CMSC 724: Database Management Systems
Data Streams and Dataflow Engines

Instructor: Amol Deshpande

amol@cs.umd.edu

Outline

» DataHub: Overview
» OrpheusDB

» TardisDB

» Forkbase

&

Collaborative Data Science

e Widespread use of “data science” in many many domains

EDIT: Append Column |
NEW: Add file % a}
CSV from -
RN
| 1000s of
3 1 versions

2\ 2 \2\2"

EDIT: Correct EDIT: Partition

“addresses” EDIT: Project rows
columns

A typical data analysis workflow

Collaborative Data Science

e Widespread use of “data science” in many many domains

® Increasingly the “pain point” is managing the process,
especially during collaborative analysis
Many private copies of the datasets = Massive redundancy
No easy way to keep track of dependencies between datasets
Manual intervention needed for resolving conflicts
No efficient organization or management of datasets
No way to analyze/compare/query versions of a dataset

e Ad hoc data management systems (e.g., Dropbox) used
Much of the data is unstructured so typically can’t use DBs
The process of data science itself is quite ad hoc and exploratory
Scientists/researchers/analysts are pretty much on their own

DataHub: A Collaborative Data Science Platform

The one-stop solution for) =2 30 [RawFiles |
collaborative data science and I
65 [Ingest (Import) J
dataset version management iy
% [Database System)

B

L @ Fork, Branch,
Merge

J L(Sharing
, Collaboration

Version
[Management J <L

http://data-hub.org

Work being done in collaboration with L
Sam Madden (MIT) and @ (Qu:ry Language |
Aditya Parameswaran (UIUC) =]

0\ { Vlntegraté / Visualize | Other Apps- J‘

http://data-hub.org/

DataHub: A Collaborative Data Science Platform

* 3 dataset management system —
import, search, query, analyze a large

Client DataHub

number of (public) datasets lien
Applications Notebook

query

ingest || vizualize s
g builder

II: Native App Ecosystem lll: Language Agnostic Hooks

* a dataset version control system — ;
branch, update, merge, transform large |
structured or unstructured datasets Dataset Versioning Manager

I: Versioning API and Version Browser

— |
v :
e an app ecosystem and hooks for |
external applications (Matlab, R,

iPython Notebook, etc)

Versioned Datasets,
Version Graphs,
Indexes, Provenance

v
DataHub: A Collaborative Data Analytics Platform

DataHub Architecture

Can we use Version Control Systems (e.g., Git)?

X No, because they typically use fairly simple algorithms
and are optimized to work for code-like data

Y= gzip = 10.2 GB |
Ty
— = svn = 8.5 GB ‘
QOOversmns
\\\\ git = 202 MB |

LF Dataset (Real World)
#Versions =100
Avg. version size =423 MB

*this = 159 MB |

Can we use Version Control Systems (e.g., Git)?

X No, because they typically use fairly simple algorithms
and are optimized to work for code-like data
X Git ends up using large amounts of RAM for large files

) Working with largefiles- ... X = 4

& https://help.github.com/articles/working-with-large-files,

GitHub Help

Managing Large Files / Working with large files

Working with large files

A Git repository contains every version of every file. But |
revisions of large files increase the clone and fetch times

[DONT!

Versioned ass\ts, such as graphics

ve as much free space
is 1GB, Git requires 1

anageable for you and

Large configu n files

We suggest removing the following types o

Database dumps

Log files

stackoverflow.com/questions/29393447 /why-cant-git-handle-large-files-and-large-repos
N
|=| stackoverflow

2 Why can't Git handle large... X =

Why can't Git handle large files and large repos?

A, Dozens of questions and answers on SO and elsewhere e asize that Git can't handle T8
or large repos. A handful of workarounds are suggested sud as git-fat and git-annex, but id
3 Git would handle large files/repos natively.

las not yet been
nto Git that makes

v If this limitation has been around for years, is there are reason the limitatioa
removed? | assume that there's some technical or design challenge bakeg

large file and large repo support extremely difficult.
Lots of related questions, but none seem to explain why this is suchgl big hurdle:

o git with large files

BElv e Psearch
Sge | Usors | 5

ge files

lly

e What are the file limits i
o Git - repository and file

Use extensions*

¢ Versioning large text fil

e How to handle a large Lna:
e Managing large binary files with git

e What is the practical maximum size of a Git repository full of text-based data? [Quora]

git

Can we use Version Control Systems (e.g., Git)?

No, because they typically use fairly simple algorithms
and are optimized to work for code-like data

Git ends up using large amounts of RAM for large files
Querying and retrieval functionalities are primitive, and
revolve around single version and metadata retrieval
No way to specify queries like:

identify all datasets derived of dataset A that satisfy property P
identify all predecessor versions of version A that differ from it
by a large nhumber of records

rank a set of versions according to a scoring function

find the version where the result of an aggregate query is
above a threshold

find parent records of all records in version A that satisfy
certain property

DSVC Data Model [CIDR 2015]

® Schema-later Data Representation
Base model is that of key-value pairs
® Version Graph

Information about how versions are created and relate to each other

® Versioning API
create, branch, merge, commit, rollback, checkout

“hooks” to run scripts before/after/during “commits”

® Transaction mode (similar to a typical server-based DBMS), vs local
mode (similar to “git”)

Former is not straightforward to do

Query Language[CIDR 2015]

® [[Note: A more comprehensive proposal in a later paper |]

® Supports queries on the datasets within a version, as well as
qgueries about the version graph

e Ability to mix those two as well

SELECT * FROM R(v124), R(v135)
WHERE R(v124).id = R(v135).id

SELECT * FROM S(SELECT MIN(VR1.VNUM) FROM
VERSIONS(R) VR1, VERSIONS(R) VR2

WHERE DISTANCE(R,VR1.VNUM,VR2.VNUM)=1
AND DIFF_RECS(R,VR1.VNUM,VR2.VNUM)>100)

Dataset Versioning and Compression

® Many different “overlap” structures

Dependent heavily on the type of data, and the types of
modifications on them

® Varying computational environments
Distributed vs centralized
”Check out” or “in situ” processing
e Different "retrieval” requirements
Full versions vs small portions of versions
Analysis across one version or many versions
® Need support for ACID transactions and rich querying

For operation databases, or data warehouses

Scenario 1: Relational Database

Eumss BN W
i ik — ‘o)
Egt r U
Igepen H Results ‘ .
H H B
N CREATE BRANCH ..
= SELECT % FROM BRANCH..
EE B B
HEaEen <?\
H B B
S)

-
\Z

Requirements

- Create a branch of the database

- Query or modify specific branches
- Merge branches

RDBMS

Challenges

- Not feasible to “check out” locally — need to support “in situ” processing
- Need to maintain many branches simultaneously in a single server

- Need to redesign internal data structures, transaction engines, etc.

Scenario 2: Files in Data Lakes

Requirements

Create branch of a dataset or a group of them

“Check out” to a local environment, and “check in”
modified versions

Run analysis tasks against specific versions or across
versions efficiently

Challenges
- Very large files of different types
- Files may be individually sharded

Scenario 3: Distributed Document Store

Requirements

Queries - Create a branch of the database
Updates - Query or modify specific branches,
but simpler queries
Results - Merge branches
O Challenges
m - Need to support ‘“in situ” processing

- Must minimize the number of queries to the backend store
- Need to support "key-based” retrieval
- Documents typically large (in MBs), with small changes

Scenario 1: Relational

Databases

Decibel [VLDB 18]

Modified the “storage manager” for MIT SimpleDB RDBMS

Supports branching and merging, and queries across versions (e.q., diffs)

Versioned
Sec. 2 queries \
Query Executor

Version read/
update requests

T [terators

Versioned Storage Manager
Buffer Pool

Sec. 4 Storage Schemes
(One active at a time)

Storage Strategies

Key Observation: Differences across versions/branches are presence or

absence of individual tuples (or tuple attributes)

Can be captured as a binary “membership” matrix

t1
t2
t3

Tuples

Branches
B1 B2 B3
1. 8 @8
0 1 1
O 0 O
O O O
2 8 0
b 1 '8
B 3 .9
O 1 O
O O O
2 89 9

oo B e R e Y v B o N o I MY e T = TR =

o= Gl == B == [= R = I o= S == R o=

Typically: tall and narrow
branches << # tuples

Compressing binary matrixes is a
well-studied problem (NP-Hard in general)

However, we need to support:
- Efficient updates
- Retrieval of one or more versions
- Queries on specific columns (branches)
- Queries across pairs or groups of
versions

Tuple-first Storage Strategies

BRI R R) B AR CIds B

. - -— -’ e - - nd

SRR
- s aeaw-
'

Compressed bitmap per branch, vs per tuple

» Also need to consider how the bitmaps will be compressed (e.q., run-
length encoding) and how they will be mapped to memory block

« Commit operations easier for bitmap-per-branch, but tuple inserts
faster in bitmap-per-tuple

* Queries across branches, including "merges”, can exploit bitmap
operations

Version-first Storage Strategies

K A A A8 i v)

’
B g o Mt o u

Pk A e 0! Leaanh

!
A LA e e e AR e R R R R A “ LRE S RS R AR))

\

el ke 2 AR L. el Sianh Lo

Sl ot)

« Use “deltas” across versions (i.e., tuple differences)
» Better when changes across versions are small

» Performance of queries across versions poor

Some Experimental Results

Data Size Load Time Repo Size Checkout Avg. Commit Avg,

(GB) (sec) (MB) (ms) (ms)
git 1 615 375 2100 5400
Decibel 1 7 1002 4 5
git 2 16 204 5620 242 000 31400
Decibel 2 12 2011 8 6
Comparing git and Decibel (Hybrid)
Single-version Scan on a Multi-version Scan on a
Flat Version Graph Deep Version Graph
350 Scaling Number of Branches 2500 Scaling Number of Branches
m— 10 m— 10
5555 — 50 50
m— 100 2000 100
250
g 556 g 1500
ﬁ 150 % 1000
100
500
0 .-— ._— 0 I II I
Version Tuple Hybrid Version Tuple Hybrid

First First First First

Open Research Questions

e Handling schema changes
® Would like to version schemas along with data

® More complex compression problems

® Better compression algorithms for more efficient handling
of large numbers of versions

® Handling deletes and merges more cleanly

® Especially conflicts during merges

® Interactions with other database components

® Concurrency, Recovery, Query Processing and Optimization, etc.

Scenario 2: Files in Data Lakes

DEX: Delta-oriented EXecution Engine

Built as a “git” extension
Supports standard checkout/commit etc., operations against files

DEX CLI)

Storage

r .
l
l
. Query I ‘I
Gl _ Graph Processor I [
translation Builder i !
l l
S oJ
é_ \N- , ¢
Delta Storage Version Graph Storage

Git
Storage {;:

Backend Data Store

Storage cost is the space required to store a set of versions

100 MB 101 MB 102 MB

= |

(100 + 101 + 102)]
= 303 MB

ll
ll

Recreation cost is the time* required to access a version

> [@
] 100 MB EiP-
— . (100 + 101 + 102) > D @
[9 - 3093 MB J 101 MB -
Send entire version 102 MB > A
Recreation cost = 10 cost

A delta between versions is a file which allows constructing
one version given the other

delete =

addmm

|]

| |

— Directed delta
7 deletem add m

o | | deletems add m

| |

[

Undirected delta

=

Example: Unix diff, xdelta, XOR, etc.

A delta has its own storage cost
and recreation cost, which,

in general, are independent of
each other

Storage-Recreation Tradeoff

(—| Scenario 1
::jjBG MB

100 MB

10 MB

Storage cost
=(100+30+10)

=140 MB
g

(—l Scenario 2 |—\

30 MB .
Storage cost

. - (100+30+11)
11 MB
141 MB
100 MB

J

100|/MB 130|MB

v v

149 MB

|

Total Access Cost
= 370 MB

- v

100 MB 130/{MB 1190 MB
v v v
=2 B (3,
|
Total Access Cost

= 341 MB

(—l Scenario 3 |—\
.Stor‘age cost

. =(110+5+10)
©MB _175 mB
110 MB

- J

115/MB 110/MB 120 MB
v v v

3 |
Total Access Cost

= 345 MB

Storage-Recreation Tradeoff

Given

1) a set of versions

2) partial information about deltas between versions

Find a Storage Solution that:

® minimizes total recreation cost given a storage budget, or
® minimizes max recreation cost given a storage budget

Storage Recreation Cost Undirected Directed Directed
Cost Case, A=® | Case,A=® | Case, AzD
P1 min C R <o Vi PTime, Minimum Cost Arborescence (MCA)
P2 C<w min {max{R.| 1 <i<n}} PTime, Shortest Path Tree (SPT)
P3 C< min{Y R} NP-hard, NP-hard, LMG Algorithm
; : LAST* Alg .
P4 C<pB min {max{R. | 1 <i<n}} NP-hard, MP Algorithm
P5 min C r.R=<86 NP-hard, NP-hard, LMG Algorithm
; : LAST* Alg ;
P6 min C max{R,|1<i<n}<0 NP-hard, MP Algorithm

Baselines

“Null” Version

Minimize Storage Cost — | Minimize Recreation Cost
Recreation Cost: No = | | =) | Storage Cost: No
constraint 7 constraint

{ 1

r)

25 [= = = =
I 28
3
26
20 S 2
\- S \- = —
Minimum Cost Arborescence (MCA) Shortest Path Tree (SPT)
Edmonds’ algorithm Dijkstra’s algorithm

Time complexity = O(E + V logV) Time complexity = O(E logV)

Scenario 3: Distributed

Document Store

Designed as a wrapper on top of a key-value store to support versioning
Key design goal of not modifying the key-value store

Key Value Store (Apache Cassandra)

Application Server

O

CREATE BRANCH...
COMMIT
GET DOCUMENT(S) FROM V.

Data Model

Vo

{Ilidll: 0,
“name”: { “fn” : “John”,
IIInII: IlDoell}’
“dob” : {01-01-80)},

Vi

DELETE <id : 2>
UPDATE <id: 1>
INSERT <id : 3>

{Ilidll: 0,
“name”: { “fn” : “John”,
IIInII : IIDoeII},
“dob” : {01-01-80},

~

<Ko> “height” : 175,
“‘wt” : 170,
“bp” : { “sys” : 120, “dia” : 80}
\’
{“id”: 1,
“name”: { “fn” : “Eric”,
“In” : “Smith”},
. dob” : {04-05-85},
<Ky> “height” : 185,
“‘wt” : 180,
“bp” : { “sys” : 110, “dia” : 70}
_
e
“name”: { “fn” : “Tina”,
“In” : “Brown”},
dob” : {05-11-82},
<K,>

“height” : 165,
“‘wt” : 158,
“bp” : { “sys” : 125, “dia” : 75}

_

<Ko> “height” : 175,
“wt” : 170,
“bp” : { “sys” : 120, “dia” : 80}
_ Y,
(T 1 ™
“name”: { “fn” : “Eric”,
“In” : “Smith”},
“dob” : {04-05-85},
<ky> “height” : 185,
“wt” : 180,
“bp” : { “sys” : 130, “dia” : 85}
_ Y,
{“id”: 3, \
“name”: { “fn” : “Anna”,
“In” : “Hayden™},
dob” : {25-05-80},
<K3>

“height” : 160,
“wt” : 148,
“bp” : { “sys” : 115, “dia” : 70}

_ J

Data Model: Composite Keys

Vo

{Ilidll: 0,
“name”: { “fn” : “John”,
IIInII: IlDoell}’
“dob” : {01-01-80},

Vi

DELETE <id : 2>
UPDATE <id: 1>
INSERT <id : 3>

<Ky,Vo>

[“id”: 0,
“name”: { “fn” : “John”,
“In” : “Doe”},
“dob” : {01-01-80},
“height” : 175,
“wt” : 170,
“bp” : { “sys” : 120, “dia” : 80}

_

~

<Ko> “height” : 175,
“‘wt” : 170,
“bp” : { “sys” : 120, “dia” : 80}
_
{“id”: 1,
“name”: { “fn” : “Eric”,
“In” : “Smith”},
. dob” : {04-05-85},
<Ky> “height” : 185,
“‘wt” : 180,
“bp” : { “sys” : 110, “dia” : 70}
_
{ “id”: 2,
Ilnamell: { £ nll: IITI'naII,
“In” : “Brown”},
dob” : {05-11-82},
<K,>

“height” : 165,
“‘wt” : 158,
“bp” : { “sys” : 125, “dia” : 75}

_

<K;,V;>

(T,
“name”: { “fn” : “Eric”,
“In” : “Smith”},
“dob” : {04-05-85},
“height” : 185,
“‘wt” : 180,
“bp” : { “sys” : 130, “dia” : 85}

_

J

<Ks3,V;>

{“id”: 3,
“name”: { “fn” : “Anna”,
“In” : “Hayden™},
“dob” : {25-05-80},
“height” : 160,
“wt” : 148,
“bp” : { “sys” : 115, “dia” : 70}

_ J

~

RStore: Architecture

Key Value Store (Apache Cassandra)

hun hun hun hun
Map, Map, Map,., Maps,.,
[Chunk,] [Chunk,] [Chunk,,_,] [Chunk,,_,]

Ingests versions Application Server }@ i i H.
. andles query
commg;gz’g by the requests from the
users
, Data Query
ver ;2?3,21 L r/;egest Placement Processing
Module Module

Client @ i i

Places records into chunks;
constructs the different
maps

Version Chunk
Map

RStore: Overview

® Designed to support a wide range of retrieval queries,
including partial version retrieval

® Based on creating chunks of similar records to minimize
storage footprint
® Employs several different partitioning algorithms to create chunks

Results in much fewer queries to the back-end key value
store
® ... by minimizing the number of chunks that a version spans

Outline

» DataHub: Overview
» OrpheusDB

» TardisDB

» Forkbase

&

Motivation

» Database systems don’t support versioning =2 entire

datasets get copied during collaborative work
° e.g., gene annotation datasets, or protein interaction networks

» OrpheusDB: Bolt-on versioning for RDBMS

o Support versioning on top of an RDBMS, without modifications

> Allow standard SQL-based querying of the tables within the
versions

Storage Options (1)

a. Table with Versioned Records

Proteinl Protein2 grehiggg (?r%?]%(;u 22;2‘: vid
ENSP273047 | ENSP261890 0 53 0 v,
ENSP273047 | ENSP261890 0 53 83 Vs,
ENSP273047 | ENSP261890 0 53 83 v,
ENSP273047 | ENSP235932 0 87 v,
ENSP273047 | ENSP235932 0 87 v,
ENSP273047 | ENSP235932 0 87 v,
ENSP300413 | ENSP274242 | 426 164 v,
ENSP300413 | ENSP274242 | 426 164 v,
ENSP300413 | ENSP274242 426 164 Vs
ENSP300413 | ENSP274242 | 426 164 v,
ENSP309334 | ENSP346022 227 975 v,
ENSP309334 | ENSP346022 227 975 v,
ENSP332973 | ENSP300134 0 83 A
ENSP332973 | ENSP300134 0 83 Va4
ENSP472847 | ENSP365773 225 0 73 Vs
ENSP472847 | ENSP365773 | 225 0 73 v,

Simple and supports querying individual
versions

High duplication -- a tuple in 100
versions is copied 100 times

A simple “branch” requires a full copy of
the tuples in that version

Approach taken by temporal databases
- Store a timestamp with each tuple
- Doesn’t work with branching etc.

Storage Options (2)

b. Combined Table

Proteinl Protein2 glﬁliggg (:roe?]%c;u i;):i)épnr vlist
ENSP273047 | ENSP261890| 0 53 0 {v,}
ENSP273047 | ENSP261890| 0 53 83 [vyv,)
ENSP273047 | ENSP235932| 0 87 0 [vivyva)
ENSP300413 | ENSP274242 | 426 0 164 | {vivyvs v,
ENSP309334 | ENSP346022| 0 227 975 [vyv,)
ENSP332973 | ENSP300134| 0 0 83 {vyvy)
ENSP472847 | ENSP365773 | 225 0 73 vy v,
— M\)

'l Y

data attributes

versioning attribute

Requires efficient support for querying
over arrays

A simple “branch” requires modifying the
arrays for all tuples in that version

Storage Options (3)

Separate out the versioning information in a different set of tables
Need to do a join to retrieve the version information
Option 1: store a version list each record

- A new version will require updating many tuples
Option 2: store a record list with each version

c. Data Table + Versioning Table

rid Proteinl Protein2 gﬁiggg ?r%?ﬁ:%u %ggi)(()%r
Iy | ENSP273047 | ENSP261890 0 53 0

I, | ENSP273047 | ENSP235932 0 87 0

r, | ENSP300413 | ENSP274242 | 426 0 164
r, | ENSP309334 | ENSP346022 227 975
r. | ENSP273047 | ENSP261890 53 83

re | ENSP332973 | ENSP300134 83

r, | ENSP472847 | ENSP365773| 225 73

rid vlist

' (v}

I v v, v,)
I3 [V vy vy vy)
"4 (vy,vy]

I's {vsvy)

I's (Vs vl

ry [V3,V4]
c.i. Split-by-vlist

vid rlist

Vi {ryryrsl
V2 (ryryr,)
V3 [ryrsrers)
vy | {rarararsrers)

c.ii. Split-bv-rlist

OrpheusDB Version Control API

» Collaborative Versioned Dataset (CVD)
> Arelation + versions of that relation

> Version graph: DAG that maintains derivation information
> All tuples/records in a CVD are “immutable”

o Each relation assumed to have a "primary key”

» APIs:

> checkout: materialize a version as a regular table within the
database

* Only the user who issue checkout has access to the table

+ Can support “merge” operation to generate a single table as a union
of multiple versions of the table

OrpheusDB Version Control API

» APIs:

o commit: Add a modified table as new version to the CVD

* Need to figure out which records changed from the parent (original)
version

* Use “primary key” for this purpose

* Any changes from the parent version result in a new records in the CVD
(all records are immutable in the CVD)

* If ‘checkout” was done with multiple versions, then the new version
has all of those as parents

> Can do checkout to, and commit from, a CSV file

* Need additional information to do the mappings
o diff: compare two version and output the difference
° init, create_user, config, etc...

OrpheusDB Version Control API

» SQL Commands

o Can directly run SQL queries on specific version, without having
to materialize it

SELECT ... FROM VERSION [vid] OF CVD [cvd], ...

SELECT * FROM VERSION 1, 2 OF CVD Interaction
WHERE coexpression > 80 LIMIT 50;

» Additional constructs to apply an aggregate across
versions, identify versions with a specific property, etc.

System Architecture

» Implemented as a layer on top of a relational database

SQL
Command

Query Translator Access Controller Partition Optimizer
Record Manager Version Manager | |Provenance Manager
v SQLs

Translation Layer

________ Database Communlcator - "

Checkout Tables Part|t|on
Informatlon

Figure 2. ORPHEUSDB Architecture

Storing CVDs

» Five approaches
> Combined table (1(b))
o Split-by-vlist
o Split-by-rlist

b. Combined Table

c. Data Table + Versioning Table

Proteinl Protein2 glret:ggg cr:rc:aon(i:ceu %g;ﬁ]r vlist rid Proteinl Protein2 'c\)lrehiggg Cr::)ecr)]%%u %gsei)é?]r
ENSP273047 | ENSP261890 0 53 0 {Vl} ry; | ENSP273047 | ENSP261890 0 53 0
ENSP273047 | ENSP261890 0 53 83 { Vs, V4} r, | ENSP273047 | ENSP235932 0 87 0
ENSP273047 | ENSP235932 0 87 0 { Vi, Vy, V4} r, | ENSP300413 | ENSP274242 | 426 0 164
ENSP300413 | ENSP274242 | 426 0 164 { Vi, Vy V3, V4} r, | ENSP309334 | ENSP346022 227 975
ENSP309334 | ENSP346022 0 227 975 { vy v4} r; | ENSP273047 | ENSP261890 53 83
ENSP332973 [ENSP300134 | 0 0 83 [vs v, r. | ENSP332973 | ENSP300134 83
ENSP472847 | ENSP365773 | 225 0 73 {vyv,) r, | ENSP472847 | ENSP365773| 225 73
N B W

~

data attributes

versioning attribute

R ——

rid vlist

'y (v}

I {V1,V2 v,
s {Vl, Vs, V3,V4}
I's {Vz, v,

I's {3, vyl

I's (Vs vy

Ty [V3, V41
c.i. Split-by-vlist

vid rlist

Vi {r1,r2, rs)
V2 {ryrsr,l
V3 (ryrsrers)
Va {rz,r3,r4,r5,r6,r7}

c.ii. Split-by-rlist

Storing CVDs

» Five approaches
> Combined table (1(b))

o Split-by-vlist
> Split-by-rlist
| Command | SQL Translation with combined-table | SQL Translation with Split-by-vlist | SQL Translation with Split-by-rlist
SELECT * into T' FROM dataTable, SELECT * into T' FROM dataTable,
% : : (SELECT rid AS rid_tmp (SELECT unnest(rlist) AS rid tmp
CHECKOUT \S/\I/EI—IIIIEEISE AFI;IQXY—E .I?FiO@MV“TSt FROM versioningTable FROM versioningTable
Vi WHERE ARRAY[v;] <@ vlist) AS tmp | WHERE vid = v;) AS tmp
WHERE rid = rid tmp WHERE rid = rid tmp

UPDATE versioning Table

UPDATE T SET vlist=vlist4-v; SET vlist=vlist-tv.
- J

COMMIT WHERE rid in WHERE rid o VALUES (v;,
(SELECT rid FROM T') (SELECT rid FROM T) ARRAY[SELECT rid FROM T'])

INSERT INTO versioningTable

Table 1: SQL Queries for Checkout and Commit Commands with Different Data Models

Storing CVDs

» Five approaches
> Combined table (1(b))
Split-by-vlist
Split-by-rlist
Delta-based approach (also called “version-first”)
- Store each version as a “delta” from one of its parent versions

o

o

o

* Need a new regular table for each version
* Lower storage space if most changes are local
- Harder to do queries

A-Table-Per-Version (naive baseline)

m

o

Comparing the Options

» No single winner
» Split-by-rlist provides best balance

B Adable-per-varsion B Combinedlabile Spti-Lry-vitat Sphtbyrist Della-based
4q- * 101(. 1 - 60-

D _J = lU) -

O 30 l ! A

=g 55| g*

A 10

3] 2o

g3 (= | o

o .c 10°) 2

: 10 1€ | 3%

A 1§ | 10

| 10° g !
sl m SCI 2N SCISM S0 8M SUI LM 901 2M " 1 °£ 1M 29 :
0. Storage Sire Comparison b Comme Time Comparison c Checkont Trne Comoanson

Figure 3: Companison Between Different Data Models

&

Version Derivation Metadata

» Version-level provenance maintained in a metadata table

» Supports “schema changes” during commit
o Somewhat simplistic -- hard to handle this in general

vid | parents | checkoutT | commitT | msg attributes
v, | NULL NULL t, la, a,a,a,a4)
Va (v, L t3 {01,02,03,04,06}
V3 (v, t by {01,02,03,04,06}
Vy {Vz,v3} (s (g {01,02,03,04,06}
a. Metadata Table b. Version Graph

Figure 4: Metadata Table and Version Graph (Fixed Schema)

Optimization Problem

» Too much redundant processing when checking out a version if..
° .. number of records in the version << total number of records

» Use "Partitioning”

° e.g., imagine 100 versions
10 versions, each containing a large fraction of t1, ..., t_100
10 versions, each containing a large fraction of t_101, ..., t_200

o If all stored together, then checking out a version requires processing 100 * 100 =
10000 records

o |If stored in groups of 10 versions, then checking out requires processing only 100
records

» In general, won’t find such “clean” partitioning
o But, depending on the datasets, it might still provide significant benefits

» Also partitioning increases total storage cost

Optimization Problem

» Problem is too hard to solve optimally
» Instead, design efficient heuristics

' P, Iy

Iy r,

I's P, r'e
V4 r, 7 r,
a. Bipartite Graph b. lllustration of Partitioning

lgure 6: Version-Record Bipartite Graph & Partitioning

Outline

» DataHub: Overview
» OrpheusDB

» TardisDB

» Forkbase

&

Overview

» Motivation analogous to OrpheusDB
o Versioning within a relational database system
o Supports many use cases that need to be done outside DBMS

» But:
o Support multiple tables instead a single table per version
° For a main-memory database system

» Paper also develops a benchmark for versioning based
on Wikipedia

MusaeusDB

» Expands upon OrpheusDB data model, with keeping
version information in a separate table

» Main difference:

o Extra attribute “tableid” in the “version table” to allow for
multiple tables

vid | tableid | rlist rid | user_id | user name - ;
- — —— == rid | user_id | task_name
vid | parent message vl | tasks {1} 1 1 Carla Cat ER 1 “inein
vl initial commit vl | users {1,2} 2 2 Carl Tomcat Emg
Meta table Version table User table Task table

Figure 2: Schema: Version table and meta table for managing the commits on the left; tables containing the data on the right;
the record id serves as a key for every tuple.

MusaeusDB

» Private namespaces for users when they checkout

init: add the requisite tables and attributes
to an existing database for versioning

checkout: copies the tables to a private
namespace

commit: update the global repository with
changed/inserted/deleted tuples

Versiontable: {[vid,tablename,rlist]}
Metatable: {[vid,parent,message]}

<public>

<reponame>| <tablename>: {[rid,...]}

checkoutl Tcommit

Dataset: {[tablename,tableid]}
Checkouts: {[tablename,dataset,versionid]}

<user>

<checkoutname> | <tablename>: {[...]}

Figure 3: Distinction between global and local (user) space in
MusaeusDB: The global space maintains a separate names-
pace for each repository, relations can be checked out for
modifications in the user’s namespace.

MusaeusSQL

» Unified interface on top

Operation
Main +execute(): string DBMSConnector
+transform(): void
JaN
| | PSQL| |HyPer| Mock
Versioning SQL

Commit j Checkout SELECT UPDATE

DELETE INSERT

Figure 4: Architecture of MusaeusSQL: Operations are di-
vided into basic SQL and versioning commands; SQL com-
mands are transformed as the extended schema is hidden,
versioning commands are translated into SQL queries.

TardisDB

» Integrated versioning into a main-memory system

» Uses the “tuple-first” approach from Decibel
o Each tuple is associated with a bitmap telling which versions it

belongs to

» For query processing, only the Scan operator changes

LoopGen scanLoop(funcGen,{{"index",cg_size_t(Qul)}});
cg_size_t tid(scanLoop.getLoopVar(0)); {
LoopBodyGen bodyGen(scanLoop);
auto branchId = _context.executionContext.branchlId;
IfGen visibilityCheck(isVisible(tid,branchId)); {
produce(tid);
}
}

cg_size_t nextIndex = tid+1ul;
scanLoop.loopDone(nextIndex<tableSize ,{nextIndex});

Listing 7: The modified scan loop: the table scan operator,
which iterates over all tuples, has been modified to check
the visibility of the tuple first. A tuple is visible when the
corresponding bit of the versioning bitmap is set.

TardisDB
» Uses MVCC for the versioning

Tuple Update Time | Master Branch1 Branch?2 Branch 3

Bitmaps oldest latest '
- | 1| insert A
! 2 | insert B
I 3| insert C
— H : 4 | insert D
: B|12 5 | branch 1
L] § ; 6 | update A
TC.» ! Cl13 7 update B
E ! 8 update C
=== = : 'Branch 1 9 | branch 2
! D|4 ! 10 update A
(L | . 11 update B
Hinln : : 12 | insert E
! E|12] 12 branch 3
LILIL I 13 insert C
<5 % Master @ 14 delete A
§ = 15 delete B
M

Figure 6: Adaption of multi-version concurrency control for versioning (left): bitmaps for each branch indicate the included
tuples; an insert increases the size of all bitmaps. Updates in the master branch are handled in place with a pointer to the
previous version, updates from other branches are prepended. Tuples receive a unique timestamp, their colour indicates the
creator branch. Descendance tree (middle) determines the tuple visibility for the corresponding history (right).

e

AR

TardisDB Publications Webinterface Sourcecode Contact

TardisDB Webinterface

create table professors (id integer not null, name text not null);

create table lectures (id integer not null, name text not null, lecturer integer not null);
create branch empty from master;

insert into professors values (2125, 15

’
insert into lectures values (4052, 5 PP
create branch firstTerm from master;
insert into professors values (2126,);
insert into lectures values (5216, , 2126);
create branch secondTerm from master;
create branch sabbatical from secondTerm;

update lectures version sabbatical set lecturer = 2126 where id = 4052;

select p.name, l.name from lectures version sabbatical 1, professors version sabbatical p where p.id =
l.lecturer;
Query University :‘ Compilation: 9.074ms , Execution: 0.095ms
. secondTerf@ master
@ cmpty
@ sabbatical OfirstTerm
hame name
logic russel
bioethics russel

LUIM — Denartment of Informatics: Chair lll' Database Svstems 2020

Outline

» DataHub: Overview
» OrpheusDB

» TardisDB

» Forkbase

&

Motivation

» Many applications need a storage layer that support
versioning and tamper-resistance
o Collaborative applications (i.e., motivation for DataHub)
> Blockchain systems (distributed tamperproof ledgers)

» Forkbase: a storage engine that:
> Supports versioning and tamper-resistance
o Splits up large objects into data chunks for deduplication
o Support general “fork semantics” (branch and merge)
o Simple APIs

> Scales well to many nodes through two-layer partitioning

Forkbase Design

Document Blockchain Git Collaborative
Hosting Analytics Applications
s :) a
Access Control Data Security Consistency Semantic Views
L branch-based integrity merge semantics) (application-oriented)
(put(object) — version)
get(version) — {objects} Data Access APIs
L merge({objects}) - object) (data types)
Lo e
Branch Representation
(versioning, forking)

Chunk Storage
(deduplication, immutability)

A
A
B

Figure 1: The ForkBase stack offers advanced fea-
tures to various classes of modern applications.

Data Model and APIs

» FObject: a generic object type that is versioned

struct FObject {
enum type; // object type
bytel] key; // object key
byte[] data; // object value
int depth; // distance to the first version
vector<uid> bases; // versions it derives from
byte[] context; // reserved for application

Figure 2: The FObject structure.

e Put(key, <branch>, value) - write a new value to
the specified branch. When branch is absent, write to
the default branch.

e Get(key, <branch>) - read the latest value from the
specified branch. When branch is absent, read from
the default branch.

Tamper resistance through linking
versioning using a cryptographic
hash chain (i.e., a blockchain)

Fork and Merge Operations

» FObject: a generic object type that is versioned

PRSP 5

Wy w,

(a) (b)

w

Figure 3: Generic fork semantics supported for
both (a) fork on demand and (b) fork on conflict.

ForkBaseConnector db;

// Put a blob to the default master branch
Blob blob {"my value"};

db.Put("my key", blob);

// Fork to a new branch

db.Fork("my key", "master", "new branch");

// Get the blob
FObject value = db.Get("my key", "new branch");
if (value.type() != Blob)
throw TypeNotMatchError;
blob = value.Blob();

// Remove 10 bytes from beginning and append new
// Changes are buffered in client

blob.Remove (0, 10);

blob.Append("some more");

// Commit changes to that branch

db.Put("mv kev", "new branch", blob);

Implementation

Application Data Access Requests

ForkBase [

Master

Ve N
Servlet

A 4

Request Handler
Get/Put/Fork/Merge/Rename/...

v v

Access Control —?« Branch Table N\
) | }

Object Manager Servlet Servlet ves

v v

Chunkable Primitive
blob/list/map/set/... bool/number/string/... - j ~ j

v v l
Chunk Storage Client

Data Type Manager Local Storage

\ 4 \ 4 A 4

Distributed Chunk Storage

Figure 5: Architecture of a ForkBase cluster.
e

Pattern-Oriented-Splitting Tree

{«split-key, H({elementsp} | Index Chunk

{elements} | Data Chunk

M| Chunk Meta

Ml Chunk Pattern

SN NN N

MVM ZM %M%M M

Figure 6: Pattern-Oriented-Splitting Tree (POS-
tree) resembling a BT -tree and Merkle tree.

&

NN

NN
=

Pattern-Oriented-Splitting Tree

» Leaf nodes are created through “content-based slicing”
o Treat the data as sequence of bytes

> Look for the first k-byte sequence that hashes to a fixed pattern
(e.g., “...0000000”)

> Create first leaf node that ends at that sequence
> Look for the next k-byte sequence...

o Use “rolling hashes” to speed this up (lot of work in storage
deduplication)

» Index nodes use the same idea, but using the “cid” of
the leaves instead of hashing
> Those have some randomness properties since they are

cryptographic hashes

Forkbase Use Cases

» Hyperledger Blockchain

o Can replace the underlying state storage (Merkle Tree) with
Forkbase

» Wiki Engine
> For collaborative editing workflows
o Can directly store the data into Forkbase

» Collaborative Analytics

m

Summary

» Immutability increasingly seen as a must-have in many
data management systems
> Versioning, tamper-resistance, fork/branch semantics etc.

» Many open challenges

> Storage management, support for queries/transactions, schema
evolution, analytics, ...

m

