches

- Combined table (1(b))
- Split-by-vlist
- Split-by-rlist
- Delta-based approach (also called "version-first")
 - Store each version as a "delta" from one of its parent versions
 - Need a new regular table for each version
 - Lower storage space if most changes are local
 - Harder to do queries
- A-Table-Per-Version (naïve baseline)

Comparing the Options

- No single winner
- Split-by-rlist provides best balance

Version Derivation Metadata

- Version-level provenance maintained in a metadata table
- Supports "schema changes" during commit
 - Somewhat simplistic -- hard to handle this in general

vid	parents	checkoutT	commitT	msg	attributes
<i>v</i> ₁	NULL	NULL	<i>t</i> ₁		$\{a_{1,}a_{2,}a_{3,}a_{4,}a_{6}\}$
<i>v</i> ₂	$\{\mathbf{v}_1\}$	<i>t</i> ₂	<i>t</i> ₃		$\{a_{1,}a_{2,}a_{3,}a_{4,}a_{6}\}$
<i>v</i> ₃	$\{\mathbf{v}_1\}$	<i>t</i> ₂	t_4		$\{a_{1,}a_{2,}a_{3,}a_{4,}a_{6}\}$
<i>v</i> ₄	$\{\boldsymbol{v}_2, \boldsymbol{v}_3\}$	<i>t</i> ₅	t ₆		$\{a_{1,}a_{2,}a_{3,}a_{4,}a_{6}\}$

a. Metadata Table

b. Version Graph

Figure 4: Metadata Table and Version Graph (Fixed Schema)

Optimization Problem

- > Too much redundant processing when checking out a version if..
 - .. number of records in the version << total number of records
- Use "Partitioning"
 - e.g., imagine 100 versions
 - 10 versions, each containing a large fraction of t1, ..., t_100
 - 10 versions, each containing a large fraction of t_101, ..., t_200
 - ...
 - If all stored together, then checking out a version requires processing 100 * 100 = 10000 records
 - If stored in groups of 10 versions, then checking out requires processing only 100 records
- In general, won't find such "clean" partitioning
 - But, depending on the datasets, it might still provide significant benefits
- Also partitioning increases total storage cost

Optimization Problem

- Problem is too hard to solve optimally
- Instead, design efficient heuristics

Figure 6: Version-Record Bipartite Graph & Partitioning

Outline

- DataHub: Overview
- OrpheusDB
- TardisDB
- Forkbase

Overview

Motivation analogous to OrpheusDB

- Versioning within a relational database system
- Supports many use cases that need to be done outside DBMS
- But:
 - Support multiple tables instead a single table per version
 - For a main-memory database system
- Paper also develops a benchmark for versioning based on Wikipedia

MusaeusDB

- Expands upon OrpheusDB data model, with keeping version information in a separate table
- Main difference:
 - Extra attribute "tableid" in the "version table" to allow for multiple tables

Figure 2: Schema: Version table and meta table for managing the commits on the left; tables containing the data on the right; the record id serves as a key for every tuple.

MusaeusDB

Private namespaces for users when they checkout

init: add the requisite tables and attributes to an existing database for versioning

checkout: copies the tables to a private namespace

commit: update the global repository with changed/inserted/deleted tuples

Figure 3: Distinction between global and local (user) space in *MusaeusDB*: The global space maintains a separate namespace for each repository, relations can be checked out for modifications in the user's namespace.

MusaeusSQL

Unified interface on top

Figure 4: Architecture of *MusaeusSQL*: Operations are divided into basic SQL and versioning commands; SQL commands are transformed as the extended schema is hidden, versioning commands are translated into SQL queries.

TardisDB

- Integrated versioning into a main-memory system
- Uses the "tuple-first" approach from Decibel
 - Each tuple is associated with a bitmap telling which versions it belongs to
- For query processing, only the Scan operator changes

```
LoopGen scanLoop(funcGen,{{"index",cg_size_t(0ul)}});
cg_size_t tid(scanLoop.getLoopVar(0)); {
  LoopBodyGen bodyGen(scanLoop);
  auto branchId = _context.executionContext.branchId;
  IfGen visibilityCheck(isVisible(tid,branchId)); {
    produce(tid);
  }
}
cg_size_t nextIndex = tid+1ul;
scanLoop.loopDone(nextIndex<tableSize,{nextIndex});</pre>
```

Listing 7: The modified scan loop: the table scan operator, which iterates over all tuples, has been modified to check the visibility of the tuple first. A tuple is visible when the corresponding bit of the versioning bitmap is set.

TardisDB

Uses MVCC for the versioning

Figure 6: Adaption of multi-version concurrency control for versioning (left): bitmaps for each branch indicate the included tuples; an insert increases the size of all bitmaps. Updates in the master branch are handled in place with a pointer to the previous version, updates from other branches are prepended. Tuples receive a unique timestamp, their colour indicates the creator branch. Descendance tree (middle) determines the tuple visibility for the corresponding history (right).

TardisDB Webinterface

TUM – Department of Informatics: Chair III: Database Systems 2020

Outline

- DataHub: Overview
- OrpheusDB
- TardisDB
- Forkbase

Motivation

- Many applications need a storage layer that support versioning and tamper-resistance
 - Collaborative applications (i.e., motivation for DataHub)
 - Blockchain systems (distributed tamperproof ledgers)
- Forkbase: a storage engine that:
 - Supports versioning and tamper-resistance
 - Splits up large objects into *data chunks* for deduplication
 - Support general "fork semantics" (branch and merge)
 - Simple APIs
 - Scales well to many nodes through two-layer partitioning

Forkbase Design

Figure 1: The *ForkBase* stack offers advanced features to various classes of modern applications.

Data Model and APIs

FObject: a generic object type that is versioned

```
struct FObject {
   enum type; // object type
   byte[] key; // object type
   byte[] data;
   int depth; //
   vector<uid> ba
   byte[] context
}
   Figure
```

- Put(key, <branch the specified branc the *default branch*.
- Get(key, <branch specified branch. the *default branch*.

Tamper resistance through linking versioning using a cryptographic hash chain (i.e., a blockchair)

Fork and Merge Operations

FObject: a generic object type that is versioned

Figure 3: Generic fork semantics supported for both (a) fork on demand and (b) fork on conflict.

```
ForkBaseConnector db;
// Put a blob to the default master branch
Blob blob {"my value"};
db.Put("my key", blob);
// Fork to a new branch
db.Fork("my key", "master", "new branch");
```

```
// Get the blob
FObject value = db.Get("my key", "new branch");
if (value.type() != Blob)
   throw TypeNotMatchError;
blob = value.Blob();
```

```
// Remove 10 bytes from beginning and append new
// Changes are buffered in client
blob.Remove(0, 10);
blob.Append("some more");
// Commit changes to that branch
db.Put("my key", "new branch", blob);
```

Implementation

Figure 5: Architecture of a *ForkBase* cluster.

Pattern-Oriented-Splitting Tree

Figure 6: Pattern-Oriented-Splitting Tree (POStree) resembling a B^+ -tree and Merkle tree.

Pattern-Oriented-Splitting Tree

- Leaf nodes are created through "content-based slicing"
 - Treat the data as sequence of bytes
 - Look for the first k-byte sequence that hashes to a fixed pattern (e.g., "...0000000")
 - Create first leaf node that ends at that sequence
 - Look for the next k-byte sequence...
 - Use "rolling hashes" to speed this up (lot of work in storage deduplication)
- Index nodes use the same idea, but using the "cid" of the leaves instead of hashing
 - Those have some randomness properties since they are cryptographic hashes

Forkbase Use Cases

- Hyperledger Blockchain
 - Can replace the underlying state storage (Merkle Tree) with Forkbase
- Wiki Engine
 - For collaborative editing workflows
 - Can directly store the data into Forkbase
- Collaborative Analytics

Summary

- Immutability increasingly seen as a must-have in many data management systems
 - Versioning, tamper-resistance, fork/branch semantics etc.
- Many open challenges
 - Storage management, support for queries/transactions, schema evolution, analytics, ...