
Instructor: Amol Deshpande
amol@cs.umd.edu

} DataHub: Overview

} OrpheusDB

} TardisDB

} Forkbase

Collaborative Data Science
l Widespread use of “data science” in many many domains

1 2 3 4

5
CSV from
data.gov

EDIT: Correct
“addresses”

EDIT: Append Column
NEW: Add file

EDIT: Project
columns

EDIT: Partition
rows

A typical data analysis workflow

1000s of
versions

Collaborative Data Science
l Widespread use of “data science” in many many domains

l Increasingly the “pain point” is managing the process,
especially during collaborative analysis
l Many private copies of the datasets è Massive redundancy
l No easy way to keep track of dependencies between datasets
l Manual intervention needed for resolving conflicts
l No efficient organization or management of datasets
l No way to analyze/compare/query versions of a dataset

l Ad hoc data management systems (e.g., Dropbox) used
l Much of the data is unstructured so typically can’t use DBs
l The process of data science itself is quite ad hoc and exploratory
l Scientists/researchers/analysts are pretty much on their own

DataHub: A Collaborative Data Science Platform

The one-stop solution for
collaborative data science and
dataset version management

http://data-hub.org
Work being done in collaboration with
Sam Madden (MIT) and
Aditya Parameswaran (UIUC)

http://data-hub.org/

DataHub: A Collaborative Data Science Platform

• a dataset management system –
import, search, query, analyze a large
number of (public) datasets

• a dataset version control system –
branch, update, merge, transform large
structured or unstructured datasets

• an app ecosystem and hooks for
external applications (Matlab, R,
iPython Notebook, etc)

DataHub Architecture

Versioned Datasets,
Version Graphs,

Indexes, Provenance

Dataset Versioning Manager

I: Versioning API and Version Browser

ingest vizualize etc.
Client

Applications

DataHub: A Collaborative Data Analytics Platform

II: Native App Ecosystem

query
builder

III: Language Agnostic Hooks

DataHub
Notebook

No, because they typically use fairly simple algorithms
and are optimized to work for code-like data

100 versions

LF Dataset (Real World)
#Versions = 100
Avg. version size = 423 MB

gzip = 10.2 GB

svn = 8.5 GB

git = 202 MB

*this = 159 MB

Can we use Version Control Systems (e.g., Git)?

No, because they typically use fairly simple algorithms
and are optimized to work for code-like data
Git ends up using large amounts of RAM for large files

DON’T!

Use extensions*

Can we use Version Control Systems (e.g., Git)?

No, because they typically use fairly simple algorithms
and are optimized to work for code-like data
Git ends up using large amounts of RAM for large files
Querying and retrieval functionalities are primitive, and
revolve around single version and metadata retrieval
No way to specify queries like:
• identify all datasets derived of dataset A that satisfy property P
• identify all predecessor versions of version A that differ from it

by a large number of records
• rank a set of versions according to a scoring function
• find the version where the result of an aggregate query is

above a threshold
• find parent records of all records in version A that satisfy

certain property

Can we use Version Control Systems (e.g., Git)?

DSVC Data Model [CIDR 2015]

l Schema-later Data Representation

l Base model is that of key-value pairs

l Version Graph
l Information about how versions are created and relate to each other

l Versioning API
l create, branch, merge, commit, rollback, checkout

l “hooks” to run scripts before/after/during “commits”

l Transaction mode (similar to a typical server-based DBMS), vs local
mode (similar to “git”)
l Former is not straightforward to do

Query Language[CIDR 2015]

l [[Note: A more comprehensive proposal in a later paper]]

l Supports queries on the datasets within a version, as well as
queries about the version graph

l Ability to mix those two as well

contain one or more predicates, this way the query input involves
“data”, and the output is once again “data”. On the other hand, the
square in the upper left corner allows us to specify which version
or versions we would like the standard SQL queries to be executed.
For instance, VQL supports the query

SELECT * FROM R(v124), R(v135)
WHERE R(v124).id = R(v135).id

where v124, v135 are version numbers. Once again, the query
specifies “data”, but also specifies one or more “versions”.

The squares in the right hand side are a bit different: in this case,
the result is one or more version numbers. Here, we add to SQL
two new keywords: VNUM and VERSIONS, which can be used
in the following manner:

SELECT VNUM FROM VERSIONS(R)
WHERE EXISTS (SELECT * FROM R(VNUM)
WHERE name = ‘Hector’)

This query selects all versions where a tuple with name Hector ex-
ists. The attribute VNUM refers to a version number, while VER-
SIONS(R) refers to a special single-column table containing all the
version numbers of R. The example above is a VQL query that fits
in the right bottom corner of the chart, while a VQL query that
provides a version as input and asks for similar versions (based on
user-specified predicates) would fit into the right top corner.

SELECT VNUM FROM VERSIONS(R)
WHERE 10 > DIFF_RECS(R, VNUM, 10)

where DIFF_RECS is a special function that returns the number
of records that are different across the two versions. VQL will
support several such functions that operate on versions (e.g., DIS-
TANCE(R, 10, 20) will return the derivation distance between the
versions 10 and 20 of R (the result is -1 if 20 is not a descendant of
10 in the version graph).)

Naturally, there are examples that span multiple regions in the
quadrant as well: as an example, the following query selects the
contents of a relation S from the first time when a large number of
records were added between two versions of another relation R in
the same dataset.

SELECT * FROM S(SELECT MIN(VR1.VNUM) FROM
VERSIONS(R) VR1, VERSIONS(R) VR2
WHERE DISTANCE(R,VR1.VNUM,VR2.VNUM)=1
AND DIFF_RECS(R,VR1.VNUM,VR2.VNUM)>100)

Research Challenges: The query above is somewhat unwieldy;
fleshing out VQL into a more complete, easy-to-use language is
one of the major research challenges we plan to address during our
work. In particular, we would like our eventual query language to
be able to support the following features, as well as those discussed
above, while still being usable:
• Once a collection of VNUMs is retrieved, performing operations

on the data contained in the corresponding versions is not easily
expressible via VQL as described. For example, users may want
the ability to use a for clause, e.g., do X for all versions satis-
fying some property. For this, concepts from nested relational
databases [15] may be useful, but would need further investiga-
tion.

• Specifying and querying for a subgraph of versions is also not
easy using VQL described thus far; for this, we may want to use
a restricted subset of graph query languages or semi-structured
query languages.

• Users should be able to seamlessly query provenance metadata
about versions, as well as derived products (specified via hooks),
in addition to the versions, e.g., find all datasets that used a spe-
cific input tuple found to be erroneous later, or find datasets that
were generated by applying a specific cleaning program.

Version 0
Sam, $50, 1

Amol, $100, 1

Master
+ Mike, $150, 1

Version 1
+ Aditya, $80, 1

Version 1.1
+ Amol, $100, 0

T1

T2 T3

T4
visible bit

Deletes Amol

Figure 3: Example of relational tables created to encode 4 ver-
sions, with deletion bits.
In addition to VQL, which is a SQL-like language, DSVC will
also support a collection of flexible operators for record splitting
and string manipulation, including regex functionality, similarity
search, and other operations to support the data cleaning engine, as
well as arbitrary user-defined functions.

4. STORAGE REPRESENTATIONS
In this section, we describe two possible ways to represent a ver-

sion graph: the version-first representation, where, for each ver-
sion, we (logically) store the collection of records that are a part of
that version, possibly in terms of deltas from a chain of parent ver-
sions. The second way of representing dataset versions is what we
call a record-first representation, where we (logically) store each
record, and for each record, we store the (compressed) list of ver-
sions that that record appears in. We describe these two approaches
in turn.

4.1 Version-First Representation
The version-first representation is the most natural, because, as

in git-like systems, it makes it easy for users to “check out” all of
the records in a particular version.

Abstractly, we can think of encoding a branching history of ver-
sions in a storage graph, with one or more fully materialized ver-
sions, and a collection of deltas representing non-materialized ver-
sions. Retrieval queries can be answered by “walking” this storage
graph appropriately. Note that nodes in this storage graph may not
have a one-to-one correspondance with nodes in the version graph,
as we may want to add additional nodes to make retrieval more
efficient. We describe this idea in more detail below.

For relational datasets, it is relatively straightforward to emulate
this abstract model in SQL. Whenever the user performs a branch

command, we simply create a new table to represent changes made
to the database after this branch was created. This new table has
the same schema as the base table. In addition, each record is ex-
tended with a deleted bit that allows us to track whether the record
is active in a particular version. To read the data as a particular
version, a we can take the union of all of the ancestor tables of
a particular version, being careful to filter out records removed in
later versions. In addition, updates need to be encoded as deletes
and re-insertions. An example of this approach is shown in Fig-
ure 3. Here, there are two branches. At the head of the “Master”
branch, the table contains Sam, Amol, Mike. At the head of the
Version 1 branch (labeled “Version 1.1”), the table contains Sam,

Aditya because the Amol has been marked as deleted. It is pos-
sible to implement this scheme completely in SQL, in any existing
database using simply filters and union queries. Of course, the per-
formance may be suboptimal, as lots of UNIONs and small tables
can inhibit scan and index performance, so investigating schemes
that encode versions below the SQL interface will be important.
Additionally, non-relational datasets may be difficult to encode in
this representation, requiring other storage models.

In the rest of this section, we describe challenges in implement-
ing this version-first representation, in either the SQL-based or inside-

contain one or more predicates, this way the query input involves
“data”, and the output is once again “data”. On the other hand, the
square in the upper left corner allows us to specify which version
or versions we would like the standard SQL queries to be executed.
For instance, VQL supports the query

SELECT * FROM R(v124), R(v135)
WHERE R(v124).id = R(v135).id

where v124, v135 are version numbers. Once again, the query
specifies “data”, but also specifies one or more “versions”.

The squares in the right hand side are a bit different: in this case,
the result is one or more version numbers. Here, we add to SQL
two new keywords: VNUM and VERSIONS, which can be used
in the following manner:

SELECT VNUM FROM VERSIONS(R)
WHERE EXISTS (SELECT * FROM R(VNUM)
WHERE name = ‘Hector’)

This query selects all versions where a tuple with name Hector ex-
ists. The attribute VNUM refers to a version number, while VER-
SIONS(R) refers to a special single-column table containing all the
version numbers of R. The example above is a VQL query that fits
in the right bottom corner of the chart, while a VQL query that
provides a version as input and asks for similar versions (based on
user-specified predicates) would fit into the right top corner.

SELECT VNUM FROM VERSIONS(R)
WHERE 10 > DIFF_RECS(R, VNUM, 10)

where DIFF_RECS is a special function that returns the number
of records that are different across the two versions. VQL will
support several such functions that operate on versions (e.g., DIS-
TANCE(R, 10, 20) will return the derivation distance between the
versions 10 and 20 of R (the result is -1 if 20 is not a descendant of
10 in the version graph).)

Naturally, there are examples that span multiple regions in the
quadrant as well: as an example, the following query selects the
contents of a relation S from the first time when a large number of
records were added between two versions of another relation R in
the same dataset.

SELECT * FROM S(SELECT MIN(VR1.VNUM) FROM
VERSIONS(R) VR1, VERSIONS(R) VR2
WHERE DISTANCE(R,VR1.VNUM,VR2.VNUM)=1
AND DIFF_RECS(R,VR1.VNUM,VR2.VNUM)>100)

Research Challenges: The query above is somewhat unwieldy;
fleshing out VQL into a more complete, easy-to-use language is
one of the major research challenges we plan to address during our
work. In particular, we would like our eventual query language to
be able to support the following features, as well as those discussed
above, while still being usable:
• Once a collection of VNUMs is retrieved, performing operations

on the data contained in the corresponding versions is not easily
expressible via VQL as described. For example, users may want
the ability to use a for clause, e.g., do X for all versions satis-
fying some property. For this, concepts from nested relational
databases [15] may be useful, but would need further investiga-
tion.

• Specifying and querying for a subgraph of versions is also not
easy using VQL described thus far; for this, we may want to use
a restricted subset of graph query languages or semi-structured
query languages.

• Users should be able to seamlessly query provenance metadata
about versions, as well as derived products (specified via hooks),
in addition to the versions, e.g., find all datasets that used a spe-
cific input tuple found to be erroneous later, or find datasets that
were generated by applying a specific cleaning program.

Version 0
Sam, $50, 1

Amol, $100, 1

Master
+ Mike, $150, 1

Version 1
+ Aditya, $80, 1

Version 1.1
+ Amol, $100, 0

T1

T2 T3

T4
visible bit

Deletes Amol

Figure 3: Example of relational tables created to encode 4 ver-
sions, with deletion bits.
In addition to VQL, which is a SQL-like language, DSVC will
also support a collection of flexible operators for record splitting
and string manipulation, including regex functionality, similarity
search, and other operations to support the data cleaning engine, as
well as arbitrary user-defined functions.

4. STORAGE REPRESENTATIONS
In this section, we describe two possible ways to represent a ver-

sion graph: the version-first representation, where, for each ver-
sion, we (logically) store the collection of records that are a part of
that version, possibly in terms of deltas from a chain of parent ver-
sions. The second way of representing dataset versions is what we
call a record-first representation, where we (logically) store each
record, and for each record, we store the (compressed) list of ver-
sions that that record appears in. We describe these two approaches
in turn.

4.1 Version-First Representation
The version-first representation is the most natural, because, as

in git-like systems, it makes it easy for users to “check out” all of
the records in a particular version.

Abstractly, we can think of encoding a branching history of ver-
sions in a storage graph, with one or more fully materialized ver-
sions, and a collection of deltas representing non-materialized ver-
sions. Retrieval queries can be answered by “walking” this storage
graph appropriately. Note that nodes in this storage graph may not
have a one-to-one correspondance with nodes in the version graph,
as we may want to add additional nodes to make retrieval more
efficient. We describe this idea in more detail below.

For relational datasets, it is relatively straightforward to emulate
this abstract model in SQL. Whenever the user performs a branch

command, we simply create a new table to represent changes made
to the database after this branch was created. This new table has
the same schema as the base table. In addition, each record is ex-
tended with a deleted bit that allows us to track whether the record
is active in a particular version. To read the data as a particular
version, a we can take the union of all of the ancestor tables of
a particular version, being careful to filter out records removed in
later versions. In addition, updates need to be encoded as deletes
and re-insertions. An example of this approach is shown in Fig-
ure 3. Here, there are two branches. At the head of the “Master”
branch, the table contains Sam, Amol, Mike. At the head of the
Version 1 branch (labeled “Version 1.1”), the table contains Sam,

Aditya because the Amol has been marked as deleted. It is pos-
sible to implement this scheme completely in SQL, in any existing
database using simply filters and union queries. Of course, the per-
formance may be suboptimal, as lots of UNIONs and small tables
can inhibit scan and index performance, so investigating schemes
that encode versions below the SQL interface will be important.
Additionally, non-relational datasets may be difficult to encode in
this representation, requiring other storage models.

In the rest of this section, we describe challenges in implement-
ing this version-first representation, in either the SQL-based or inside-

Dataset Versioning and Compression

l Many different ”overlap” structures
l Dependent heavily on the type of data, and the types of

modifications on them

l Varying computational environments
l Distributed vs centralized

l ”Check out” or “in situ” processing

l Different ”retrieval” requirements
l Full versions vs small portions of versions

l Analysis across one version or many versions

l Need support for ACID transactions and rich querying
l For operation databases, or data warehouses

Scenario 1: Relational Database

RDBMS

SQL

Results

CREATE BRANCH …
SELECT * FROM BRANCH…

Requirements
- Create a branch of the database
- Query or modify specific branches
- Merge branches
- …

Challenges
- Not feasible to “check out” locally – need to support “in situ” processing
- Need to maintain many branches simultaneously in a single server
- Need to redesign internal data structures, transaction engines, etc.

Scenario 2: Files in Data Lakes

Requirements
- Create branch of a dataset or a group of them
- “Check out” to a local environment, and “check in”

modified versions
- Run analysis tasks against specific versions or across

versions efficiently

Challenges
- Very large files of different types
- Files may be individually sharded

Scenario 3: Distributed Document Store

Queries
Updates

Results

Requirements
- Create a branch of the database
- Query or modify specific branches,

but simpler queries
- Merge branches
- …

Challenges
- Need to support “in situ” processing
- Must minimize the number of queries to the backend store
- Need to support ”key-based” retrieval
- Documents typically large (in MBs), with small changes

Scenario 1: Relational
Databases

Decibel [VLDB’18]

Versioned
queries

Versioned Storage Manager

Query Executor

Sec. 4 Storage Schemes
(One active at a time)

Buffer Pool

Version read/
update requests Iterators

Sec. 2

Figure 1: Decibel Architecture

Figure 2: Two Example Workflows
(joins, aggregates) is done in the (unmodified) SimpleDB query
planning layer. The changes we made for Decibel were localized
to the storage layer. The storage layer reads in data from one of
the storage schemes, storing pages in a fairly conventional buffer
pool architecture (with 4 MB pages), exposing iterators over differ-
ent single versions of data sets. The buffer pool also encompasses
a lock manager used for concurrency control. In addition to this
buffer pool we store an additional version graph on disk and in
memory. We focus in this paper on the versioned storage manager
and versioning data structures, with support for versioning oper-
ations in several different storage schemes, not the design of the
query executor.

By implementing Decibel inside of a standard relational DBMS,
we inherit many of the benefits of such systems. For example,
fault tolerance and recovery can be done by employing standard
write-ahead logging techniques on writes, and role-based access
control primitives can be applied to different versions of the same
table. We leave a complete exploration of these aspects of Decibel
to future work.

2.2 Decibel Model and API
We first describe the logical data model that we use, and then

describe the version control API, all in the context of Figure 2,
where (a) and (b) depict two evolution patterns of a dataset.

2.2.1 Data Model.

Decibel uses a very flexible logical data model, where the main
unit of storage is the dataset. A dataset is a collection of rela-

tions, each of which consists of a collection of records. Each re-
lation in each dataset must have a well-defined primary key; the
primary key is used to track records across different versions or
branches, and thus is expected to be immutable (a change to the
primary key attribute, in effect, creates a new record). For the same
reason, primary keys should not be reused across semantically dis-
tinct records; however, we note that Decibel does not attempt to
enforce either of these two properties.

2.2.2 Version Control Model

Decibel uses a version control model that is similar to that of
software version control systems like git. As some readers may
not be familiar with these systems, we now describe the model in

the context of Decibel. In Decibel, a version consists of a point-in-time
snapshot of one or more relations that are semantically grouped to-
gether into a dataset (in some sense, it is equivalent to the notion of
a commit in git/svn). For instance, Versions A—D in Figure 2(a)
all denote versions of a dataset that contain two relations, R and S.
A version, identified by an ID, is immutable and any update to a
version conceptually results in a new version with a different ver-
sion ID (as we discuss later in depth, the physical data structures
are not necessarily immutable and we would typically not want to
copy all the data over, but rather maintain differences). New ver-
sions can also be created by merging two or more versions (e.g.,
Version F in Figure 2(b)), or through the application of transfor-
mation programs to one or more existing versions (e.g., Version B
from Version A in Figure 2(a)). The version-level provenance that
captures these processes is maintained as a directed acyclic graph,
called a version graph. For instance, the entire set of nodes and
edges in Figure 2(a) or (b) comprises the version graph.

In Decibel, a branch denotes a working copy of a dataset. There
is an active branch corresponding to every leaf node or version in
the version graph. Logically, a branch is comprised of the history
of versions that occur in the path from the branch leaf to the root
of the version graph. For instance, in Figure 2(a) there are two
branches, one corresponding to Version D and one corresponding
to C. Similarly, in Figure 2(b) there is one branch corresponding
to version F, and another branch corresponding to version E. The
initial branch created is designated the master branch, which serves
as the authoritative branch of record for the evolving dataset. Thus,
a version can be seen as capturing a series of modifications to a
branch, creating a point-in-time snapshot of a branch’s content. The
leaf version, i.e., the (chronologically) latest version in a branch is
called its head; it is expected that most operations will occur on the
heads of the branches. Although our current implementation does
not support access control, we envision that each branch could have
different access privileges for different users.

2.2.3 Decibel Operational Semantics

We now describe the semantics of each of the core operations
of the version control workflow described above as implemented in
Decibel. Although the core operations Decibel supports are superfi-
cially similar to operations supported by systems like git, they dif-
fer in several ways, including: i) Decibel supports centralized mod-
ifications to the data and needs to support both version control com-
mands as well as data definition and manipulation commands; ii)
unlike git-like systems that adopt an ordered, line-by-line seman-
tics, Decibel treats a dataset as an unordered collection of records,
where records are identified by primary keys; as a result, many op-
erations take on different semantics (as described below); iii) Deci-
bel supports queries comparing multiple versions, enabling a class
of operations that are very difficult in systems like git.

We will describe these operations in the context of Figure 2(a).
Users interact with Decibel by opening a connection to the Deci-

bel server, which creates a session. A session captures the user’s
state, i.e., the commit (or the branch) that the operations the user
issues will read or modify. Concurrent transactions by multiple
users on the same version (but different sessions) are isolated from
each other through two-phase locking.
Init: The repository is initialized, i.e., the first version (Version A
in the figure) is created, using a special init transaction that cre-
ates the two tables as well as populates them with initial data (if
needed). At this point, there is only a single Master branch with a
single version in it (which is also its head).
Commit and Checkout: Commits create new versions of datasets,
adding an extra node to one of the existing branches in the version

Modified the “storage manager” for MIT SimpleDB RDBMS

Supports branching and merging, and queries across versions (e.g., diffs)

Storage Strategies
Key Observation: Differences across versions/branches are presence or
absence of individual tuples (or tuple attributes)

Can be captured as a binary “membership” matrix

B1 B2 B3 ... …

t1
t2
t3
…
…

Typically: tall and narrow
branches << # tuples

Compressing binary matrixes is a
well-studied problem (NP-Hard in general)

However, we need to support:
- Efficient updates
- Retrieval of one or more versions
- Queries on specific columns (branches)
- Queries across pairs or groups of
versions

Branches

Tu
pl

es

Tuple-first Storage Strategies

Compressed bitmap per branch, vs per tuple

• Also need to consider how the bitmaps will be compressed (e.g., run-
length encoding) and how they will be mapped to memory block

• Commit operations easier for bitmap-per-branch, but tuple inserts
faster in bitmap-per-tuple

• Queries across branches, including ”merges”, can exploit bitmap
operations

Version-first Storage Strategies

• Use “deltas” across versions (i.e., tuple differences)

• Better when changes across versions are small

• Performance of queries across versions poor

Some Experimental Results
mode, inserts into a particular branch are batched together before
being flushed to disk. In our evaluation, we only consider the in-
terleaved mode as we believe it more accurately represents the case
of users making concurrent modifications to different branches. In
interleaved mode, each insert is performed to a randomly selected
branch in line with the selected branching strategy: for deep, only
the tail branch accepts inserts; for flat, all child branches are se-
lected uniformly at random; for the data science and data curation
strategies, any active branch is selected uniformly at random (recall
that those strategies may “retire” branches after a certain point).
The benchmark additionally supports insert skew for non-uniform
insertion patterns; our evaluation of the scientific strategy favors
the mainline branch with a 2-to-1 skew, for example.

4.3 Evaluated Queries
The queries targeted in our benchmark are similar to those in

Table 1; we summarize them briefly here.
Query 1: Scan and emit the active records in a single branch.
Query 2: Compute the difference between two branches, B1 and
B2. Emit the records in B1 that do not appear in B2.
Query 3: Scan and emit the active records in a primary-key join of
two branches, B1 and B2, that satisfy some predicate.
Query 4: A full dataset scan that emits all records in the head of
any branch that satisfy a predicate. The output is a list of records
annotated with their active branches.

Our benchmarking software, including a data generator and bench-
mark driver (based on YCSB [9]), is available at http://datahub.
csail.mit.edu/www/decibel.

5. EVALUATION
In this section, we present our evaluation of Decibel on the ver-

sioning benchmark. The goals of our evaluation are to compare
the relative performance of the version-first, tuple-first, and hybrid
storage schemes for the operations described in Section 4. We first
provide a brief overview of git’s performance on our versioning
benchmark, using a wrapper designed to interface with git. We
then examine how each of the models scales with the number of
branches introduced to the system. Next, we examine relative per-
formance across the query types described in Section 4.3 for a fixed
number of branches. We then examine the performance of each
model’s commit and snapshot operations. Finally, we conclude by
comparing loading times for each storage model.

We note that for tuple-first and hybrid, we focus our evaluation
on a branch-oriented bitmap due to its suitability for our commit
procedure. Additionally, we note that disk caches were flushed
prior to each operation to eliminate the effects of OS page caching.

5.1 Comparison with git
To determine git’s suitability for database versioning, we im-

plemented the Decibel API using git as a storage manager. Our
implementation works by creating a local git repository, and call-
ing commands (e.g. branch) in place of Decibel API calls. We
use the same benchmark outlined in Section 4.2, and configure git
with default settings. Table 3 shows some representative perfor-
mance numbers for the deep branching strategy with 10 separate
branches and commits every 10 MB. As the data load times show,
git has considerable difficulty working with medium data set sizes
and commit frequencies. We attempted an experiment on a 10 GB
data set, but terminated it after two days. We ran git repack to
compress data before profiling version checkouts. Memory con-
sumption used by git for each commit was equal to the total data
set size at that point (git uses a differencing algorithm which com-
pares entire versions against one another in memory). We show in

Data Size Load Time Repo Size Checkout Avg. Commit Avg.
(GB) (sec) (MB) (ms) (ms)

git 1 615 375 2100 5400
Decibel 1 7 1002 4 5

git 2 16 204 5620 242 000 31 400
Decibel 2 12 2011 8 6

Table 3: git Performance vs. Decibel (Hybrid)

Section 5.4 that Decibel can handle the commit and checkout of
millions of database snapshots on large relational data sets, using
less than 1% space overhead for commit metadata.

The reasons for this poor performance are that git stores each
version as a separate object, and performs periodic and aggressive
packing operations to create “packfiles” that contain several ob-
jects, either in their entirety or using a delta encoding scheme. As
these experiments show, computing the diffs can be extremely slow,
especially with large files as git exhaustively compares objects to
each other to find the best delta encoding to use. In addition, git
needs to compute SHA-1 hashes for each commit (proportional to
data set size), and runs blobs through DEFLATE for compression.

5.2 Scaling Branches
Here we examine how each storage model scales with the num-

ber of branches introduced into the version graph. We focus on
deep and flat branching strategies as these patterns represent logi-
cal extremes to designed to highlight differences between the three
designs. Moreover, we examine only Query 1 (scan one branch)
and Query 4 (scan all branches) as these queries also represent two
fundamental extremes of versioning operations.

Figure 7a shows how the storage models scale across structures
with 10, 50, and 100 branches for Query 1 on the flat branching
strategy. As tuple-first stores records from all versions into a single
heap file, ordered by time of insertion, we see single-branch scan
times for tuple-first greatly underperform both version-first and hy-
brid. Note that the latencies for version-first and hybrid decline
here since the total data set size is fixed at 100GB, so each branch
in the flat strategy contains less data as the number of branches is
increased. On the other hand, tuple-first’s performance deteriorates
as the bitmap index gets larger. In contrast, Query 1 on the deep
structure (not shown for space reasons) results in uniform laten-
cies as expected (250 seconds ±10%) for each storage model and
across 10, 50, and 100 branches as all branches must be scanned.

Unlike Query 1, Query 4 (which finds all records that satisfy a
non-selective predicate across versions) shows where version-first
performs poorly. The results are shown in Figure 7b. This figure
shows the performance issue inherent to the version-first model for
Query 4. Performing this query in version-first requires a full scan
of the entire structure to resolve all differences across every branch.
The tuple-first and hybrid schemes, on the other hand, are able to
use their bitmap indexes to efficiently answer this query.

The intuition in Section 3 is validated for the version- and tuple-first
models: the tuple-first scheme performs poorly in situations with
many sibling branches which are updated concurrently, while the
version-first model performs poorly on deep multi-version scans.
Additionally, in both cases hybrid is comparable with the best scheme,
and exhibits good scalability with the number of branches.

5.3 Query Results
Next, we evaluate all three storage schemes on the queries and

branching strategies described in Section 4. All experiments are
with 50 branches. Note that the deep and flat strategies were loaded
with a fixed 100 GB dataset, but the scientific and curation strate-
gies were loaded with a fixed number of branches to result in a
dataset as close to 100 GB as possible, but achieving this exactly

Comparing git and Decibel (Hybrid)

Single-version Scan on a
Flat Version Graph

Multi-version Scan on a
Deep Version Graph

Open Research Questions

l Handling schema changes
l Would like to version schemas along with data
l More complex compression problems

l Better compression algorithms for more efficient handling
of large numbers of versions

l Handling deletes and merges more cleanly
l Especially conflicts during merges

l Interactions with other database components
l Concurrency, Recovery, Query Processing and Optimization, etc.

Scenario 2: Files in Data Lakes

DEX: Delta-oriented EXecution Engine

Figure 2: System Architecture of DEX; our focus in this work is largely on
the design of the “Query Processor.”

snapshots, in this work, we describe our models and associated terms
in the context of a dataset version control system.

2.1 User Data Model
The user data model in DEX has two main abstractions – datafile,
and version – that form the basis of all user interactions.

As mentioned above, a datafile is a file whose contents are
interpreted as set of records. The user specifies a record separator
when a datafile is added in the system. Within a datafile, we
consider a record as an unstructured sequence of bytes. The only
constraint we impose, however, is that a datafile cannot contain
identical records: two records are said to be identical if they both
have the same sequence of bytes. For instance, textual flat files such
as CSV or logs can be seen as containing one record per line.

A version is a point-in-time snapshot of one or more datafiles
typically residing in a directory on the user’s file system. A version,
identified by a unique ID, is immutable, and can be created at any
point in time by any user who has access to the repository.

In addition to datafiles and versions, DEX also captures the
version-level provenance – derivation and transformation relation-
ships among the set of all versions – in a data structure called the
version graph. Nodes in a version graph correspond to versions
and edges capture relationships such as derivation, branching, trans-
formation, etc, between two versions. One important use of this
metadata is to allow rich queries over versions and provenance by
means of any supported language/API (e.g., [16]). In this work, we
do not limit ourselves to any particular API, but instead assume that
we have an efficient method for finding all the datafiles referenced
in a query. Since a version graph is typically much smaller than
the datafile contents, it can be kept and traversed in memory to
identify the versions that are referenced in a query.

We use the following notation to formalize the above discussion.
Let V be the set of all versions. Each version V ∈ V contains
a finite number of datafiles, say, V = {A1, . . . , At }. Let A =
{A1, . . . , An} be the set of all datafiles across all versions. Note
that it is possible for a datafile to be present in more than one
version – this happens when the said datafile is not modified in the
respective versions. The set of datafiles that appear in a version
are kept track of as metadata in the corresponding node of the version
graph. Let Aa = {r1, . . . , rm} be the set of records contained in
datafile Aa . As mentioned before, no two records in a datafile
are identical, i.e., ri ! rj, ∀ri, rj ∈ Aa .

2.2 Queries
We now describe the semantics of each of the core operations that
are the primary focus of this paper.
Checkout: Checkouts are the primary mechanism for reading off
older versions of a dataset and it is imperative that a storage manager
support them. Any version or any set of datafiles can be checked

out, and the result is copied to the location suggested by the user (typ-
ically, it will be a directory on the user’s machine). When a checkout
query is issued, the version graph is consulted to identify the set
of datafiles that comprise it. Specifically, the checkout operation
takes as input a set of k ≥ 1 datafiles Ak = {Ax1, . . . , Axk } ⊂ A
and outputs k files, one for each datafile. Henceforth, we use the
notation Checkout(Ak) to denote the checkout operation.
Intersect: The intersect operation is an important operation when
comparing the contents of a datafile that was modified across
multiple versions. Similar to set intersection, given a set of k ≥ 2
datafiles Ak = {Ax1, . . . , Axk } ⊂ A, the intersect operation
outputs a single datafile containing records that appear in all
datafiles in Ak , i.e., {r : r ∈ Ax1 ∧ · · · ∧ r ∈ Axk }. We use the
notation I(Ak) to denote the intersect operation.
Union: The union operation, denoted by U(Ak), returns a single
datafile containing records that appear in any of the datafiles in
Ak , i.e., {r : r ∈ Ax1 ∨ · · · ∨ r ∈ Axk }.
t-Threshold: Given as input a set of k ≥ 3 datafiles Ak and an
integer 1 < t < k, the t-threshold operation, denoted by Tt (Ak),
returns a single datafile that contains records appearing in at least
t of the datafiles in Ak . This generalizes the above operations –
t = 1 and t = k correspond to union and intersection respectively.

Although the above set of operations is intended as a starting
point for investigating the nascent topic of query processing over
deltas, these operations already enable many interesting queries.
For example, comparing the results of intersection, union and/or
t-Threshold across the versions of an evolving dataset can provide
insights into the evolution process (e.g., properties of the records
that change frequently vs those that remain static). Intersection or
t-Threshold across the results of different machine learning pipelines
on the same input dataset can help us identify which types of records
are difficult to predict correctly, which can help an analyst steer the
training process. Further, t-Threshold can return, for each record,
a bitmap indicating the versions to which it belongs; depending on
the semantics of the versions being queried, that information could
be used for a variety of purposes including correlation analysis,
anomaly detection, and visualizations. Finally, if specific analyses of
interest are known in advance, materialized views (e.g., projections,
results of aggregate queries or joins) can be computed in advance as
the dataset versions are ingested; by exploiting the overlaps, these
materialized views could be persisted cheaply in the storage engine
itself. Although this requires a priori planning, the benefits at the
time of querying could be tremendous. We plan to build support for
defining and automatically materializing such views in future work,
in addition to enriching the class of operations themselves.

2.3 System Architecture
The DEX prototype is built on top of git and has three major
components: (a) a set of command line utilities, DEX CLI, written
in Python, to allow the user to interact with the repository in the
form of the standard add, commit, checkout, etc., commands (similar
to git), (b) the Storage Graph Builder which decides how best to
store a collection of datafiles (i.e., which deltas to use), and (c)
the Query Processor, written in Java, that executes user queries
against the deltas. DEX CLI passes through the version management
tasks not pertaining to datafiles to git; the user may specify a file
to be a datafile through a flag to the add command, and any tasks
pertaining to those files are sent to the Storage Graph Builder (in
case of add or commit) or the Query Processor.

The Storage Graph Builder performs tasks that primarily answer
the question: When we have a collection of thousands of versions
of datafiles, how to identify a good storage solution, i.e., decide

[VLDB’15, VLDB’16, SIGMOD’17]Built as a “git” extension
Supports standard checkout/commit etc., operations against files

Storage cost is the space required to store a set of versions

Recreation cost is the time* required to access a version

100 MB 102 MB101 MB

(100 + 101 + 102)
= 303 MB

Send entire version
Recreation cost = IO cost

(100 + 101 + 102)
= 303 MB

100 MB

101 MB

102 MB

A delta between versions is a file which allows constructing
one version given the other

1

Directed delta

2delete add

1

Undirected delta

2delete add

delete add

Example: Unix diff, xdelta, XOR, etc.

A delta has its own storage cost
and recreation cost, which,
in general, are independent of
each other

Storage cost
=(100+30+10)
=140 MB

100 MB
30 MB 10 MB

Scenario 1

100 MB 130 MB 140 MB

Total Access Cost
= 370 MB

Storage cost
=(100+30+11)
=141 MB

100 MB

30 MB

11 MB

Scenario 2

100 MB 130 MB 110 MB

Total Access Cost
= 341 MB

Storage cost
=(110+5+10)
=125 MB

110 MB

5 MB

10 MB

Scenario 3

115 MB 110 MB 120 MB

Total Access Cost
= 345 MB

Storage-Recreation Tradeoff

Storage-Recreation Tradeoff
Given
1) a set of versions
2) partial information about deltas between versions
Find a Storage Solution that:
l minimizes total recreation cost given a storage budget, or
l minimizes max recreation cost given a storage budget

“Null” Version

20

25

26

28

7

9

23

Shortest Path Tree (SPT)
Dijkstra’s algorithm
Time complexity = O(E logV)

Minimize Recreation Cost
Storage Cost: No
constraint

25
28

26
20

Minimum Cost Arborescence (MCA)
Edmonds’ algorithm
Time complexity = O(E + V logV)

Minimize Storage Cost
Recreation Cost: No
constraint

25

20
7

3

EvaluationBaselines

Scenario 3: Distributed
Document Store

RStore

Key Value Store (Apache Cassandra)

Application Server

[SoCC’17, ICDE’18]

CREATE BRANCH…
COMMIT
GET DOCUMENT(S) FROM VERSION…

Designed as a wrapper on top of a key-value store to support versioning
Key design goal of not modifying the key-value store

Data Model

{ “id”: 0,
“name”: { “fn” : “John”,

“ln” : “Doe”},
”dob” : {01-01-80},
“height” : 175,
“wt” : 170,
”bp” : { “sys” : 120, “dia” : 80}

}

<K0>

{ “id”: 1,
“name”: { “fn” : “Eric”,

“ln” : “Smith”},
”dob” : {04-05-85},
“height” : 185,
“wt” : 180,
”bp” : { “sys” : 110, “dia” : 70}

}

<K1>

{ “id”: 2,
“name”: { “fn” : “Tina”,

“ln” : “Brown”},
”dob” : {05-11-82},
“height” : 165,
“wt” : 158,
”bp” : { “sys” : 125, “dia” : 75}

}

<K2>

{ “id”: 0,
“name”: { “fn” : “John”,

“ln” : “Doe”},
”dob” : {01-01-80},
“height” : 175,
“wt” : 170,
”bp” : { “sys” : 120, “dia” : 80}

}

<K0>

{ “id”: 1,
“name”: { “fn” : “Eric”,

“ln” : “Smith”},
”dob” : {04-05-85},
“height” : 185,
“wt” : 180,
”bp” : { “sys” : 130, “dia” : 85}

}

<K1>

{ “id”: 3,
“name”: { “fn” : “Anna”,

“ln” : “Hayden”},
”dob” : {25-05-80},
“height” : 160,
“wt” : 148,
”bp” : { “sys” : 115, “dia” : 70}

}

<K3>

DELETE <id : 2>
UPDATE <id: 1>
INSERT <id : 3>

V1V0

Data Model: Composite Keys

{ “id”: 0,
“name”: { “fn” : “John”,

“ln” : “Doe”},
”dob” : {01-01-80},
“height” : 175,
“wt” : 170,
”bp” : { “sys” : 120, “dia” : 80}

}

<K0>

{ “id”: 1,
“name”: { “fn” : “Eric”,

“ln” : “Smith”},
”dob” : {04-05-85},
“height” : 185,
“wt” : 180,
”bp” : { “sys” : 110, “dia” : 70}

}

<K1>

{ “id”: 2,
“name”: { “fn” : “Tina”,

“ln” : “Brown”},
”dob” : {05-11-82},
“height” : 165,
“wt” : 158,
”bp” : { “sys” : 125, “dia” : 75}

}

<K2>

{ “id”: 0,
“name”: { “fn” : “John”,

“ln” : “Doe”},
”dob” : {01-01-80},
“height” : 175,
“wt” : 170,
”bp” : { “sys” : 120, “dia” : 80}

}

<K0 ,V0 >

{ “id”: 1,
“name”: { “fn” : “Eric”,

“ln” : “Smith”},
”dob” : {04-05-85},
“height” : 185,
“wt” : 180,
”bp” : { “sys” : 130, “dia” : 85}

}

<K1 ,V1>

{ “id”: 3,
“name”: { “fn” : “Anna”,

“ln” : “Hayden”},
”dob” : {25-05-80},
“height” : 160,
“wt” : 148,
”bp” : { “sys” : 115, “dia” : 70}

}

<K3 ,V1>

DELETE <id : 2>
UPDATE <id: 1>
INSERT <id : 3>

V1V0

RStore: Architecture

...

Chunk0 Chunk1 Chunkn-2 Chunkn-1

Key Value Store (Apache Cassandra)

Data
Placement

Module

Query
Processing

Module

Version Ingest
Module

Application Server

Client

Chunk
Map0

Chunk
Mapn-1

Chunk
Mapn-2

Chunk
Map1

Version Chunk
Map

Ingests versions
committed by the

users

Places records into chunks;
constructs the different

maps

Handles query
requests from the

users

[SoCC’17, ICDE’18]

RStore: Overview

l Designed to support a wide range of retrieval queries,
including partial version retrieval

l Based on creating chunks of similar records to minimize
storage footprint
l Employs several different partitioning algorithms to create chunks

l Results in much fewer queries to the back-end key value
store
l … by minimizing the number of chunks that a version spans

[SoCC’17, ICDE’18]

} DataHub: Overview

} OrpheusDB

} TardisDB

} Forkbase

} Database systems don’t support versioning à entire
datasets get copied during collaborative work
◦ e.g., gene annotation datasets, or protein interaction networks

} OrpheusDB: Bolt-on versioning for RDBMS
◦ Support versioning on top of an RDBMS, without modifications
◦ Allow standard SQL-based querying of the tables within the

versions

Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

vid

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP235932 0 87 0

ENSP273047 ENSP235932 0 87 0

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP309334 ENSP346022 0 227 975

ENSP332973 ENSP300134 0 0 83

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

ENSP472847 ENSP365773 225 0 73

rid vlist

r1

r7

r2

r3

r 4

r5

r6

{v1 }

{v1, v2, v4}

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4 }

{v3, v4 }

vid rlist

{r1,r2,r3}

{r2,r3,r 4}

{r3,r5,r6,r7}

{r2,r3,r 4,r5,r6,r7}

v1

v2

v3

v4

v4

v4

v4

v4

v1

v2

a. Table with Versioned Records b. Combined Table c. Data Table + Versioning Table

c.ii. Split-by-rlist

c.i. Split-by-vlist

v3

v3

data attributes versioning attribute

v1

v4

v2

v1

v4

v2

v3

v3

Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

vlist

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

rid Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP273047 ENSP261890 0 53 83

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

{v1 }

{v1, v2, v4}

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4}

{v3, v4}

r1

r7

r2

r3

r 4

r5

r6

Figure 1: Data models for protein interaction data [48]

tamp is not sufficient here, as a version can have multiple parents
(a merge) and multiple children (branches). Therefore, a scalar
timestamp value cannot capture which versions a tuple belongs to.
To remedy this issue, one can use the array data type capabilities
offered in current database systems, by replacing the version num-
ber attribute with an array attribute vlist containing all of the ver-
sions that each record belongs to, as depicted in Figure 1(b). This
reduces storage overhead from replicating tuples. However, when
adding a new version (e.g., a clone of an existing version) this ap-
proach leads to extensive modifications across the entire relation,
since the array will need to be updated for every single record that
belongs to the new version. Another strategy is to separate the data
from the versioning information into two tables as in Figure 1(c),
where the first table—the data table—stores the records appear-
ing in any of the versions, while the second table—the versioning
table—captures the versioning information, or which version con-
tains which records. This strategy requires us to perform a join of
these two tables to retrieve any versions. Further, there are two
ways of recording the versioning information: the first involves
using an array of versions, the second involves using an array of
records; we illustrate this in Figure 1(c.i) and Figure 1(c.ii) re-
spectively. The latter approach allows easy insertion of new ver-
sions, without having to modify existing version information, but
may have slight overheads relative to the former approach when it
comes to joining the versioning table and the data table. Overall,
as we demonstrate in this paper, the latter approach outperforms
other approaches (including those based on recording deltas) for
most common operations.

Challenges in Balancing Storage and Querying Latencies. Un-
fortunately, the previous approach still requires a full theta join
and examination of all of the data to reconstruct any given ver-
sion. Our next question is if we can improve the efficiency of the
aforementioned approach, at the cost of possibly additional stor-
age. One approach is to partition the versioning and data tables
such that we limit data access to recreate versions, while keeping
storage costs bounded. However, as we demonstrate in this paper,
the problem of identifying the optimal trade-off between the stor-
age and version retrieval time is NP-HARD, via a reduction from
the 3-PARTITION problem. To address this issue, we develop an ef-
ficient and light-weight approximation algorithm, LYRESPLIT, that
enables us to trade-off storage and version retrieval time, provid-
ing a guaranteed ((1 + �)`, 1

�)-factor approximation under certain
reasonable assumptions—where the storage is a (1 + �)`-factor of
optimal, and the average version retrieval time is 1

� -factor of op-
timal, for any value of parameter � 1 that expresses the de-
sired trade-off. The parameter ` depends on the complexity of the
branching structure of the version graph. In practice, this algo-
rithm always leads to lower retrieval times for a given storage bud-
get, than other schemes for partitioning, while being about 1000⇥
faster than these schemes. Further, we adapt LYRESPLIT to an on-

line setting that incrementally maintains partitions as new versions
arrive, and develop an intelligent migration approach to minimize
the time taken for migration (by up to 10⇥).

Contributions. The contributions of this paper are as follows:
• We develop a dataset version control system, titled ORPHEUSDB,

with the ability to support both git-style version control com-
mands and SQL-like queries. (Section 2)

• We compare different data models for representing versioned
datasets and evaluate their performance in terms of storage con-
sumption and time taken for querying. (Section 3)

• To further improve query efficiency, we formally develop the
optimization problem of trading-off between the storage and
version retrieval time via partitioning and demonstrate that this
is NP-HARD. We then propose a light-weight approximation
algorithm for this optimization problem, titled LYRESPLIT, pro-
viding a ((1 + �)`, 1

�)-factor guarantee. (Section 4.2 and 4.1)
• We further adapt LYRESPLIT to be applicable to an online set-

ting with new versions coming in, and develop an intelligent
migration approach. (Section 4.3)

• We conduct extensive experiments using a versioning bench-
mark [37] and demonstrate that LYRESPLIT is on average 1000⇥
faster than competing algorithms and performs better in bal-
ancing the storage and version retrieval time. We also demon-
strate that our intelligent migration scheme reduces the migra-
tion time by 10⇥ on average. (Section 5)

2. ORPHEUSDB OVERVIEW
ORPHEUSDB is a dataset version management system that is

built on top of standard relational databases. It inherits much of the
same benefits of relational databases, while also compactly storing,
tracking, and recreating versions on demand. ORPHEUSDB has
been developed as open-source software (orpheus-db.github.io).
We now describe fundamental version-control concepts, followed
by the ORPHEUSDB APIs, and finally, the design of ORPHEUSDB.

2.1 Dataset Version Control
The fundamental unit of storage within ORPHEUSDB is a col-

laborative versioned dataset (CVD) to which one or more users can
contribute. Each CVD corresponds to a relation and implicitly con-
tains many versions of that relation. A version is an instance of the
relation, specified by the user and containing a set of records. Ver-
sions within a CVD are related to each other via a version graph—
a directed acyclic graph—representing how the versions were de-
rived from each other: a version in this graph with two or more
parents is defined to be a merged version. Records in a CVD are
immutable, i.e., any modifications to any record attributes result in
a new record, and are stored and treated separately within the CVD.
Overall, there is a many-to-many relationship between records and
versions: each record can belong to many versions, and each ver-
sion can contain many records. Each version has a unique version

- Simple and supports querying individual
versions

- High duplication -- a tuple in 100
versions is copied 100 times

- A simple “branch” requires a full copy of
the tuples in that version

- Approach taken by temporal databases
- Store a timestamp with each tuple
- Doesn’t work with branching etc.

- Requires efficient support for querying
over arrays

- A simple “branch” requires modifying the
arrays for all tuples in that version

Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

vid

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP235932 0 87 0

ENSP273047 ENSP235932 0 87 0

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP309334 ENSP346022 0 227 975

ENSP332973 ENSP300134 0 0 83

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

ENSP472847 ENSP365773 225 0 73

rid vlist

r1

r7

r2

r3

r 4

r5

r6

{v1 }

{v1, v2, v4}

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4 }

{v3, v4 }

vid rlist

{r1,r2,r3}

{r2,r3,r 4}

{r3,r5,r6,r7}

{r2,r3,r 4,r5,r6,r7}

v1

v2

v3

v4

v4

v4

v4

v4

v1

v2

a. Table with Versioned Records b. Combined Table c. Data Table + Versioning Table

c.ii. Split-by-rlist

c.i. Split-by-vlist

v3

v3

data attributes versioning attribute

v1

v4

v2

v1

v4

v2

v3

v3

Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

vlist

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

rid Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP273047 ENSP261890 0 53 83

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

{v1 }

{v1, v2, v4}

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4}

{v3, v4}

r1

r7

r2

r3

r 4

r5

r6

Figure 1: Data models for protein interaction data [48]

tamp is not sufficient here, as a version can have multiple parents
(a merge) and multiple children (branches). Therefore, a scalar
timestamp value cannot capture which versions a tuple belongs to.
To remedy this issue, one can use the array data type capabilities
offered in current database systems, by replacing the version num-
ber attribute with an array attribute vlist containing all of the ver-
sions that each record belongs to, as depicted in Figure 1(b). This
reduces storage overhead from replicating tuples. However, when
adding a new version (e.g., a clone of an existing version) this ap-
proach leads to extensive modifications across the entire relation,
since the array will need to be updated for every single record that
belongs to the new version. Another strategy is to separate the data
from the versioning information into two tables as in Figure 1(c),
where the first table—the data table—stores the records appear-
ing in any of the versions, while the second table—the versioning
table—captures the versioning information, or which version con-
tains which records. This strategy requires us to perform a join of
these two tables to retrieve any versions. Further, there are two
ways of recording the versioning information: the first involves
using an array of versions, the second involves using an array of
records; we illustrate this in Figure 1(c.i) and Figure 1(c.ii) re-
spectively. The latter approach allows easy insertion of new ver-
sions, without having to modify existing version information, but
may have slight overheads relative to the former approach when it
comes to joining the versioning table and the data table. Overall,
as we demonstrate in this paper, the latter approach outperforms
other approaches (including those based on recording deltas) for
most common operations.

Challenges in Balancing Storage and Querying Latencies. Un-
fortunately, the previous approach still requires a full theta join
and examination of all of the data to reconstruct any given ver-
sion. Our next question is if we can improve the efficiency of the
aforementioned approach, at the cost of possibly additional stor-
age. One approach is to partition the versioning and data tables
such that we limit data access to recreate versions, while keeping
storage costs bounded. However, as we demonstrate in this paper,
the problem of identifying the optimal trade-off between the stor-
age and version retrieval time is NP-HARD, via a reduction from
the 3-PARTITION problem. To address this issue, we develop an ef-
ficient and light-weight approximation algorithm, LYRESPLIT, that
enables us to trade-off storage and version retrieval time, provid-
ing a guaranteed ((1 + �)`, 1

�)-factor approximation under certain
reasonable assumptions—where the storage is a (1 + �)`-factor of
optimal, and the average version retrieval time is 1

� -factor of op-
timal, for any value of parameter � 1 that expresses the de-
sired trade-off. The parameter ` depends on the complexity of the
branching structure of the version graph. In practice, this algo-
rithm always leads to lower retrieval times for a given storage bud-
get, than other schemes for partitioning, while being about 1000⇥
faster than these schemes. Further, we adapt LYRESPLIT to an on-

line setting that incrementally maintains partitions as new versions
arrive, and develop an intelligent migration approach to minimize
the time taken for migration (by up to 10⇥).

Contributions. The contributions of this paper are as follows:
• We develop a dataset version control system, titled ORPHEUSDB,

with the ability to support both git-style version control com-
mands and SQL-like queries. (Section 2)

• We compare different data models for representing versioned
datasets and evaluate their performance in terms of storage con-
sumption and time taken for querying. (Section 3)

• To further improve query efficiency, we formally develop the
optimization problem of trading-off between the storage and
version retrieval time via partitioning and demonstrate that this
is NP-HARD. We then propose a light-weight approximation
algorithm for this optimization problem, titled LYRESPLIT, pro-
viding a ((1 + �)`, 1

�)-factor guarantee. (Section 4.2 and 4.1)
• We further adapt LYRESPLIT to be applicable to an online set-

ting with new versions coming in, and develop an intelligent
migration approach. (Section 4.3)

• We conduct extensive experiments using a versioning bench-
mark [37] and demonstrate that LYRESPLIT is on average 1000⇥
faster than competing algorithms and performs better in bal-
ancing the storage and version retrieval time. We also demon-
strate that our intelligent migration scheme reduces the migra-
tion time by 10⇥ on average. (Section 5)

2. ORPHEUSDB OVERVIEW
ORPHEUSDB is a dataset version management system that is

built on top of standard relational databases. It inherits much of the
same benefits of relational databases, while also compactly storing,
tracking, and recreating versions on demand. ORPHEUSDB has
been developed as open-source software (orpheus-db.github.io).
We now describe fundamental version-control concepts, followed
by the ORPHEUSDB APIs, and finally, the design of ORPHEUSDB.

2.1 Dataset Version Control
The fundamental unit of storage within ORPHEUSDB is a col-

laborative versioned dataset (CVD) to which one or more users can
contribute. Each CVD corresponds to a relation and implicitly con-
tains many versions of that relation. A version is an instance of the
relation, specified by the user and containing a set of records. Ver-
sions within a CVD are related to each other via a version graph—
a directed acyclic graph—representing how the versions were de-
rived from each other: a version in this graph with two or more
parents is defined to be a merged version. Records in a CVD are
immutable, i.e., any modifications to any record attributes result in
a new record, and are stored and treated separately within the CVD.
Overall, there is a many-to-many relationship between records and
versions: each record can belong to many versions, and each ver-
sion can contain many records. Each version has a unique version

- Separate out the versioning information in a different set of tables
- Need to do a join to retrieve the version information
- Option 1: store a version list each record

- A new version will require updating many tuples
- Option 2: store a record list with each version

Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

vid

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP235932 0 87 0

ENSP273047 ENSP235932 0 87 0

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP309334 ENSP346022 0 227 975

ENSP332973 ENSP300134 0 0 83

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

ENSP472847 ENSP365773 225 0 73

rid vlist

r1

r7

r2

r3

r 4

r5

r6

{v1 }

{v1, v2, v4}

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4 }

{v3, v4 }

vid rlist

{r1,r2,r3}

{r2,r3,r 4}

{r3,r5,r6,r7}

{r2,r3,r 4,r5,r6,r7}

v1

v2

v3

v4

v4

v4

v4

v4

v1

v2

a. Table with Versioned Records b. Combined Table c. Data Table + Versioning Table

c.ii. Split-by-rlist

c.i. Split-by-vlist

v3

v3

data attributes versioning attribute

v1

v4

v2

v1

v4

v2

v3

v3

Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

vlist

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

rid Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP273047 ENSP261890 0 53 83

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

{v1 }

{v1, v2, v4}

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4}

{v3, v4}

r1

r7

r2

r3

r 4

r5

r6

Figure 1: Data models for protein interaction data [48]

tamp is not sufficient here, as a version can have multiple parents
(a merge) and multiple children (branches). Therefore, a scalar
timestamp value cannot capture which versions a tuple belongs to.
To remedy this issue, one can use the array data type capabilities
offered in current database systems, by replacing the version num-
ber attribute with an array attribute vlist containing all of the ver-
sions that each record belongs to, as depicted in Figure 1(b). This
reduces storage overhead from replicating tuples. However, when
adding a new version (e.g., a clone of an existing version) this ap-
proach leads to extensive modifications across the entire relation,
since the array will need to be updated for every single record that
belongs to the new version. Another strategy is to separate the data
from the versioning information into two tables as in Figure 1(c),
where the first table—the data table—stores the records appear-
ing in any of the versions, while the second table—the versioning
table—captures the versioning information, or which version con-
tains which records. This strategy requires us to perform a join of
these two tables to retrieve any versions. Further, there are two
ways of recording the versioning information: the first involves
using an array of versions, the second involves using an array of
records; we illustrate this in Figure 1(c.i) and Figure 1(c.ii) re-
spectively. The latter approach allows easy insertion of new ver-
sions, without having to modify existing version information, but
may have slight overheads relative to the former approach when it
comes to joining the versioning table and the data table. Overall,
as we demonstrate in this paper, the latter approach outperforms
other approaches (including those based on recording deltas) for
most common operations.

Challenges in Balancing Storage and Querying Latencies. Un-
fortunately, the previous approach still requires a full theta join
and examination of all of the data to reconstruct any given ver-
sion. Our next question is if we can improve the efficiency of the
aforementioned approach, at the cost of possibly additional stor-
age. One approach is to partition the versioning and data tables
such that we limit data access to recreate versions, while keeping
storage costs bounded. However, as we demonstrate in this paper,
the problem of identifying the optimal trade-off between the stor-
age and version retrieval time is NP-HARD, via a reduction from
the 3-PARTITION problem. To address this issue, we develop an ef-
ficient and light-weight approximation algorithm, LYRESPLIT, that
enables us to trade-off storage and version retrieval time, provid-
ing a guaranteed ((1 + �)`, 1

�)-factor approximation under certain
reasonable assumptions—where the storage is a (1 + �)`-factor of
optimal, and the average version retrieval time is 1

� -factor of op-
timal, for any value of parameter � 1 that expresses the de-
sired trade-off. The parameter ` depends on the complexity of the
branching structure of the version graph. In practice, this algo-
rithm always leads to lower retrieval times for a given storage bud-
get, than other schemes for partitioning, while being about 1000⇥
faster than these schemes. Further, we adapt LYRESPLIT to an on-

line setting that incrementally maintains partitions as new versions
arrive, and develop an intelligent migration approach to minimize
the time taken for migration (by up to 10⇥).

Contributions. The contributions of this paper are as follows:
• We develop a dataset version control system, titled ORPHEUSDB,

with the ability to support both git-style version control com-
mands and SQL-like queries. (Section 2)

• We compare different data models for representing versioned
datasets and evaluate their performance in terms of storage con-
sumption and time taken for querying. (Section 3)

• To further improve query efficiency, we formally develop the
optimization problem of trading-off between the storage and
version retrieval time via partitioning and demonstrate that this
is NP-HARD. We then propose a light-weight approximation
algorithm for this optimization problem, titled LYRESPLIT, pro-
viding a ((1 + �)`, 1

�)-factor guarantee. (Section 4.2 and 4.1)
• We further adapt LYRESPLIT to be applicable to an online set-

ting with new versions coming in, and develop an intelligent
migration approach. (Section 4.3)

• We conduct extensive experiments using a versioning bench-
mark [37] and demonstrate that LYRESPLIT is on average 1000⇥
faster than competing algorithms and performs better in bal-
ancing the storage and version retrieval time. We also demon-
strate that our intelligent migration scheme reduces the migra-
tion time by 10⇥ on average. (Section 5)

2. ORPHEUSDB OVERVIEW
ORPHEUSDB is a dataset version management system that is

built on top of standard relational databases. It inherits much of the
same benefits of relational databases, while also compactly storing,
tracking, and recreating versions on demand. ORPHEUSDB has
been developed as open-source software (orpheus-db.github.io).
We now describe fundamental version-control concepts, followed
by the ORPHEUSDB APIs, and finally, the design of ORPHEUSDB.

2.1 Dataset Version Control
The fundamental unit of storage within ORPHEUSDB is a col-

laborative versioned dataset (CVD) to which one or more users can
contribute. Each CVD corresponds to a relation and implicitly con-
tains many versions of that relation. A version is an instance of the
relation, specified by the user and containing a set of records. Ver-
sions within a CVD are related to each other via a version graph—
a directed acyclic graph—representing how the versions were de-
rived from each other: a version in this graph with two or more
parents is defined to be a merged version. Records in a CVD are
immutable, i.e., any modifications to any record attributes result in
a new record, and are stored and treated separately within the CVD.
Overall, there is a many-to-many relationship between records and
versions: each record can belong to many versions, and each ver-
sion can contain many records. Each version has a unique version

} Collaborative Versioned Dataset (CVD)
◦ A relation + versions of that relation
◦ Version graph: DAG that maintains derivation information
◦ All tuples/records in a CVD are “immutable”
◦ Each relation assumed to have a ”primary key”

} APIs:
◦ checkout: materialize a version as a regular table within the

database
� Only the user who issue checkout has access to the table
� Can support “merge” operation to generate a single table as a union

of multiple versions of the table

} APIs:
◦ commit: Add a modified table as new version to the CVD
� Need to figure out which records changed from the parent (original)

version
� Use “primary key” for this purpose
� Any changes from the parent version result in a new records in the CVD

(all records are immutable in the CVD)
� If `checkout` was done with multiple versions, then the new version

has all of those as parents
◦ Can do checkout to, and commit from, a CSV file
� Need additional information to do the mappings
◦ diff: compare two version and output the difference
◦ init, create_user, config, etc…

} SQL Commands
◦ Can directly run SQL queries on specific version, without having

to materialize it

} Additional constructs to apply an aggregate across
versions, identify versions with a specific property, etc.

id, vid, and each record has its unique record id, rid. The record
ids are used to identify immutable records within the CVD and are
not visible to end-users of ORPHEUSDB. In addition, the relation
corresponding to the CVD may have primary key attribute(s); this
implies that for any version no two records can have the same val-
ues for the primary key attribute(s). However, across versions, this
need not be the case. ORPHEUSDB can support multiple CVDs at
a time. However, in order to better convey the core ideas of OR-
PHEUSDB, in the rest of the paper, we focus our discussion on a
single CVD.

2.2 ORPHEUSDB APIs
Users interact with ORPHEUSDB via the command line, using

both SQL queries, as well as git-style version control commands.
In our companion demo paper, we also describe an interactive user
interface depicting the version graph, for users to easily explore
and operate on dataset versions [51]. To make modifications to ver-
sions, users can either use SQL operations issued to the relational
database that ORPHEUSDB is built on top of, or can alternatively
operate on them using programming or scripting languages. We
begin by describing the version control commands.
Version control commands. Users can operate on CVDs much like
they would with source code version control. The first operation is
checkout: this command materializes a specific version of a CVD
as a newly created regular table within a relational database that
ORPHEUSDB is connected to. The table name is specified within
the checkout command, as follows:

checkout [cvd] -v [vid] -t [table name]
Here, the version with id vid is materialized as a new table [table

name] within the database, to which standard SQL statements can
be issued, and which can later be added to the CVD as a new ver-
sion. The version from which this table was derived (i.e., vid) is
referred to as the parent version for the table.

Instead of materializing one version at a time, users can mate-
rialize multiple versions, by listing multiple vids in the command
above, essentially merging multiple versions to give a single table.
When merging, the records in the versions are added to the table in
the precedence order listed after -v: for any record being added, if
another record with the same primary key has already been added,
it is omitted from the table. This ensures that the eventual ma-
terialized table also respects the primary key property. There are
other conflict-resolution strategies, such as letting users resolve
conflicted records manually; for simplicity, we use a precedence
based approach. Internally, the checkout command records the ver-
sions that this table was derived from (i.e., those listed after -v),
along with the table name. Note that only the user who performed
the checkout operation is permitted access to the materialized ta-
ble, so they can perform any analysis and modification on this table
without interference from other users, only making these modifica-
tions visible when they use the commit operation, described next.

The commit operation adds a new version to the CVD, by mak-
ing the local changes made by the user on their materialized table
visible to others. The commit command has the following format:

commit -t [table name] -m [commit message]
The command does not need to specify the intended CVD since OR-
PHEUSDB internally maintains a mapping between the table name
and the original CVD. In addition, since the versions that the table
was derived from originally during checkout are internally known
to ORPHEUSDB, the table is added to the CVD as a new version
with those versions as parent versions. During the commit op-
eration, ORPHEUSDB checks the primary key constraint if PK is
specified, and compares the (possibly) modified materialized table
to the parent versions. If any records were added or modified these
records are treated as new records and added to the CVD. (Recall

that records are immutable within a CVD.) An alternative is to com-
pare the new records with all of the existing records in the CVD to
check if any of the new records have existed in any version in the
past, which would take longer to execute. At the same time, the lat-
ter approach would identify records that were deleted then re-added
later. Since we believe that this is not a common case, we opt for
the former approach, which would only lead to modest additional
storage at the cost of much less computation during commit. We
call this the no cross-version diff implementation rule. Lastly, if
the schema of the table that is being committed is different from
the CVD it derived from, we alter the CVD to incorporate the new
schema; we discuss this in Section 3.3, but for most of the paper
we consider the static schema case.

In order to support data science workflows, we additionally sup-
port the use of checkout and commit into and from csv (comma sep-
arated value) files via slightly different flags: -f for csv instead of
-t. The csv file can be processed in external tools and programming
languages such as Python or R, not requiring that users perform the
modifications and analysis using SQL. However, during commit,
the user is expected to also provide a schema file via a -s flag so
that ORPHEUSDB can make sure that the columns are mapped in
the correct manner. An alternative would be to use schema infer-
ence tools, e.g., [38, 22], which could be seamlessly incorporated
if need be. Internally, ORPHEUSDB also tracks the name of the csv

file as being derived from one or more versions of the CVD, just
like it does with the materialized tables.

In addition to checkout and commit, ORPHEUSDB also supports
other commands, described very briefly here: (a) diff: a standard
differencing operation that compares two versions and outputs the
records in one but not the other. (b) init: initialize either an ex-
ternal csv file or a database table as a new CVD in ORPHEUSDB.
(c) create_user, config, whoami: allows users to register, login, and
view the current user name. (d) ls, drop: list all the CVDs or drop
a particular CVD. (e) optimize: as we will see later, ORPHEUSDB
can benefit from intelligent incremental partitioning schemes (en-
abling operations to process much less data). Users can setup the
corresponding parameters (e.g., storage threshold, tolerance factor,
described later) via the command line; the ORPHEUSDB backend
will periodically invoke the partitioning optimizer to improve the
versioning performance.
SQL commands. ORPHEUSDB supports the use of SQL com-
mands on CVDs via the command line using the run command,
which either takes a SQL script as input or the SQL statement as a
string. Instead of materializing a version (or versions) as a table via
the checkout command and explicitly applying SQL operations on
that table, ORPHEUSDB also allows users to directly execute SQL
queries on a specific version, using special keywords VERSION,
OF, and CVD via syntax

SELECT ... FROM VERSION [vid] OF CVD [cvd], ...
without having to materialize it. Further, by using renaming, users
can operate directly on multiple versions (each as a relation) within
a single SQL statement, enabling operations such as joins across
multiple versions.

However, listing each version individually as described above
may be cumbersome for some types of queries that users wish to
run, e.g., applying an aggregate across a collection of versions,
or identifying versions that satisfy some property. For this, OR-
PHEUSDB also supports constructs that enable users to issue ag-
gregate queries across CVDs grouped by version ids, or select ver-
sion ids that satisfy certain constraints. Internally, these constructs
are translated into regular SQL queries that can be executed by the
underlying database system. In addition, ORPHEUSDB provides
shortcuts for several types of queries that operate on the version
graph, e.g., listing the descendant or ancestors of a specific ver-

build on the vision of Datahub [5] for collaborative data analytics;
Decibel [11] also executes on the Datahub vision, but instead takes
an approach “from the ground up”, re-engineering all components
of a version-oriented storage engine. This prototype is incomplete,
and does not support full-fledged querying and optimization ca-
pabilities. Moreover, the Decibel storage and indexing methods
(e.g., compressed bitmaps with deltas), as well as query process-
ing algorithms (e.g., traverse multiple paths in the version graph
just to create a version), require substantial changes to all layers
of the database, making it challenging to modify or adapt existing
databases for versioning purpose. Other work considers how to best
trade off storage and retrieval for unstructured data versioning [6];
and the design of a prototypical versioning query language, without
any actual implementation [8]. Our technical report [9] provides a
detailed description of related work.

2. DATA REPRESENTATION
We begin by describing the basic notions of version control within

ORPHEUSDB, and then describe how versioned data is represented.
The basic unit of storage within ORPHEUSDB is a collabora-

tive versioned dataset (CVD), to which one or more users can con-
tribute. Each CVD corresponds to a relation, and conceptually con-
tains all versions of that relation. Each row in CVD is an immutable

record: any modification of a record generates a new version of that
record and is treated and stored as a new record in the CVD. Over-
all, each record can be present in many versions of the relation, and
each version can contain many records. Each record is identified by
its unique record id, rid, and each version is identified by its unique
version id, vid.

In ORPHEUSDB, for each CVD we separate the data from the
versioning information into two tables: the data table and the in-

dex table. The data table stores all of the records appearing in any
of the versions. We add an additional rid attribute in the data ta-
ble to differentiate records in multiple versions that have the same
primary key attribute(s); this attribute is invisible to end-users. In
the index table, we track the records present in each version. In
order to minimize the storage overhead from storing vid multiple
times in (vid, rid) pairs, we instead take advantage of the data type
array implemented in most modern database systems and main-
tain an attribute rlist of type array per vid. Thus, the attributes in
the index table are vid and rlist. Readers may be able to identify
other alternate designs for the index table; We have experimentally
evaluated these designs in our paper and found this design to pro-
vide the best trade-offs from a storage and efficiency standpoint [9].
In particular, this design allows us to significantly reduce latencies
during insertions of new versions, by avoiding extensive modifi-
cations across the entire relation. We return to the performance
implications in Section 3.3.

In addition to the versioning information, in ORPHEUSDB, we
also maintain version-level metadata in a separate version table.
The table contains attributes such as the vid, an array of vids
it is derived from (i.e., parent versions), an array of vids it is
used to derive (i.e., children versions), creation time, commit time,
committer and a commit message. Conceptually, we can view
the derivation relationship in the version table as a version graph,
where each node represents one version and each edge represents
the derivation of version relations.

3. ORPHEUSDB ARCHITECTURE
We describe the functionality and syntax of our command line

interface and SQL capabilities, followed by an overview of the OR-
PHEUSDB system architecture.

3.1 Version Control Commands
Checkout. Users can checkout all records within a specific ver-
sion from a CVD via the command: checkout [cvd] -v [vid] -t
[table name]. All records associated with the version are materi-
alized and stored in a newly created table, whose name is specified
in the command. Users can also checkout from multiple versions.
In this scenario, records within these versions are merged together
in the precedence order listed after -v. Checked-out versions are
analogous to private working branches, where the owner can per-
form any analysis and modification on this table without interfer-
ence from other users. This is effectively a composite of the git
commands for checkout, branch, and merge.
Commit. Users are also capable of committing their local tables
back to the CVD, making the modifications visible to other users via
the syntax: commit -t [table name] -m [commit message]. For
the records that are newly inserted or modified from its parent ver-
sion(s), we append them to the data table as new records.

In order to support data science workflows, we also allow users
to checkout and commit into and from csv files, by replacing the
flag -t for table with -f for file. The csv file can be processed
in external tools and programming languages such as Python or R.
During commit, we require users to include a schema representa-
tion for the csv file.
Other commands. Besides checkout and commit, we briefly de-
scribe other commands supported in ORPHEUSDB: (a) diff: A
standard differencing operation that compares two versions and
outputs the records in one but not the other. (b) init: Load an exter-
nal csv file or a structured table into ORPHEUSDB as a initial CVD
and also create the corresponding versioning information. (c) cre-

ate_user: Prompt a user to register as an ORPHEUSDB user. (d) ls,

drop: Output a list of CVDS, or delete a CVD in ORPHEUSDB that
the current user has access to. (e) optimize: Partition the data table
within a CVD into a group of small tables, enabling other operations
to access and process much less data for version retrieval. The par-
titioning algorithm can be executed periodically by the system or
explicitly by a user; we will describe this further in Section 3.3.

3.2 SQL Commands
If the user has checked out one or more versions as a PostgreSQL

table, then they are free to apply vanilla SQL to that table; if they
have checked it out as a csv, then they are free to operate on that
csv via external programming or scripting tools. In addition, users
can run SQL commands on CVDS without having to materialize
the appropriate versions. This happens via the command line us-
ing the run command, which either takes a SQL script as input or
the SQL query as a string. These SQL commands use the spe-
cial keywords: VERSION, OF, and CVD via syntax: SELECT ... FROM
VERSION [vids] OF CVD [cvd], For example, scientists can
quickly overview a small number of (e.g., 50) records within the
first two versions of the Interaction CVD whose coexpression at-
tribute is greater than 80 via the following SQL command:

SELECT * FROM VERSION 1, 2 OF CVD Interaction
WHERE coexpression > 80 LIMIT 50;

Moreover, users can use SQLs to explore versions that satisfy some
property by applying aggregation grouped by version ids. The cor-
responding syntax can be written as: SELECT vid, ... FROM CVD
[cvd], ... GROUP BY vid, Recall that in ORPHEUSDB,
for each CVD, there are three related tables: the data table, the in-
dex table, and the version table. When writing SQL queries, users
can be entirely unaware of the exact representation, and instead re-
fer to attributes as if they are all present in one large CVD table.
Internally, ORPHEUSDB translates these queries to those that are
appropriate for the underlying representation.

} Implemented as a layer on top of a relational database
sion, or querying the metadata, e.g., identify the last modification
(in time) to the CVD. The details of the query syntax, translation, as
well as examples can be found in our companion demo paper [51].

2.3 System Architecture

Partition
Information

CVDsCheckout Tables

Record Manager Version Manager

Partition Optimizer

Version Control
Command

DBMS

Access Controller

SQL
Command

Database Communicator

Provenance Manager

SQLs

Command Client

Query Translator

SQL

Translation Layer

Figure 2: ORPHEUSDB Architecture
We implement ORPHEUSDB as a middleware layer or wrapper

between end-users (or application programs) and a traditional re-
lational database system—in our case, PostgreSQL. PostgreSQL
is completely unaware of the existence of versioning, as version-
ing is handled entirely within the middleware. Figure 2 depicts the
overall architecture of ORPHEUSDB. ORPHEUSDB consists of six
core modules: the query translator is responsible for parsing in-
put and translating it into SQL statements understandable by the
underlying database system; the access controller monitors user
permissions to various tables and files within ORPHEUSDB; the
partition optimizer is responsible for periodically reorganizing and
optimizing the partitions via a partitioning algorithm LYRESPLIT
along with a migration engine to migrate data from one partition-
ing scheme to another, and is the focus of Section 4; the record

manager is in charge of recording and retrieving information about
records in CVDs; the version manager is in charge of recording
and retrieving versioning information, including the rids each ver-
sion contains as well as the metadata for each version; and the
provenance manager is responsible for the metadata of uncommit-
ted tables or files, such as their parent version(s) and the creation
time. At the backend, a traditional DBMS, we maintain CVDs that
consist of versions, along with the records they contain, as well as
metadata about versions. In addition, the underlying DBMS con-
tains a temporary staging area consisting of all of the materialized
tables that users can directly manipulate via SQL without going
through ORPHEUSDB. Understanding how to best represent and
operate on these CVDs within the underlying DBMS is an impor-
tant challenge—this is the focus of the next section.

In brief, we now describe how these components work with each
other for the basic checkout and commit commands, once the com-
mand is parsed. For checkout, the query translator generates SQL
queries to retrieve records from the relevant versions, which are
then handled and materialized in the temporary staging area by the
record manager; the provenance manager logs the related deriva-
tion information and other metadata; and finally the access con-
troller to grant permissions to the relevant user. On commit, the
record manager appends new records to the CVD, also performs
cleanup by removing the table from the staging area; the version
manager updates the metadata of the newly added version.

3. DATA MODELS FOR CVDs
In this section, we consider and compare methods to represent

and operate on CVDs within a backend relational database, starting
with the data within versions, and then the metadata about versions.

3.1 Versions and Data: The Models

To explore alternative storage models, we consider the array-
based data models, shown in Figure 1, and compare them to a delta-
based data model, which we describe later. The table(s) in Figure 1
displays simplified protein-protein interaction data [48], and has a
composite primary key <protein1, protein2>, along with numerical
attributes indicating sources and strength of interactions: neighbor-

hood represents how frequently the two proteins occur close to each
other in runs of genes, cooccurrence reflects how often the two pro-
teins co-occur in the species, and coexpression refers to the level to
which genes are co-expressed in the species.

One approach, as described in the introduction, is to augment
the CVD’s relational schema with an additional versioning attribute.
For example, in Figure 1(a) the tuple of <ENSP273047, ENSP261890,
0, 53, 83> exists in two versions: v3 and v4. (Note that even though
<protein1, protein2> is the primary key, it is only the primary key
for any single version and not across all versions.) There are two
records with <ENSP273047, ENSP261890> that have different val-
ues for the other attributes: one with (0, 53, 83) that is present in v3

and v4, and another with (0, 53, 0) that is present in v1. However,
this approach implies that we would need to duplicate each record
as many times as the number of versions it is in, leading to severe
storage overhead due to redundancy, as well as inefficiency for sev-
eral operations, including checkout and commit. We focus on al-
ternative approaches that are more space efficient and discuss how
they can support the two most fundamental operations—commit
and checkout—on a single version at a time. Considerations for
multiple version checkout is similar to that for a single version; our
findings generalize to that case as well.

Approach 1: The Combined Table Approach. Our first approach
of representing the data and versioning information for a CVD is the
combined table approach. As before, we augment the schema with
an additional versioning attribute, but now, the versioning attribute
is of type array and is named vlist (short for version list) as shown
in Figure 1(b). For each record the vlist is the ordered list of ver-
sion ids that the record is present in, which serves as an inverted
index for each record. Returning to our example, there are two ver-
sions of records corresponding to <ENSP273047, ENSP261890>,
with coexpression 0 and 83 respectively—these two versions are
depicted as the first two records, with an array corresponding to v1

for the first record, and v3 and v4 for the second.
Even though array is a non-atomic data type, it is commonly sup-

ported in many database systems [8, 3, 1]; thus ORPHEUSDB can
be built with any of these systems as the back-end database. As our
implementation uses PostgreSQL, we focus on this system for the
rest of the discussion, even though similar considerations apply to
the rest of the databases listed. PostgreSQL provides a number of
useful functions and operators for manipulating arrays, including
append operations, set operations, value containment operations,
and sorting and counting functions.

For the combined table approach, committing a new version to
the CVD is time-consuming due to the expensive append operation
for every record present in the new version. Consider the scenario
where the user checks out version vi into a materialized table T

0

and then immediately commits it back as a new version vj . The
query translator parses the user commands and generates the cor-
responding SQL queries for checkout and commit as shown in Ta-
ble 1. In the checkout statement, the containment operator ‘int[]
<@ int[]’ returns true if the array on the left is contained within the
array on the right. When checking out vi into a materialized table
T

0, the array containment operator ‘ARRAY[vi] <@ vlist’ first exam-
ines whether vi is contained in vlist for each record in CVD, then
all records that satisfy that condition are added to the materialized
table T

0. Next, when T
0 is committed back to the CVD as a new

version vj , for each record in the CVD, if it is also present in T
0

} Five approaches
◦ Combined table (1(b))
◦ Split-by-vlist
◦ Split-by-rlist

Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

vid

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP235932 0 87 0

ENSP273047 ENSP235932 0 87 0

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP309334 ENSP346022 0 227 975

ENSP332973 ENSP300134 0 0 83

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

ENSP472847 ENSP365773 225 0 73

rid vlist

r1

r7

r2

r3

r 4

r5

r6

{v1 }

{v1, v2, v4}

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4 }

{v3, v4 }

vid rlist

{r1,r2,r3}

{r2,r3,r 4}

{r3,r5,r6,r7}

{r2,r3,r 4,r5,r6,r7}

v1

v2

v3

v4

v4

v4

v4

v4

v1

v2

a. Table with Versioned Records b. Combined Table c. Data Table + Versioning Table

c.ii. Split-by-rlist

c.i. Split-by-vlist

v3

v3

data attributes versioning attribute

v1

v4

v2

v1

v4

v2

v3

v3

Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

vlist

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

rid Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP273047 ENSP261890 0 53 83

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

{v1 }

{v1, v2, v4}

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4}

{v3, v4}

r1

r7

r2

r3

r 4

r5

r6

Figure 1: Data models for protein interaction data [48]

tamp is not sufficient here, as a version can have multiple parents
(a merge) and multiple children (branches). Therefore, a scalar
timestamp value cannot capture which versions a tuple belongs to.
To remedy this issue, one can use the array data type capabilities
offered in current database systems, by replacing the version num-
ber attribute with an array attribute vlist containing all of the ver-
sions that each record belongs to, as depicted in Figure 1(b). This
reduces storage overhead from replicating tuples. However, when
adding a new version (e.g., a clone of an existing version) this ap-
proach leads to extensive modifications across the entire relation,
since the array will need to be updated for every single record that
belongs to the new version. Another strategy is to separate the data
from the versioning information into two tables as in Figure 1(c),
where the first table—the data table—stores the records appear-
ing in any of the versions, while the second table—the versioning
table—captures the versioning information, or which version con-
tains which records. This strategy requires us to perform a join of
these two tables to retrieve any versions. Further, there are two
ways of recording the versioning information: the first involves
using an array of versions, the second involves using an array of
records; we illustrate this in Figure 1(c.i) and Figure 1(c.ii) re-
spectively. The latter approach allows easy insertion of new ver-
sions, without having to modify existing version information, but
may have slight overheads relative to the former approach when it
comes to joining the versioning table and the data table. Overall,
as we demonstrate in this paper, the latter approach outperforms
other approaches (including those based on recording deltas) for
most common operations.

Challenges in Balancing Storage and Querying Latencies. Un-
fortunately, the previous approach still requires a full theta join
and examination of all of the data to reconstruct any given ver-
sion. Our next question is if we can improve the efficiency of the
aforementioned approach, at the cost of possibly additional stor-
age. One approach is to partition the versioning and data tables
such that we limit data access to recreate versions, while keeping
storage costs bounded. However, as we demonstrate in this paper,
the problem of identifying the optimal trade-off between the stor-
age and version retrieval time is NP-HARD, via a reduction from
the 3-PARTITION problem. To address this issue, we develop an ef-
ficient and light-weight approximation algorithm, LYRESPLIT, that
enables us to trade-off storage and version retrieval time, provid-
ing a guaranteed ((1 + �)`, 1

�)-factor approximation under certain
reasonable assumptions—where the storage is a (1 + �)`-factor of
optimal, and the average version retrieval time is 1

� -factor of op-
timal, for any value of parameter � 1 that expresses the de-
sired trade-off. The parameter ` depends on the complexity of the
branching structure of the version graph. In practice, this algo-
rithm always leads to lower retrieval times for a given storage bud-
get, than other schemes for partitioning, while being about 1000⇥
faster than these schemes. Further, we adapt LYRESPLIT to an on-

line setting that incrementally maintains partitions as new versions
arrive, and develop an intelligent migration approach to minimize
the time taken for migration (by up to 10⇥).

Contributions. The contributions of this paper are as follows:
• We develop a dataset version control system, titled ORPHEUSDB,

with the ability to support both git-style version control com-
mands and SQL-like queries. (Section 2)

• We compare different data models for representing versioned
datasets and evaluate their performance in terms of storage con-
sumption and time taken for querying. (Section 3)

• To further improve query efficiency, we formally develop the
optimization problem of trading-off between the storage and
version retrieval time via partitioning and demonstrate that this
is NP-HARD. We then propose a light-weight approximation
algorithm for this optimization problem, titled LYRESPLIT, pro-
viding a ((1 + �)`, 1

�)-factor guarantee. (Section 4.2 and 4.1)
• We further adapt LYRESPLIT to be applicable to an online set-

ting with new versions coming in, and develop an intelligent
migration approach. (Section 4.3)

• We conduct extensive experiments using a versioning bench-
mark [37] and demonstrate that LYRESPLIT is on average 1000⇥
faster than competing algorithms and performs better in bal-
ancing the storage and version retrieval time. We also demon-
strate that our intelligent migration scheme reduces the migra-
tion time by 10⇥ on average. (Section 5)

2. ORPHEUSDB OVERVIEW
ORPHEUSDB is a dataset version management system that is

built on top of standard relational databases. It inherits much of the
same benefits of relational databases, while also compactly storing,
tracking, and recreating versions on demand. ORPHEUSDB has
been developed as open-source software (orpheus-db.github.io).
We now describe fundamental version-control concepts, followed
by the ORPHEUSDB APIs, and finally, the design of ORPHEUSDB.

2.1 Dataset Version Control
The fundamental unit of storage within ORPHEUSDB is a col-

laborative versioned dataset (CVD) to which one or more users can
contribute. Each CVD corresponds to a relation and implicitly con-
tains many versions of that relation. A version is an instance of the
relation, specified by the user and containing a set of records. Ver-
sions within a CVD are related to each other via a version graph—
a directed acyclic graph—representing how the versions were de-
rived from each other: a version in this graph with two or more
parents is defined to be a merged version. Records in a CVD are
immutable, i.e., any modifications to any record attributes result in
a new record, and are stored and treated separately within the CVD.
Overall, there is a many-to-many relationship between records and
versions: each record can belong to many versions, and each ver-
sion can contain many records. Each version has a unique version

} Five approaches
◦ Combined table (1(b))
◦ Split-by-vlist
◦ Split-by-rlist

Command SQL Translation with combined-table SQL Translation with Split-by-vlist SQL Translation with Split-by-rlist

CHECKOUT SELECT * into T’ FROM T
WHERE ARRAY[vi] <@ vlist

SELECT * into T’ FROM dataTable,
(SELECT rid AS rid_tmp
FROM versioningTable
WHERE ARRAY[vi] <@ vlist) AS tmp
WHERE rid = rid_tmp

SELECT * into T’ FROM dataTable,
(SELECT unnest(rlist) AS rid_tmp
FROM versioningTable
WHERE vid = vi) AS tmp
WHERE rid = rid_tmp

COMMIT
UPDATE T SET vlist=vlist+vj
WHERE rid in
(SELECT rid FROM T’)

UPDATE versioningTable
SET vlist=vlist+vj
WHERE rid in
(SELECT rid FROM T’)

INSERT INTO versioningTable
VALUES (vj ,
ARRAY[SELECT rid FROM T’])

Table 1: SQL Queries for Checkout and Commit Commands with Different Data Models

(i.e., the WHERE clause), we append vj to the attribute vlist (i.e.,
vlist=vlist+vj). In this case, since there are no new records that
are added to the CVD, no new records are added to the combined
table. However, even this process of appending vj to vlist can be
expensive especially when the number of records in vj is large, as
we will demonstrate.

Approach 2: The Split-by-vlist Approach. Our second approach
addresses the limitations of the expensive commit operation for the
combined table approach. We store two tables, keeping the version-
ing information separate from the data information, as depicted in
Figure 1(c)—the data table and the versioning table. The data ta-
ble contains all of the original data attributes along with an extra
primary key rid, while the versioning table maintains the mapping
between versions and rids. The rid attribute was not needed in the
previous approach since it was not necessary to associate identi-
fiers with the immutable records. Specifically, the relation primary
key— <protein1, protein2> —is not sufficient to distinguish be-
tween multiple copies of the same record. For example, r1 and r5
are two versions of the same record (i.e., the record with a given
<protein1, protein2>). There are two ways we can store the ver-
sioning data. The first approach is to store the rid along with the
vlist, as depicted in Figure 1(c.i). We call this approach split-by-

vlist. Split-by-vlist has a similar SQL translation as combined-
table for commit, while it incurs the overhead of joining the data
table with the versioning table for checkout. Specifically, we se-
lect the rids that are in the version to be checked out and store it
in the table tmp, followed by a join with the data table. For exam-
ple, when checking out version v1, tmp will comprise the relevant
rids r1, r2, r3, which are identified by looking at the vlist for each
record in the versioning table and checking if v1 is present, which
is then joined with the data table to extract the appropriate results
into the materialized table T

0.

Approach 3: The Split-by-rlist Approach. Alternatively, we can
organize the versioning table with a primary key as vid (version
id), and another attribute rlist, containing the array of the records
present in that particular version, as in Figure 1(c.ii). We call this
approach the split-by-rlist approach. When committing a new ver-
sion vj from the materialized table T 0, we only need to add a single
tuple in the versioning table with vid equal to vj , and rlist equal to
the list of record ids in T

0. This eliminates the expensive array
appending operations that are part of the previous two approaches,
making the commit command much more efficient. For the check-
out command for version vi, we first extract the record ids associ-
ated with vi from the versioning table, by applying the unnesting
operation: unnest(rlist), following which we join the rids with the
data table to identify all of the relevant records. For example, for
checking out v1, instead of examining the entire versioning table,
we simply need to examine the tuple corresponding to v1, unnest
those rids—r1, r2, r3, followed by a join.

So far, all our models support convenient rewriting of arbitrary
and complex versioning queries into SQL queries understood by
the backend database; see details in our demo paper [51]. However,
our delta-based model, discussed next, does not support convenient

rewritings for some of the more advanced queries, e.g., “find ver-
sions where the total count of tuples with protein1 as ENSP273047
is greater than 50”: in such cases, delta-based model essentially
needs to recreate all of the versions, and/or perform extensive and
expensive computation outside of the database. Thus, even though
this model does not support advanced analytics capabilities “for
free”, we include it in our comparison to contrast its performance
to the array-based models.

Approach 4: Delta-based Approach. Here, each version records
the modifications (or deltas) from its precedent version(s). Specifi-
cally, each version is stored as a separate table, with an added tomb-
stone boolean attribute indicating the deletion of a record. In ad-
dition, we maintain a precedent metadata table with a primary key
vid and an attribute base indicating from which version vid stores
the delta. When committing a new version vj , a new table stores
the delta from its previous version vi. If vj has multiple parents,
we will store vj as the modification from the parent that shares the
largest common number of records with vj . (Storing deltas from
multiple parents would make reconstruction of a version compli-
cated, since we would need to trace back multiple paths in the ver-
sion graph, or alternatively materialize each version in the version
graph in a top-down manner, merging versions based on conflict
resolution mechanisms. Here, we opt for the simpler solution.) A
new record is then inserted into the metadata table, with vid as vj
and base as vi. For the checkout command for version vi, we trace
the version lineage (via the base attribute) all the way back to the
root. If an incoming record has occurred before, it is discarded;
otherwise, if it is marked as “insert”, we insert it into the checkout
table T

0.

Approach 5: The A-Table-Per-Version Approach. Our final array-
based data model is impractical due to excessive storage, but is use-
ful from a comparison standpoint. In this approach, we store each
version as a separate table. We include a-table-per-version in our
comparison; we do not include the approach in Figure 1a, contain-
ing a table with duplicated records, since it would do similarly in
terms of storage and commit times to a-table-per-version, but worse
in terms of checkout times.

3.2 Versions and Data: The Comparison
We perform an experimental evaluation between the approaches

described in the previous section on storage size, and commit and
checkout time. We focus on the commit and checkout times since
they are the primitive versioning operations on which the other
more complex operations and queries are built on. It is important
that these operations are efficient, because data scientists checkout
a version to start working on it immediately, and often commit a
version to have their changes visible to other data scientists who
may be waiting for them.

In our evaluation, we use four versioning benchmark datasets
SCI_1M, SCI_2M, SCI_5M and SCI_8M, each with 1M , 2M , 5M
and 8M records respectively, that will be described in detail in Sec-
tion 5.1. For split-by-vlist, a physical primary key index is built on
rid in both the data table and the versioning table; for split-by-rlist,
a physical primary key index is built on rid in the data table and

} Five approaches
◦ Combined table (1(b))
◦ Split-by-vlist
◦ Split-by-rlist
◦ Delta-based approach (also called “version-first”)
� Store each version as a “delta” from one of its parent versions
� Need a new regular table for each version
� Lower storage space if most changes are local
� Harder to do queries
◦ A-Table-Per-Version (naïve baseline)

} No single winner
} Split-by-rlist provides best balance

} Version-level provenance maintained in a metadata table
} Supports “schema changes” during commit
◦ Somewhat simplistic -- hard to handle this in general

both derived from version v1, and version v2 and v3 are merged
into version v4. We will return to this concept in Section 4.2.

vid parents checkoutT commitT msg attributes

...

 ...

...

...

v1

v2

v3

v4

{v1}

{v1}

{v2, v3 }

t2

t2

t5

t1

t3

t 4

t6

a. Metadata Table b. Version Graph

v1

v2 v3

v4

3

43

12

3 4

6

{a1,a2, a3,a4,a6}

{a1,a2, a3,a4,a6}

{a1,a2, a3,a4,a6}

{a1,a2, a3,a4,a6}NULLNULL

Figure 4: Metadata Table and Version Graph (Fixed Schema)

Figure 5: Metadata Table and Attribute Table (Schema Changes)
Schema Changes. During a commit, if the schema of the table
being committed is different from the schema of the CVD it was
derived from, we update the schema of CVD to incorporate the
changes. More precisely, in ORPHEUSDB, we maintain an attribute
table (as in Figure 5) where each tuple represents an attribute with a
unique identifier, along with the corresponding attribute name and
data type; any change of a property of an attribute results in a new
attribute entry in the table. If the data type of any attribute changes,
we transform the attribute type to a more general data type (e.g.,
from integer to string as in Jain et al. [24]), and insert a new tu-
ple into the attribute table with the updated data type. All of our
array-based models can adapt to changes in the set of attributes: a
simple solution for new attributes is so use the ALTER command
to add any new attributes to the model, assigning NULLs to the
records from the previous versions that do not possess these new
attributes. Attribute deletions only require an update in the version
metadata table. To illustrate, we modify the previous example in
Figure 4 (which showed a static schema) to a dynamic one. For ex-
ample, as shown in Figure 5, initially version v1 has four attributes:
protein1, protein2, neighborhood and cooccurrence. When a user
commits version v2, with the data type of the cooccurrence attribute
(a4) changed from integer to decimal, within ORPHEUSDB, we
create another attribute (a5) in the attribute table with data type
decimal, log a5 in the metadata table for v2 and alter the cooccur-
rence attribute to decimal within the CVD. Moreover, when a new
coexpression attribute is added in v3, we generate a corresponding
attribute (a6) in the attribute table, add a6 in the metadata table
for v3, and add the coexpression attribute to the CVD. During the
merge, the resulting version includes all attributes from its parents
and contains the more general data type for conflicting attributes
(e.g., attributes in v4). This simple mechanism is similar to the
single pool method proposed in a temporal schema versioning con-
text by De Castro et al. [18]. Compared to the multi pool method
where any schema change results in the new version being stored
separately, the single pool method has fewer records with dupli-
cated attributes and therefore has less storage consumption overall.
Even though ALTER TABLE is indeed a costly operation, due to
the partitioning schemes we describe later, we only need to ALTER
a smaller partition of the CVD rather than a giant CVD, and conse-
quently the cost of an ALTER operation is substantially mitigated.
In Appendix C.3, we describe how our partitioning schemes (de-
scribed next in Section 4) can adapt to the single pool mechanism
with comparable guarantees; for ease of exposition, for the rest of

this paper, we focus on the static schema case, which is still im-
portant and challenging. There has been some work on developing
schema versioning schemes [19, 40, 39] and we plan to explore
these and other schema evolution mechanisms (including hybrid
single/multi-pool methods) as future work.

4. PARTITION OPTIMIZER
Recall that Figure 3(c) indicated that as the number of records

within a CVD increases, the checkout latency of our data model
(split-by-rlist) increases—this is because the number of “irrelevant”
records, i.e., the records that are not present in the version being
checked out, but nevertheless require processing increases. Even
with index on rid, the checkout latency is still high since records
are scattered across the whole data table, and hundreds of thou-
sands of random accesses are eventually reduced to a full table
scan as demonstrated in Appendix D.1. In this section, we intro-
duce the concept of partitioning a CVD by breaking up the data
and versioning tables, in order to reduce the number of irrelevant
records during checkout. We formally define our partitioning prob-
lem, demonstrate that this problem is NP-HARD, and identify a
light-weight approximation algorithm. We provide a convenient ta-
ble of notation in the Appendix (Table 3).

4.1 Problem Overview
The Partitioning Notion. Let V = {v1, v2, ..., vn} be the n ver-
sions and R = {r1, r2, ..., rm} be the m records in a CVD. We can
represent the presence of records in versions using a version-record
bipartite graph G = (V,R,E), where E is the set of edges—an
edge between vi and rj exists if the version vi contains the record
rj . The bipartite graph in Figure 6(a) captures the relationships
between records and versions in Figure 1.

Figure 6: Version-Record Bipartite Graph & Partitioning
The goal of our partitioning problem is to partition G into smaller

subgraphs, denoted as Pk. We let Pk = (Vk,Rk, Ek), where Vk,
Rk and Ek represent the set of versions, records and bipartite graph
edges in partition Pk respectively. Note that [kEk = E, where E

is the set of edges in the original version-record bipartite graph G.
We further constrain each version in the CVD to exist in only one
partition, while each record can be duplicated across multiple par-
titions. In this manner, we only need to access one partition when
checking out a version, consequently simplifying the checkout pro-
cess by reducing the overhead from accessing multiple partitions.
(While we do not consider it in this paper, in a distributed setting,
it is even more important to ensure that as few partitions are con-
sulted during a checkout operation.) Thus, our partition problem is
equivalent to partitioning V , such that each partition (Pk) stores all
of the records corresponding to all of the versions assigned to that
partition. Figure 6(b) illustrates a possible partitioning strategy for
Figure 6(a). Partition P1 contains version v1 and v2, while parti-
tion P2 contains version v3 and v4. Note that records r2, r3 and r4

are duplicated in P1 and P2.

Metrics. We consider two criteria while partitioning: the storage
cost and the time for checkout. Recall that the time for commit is
fixed and small—see Figure 3(b), so we only focus on checkout.

} Too much redundant processing when checking out a version if..
◦ .. number of records in the version << total number of records

} Use ”Partitioning”
◦ e.g., imagine 100 versions

� 10 versions, each containing a large fraction of t1, …, t_100
� 10 versions, each containing a large fraction of t_101, …, t_200
� …

◦ If all stored together, then checking out a version requires processing 100 * 100 =
10000 records
◦ If stored in groups of 10 versions, then checking out requires processing only 100

records

} In general, won’t find such ”clean” partitioning
◦ But, depending on the datasets, it might still provide significant benefits

} Also partitioning increases total storage cost

} Problem is too hard to solve optimally
} Instead, design efficient heuristics

both derived from version v1, and version v2 and v3 are merged
into version v4. We will return to this concept in Section 4.2.

Figure 4: Metadata Table and Version Graph (Fixed Schema)

Figure 5: Metadata Table and Attribute Table (Schema Changes)
Schema Changes. During a commit, if the schema of the table
being committed is different from the schema of the CVD it was
derived from, we update the schema of CVD to incorporate the
changes. More precisely, in ORPHEUSDB, we maintain an attribute
table (as in Figure 5) where each tuple represents an attribute with a
unique identifier, along with the corresponding attribute name and
data type; any change of a property of an attribute results in a new
attribute entry in the table. If the data type of any attribute changes,
we transform the attribute type to a more general data type (e.g.,
from integer to string as in Jain et al. [24]), and insert a new tu-
ple into the attribute table with the updated data type. All of our
array-based models can adapt to changes in the set of attributes: a
simple solution for new attributes is so use the ALTER command
to add any new attributes to the model, assigning NULLs to the
records from the previous versions that do not possess these new
attributes. Attribute deletions only require an update in the version
metadata table. To illustrate, we modify the previous example in
Figure 4 (which showed a static schema) to a dynamic one. For ex-
ample, as shown in Figure 5, initially version v1 has four attributes:
protein1, protein2, neighborhood and cooccurrence. When a user
commits version v2, with the data type of the cooccurrence attribute
(a4) changed from integer to decimal, within ORPHEUSDB, we
create another attribute (a5) in the attribute table with data type
decimal, log a5 in the metadata table for v2 and alter the cooccur-
rence attribute to decimal within the CVD. Moreover, when a new
coexpression attribute is added in v3, we generate a corresponding
attribute (a6) in the attribute table, add a6 in the metadata table
for v3, and add the coexpression attribute to the CVD. During the
merge, the resulting version includes all attributes from its parents
and contains the more general data type for conflicting attributes
(e.g., attributes in v4). This simple mechanism is similar to the
single pool method proposed in a temporal schema versioning con-
text by De Castro et al. [18]. Compared to the multi pool method
where any schema change results in the new version being stored
separately, the single pool method has fewer records with dupli-
cated attributes and therefore has less storage consumption overall.
Even though ALTER TABLE is indeed a costly operation, due to
the partitioning schemes we describe later, we only need to ALTER
a smaller partition of the CVD rather than a giant CVD, and conse-
quently the cost of an ALTER operation is substantially mitigated.
In Appendix C.3, we describe how our partitioning schemes (de-
scribed next in Section 4) can adapt to the single pool mechanism
with comparable guarantees; for ease of exposition, for the rest of

this paper, we focus on the static schema case, which is still im-
portant and challenging. There has been some work on developing
schema versioning schemes [19, 40, 39] and we plan to explore
these and other schema evolution mechanisms (including hybrid
single/multi-pool methods) as future work.

4. PARTITION OPTIMIZER
Recall that Figure 3(c) indicated that as the number of records

within a CVD increases, the checkout latency of our data model
(split-by-rlist) increases—this is because the number of “irrelevant”
records, i.e., the records that are not present in the version being
checked out, but nevertheless require processing increases. Even
with index on rid, the checkout latency is still high since records
are scattered across the whole data table, and hundreds of thou-
sands of random accesses are eventually reduced to a full table
scan as demonstrated in Appendix D.1. In this section, we intro-
duce the concept of partitioning a CVD by breaking up the data
and versioning tables, in order to reduce the number of irrelevant
records during checkout. We formally define our partitioning prob-
lem, demonstrate that this problem is NP-HARD, and identify a
light-weight approximation algorithm. We provide a convenient ta-
ble of notation in the Appendix (Table 3).

4.1 Problem Overview
The Partitioning Notion. Let V = {v1, v2, ..., vn} be the n ver-
sions and R = {r1, r2, ..., rm} be the m records in a CVD. We can
represent the presence of records in versions using a version-record
bipartite graph G = (V,R,E), where E is the set of edges—an
edge between vi and rj exists if the version vi contains the record
rj . The bipartite graph in Figure 6(a) captures the relationships
between records and versions in Figure 1.

v
1

r
1

v
2

v
3

v
4

r
2

r
3

r
4

r
5

r
6

r
7

v
1

r
1

v
2

v
3

v
4

r
2

r
3

r
4

r
5

r
6

r
7

Ρ
1

Ρ
2

a. Bipartite Graph b. Illustration of Partitioning

Figure 6: Version-Record Bipartite Graph & Partitioning
The goal of our partitioning problem is to partition G into smaller

subgraphs, denoted as Pk. We let Pk = (Vk,Rk, Ek), where Vk,
Rk and Ek represent the set of versions, records and bipartite graph
edges in partition Pk respectively. Note that [kEk = E, where E

is the set of edges in the original version-record bipartite graph G.
We further constrain each version in the CVD to exist in only one
partition, while each record can be duplicated across multiple par-
titions. In this manner, we only need to access one partition when
checking out a version, consequently simplifying the checkout pro-
cess by reducing the overhead from accessing multiple partitions.
(While we do not consider it in this paper, in a distributed setting,
it is even more important to ensure that as few partitions are con-
sulted during a checkout operation.) Thus, our partition problem is
equivalent to partitioning V , such that each partition (Pk) stores all
of the records corresponding to all of the versions assigned to that
partition. Figure 6(b) illustrates a possible partitioning strategy for
Figure 6(a). Partition P1 contains version v1 and v2, while parti-
tion P2 contains version v3 and v4. Note that records r2, r3 and r4

are duplicated in P1 and P2.

Metrics. We consider two criteria while partitioning: the storage
cost and the time for checkout. Recall that the time for commit is
fixed and small—see Figure 3(b), so we only focus on checkout.

} DataHub: Overview

} OrpheusDB

} TardisDB

} Forkbase

} Motivation analogous to OrpheusDB
◦ Versioning within a relational database system
◦ Supports many use cases that need to be done outside DBMS

} But:
◦ Support multiple tables instead a single table per version
◦ For a main-memory database system

} Paper also develops a benchmark for versioning based
on Wikipedia

} Expands upon OrpheusDB data model, with keeping
version information in a separate table

} Main difference:
◦ Extra attribute “tableid” in the “version table” to allow for

multiple tables

vid tableid rlist
v1 tasks {1}
v1 users {1,2}
v2 users {3,4}
v2 tasks {1,2,3}

Version table

vid parent message
v1 initial commit
v2 v1 wedding

Meta table

rid user_id user_name
1 1 Carla Cat
2 2 Carl Tomcat
3 1 Carla Cats
4 2 Carl Cats

User table

rid user_id task_name
1 1 singing
2 1 wedding
3 2 wedding

Task table

Figure 2: Schema: Version table and meta table for managing the commits on the left; tables containing the data on the right;
the record id serves as a key for every tuple.

2.3 Versioning in DBMS
In contrast to temporal databases, which protocol the validity of
each tuple, versioning should log at a higher granularity to preserve
the whole database’s state. As part of the DataHub system [3, 4],
Decibel [15] is an approach of integrating dataset versioning inside
a database system. It bene�ts from recovery, "fault tolerance" and
SQL as the declarative language provided by the database system,
but also includes VQuel [8] as a versioning query language besides
SQL. It evaluates di�erent bitmap based storage techniques for
creating and merging branches by using a self-created versioning
benchmark. The versioning scope is limited to single relations. We
take the idea of bitmaps indicating included tuples for each branch
of a main-memory database system. To test our system, we adapt
the versioning benchmark, as well.

A version control on top of database systems is OrpheusDB [10,
24], called a "bolt-on" technique as it works on existing datasets.
First, the data to be versioned is loaded from CSV �les or from a
database system into an extended database schema. Then, every
tuple is extended by a record identi�er rid. A version consists of
multiple rids, which are managed in a separate table. The database
system itself remains unmodi�ed as OrpheusDB can run on top
of any arbitrary database system as long as it provides SQL-92
commands and an array datatype. Our SQL prototype,MusaeusDB6,
will extend this work to manage multiple tables. Independent of
the underlying data storage, RStore [6] allows versioning on top
of arbitrary key-value stores. It investigates the trade-o� between
storage costs, query performance and online updates. It uses delta
compression—as in this work—to compress textual documents.

A key challenge for versioning datasets—postulated in 2015 [5]—
is the trade-o� between reducing the amount of storage with delta
compression while restoring datasets fast enough. To tackle the
trade-o�, array database systems, designed to host array-like datasets,
incorporate versioning techniques as forward or backward delta
compression [22]. SciDB [19] decides on a minimum weight span-
ning tree either to materialise versions for fast recreation or to store
the di�erences for dense as well as sparse array-oriented data. We
will use delta compression for text-like data.

LiteTree7 is a recently invented modi�cation of the �le-oriented
SQLite database system. It implicitly handles every SQL insert,
delete or update statement as another commit, which can be checked
out when needed. We use LiteTree as the competitor during our
TardisBenchmark.
6Musaeus is a contemporary of Orpheus; in honour of OrpheusDB.
7https://github.com/aergoio/litetree

3 MUSAEUSDB: VERSIONING USING SQL
The SQL prototypes—called MusaeusDB and MusaeusSQL—rely on
the extended schema of OrpheusDB to combine changes over multi-
ple relations as one version. The key idea is to keep the initial data
tables unchanged but with an added record identi�er (rid) and to
store the information about versions in separate tables. As multiple
tuples across di�erent versions may share the same primary key,
the rid is needed as the new primary key for all tuples.

The version table manages the corresponding rids for each ver-
sion and each table (we adopt the rlist as array-like structure but
the table can be easily normalised using unnest). For each commit,
the meta table contains information such as the commit message
or the parent version. In comparison to OrpheusDB, we extended
the version table by one attribute referencing the table in question.
Instead of only one tuple, it contains as many tuples per version as
tables involved. During query processing, we need an additional
join predicate to retrieve the tuples of a certain version. Figure 2
shows the tables responsible for managing the commits and the
tables containing the data. In this example, the meta table hosts
two commits, one initial and one descending; the tuples concerned
are stored in the version table. For example, the name of the users
has changed after they got married, so the user table’s attribute
name has been updated and "wedding" was added to the task table.
The data tables now have a unique arti�cial key (rid) as the original
keys will not su�ce as primary keys, but are restored on a table
checkout. Indexing rid as primary key allows fast join processing
even for a huge number of entries. Given the presented database
schema, we present MusaeusDB as a tool besides and MusaeusSQL
as a tool on top of an existing database system.

3.1 MusaeusDB as a Separate Tool
MusaeusDB stores datasets in "public repositories" and allows users
to clone them. It bene�ts from the conception of database systems
as they provide multiple databases per server (at least one for each
user) with named schemas per database. In fact, a "public repository"
is an own namespace (a named schema) of a public database. Each
user is allowed to check out a certain version in a private namespace
of his/her database and may modify the tuples locally. Afterwards,
the changes get propagated by a commit to the origin repository.

In Figure 3, we see the distinction between public and user
databases with separate namespaces for the repositories. Each
namespace represents one repository. The default namespace of
the public database hosts all versions and their meta information.
On a checkout, all tuples belonging to the dedicated version are

} Private namespaces for users when they checkout

Versiontable: {[vid,tablename,rlist]}
Metatable: {[vid,parent,message]}

<p
ub

lic
>

<reponame> <tablename>: {[rid,...]}

commitcheckout

<u
se
r>

Dataset: {[tablename,tableid]}
Checkouts: {[tablename,dataset,versionid]}

<checkoutname> <tablename>: {[...]}

Figure 3: Distinction between global and local (user) space in
MusaeusDB: The global space maintains a separate names-
pace for each repository, relations can be checked out for
modi�cations in the user’s namespace.

checked out into tables that are created for that purpose in the
speci�ed namespace. To keep track of all tables currently checked
out, all checkouts are documented in the default namespace of the
user’s database. MusaeusDB is based on database systems imple-
menting the PostgreSQL interface and works as a separate tool. For
commits and checkouts it uses the pqxx library8 to connect to the
database server. The source code has been made publicly available9.
In the following, we will introduce the SQL commands behind init,
checkout and commit.

3.1.1 init. The init command prepares the tables of an existing
namespace for versioning comparable to git init. The command
expects the name of the destined global repository and the name
of a schema with its tables to be prepared for versioning and col-
laborative working (see Listing 1). MusaeusDB generates the SQL
commands to endue each tuple with an rid as its new primary key
and to create a global table in the designated global namespace to
which each of the source’s relations can be copied.

$./ musaeus init <public >.<reponame > <user >.<localreponame >

Listing 1: MusaeusDB: init command: this takes the local
database schema as source argument to copy it to a public
database schema, which allows versioning.

3.1.2 checkout. The checkout command works contrary to the init
one: this takes the name of the global namespace and copies the
tables to newly created ones in a designated private namespace
(see Listing 2). The global rid is hereby omitted and the original
primary keys are restored.

$./ musaeus checkout <public >.<reponame > <user >.<localreponame >

Listing 2: MusaeusDB: checkout command: it takes the
public database schema name as source argument to copy
the tables to the schema given as second argument.

8http://pqxx.org/development/libpqxx/
9https://gitlab.db.in.tum.de/tardisDB/musaeusDB

3.1.3 commit. The commit command updates the global repository
with changed, inserted or deleted tuples. It takes the name of the
source’s namespace and a commit message (see Listing 3). It treats
all changes as one whole commit and pushes the updates to the
origin. The rlist for the new version is copied from the ancestor
one except the rids of the changed or deleted tuples. For every
changed or inserted tuple, a new rid is created and added to the
rlist. As the command is translated into one atomic transaction,
the tool ensures that commits are processed atomicly, and respects
referential integrity as local tables inherit the parent’s database
schema. This is useful as MediaWiki stores the page title separately
from the content, but using references.

$./ musaeus commit <user >.<localreponame > <commitmessage >

Listing 3: MusaeusDB: commit command: the changes made
in the given schema name are updated in the remote
repository.

3.2 MusaeusSQL: Using One Interface

Main

CheckoutCommit

Versioning SQL

INSERTDELETE

UPDATESELECT

MockHyPerPSQL

DBMSConnector

Operation

+execute(): string
+transform(): void

Figure 4: Architecture of MusaeusSQL: Operations are di-
vided into basic SQL and versioning commands; SQL com-
mands are transformed as the extended schema is hidden,
versioning commands are translated into SQL queries.

MusaeusSQL is a lightweight tool on top of existing database
systems and provides an interface for SQL as well as versioning
commands. With MusaeusSQL, we tackle the obstacles arising by
using a separate tool: two di�erent user interfaces and the doubled
con�guration setup. Instead of checking out the relations locally be-
fore any edit, MusaeusSQL performs actions directly on the remote
repository.

3.2.1 Design. The conceptual design stays the same: on a commit,
an entry consisting of a new vid and the corresponding rids is
added to the version table. But now, the rids are created as soon
as a tuple is inserted or created. As the rids are hidden from the
user perspective, MusaeusSQL translates SQL queries to restrict the
validity of a query to the tuples of the current version.

Its modular design makes it easy to create extensions to support
further database systems or SQL commands that are currently not
supported (see Figure 4). Part of its architecture is made up of
SQL/versioning operations and a class for the communication with
the database server. Our SQL transformations are based on objects

init: add the requisite tables and attributes
to an existing database for versioning

checkout: copies the tables to a private
namespace

commit: update the global repository with
changed/inserted/deleted tuples

} Unified interface on top

Versiontable: {[vid,tablename,rlist]}
Metatable: {[vid,parent,message]}

<p
ub

lic
>

<reponame> <tablename>: {[rid,...]}

commitcheckout

<u
se
r>

Dataset: {[tablename,tableid]}
Checkouts: {[tablename,dataset,versionid]}

<checkoutname> <tablename>: {[...]}

Figure 3: Distinction between global and local (user) space in
MusaeusDB: The global space maintains a separate names-
pace for each repository, relations can be checked out for
modi�cations in the user’s namespace.

checked out into tables that are created for that purpose in the
speci�ed namespace. To keep track of all tables currently checked
out, all checkouts are documented in the default namespace of the
user’s database. MusaeusDB is based on database systems imple-
menting the PostgreSQL interface and works as a separate tool. For
commits and checkouts it uses the pqxx library8 to connect to the
database server. The source code has been made publicly available9.
In the following, we will introduce the SQL commands behind init,
checkout and commit.

3.1.1 init. The init command prepares the tables of an existing
namespace for versioning comparable to git init. The command
expects the name of the destined global repository and the name
of a schema with its tables to be prepared for versioning and col-
laborative working (see Listing 1). MusaeusDB generates the SQL
commands to endue each tuple with an rid as its new primary key
and to create a global table in the designated global namespace to
which each of the source’s relations can be copied.

$./ musaeus init <public >.<reponame > <user >.<localreponame >

Listing 1: MusaeusDB: init command: this takes the local
database schema as source argument to copy it to a public
database schema, which allows versioning.

3.1.2 checkout. The checkout command works contrary to the init
one: this takes the name of the global namespace and copies the
tables to newly created ones in a designated private namespace
(see Listing 2). The global rid is hereby omitted and the original
primary keys are restored.

$./ musaeus checkout <public >.<reponame > <user >.<localreponame >

Listing 2: MusaeusDB: checkout command: it takes the
public database schema name as source argument to copy
the tables to the schema given as second argument.

8http://pqxx.org/development/libpqxx/
9https://gitlab.db.in.tum.de/tardisDB/musaeusDB

3.1.3 commit. The commit command updates the global repository
with changed, inserted or deleted tuples. It takes the name of the
source’s namespace and a commit message (see Listing 3). It treats
all changes as one whole commit and pushes the updates to the
origin. The rlist for the new version is copied from the ancestor
one except the rids of the changed or deleted tuples. For every
changed or inserted tuple, a new rid is created and added to the
rlist. As the command is translated into one atomic transaction,
the tool ensures that commits are processed atomicly, and respects
referential integrity as local tables inherit the parent’s database
schema. This is useful as MediaWiki stores the page title separately
from the content, but using references.

$./ musaeus commit <user >.<localreponame > <commitmessage >

Listing 3: MusaeusDB: commit command: the changes made
in the given schema name are updated in the remote
repository.

3.2 MusaeusSQL: Using One Interface

Main

CheckoutCommit

Versioning SQL

INSERTDELETE

UPDATESELECT

MockHyPerPSQL

DBMSConnector

Operation

+execute(): string
+transform(): void

Figure 4: Architecture of MusaeusSQL: Operations are di-
vided into basic SQL and versioning commands; SQL com-
mands are transformed as the extended schema is hidden,
versioning commands are translated into SQL queries.

MusaeusSQL is a lightweight tool on top of existing database
systems and provides an interface for SQL as well as versioning
commands. With MusaeusSQL, we tackle the obstacles arising by
using a separate tool: two di�erent user interfaces and the doubled
con�guration setup. Instead of checking out the relations locally be-
fore any edit, MusaeusSQL performs actions directly on the remote
repository.

3.2.1 Design. The conceptual design stays the same: on a commit,
an entry consisting of a new vid and the corresponding rids is
added to the version table. But now, the rids are created as soon
as a tuple is inserted or created. As the rids are hidden from the
user perspective, MusaeusSQL translates SQL queries to restrict the
validity of a query to the tuples of the current version.

Its modular design makes it easy to create extensions to support
further database systems or SQL commands that are currently not
supported (see Figure 4). Part of its architecture is made up of
SQL/versioning operations and a class for the communication with
the database server. Our SQL transformations are based on objects

} Integrated versioning into a main-memory system
} Uses the “tuple-first” approach from Decibel
◦ Each tuple is associated with a bitmap telling which versions it

belongs to
} For query processing, only the Scan operator changes

SELECT <column_names > FROM t1,t2 ,... WHERE <condition >

SELECT <column_names >
FROM (SELECT * FROM t1, versiontable
WHERE $state_vid=versiontable.vid AND versiontable.

tableid=�t1� AND t1.rid ANY=versiontable.rlist),
(SELECT * FROM t2 , versiontable
WHERE $state_vid=versiontable.vid AND versiontable.

tableid=�t2� AND t2.rid ANY=versiontable.rlist)
WHERE <condition >

Listing 4: select. Check for all tuples for
containment in the rlists.

INSERT INTO t1 (SELECT ...)

INSERT INTO t1 (SELECT nextrid () ,...);
UPDATE versiontable
SET rlist=rlist|| newrids
WHERE table_id=�t1� AND $state_vid=vid

Listing 5: insert. New tuples get
a new rid appended, which is
tracked in the version table.

DELETE FROM t1 WHERE <condition >

SELECT rid FROM t1 WHERE <condition >;
UPDATE versiontable
SET rlist=array_remove(rlist ,oldrids)
WHERE table_id=�t1� AND $state_vid=vid

Listing 6: delete. Instead of a tuple
being deleted, only the rid list is
updated.

Figure 5: Transformation rule for select, insert and delete queries. Above, the original SQL-92 queries are listed; below, their
transformations based on the versioning schema.

of the Hyrise [9] C++ SQL Parser10 and are redirected as strings
to the database connector. We will describe the transformation of
select, insert, update and delete statements in the following.

3.2.2 �ery Transformations. In Listing 4, we see the transfor-
mation of a select statement: �rst, we pick the id of the version
currently checked out. Then, we transform each table into a sub-
query containing only the relevant tuples. Thus, we perform a join
on the rid attributes of the version table.

The remaining statements were transformed in a similar manner:
an insert statement adds an rid to the next version (see Listing 5).
Instead of removing tuples, a delete statement just removes the
corresponding rid of the new version (see Listing 6); update is
transformed to an insert query to preserve the former state.

3.2.3 Versioning Commands. In addition to common SQL-92 queries,
MusaeusSQL o�ers the commands commit <message> and checkout
<version> also known from Git. The checkout command updates
the local version to be used. All subsequent SQL commands will
use this state when reading or modifying data. The commit com-
mand materialises a state. Before committing, all tuples belong to a
temporary state. After committing, the state will be persisted and a
new temporary state created.

4 TARDISDB: VERSIONING INSIDE A
MAIN-MEMORY DATABASE SYSTEM

Having summarised how versioning can be performed on top of
database systems, this section describes how versioning can be
integrated inside a modern main-memory database system. There-
fore, we cover how version control is realised inside a prototyping
framework of a code-generating in-memory database system. This
framework utilises the push operator model [16] and represents
the logical core of a main-memory database system. Query plans
are compiled to LLVM’s Intermediate Representation (IR), then
optimised and executed.

The push model, as the name suggests, is characterised by the
inversion of the logical tuple �ow. Tuples are pushed from a child op-
erator to its parent rather than pulled as in the traditional approach.
This model can generally be characterised by the two functions
produce() and consume(attributes,source). A parent operator
will request tuples from its child by invoking produce. In response
10https://github.com/hyrise/sql-parser

to the produce call, the child operator will generate its own tuples.
These tuples are subsequently pushed by invoking the consume
function of the parent operator. This leads to an important di�er-
ence in contrast to the traditional pull model: in the push model,
a child always passes all of its tuples to its parent at once, rather
than a single tuple at a time.

For TardisDB11, we modify the table scan operator to push only
visible tuples. We therefore introduce branches in the form of
bitmaps with every set bit representing an active tuple in the cer-
tain branch, as well as we adapt multi-version concurrency control
(MVCC) to retrieve any previous state of a tuple.

4.1 Bitmaps for Versioning
TardisDB is based on the tuple-�rst approach described by Mad-
dox et. al. [15], where all tuples are stored in one table and bitmaps
indicate the association to a certain branch or version. Each branch
consists of only one version, so branching and versioning (updates,
insertions, deletions) means the same operation, that is, copying
the bitmap to serve as the new starting point. On an insert, the bits
corresponding to the inserted tuples will be set; on a delete, the
corresponding ones unset and both on an update.
LoopGen scanLoop(funcGen ,{{�index�,cg_size_t (0ul)}});
cg_size_t tid(scanLoop.getLoopVar (0)); {

LoopBodyGen bodyGen(scanLoop);
auto branchId = _context.executionContext.branchId;
IfGen visibilityCheck(isVisible(tid ,branchId)); {

produce(tid);
}

}
cg_size_t nextIndex = tid+1ul;
scanLoop.loopDone(nextIndex <tableSize ,{ nextIndex });

Listing 7: The modi�ed scan loop: the table scan operator,
which iterates over all tuples, has been modi�ed to check
the visibility of the tuple �rst. A tuple is visible when the
corresponding bit of the versioning bitmap is set.

With regard to the underlying logic of the push model, only the
table scan operator requires certain modi�cations. The physical
manifestation of this operator (the part of the operator that conducts
the actual code generation) has been slightly altered to only produce
tuples that are visible within the context of the current branch. In
particular, this concerns the generation of a conditional branch
instruction ensuring that only those tuples are forwarded onto the
11Time and Relative Dimensions in DataBases: versioning (time) and branching

} Uses MVCC for the versioning

Tuple Update latestoldest

Tu
pl
e
In
se
rt

M
as
te
r

Br
an
ch

3
Br
an
ch

2
Br
an
ch

1

Bitmaps

A | 1 A | 6

B | 2

C | 3

D | 4

E | 12

Master

A | 10

B | 7

C | 8

B | 12

C | 13

Branch 1

Branch 2

Branch 3

A | 1

B | 2

C | 3

D | 4

A | 6

E | 12

B | 7

C | 8

A | 10

B | 11

C | 13

Time Master Branch 1 Branch 2 Branch 3
1 insert A
2 insert B
3 insert C
4 insert D
5 branch 1
6 update A
7 update B
8 update C
9 branch 2
10 update A
11 update B
12 insert E
12 branch 3
13 insert C
14 delete A
15 delete B

Figure 6: Adaption of multi-version concurrency control for versioning (left): bitmaps for each branch indicate the included
tuples; an insert increases the size of all bitmaps. Updates in the master branch are handled in place with a pointer to the
previous version, updates from other branches are prepended. Tuples receive a unique timestamp, their colour indicates the
creator branch. Descendance tree (middle) determines the tuple visibility for the corresponding history (right).

parent operator, as well as corresponding instructions for extracting
the branch indicator bit from our branch bitmap. Listing 7 depicts
the modi�ed code generation logic within the table scan operator.
The concept of bitmaps is easily transferable to multiple relations,
we just have to maintain one bitmap for every branch, for each
relation.

Nevertheless, we need to intersect the involved bitmaps to obtain
a version chain in this approach, as no information is stored than the
tuple itself. Also, many updates will result in sparse bitmaps. Thus,
we will use bitmaps for branches only and will rely on multi-version
concurrency control to track versions.

4.2 Reusing MVCC for Versioning
As database systems come along with concurrency control mech-
anisms to encapsulate transactions and to restore previous states,
we can rely on these mechanisms to preserve di�erent versions.
We base our versioning approach on the multi-version concurrency
control model [17] where updates happen in place and previous
versions are stored in undo bu�ers. We therefore introduce the
concept of a prioritised branch—so called master—with in-place
changes (see Figure 6). We should thus be able to retain the high
scan performance of our system in cases where only a few tuples
are not active in the master branch.

Each branch is represented by a bitmap that indicates the ac-
tive tuples. Creating a branch preserves the current version and
simpli�es its retrieval. Previous versions to which other branches
still refer are chained in bu�ers. Similarly to [17], we maintain
timestamps ts() for every tuple, as well as for every branch, to
indicate their creation. To map timestamps and tuples to a certain
branch, we introduce markers for every tuple to indicate the creator
branch (created()). This allows us to traverse the visible range of

the tuple’s history. On creation of a branch, we copy the bitmap for
the descending branch; all its tuples are visible. Afterwards, inserts
or updates on the ancestor branch are hidden for the new one. To
access the latest version of a tuple in a given branch, we �rst check
the bitmap to ascertain whether a tuple is included, then we follow
the chain until we reach an entry for a tuple that was created by
the current branch or by a parent one. Formally, for each entry
t and each branch b we can de�ne the predicate acti�e(t,b) that
evaluates to true when an entry belongs to the current branch:

acti�e(t,b) , created(b, t)_
‹

p2parent (b)
acti�e(t,p)^ts(t) < ts(b).

An entry is active within a branch when it was created by the
respective one itself or by one of its parents (parents(b)). Of course,
an entry, created by an ancestor branch, is only visible when it
was created before branching. That is why we compare the entry’s
timestamp with the branch’s one. When the chain is traversed, the
�rst—newest—active entry will be returned.

The actual implementation considers a non-recursive reformula-
tion of active(). We introduce the set-oriented mapping C(b) of a
branch b that returns the lineage as pairs ({parent, child}):

C(b) =
ÿ

p2parent (b)
{(p,b)} [C(p).

The implementation uses the expression for creating a precomputed
hashtable out of the non-recursive de�nition of active():

acti�e(t,bq) ()created(t,bq)_

9(p,bd) 2 C(bq) : created(t,p) ^ ts(t) < ts(bd).

Therefore, we useC(b) to identify the relevant branching point that
has to be investigated. If ts(t) < ts(bd) holds, we can infer that all
timestamps of further descendants are also greater.

Figure 3: TardisDB web interface: An interface allows SQL
queries including branch creation to be formulated. The
chart in the middle displays the lineage of all available
branches; the result table is shown at the bottom.

con�icting tuples sharing the same primary key to be identi�ed
(see Listing 4).
SELECT a.id , COALESCE(a.name , b.name)

FROM users VERSION master as a FULL OUTER JOIN
users VERSION mybranch as b ON a.id=b.id

Listing 4: Merging tables.

Finally, after changes in a branch have been merged or become
outdated, we propose a delete statement to free the allocated re-
sources (see Listing 5). We propose a garbage collection [3] to
remove versions that are not contained within a branch anymore.
DELETE BRANCH mybranch;

Listing 5: Branch deletion statement.

5 DEMONSTRATION SETUP
We have created an interactive web interface4 to demonstrate ex-
tended SQL on TardisDB (see Figure 3). Within the web interface,
we allow users to create tables, insert data and create branches. The
lineage of created branches is visualised graphically. Of course, the
SQL interface allows querying the data including joins over di�er-
ent branches. The result together with the query time is displayed
afterwards. During the demonstration, we will start a TardisDB
instance on a remote server that creates a new database instance
for each client. This allows participants to try out the extended SQL
on their own device even without physical participation. We will
provide examples together with a selected CSV �le as input data to
demonstrate the performance of the available operators.
4http://tardis.db.in.tum.de

6 CONCLUSION
In this paper, we have demonstrated an extension of SQL to support
versioning. Our extension supports named branches over multiple
tables, which comprises a statement for branch creation and an
auxiliary keyword after each table to determine the branch. We
compiled SQL statements to operator plans based on an open-source
parser, which allows integration into other software projects as
well. Our target engine, TardisDB, was equipped with a modi�ed
table scan operator with bitmaps to indicate the a�liation of tuples
to branches and a version chain to track their modi�cation history.
The extension did not slow down the read throughput on the master
branch and retrieved other versions faster than comparable sys-
tems. With the developed web interface, we aimed to demonstrate
the simplicity of extending SQL for versioning, which should also
increase the acceptance of SQL for further tasks such as version
control.

REFERENCES
[1] Anant P. Bhardwaj, Amol Deshpande, Aaron J. Elmore, David R. Karger, Sam

Madden, Aditya G. Parameswaran, Harihar Subramanyam, Eugene Wu, and
Rebecca Zhang. 2015. Collaborative Data Analytics with DataHub. PVLDB 8, 12
(2015), 1916–1919. http://www.vldb.org/pvldb/vol8/p1916-bhardwaj.pdf

[2] Souvik Bhattacherjee and Amol Deshpande. 2018. RStore: A Distributed Multi-
Version Document Store. In ICDE. 389–400. https://doi.org/10.1109/ICDE.2018.
00043

[3] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2019. Scalable
Garbage Collection for In-Memory MVCC Systems. Proc. VLDB Endow. 13, 2
(2019), 128–141. https://doi.org/10.14778/3364324.3364328

[4] Amit Chavan, Silu Huang, Amol Deshpande, Aaron J. Elmore, Samuel Madden,
and Aditya G. Parameswaran. 2015. Towards a Uni�ed Query Language for
Provenance and Versioning. In TaPP. USENIX Association. https://www.usenix.
org/conference/tapp15/workshop-program/presentation/chavan

[5] Markus Dreseler, Jan Kossmann,Martin Boissier, Stefan Klauck,Matthias U�acker,
and Hasso Plattner. 2019. Hyrise Re-engineered: An Extensible Database System
for Research in Relational In-Memory Data Management. In EDBT. 313–324.
https://doi.org/10.5441/002/edbt.2019.28

[6] Silu Huang, Liqi Xu, Jialin Liu, Aaron J. Elmore, and Aditya G. Parameswaran.
2017. OrpheusDB: Bolt-on Versioning for Relational Databases. PVLDB 10, 10
(2017), 1130–1141. http://www.vldb.org/pvldb/vol10/p1130-huang.pdf

[7] Lukas Karnowski, Maximilian E. Schüle, Alfons Kemper, and Thomas Neumann.
2021. Umbra as a Time Machine: Adding a Versioning Type to SQL. In BTW
(LNI). Gesellschaft für Informatik, Bonn.

[8] Krishna G. Kulkarni and Jan-Eike Michels. 2012. Temporal features in SQL: 2011.
SIGMOD Record 41, 3 (2012), 34–43. https://doi.org/10.1145/2380776.2380786

[9] Qian Lin, Kaiyuan Yang, Tien Tuan Anh Dinh, Qingchao Cai, Gang Chen,
Beng Chin Ooi, Pingcheng Ruan, Sheng Wang, Zhongle Xie, Meihui Zhang,
and Olafs Vandans. 2020. ForkBase: Immutable, Tamper-evident Storage Sub-
strate for Branchable Applications. In ICDE. IEEE, 1718–1721. https://doi.org/10.
1109/ICDE48307.2020.00153

[10] Michael Maddox, David Goehring, Aaron J. Elmore, Samuel Madden, Aditya G.
Parameswaran, and Amol Deshpande. 2016. Decibel: The Relational Dataset
Branching System. PVLDB 9, 9 (2016), 624–635. http://www.vldb.org/pvldb/vol9/
p624-maddox.pdf

[11] Thomas Neumann. 2011. E�ciently Compiling E�cient Query Plans for Modern
Hardware. PVLDB 4, 9 (2011), 539–550. https://doi.org/10.14778/2002938.2002940

[12] Maximilian Schüle, Pascal Schliski, Thomas Hutzelmann, Tobias Rosenberger,
Viktor Leis, Dimitri Vorona, Alfons Kemper, and Thomas Neumann. 2017. Mono-
pedia: Staying Single is Good Enough - The HyPer Way for Web Scale Applica-
tions. PVLDB 10, 12 (2017), 1921–1924. https://doi.org/10.14778/3137765.3137809

[13] Maximilian E. Schüle, Lukas Karnowski, Josef Schmeißer, Benedikt Kleiner, Alfons
Kemper, and Thomas Neumann. 2019. Versioning in Main-Memory Database
Systems: From MusaeusDB to TardisDB. In SSDBM. ACM, 169–180. https:
//doi.org/10.1145/3335783.3335792

[14] Maximilian E. Schüle, Dimitri Vorona, Linnea Passing, Harald Lang, Alfons
Kemper, Stephan Günnemann, and Thomas Neumann. 2019. The Power of SQL
Lambda Functions. In EDBT. 534–537. https://doi.org/10.5441/002/edbt.2019.49

[15] Richard T. Snodgrass. 1987. The Temporal Query Language TQuel. ACM Trans.
Database Syst. 12, 2 (1987), 247–298. https://doi.org/10.1145/22952.22956

} DataHub: Overview

} OrpheusDB

} TardisDB

} Forkbase

} Many applications need a storage layer that support
versioning and tamper-resistance
◦ Collaborative applications (i.e., motivation for DataHub)
◦ Blockchain systems (distributed tamperproof ledgers)

} Forkbase: a storage engine that:
◦ Supports versioning and tamper-resistance
◦ Splits up large objects into data chunks for deduplication
◦ Support general “fork semantics” (branch and merge)
◦ Simple APIs
◦ Scales well to many nodes through two-layer partitioning

element boundaries, thus avoiding the need to reconstruct
an element from multiple chunks. Taking the structure of
data object into account makes updates and dedpulciations
more e�cient. Noms [8] applies chunk-level deduplication
similar to ForkBase. However, it targets single storage in-
stance with fast synchronization, whereas ForkBase applies
deduplication over multiple storage instances to optimize for
large-volume data accesses and modifications. Compared
to the delta-based technique used in Decibel to remove du-
plicates within a dataset, ForkBase achieves better storage
reduction because it can also eliminate cross-dataset dupli-
cates generated by uncoordinated teams2. Furthermore,
ForkBase o↵ers richer branch management (discussed be-
low) to support more diverse collaborative workflows.

2.2 Fork Semantics

Fork semantics elegantly captures non-linearity of the data
evolution history. It consists of two core operations: fork
and conflict resolution. A fork operation creates a new data
branch, which evolves independently and its local modifica-
tions are isolated from other branches’. Data forks isolate
conflicted updates which can then be merged via the conflict
resolution operation. Applications exploiting this seman-
tics can be divided into two categories: one that invokes
on-demand (or explicit) forks and the other that relies on
on-conflict (or implicit) forks.

On-demand forks are found in applications that have ex-
plicit demand for isolated (or private) branches. Source code
version control systems like git allow users to fork a new
branch for their own development and only merge changes
to the main codebase after they are well tested. Similarly,
collaborative analytics applications such as Datahub [12] al-
low branching o↵ from an original dataset before applying
transformation to the data, e.g., data cleansing, correction
and integration. On-conflict forks are used in applications
that implicitly fork a state upon concurrent modifications
of the same data. Transactional systems with weak con-
sistency, e.g. TARDiS [20], fork the database state during
the concurrent execution of conflicting transactions, and de-
lay (user-defined) conflict resolution. In blockchain applica-
tions, for instance Bitcoin [39] and Ethereum [2], forks arise
when multiple blocks are appended at the same time to an
old block. They are resolved by taking the longest chain or
by more complex mechanisms like GHOST [45].

ForkBase is thus motivated to be the first system to na-
tively support both implicit and explicit forks. To facilitate
application development, it also provides a number of built-
in conflict resolution operations.

2.3 Tamper Evidence

Security conscious applications demand protection against
malicious modifications, not only from external attackers
but also from malicious insiders. One example is outsourced
services like storage [29] or file system [34], which provide
mechanisms to detect tampering (forking) of the update
logs. Another example is blockchain platforms [39, 31, 2],
which require tamper evidence for the ledger. The block-
chain combines the tamper-evident ledger with a distributed
consensus protocol to ensure that the global states are im-
mutable across multiple nodes. We note that there is an

2Like any other content-based techniques, the deduplication
is less e↵ective than delta-based techniques when the deltas
are much smaller than the chunks.

Admin Admin

put(object) → version
get(version) → {objects}
merge({objects}) → object

Access Control
branch‐based

Data Security
integrity

Consistency
merge semantics

Document
Hosting Git Collaborative

AnalyticsBlockchain

Chunk Storage
(deduplication, immutability)

Branch Representation
(versioning, forking)

Data Access APIs
(data types)

Semantic Views
(application-oriented)

Applications

Figure 1: The ForkBase stack o↵ers advanced fea-

tures to various classes of modern applications.

increasing demand for performing analytics on blockchain
data [37, 1, 30], which existing blockchain storage engines
were not designed for. Specifically, current systems imple-
ment the ledger on top of a key-value storage. Further,
they focus on tamper evidence and do not e�ciently sup-
port querying the states’ history.
ForkBase provides tamper evidence against malicious stor-

age providers. Given a version number, the application
can fetch the corresponding data from the storage provider
and verify whether the content and its history have been
changed. All data objects in ForkBase are tamper-evident,
and hence can be leveraged to build better data models for
blockchain. In particular, the blockchain’s key data struc-
tures implemented on top of ForkBase are now easy to main-
tain without incurring any performance overhead. Further-
more, the richer structured information captured in Fork-
Base makes the blockchain analytics-ready.

2.4 Design Overview

Figure 1 shows the ForkBase’s stack, illustrating how the
storage unifies the common properties and adds values to
modern applications. At the bottom layer, data is chunked
and deduplicated. At the representation layer, versions and
branches are organized in such a way that enables tamper
evidence and e�cient tracking of the version history. The
next layer exposes APIs that combine general fork semantics
and structured data types. Other features such as access
control and customized merge functions, can be added to
the view layer to further enrich the top-layer applications.

3. DATA MODEL AND APIS

In this section, we describe the data model and basic oper-
ations, and show an example on how to leverage core features
from provided APIs.

3.1 FObject

ForkBase extends the basic key-value data model: each
data object in ForkBase is identified by a key, and contains
a value of a specific type. For each key, it is possible to
retrieve not only its latest value, but also its evolution his-
tory. Similar to other data versioning systems, ForkBase
organizes versions in a directed acyclic graph (DAG) called

} FObject: a generic object type that is versioned

struct FObject {

enum type; // object type

byte[] key; // object key

byte[] data; // object value

int depth; // distance to the first version

vector<uid> bases; // versions it derives from

byte[] context; // reserved for application

}

Figure 2: The FObject structure.

object derivation graph. Each node in the graph is a struc-
ture called FObject, and it is associated with a unique identi-
fier uid. Links between FObjects represent their derivation
relationships.

The structure of a FObject is shown in Figure 2. The
context field is reserved for application metadata, for exam-
ples commit message in git, or nonces value for blockchain
proof-of-work [26]. Access to a FObject is via the Put and
Get APIs listed in Table 1. In particular:

• Put(key, <branch>, value) - write a new value to
the specified branch. When branch is absent, write to
the default branch.

• Get(key, <branch>) - read the latest value from the
specified branch. When branch is absent, read from
the default branch.

It can be seen that the ForkBase’s data model is compliant
to the basic key-value model when only the default branch
is used.

3.2 Tamper-Evident Version

Each FObject is associated with a uid representing the
data version. An important property of the uid is that it is
tamper-evident. The uid uniquely identifies both the ob-
ject value and its derivation history. Two FObjects are
considered logically equivalent, i.e. having the same uid,
only when they have the same value and derivation history.
Suppose the application is given vl as the latest version of
an object, let V = hv1, v2, .., vli be the derivation history.
The storage cannot prove to the application that a version
v0 /2 V is part of the object history. In other words, the
storage cannot tamper with the object value and its history.

ForkBase realizes this property by linking versions via a
cryptographic hash chain. In particular, each FObject stores
the hashes of the previous versions it derives from in the
bases field. Two important operations on versions are sup-
ported, namely Diff and LCA. The former returns the di↵er-
ences between two FObjects of the same types (they could
be of di↵erent keys). The latter returns the least common
ancestor of two FObjects with the same key.

3.3 Fork and Merge

The latest version of a branch is called the branch head. A
branch is only modifiable at the head. However, to change
a historical version, a new branch can be created (forked
out) at that version to make it modifiable. There are no
restrictions on the number of branches per key. ForkBase
generalizes fork operations by providing two fork semantics:
fork on demand (FoD) and fork on conflict (FoC). Table 1
details the semantics for the basic operations supported in
ForkBase.

Table 1: ForkBase APIs.

Method FoD FoC Ref

Get
Get(key,branch) X M1
Get(key,uid) X X M2

Put
Put(key,branch,value) X M3
Put(key,base uid,value) X M4

Merge

Merge(key,tgt brh,ref brh) X M5
Merge(key,tgt brh,ref uid) X M6
Merge(key,ref uid1,...) X M7

View

ListKeys() X X M8
ListTaggedBranches(key) X M9
ListUntaggedBranches(key) X M10

Fork

Fork(key,ref brh,new brh) X M11
Fork(key,ref uid,new brh) X M12

Rename(key,tgt brh,new brh) X M13
Remove(key,tgt brh) X M14

Track

Track(key,branch,dist rng) X M15
Track(key,uid,dist rng) X M16

LCA(key,uid1,uid2) X X M17

𝑺𝟐

𝑺𝟏

𝑾

𝑺′𝟏
𝑭𝒐𝒓𝒌

(a)

ࡿ ࡿ

ࡿ

ࢃ ࢃ

(b)

Figure 3: Generic fork semantics supported for

both (a) fork on demand and (b) fork on conflict.

3.3.1 Fork on Demand
A branch is created explicitly before any modifications.

For example, in Figure 3(a) a branch with head version S1

is forked to create a new branch. Then a new update W is
applied to the new branch creating a new version S2. S2 is
now the head of an independent branch. Branches generated
in this way require user-defined names, and thus we refer to
them as tagged branches. The Fork operation creates a new
tagged branch by taking as input an existing branch (M11
in Table 1), or a non-head FObject of the existing branch
(M12). (M9) lists all branch names and their head uids.
(M1) and (M3) allow for reading and modifying the head
version of a given branch. Non-head versions can be read
using (M15).

3.3.2 Fork on Conflict
Branches are implicitly created from concurrent, conflict-

ing Put (M4) operations in which di↵erent changes are made
to the same version. For example, in Figure 3(b) two up-
dates W1 and W2 are applied to the head version S1 concur-
rently. This is common in decentralized environments where
concurrent updates from remote users may not be immedi-
ately visible. The result is that two branches with di↵erent
head versions S2 and S3 are created. Branches generated in
this way can only be identified by their uids, and thus we
refer to them as untagged branches. Conflicting branches
can be checked using (M10) which returns a single head ver-
sion if no conflict is found. Otherwise, all conflicting head
versions are returned, with which the application can decide

struct FObject {

enum type; // object type

byte[] key; // object key

byte[] data; // object value

int depth; // distance to the first version

vector<uid> bases; // versions it derives from

byte[] context; // reserved for application

}

Figure 2: The FObject structure.

object derivation graph. Each node in the graph is a struc-
ture called FObject, and it is associated with a unique identi-
fier uid. Links between FObjects represent their derivation
relationships.

The structure of a FObject is shown in Figure 2. The
context field is reserved for application metadata, for exam-
ples commit message in git, or nonces value for blockchain
proof-of-work [26]. Access to a FObject is via the Put and
Get APIs listed in Table 1. In particular:

• Put(key, <branch>, value) - write a new value to
the specified branch. When branch is absent, write to
the default branch.

• Get(key, <branch>) - read the latest value from the
specified branch. When branch is absent, read from
the default branch.

It can be seen that the ForkBase’s data model is compliant
to the basic key-value model when only the default branch
is used.

3.2 Tamper-Evident Version

Each FObject is associated with a uid representing the
data version. An important property of the uid is that it is
tamper-evident. The uid uniquely identifies both the ob-
ject value and its derivation history. Two FObjects are
considered logically equivalent, i.e. having the same uid,
only when they have the same value and derivation history.
Suppose the application is given vl as the latest version of
an object, let V = hv1, v2, .., vli be the derivation history.
The storage cannot prove to the application that a version
v0 /2 V is part of the object history. In other words, the
storage cannot tamper with the object value and its history.

ForkBase realizes this property by linking versions via a
cryptographic hash chain. In particular, each FObject stores
the hashes of the previous versions it derives from in the
bases field. Two important operations on versions are sup-
ported, namely Diff and LCA. The former returns the di↵er-
ences between two FObjects of the same types (they could
be of di↵erent keys). The latter returns the least common
ancestor of two FObjects with the same key.

3.3 Fork and Merge

The latest version of a branch is called the branch head. A
branch is only modifiable at the head. However, to change
a historical version, a new branch can be created (forked
out) at that version to make it modifiable. There are no
restrictions on the number of branches per key. ForkBase
generalizes fork operations by providing two fork semantics:
fork on demand (FoD) and fork on conflict (FoC). Table 1
details the semantics for the basic operations supported in
ForkBase.

Table 1: ForkBase APIs.

Method FoD FoC Ref

Get
Get(key,branch) X M1
Get(key,uid) X X M2

Put
Put(key,branch,value) X M3
Put(key,base uid,value) X M4

Merge

Merge(key,tgt brh,ref brh) X M5
Merge(key,tgt brh,ref uid) X M6
Merge(key,ref uid1,...) X M7

View

ListKeys() X X M8
ListTaggedBranches(key) X M9
ListUntaggedBranches(key) X M10

Fork

Fork(key,ref brh,new brh) X M11
Fork(key,ref uid,new brh) X M12

Rename(key,tgt brh,new brh) X M13
Remove(key,tgt brh) X M14

Track

Track(key,branch,dist rng) X M15
Track(key,uid,dist rng) X M16

LCA(key,uid1,uid2) X X M17

𝑺𝟐

𝑺𝟏

𝑾

𝑺′𝟏
𝑭𝒐𝒓𝒌

(a)

ࡿ ࡿ

ࡿ

ࢃ ࢃ

(b)

Figure 3: Generic fork semantics supported for

both (a) fork on demand and (b) fork on conflict.

3.3.1 Fork on Demand
A branch is created explicitly before any modifications.

For example, in Figure 3(a) a branch with head version S1

is forked to create a new branch. Then a new update W is
applied to the new branch creating a new version S2. S2 is
now the head of an independent branch. Branches generated
in this way require user-defined names, and thus we refer to
them as tagged branches. The Fork operation creates a new
tagged branch by taking as input an existing branch (M11
in Table 1), or a non-head FObject of the existing branch
(M12). (M9) lists all branch names and their head uids.
(M1) and (M3) allow for reading and modifying the head
version of a given branch. Non-head versions can be read
using (M15).

3.3.2 Fork on Conflict
Branches are implicitly created from concurrent, conflict-

ing Put (M4) operations in which di↵erent changes are made
to the same version. For example, in Figure 3(b) two up-
dates W1 and W2 are applied to the head version S1 concur-
rently. This is common in decentralized environments where
concurrent updates from remote users may not be immedi-
ately visible. The result is that two branches with di↵erent
head versions S2 and S3 are created. Branches generated in
this way can only be identified by their uids, and thus we
refer to them as untagged branches. Conflicting branches
can be checked using (M10) which returns a single head ver-
sion if no conflict is found. Otherwise, all conflicting head
versions are returned, with which the application can decide

Tamper resistance through linking
versioning using a cryptographic
hash chain (i.e., a blockchain)

} FObject: a generic object type that is versioned

struct FObject {

enum type; // object type

byte[] key; // object key

byte[] data; // object value

int depth; // distance to the first version

vector<uid> bases; // versions it derives from

byte[] context; // reserved for application

}

Figure 2: The FObject structure.

object derivation graph. Each node in the graph is a struc-
ture called FObject, and it is associated with a unique identi-
fier uid. Links between FObjects represent their derivation
relationships.

The structure of a FObject is shown in Figure 2. The
context field is reserved for application metadata, for exam-
ples commit message in git, or nonces value for blockchain
proof-of-work [26]. Access to a FObject is via the Put and
Get APIs listed in Table 1. In particular:

• Put(key, <branch>, value) - write a new value to
the specified branch. When branch is absent, write to
the default branch.

• Get(key, <branch>) - read the latest value from the
specified branch. When branch is absent, read from
the default branch.

It can be seen that the ForkBase’s data model is compliant
to the basic key-value model when only the default branch
is used.

3.2 Tamper-Evident Version

Each FObject is associated with a uid representing the
data version. An important property of the uid is that it is
tamper-evident. The uid uniquely identifies both the ob-
ject value and its derivation history. Two FObjects are
considered logically equivalent, i.e. having the same uid,
only when they have the same value and derivation history.
Suppose the application is given vl as the latest version of
an object, let V = hv1, v2, .., vli be the derivation history.
The storage cannot prove to the application that a version
v0 /2 V is part of the object history. In other words, the
storage cannot tamper with the object value and its history.

ForkBase realizes this property by linking versions via a
cryptographic hash chain. In particular, each FObject stores
the hashes of the previous versions it derives from in the
bases field. Two important operations on versions are sup-
ported, namely Diff and LCA. The former returns the di↵er-
ences between two FObjects of the same types (they could
be of di↵erent keys). The latter returns the least common
ancestor of two FObjects with the same key.

3.3 Fork and Merge

The latest version of a branch is called the branch head. A
branch is only modifiable at the head. However, to change
a historical version, a new branch can be created (forked
out) at that version to make it modifiable. There are no
restrictions on the number of branches per key. ForkBase
generalizes fork operations by providing two fork semantics:
fork on demand (FoD) and fork on conflict (FoC). Table 1
details the semantics for the basic operations supported in
ForkBase.

Table 1: ForkBase APIs.

Method FoD FoC Ref

Get
Get(key,branch) X M1
Get(key,uid) X X M2

Put
Put(key,branch,value) X M3
Put(key,base uid,value) X M4

Merge

Merge(key,tgt brh,ref brh) X M5
Merge(key,tgt brh,ref uid) X M6
Merge(key,ref uid1,...) X M7

View

ListKeys() X X M8
ListTaggedBranches(key) X M9
ListUntaggedBranches(key) X M10

Fork

Fork(key,ref brh,new brh) X M11
Fork(key,ref uid,new brh) X M12

Rename(key,tgt brh,new brh) X M13
Remove(key,tgt brh) X M14

Track

Track(key,branch,dist rng) X M15
Track(key,uid,dist rng) X M16

LCA(key,uid1,uid2) X X M17

𝑺𝟐

𝑺𝟏

𝑾

𝑺′𝟏
𝑭𝒐𝒓𝒌

(a)

ࡿ ࡿ

ࡿ

ࢃ ࢃ

(b)

Figure 3: Generic fork semantics supported for

both (a) fork on demand and (b) fork on conflict.

3.3.1 Fork on Demand
A branch is created explicitly before any modifications.

For example, in Figure 3(a) a branch with head version S1

is forked to create a new branch. Then a new update W is
applied to the new branch creating a new version S2. S2 is
now the head of an independent branch. Branches generated
in this way require user-defined names, and thus we refer to
them as tagged branches. The Fork operation creates a new
tagged branch by taking as input an existing branch (M11
in Table 1), or a non-head FObject of the existing branch
(M12). (M9) lists all branch names and their head uids.
(M1) and (M3) allow for reading and modifying the head
version of a given branch. Non-head versions can be read
using (M15).

3.3.2 Fork on Conflict
Branches are implicitly created from concurrent, conflict-

ing Put (M4) operations in which di↵erent changes are made
to the same version. For example, in Figure 3(b) two up-
dates W1 and W2 are applied to the head version S1 concur-
rently. This is common in decentralized environments where
concurrent updates from remote users may not be immedi-
ately visible. The result is that two branches with di↵erent
head versions S2 and S3 are created. Branches generated in
this way can only be identified by their uids, and thus we
refer to them as untagged branches. Conflicting branches
can be checked using (M10) which returns a single head ver-
sion if no conflict is found. Otherwise, all conflicting head
versions are returned, with which the application can decide

ForkBaseConnector db;

// Put a blob to the default master branch

Blob blob {"my value"};

db.Put("my key", blob);

// Fork to a new branch

db.Fork("my key", "master", "new branch");

// Get the blob

FObject value = db.Get("my key", "new branch");

if (value.type() != Blob)

throw TypeNotMatchError;

blob = value.Blob();

// Remove 10 bytes from beginning and append new

// Changes are buffered in client

blob.Remove(0, 10);

blob.Append("some more");

// Commit changes to that branch

db.Put("my key", "new branch", blob);

Figure 4: Fork and modify a Blob object.

when and how the conflicts should be resolved.

3.3.3 Merge
A tagged branch can be merged with another tagged branch

(M5) or with a specific version (M6). In both cases, only the
first branch’s head is updated such that the new head con-
tains data from both branches. A collection of untagged
branches can be merged using (M7), after which the input
branches are logically replaced with a new branch. When
conflicts are detected during a merge, the application can
resolve them in many ways (Section 4.5). To simplify the
merge process, ForkBase provides type-specific merge func-
tions for the built-in data types.

3.4 Data Type

ForkBase provides many built-in, structured data types.
They can be categorized into two classes: primitive types
and chunkable types.

Primitive types include simple types such as String,
Tuple and Integer. They are small-size objects that are op-
timized for fast access. These objects are not deduplicated,
since the benefits of sharing small data does not o↵set the
extra overheads of deduplication. Apart from the basic Get

and Set operations, type-specific operations are provided
to modify primitive objects. Examples include Append and
Insert for String and Tuple types, and Add and Multiply

for numerical types.
Chunkable types are complex data structures, for exam-

ples Blob, List, Map and Set. A chunkable object is stored
as a POS-Tree and deduplicated (Section 4.3). The chunk-
able object is most suitable to represent data that grows
fairly large due to many updates, but each update touches
only a small portion of the data. In other words, a new ver-
sion has significant overlap with the previous version. The
read operation returns only a handler, while the actual data
is fetched gradually on demand. Iterator interfaces are pro-
vided to e�ciently traverse large objects.

The rich collection of built-in types makes it easy to build
high level structures, such as relational tables (Section 5).
Note that di↵erent data types may have similar logical rep-
resentation but di↵erent performance, for example String

and Blob, or Tuple and List. The application is able to
choose those types are more suitable based on their expected
workloads.

Request Dispatcher

Servlet

Request Handler
Get/Put/Fork/Merge/Rename/...

Access Control Branch Table

Data Type Manager

Object Manager

Chunkable
blob/list/map/set/...

Primitive
bool/number/string/...

Chunk Storage Client

+

Distributed Chunk Storage

Servlet Servlet ...

Data Access Requests

Local Storage

Application

ForkBase

Master

...

Figure 5: Architecture of a ForkBase cluster.

3.5 Example

In ForkBase, data can be manipulated at two granular-
ities, i.e., at an individual object, and at a branch of ob-
jects. ForkBase exposes easy-to-use interfaces that combine
both object manipulation and branch management. Fig-
ure 4 shows an example of forking and editing a Blob ob-
ject. Since Put serves for both insertion and update, the
value input to the Put operation could be either a whole
new object or the base object that has undergone a sequence
of updates. When multiple updates of the same object are
batched, ForkBase only retains the final version.

4. DESIGN AND IMPLEMENTATION

In this section, we present the detailed design and imple-
mentation of ForkBase. The system can used as an embed-
ded storage or run as a distributed service.

4.1 Architecture

Figure 5 shows the stack of a ForkBase cluster consisting
of four main components: a master, a dispatcher, a servlet
and a chunk storage. When used as an embedded storage,
only one servlet and one chunk storage are instantiated. The
servlet executes requests using three sub-modules. First,
the access controller verifies request permission before exe-
cution. Second, the branch table maintains branch heads for
both tagged and untagged branches. Third, the object man-
ager handles object manipulations, hiding the physical data
representation from the main execution logic. The chunk
storage persists and provides access to data chunks. When
deployed as a distributed service, the master maintains the
cluster runtime information, while the request dispatcher re-
ceives and forwards requests to the corresponding servlets.
Each servlet manages a disjoint subset of the key space,
as determined by a routing policy. All chunk storage in-
stances form a large pool of storage, which is accessible by
any remote servlets. In fact, each servlet is co-located with
a local chunk storage which enables fast data access and
persistence.

4.2 Physical Data Representation

ForkBase objects are stored in the form of data chunks of
various lengths. A small and simple object, i.e. of primitive
types, contains a single chunk. A large and complex object,

ForkBaseConnector db;

// Put a blob to the default master branch

Blob blob {"my value"};

db.Put("my key", blob);

// Fork to a new branch

db.Fork("my key", "master", "new branch");

// Get the blob

FObject value = db.Get("my key", "new branch");

if (value.type() != Blob)

throw TypeNotMatchError;

blob = value.Blob();

// Remove 10 bytes from beginning and append new

// Changes are buffered in client

blob.Remove(0, 10);

blob.Append("some more");

// Commit changes to that branch

db.Put("my key", "new branch", blob);

Figure 4: Fork and modify a Blob object.

when and how the conflicts should be resolved.

3.3.3 Merge
A tagged branch can be merged with another tagged branch

(M5) or with a specific version (M6). In both cases, only the
first branch’s head is updated such that the new head con-
tains data from both branches. A collection of untagged
branches can be merged using (M7), after which the input
branches are logically replaced with a new branch. When
conflicts are detected during a merge, the application can
resolve them in many ways (Section 4.5). To simplify the
merge process, ForkBase provides type-specific merge func-
tions for the built-in data types.

3.4 Data Type

ForkBase provides many built-in, structured data types.
They can be categorized into two classes: primitive types
and chunkable types.

Primitive types include simple types such as String,
Tuple and Integer. They are small-size objects that are op-
timized for fast access. These objects are not deduplicated,
since the benefits of sharing small data does not o↵set the
extra overheads of deduplication. Apart from the basic Get

and Set operations, type-specific operations are provided
to modify primitive objects. Examples include Append and
Insert for String and Tuple types, and Add and Multiply

for numerical types.
Chunkable types are complex data structures, for exam-

ples Blob, List, Map and Set. A chunkable object is stored
as a POS-Tree and deduplicated (Section 4.3). The chunk-
able object is most suitable to represent data that grows
fairly large due to many updates, but each update touches
only a small portion of the data. In other words, a new ver-
sion has significant overlap with the previous version. The
read operation returns only a handler, while the actual data
is fetched gradually on demand. Iterator interfaces are pro-
vided to e�ciently traverse large objects.

The rich collection of built-in types makes it easy to build
high level structures, such as relational tables (Section 5).
Note that di↵erent data types may have similar logical rep-
resentation but di↵erent performance, for example String

and Blob, or Tuple and List. The application is able to
choose those types are more suitable based on their expected
workloads.

Request Dispatcher

Servlet

Request Handler
Get/Put/Fork/Merge/Rename/...

Access Control Branch Table

Data Type Manager

Object Manager

Chunkable
blob/list/map/set/...

Primitive
bool/number/string/...

Chunk Storage Client

+

Distributed Chunk Storage

Servlet Servlet ...

Data Access Requests

Local Storage

Application

ForkBase

Master

...

Figure 5: Architecture of a ForkBase cluster.

3.5 Example

In ForkBase, data can be manipulated at two granular-
ities, i.e., at an individual object, and at a branch of ob-
jects. ForkBase exposes easy-to-use interfaces that combine
both object manipulation and branch management. Fig-
ure 4 shows an example of forking and editing a Blob ob-
ject. Since Put serves for both insertion and update, the
value input to the Put operation could be either a whole
new object or the base object that has undergone a sequence
of updates. When multiple updates of the same object are
batched, ForkBase only retains the final version.

4. DESIGN AND IMPLEMENTATION

In this section, we present the detailed design and imple-
mentation of ForkBase. The system can used as an embed-
ded storage or run as a distributed service.

4.1 Architecture

Figure 5 shows the stack of a ForkBase cluster consisting
of four main components: a master, a dispatcher, a servlet
and a chunk storage. When used as an embedded storage,
only one servlet and one chunk storage are instantiated. The
servlet executes requests using three sub-modules. First,
the access controller verifies request permission before exe-
cution. Second, the branch table maintains branch heads for
both tagged and untagged branches. Third, the object man-
ager handles object manipulations, hiding the physical data
representation from the main execution logic. The chunk
storage persists and provides access to data chunks. When
deployed as a distributed service, the master maintains the
cluster runtime information, while the request dispatcher re-
ceives and forwards requests to the corresponding servlets.
Each servlet manages a disjoint subset of the key space,
as determined by a routing policy. All chunk storage in-
stances form a large pool of storage, which is accessible by
any remote servlets. In fact, each servlet is co-located with
a local chunk storage which enables fast data access and
persistence.

4.2 Physical Data Representation

ForkBase objects are stored in the form of data chunks of
various lengths. A small and simple object, i.e. of primitive
types, contains a single chunk. A large and complex object,

Table 2: Chunk Content.

Type Content
Meta metadata for an FObject

UIndex index entries for unsorted types (Blob, List)
SIndex index entries for sorted types (Set, Map)
Blob a sequence of raw bytes
List a sequence of elements
Set a sequence of sorted elements
Map a sequence of sorted key-value pairs

i.e. of chunkable types, comprises multiple chunks organized
as a POS-Tree.

4.2.1 Chunk and cid
A chunk is the basic unit of storage in ForkBase. There

are multiple chunk types (Table 2), each corresponding to a
chunkable data type. A chunk is uniquely identified by its
cid which is computed from the content contained in the
chunk:

chunk.cid = H(chunk.bytes)

where H is a cryptographic hash function (e.g., SHA-256,
MD5) taking raw bytes of a chunk as input. Due to the
property of cryptographic hashes, each chunk will have a
unique cid, i.e., chunks with the same cid should contain
identical content. ForkBase uses SHA-256 as the default
hash function, but faster alternatives, e.g., BLAKE2, can
also be used to reduce computational overhead. The chunks
are stored in chunk storage and can be accessed via cids.

4.2.2 FObject and Data Types
Recall that a Get request returns a FObject, whose layout

is shown in Figure 2. A serialized chunk of a FObject is
called a meta chunk. The FObject’s uid is in fact an alias
for the meta chunk’s cid. For a FObject of primitive type,
the chunk content is embedded in the meta chunk’s data

field to facilitate fast access. For chunkable type object, its
meta chunk only contains a cid in the data field, which
points to an external data structure, i.e. the POS-Tree. As
a result, updates to a chunkable object only modify the cid
value in the FObject structure.

4.3 Pattern-Oriented-Split Tree

Large structured objects are not usually accessed in their
entirety. Instead, they require fine-grained access, such as
element look-up, range query and update. These access pat-
terns require index structures, e.g., B+-tree, to be e�cient.
However, existing index structures are not suitable in our
context that has many versions and the versions can be
merged. For example, B+-trees and variants that support
branches [28], use capacity-based splitting strategies, and
their structures are determined by the values being indexed
and by the insertion order. For example, inserting value A
followed by B may result in a di↵erent B+-tree to inserting
B followed by A. There are two consequences when main-
taining many versions. First, it is di�cult to share (i.e.,
deduplicate) both index and leaf nodes even when two trees
contain the same elements. Second, it is costly to find the
di↵erences between two versions and merge them, because
of the structural di↵erences. One simple solution is to have
fixed-size nodes, which eliminates the e↵ect from insertion
order. However, such an approach introduces another issue,

Root

M M

M M M M M M

M

{‹split-key, H({elements}›}

{elements}

M

Index Chunk

Data Chunk

Chunk Meta

Chunk Pattern

M

M

Figure 6: Pattern-Oriented-Splitting Tree (POS-

tree) resembling a B
+
-tree and Merkle tree.

called boundary-shifting problem [27], when an insertion oc-
curs in the middle of the structure.
To solve above issues, we propose a novel index struc-

ture, called Pattern-Oriented-Split Tree (POS-Tree), which
has the following properties:

• It is fast to look up and update elements;

• It is fast to find di↵erences and merge two trees;

• It is e↵ective in deduplication;

• It provides tamper evidence.

This structure is inspired by content-based slicing [38], and
resembles a combination of a B+-tree and a Merkle tree [36].
In POS-Tree, the node (i.e., chunk) boundary is defined as
patterns detected from the object content. Specifically, to
construct a node, we scan from the beginning until a pre-
defined pattern occurs, and then create a new node to hold
the scanned content. Because the leaf nodes and internal
nodes have di↵erent degrees of randomness, we define dif-
ferent patterns for them. In following, we first describe the
basic tree structure, and then discuss how it is constructed.

4.3.1 Tree Structure
Figure 6 illustrates the structure of a POS-Tree. Each

node is stored as a chunk. Index nodes are stored as UIndex
or SIndex chunks, whereas leaf node chunks are of the object
types, such as Blob, List or Map chunks, as listed in Table 2.
Similar to B+-trees, an index node contains a number of en-
tries for its child nodes. Each entry consists of a child node’s
cid and the corresponding split key (for SIndex or element
count for UIndex). To look up a specific key (or a position
for UIndex), we adopt the same strategy as in B+-trees, i.e.
follow the path guided by the split keys. Therefore, access-
ing a chunkable object is e�cient because only the relevant
nodes are fetched instead of the entire tree. POS-Tree is a
Merkle tree in the sense that the child nodes’ cids are cryp-
tographic hashes of their content. Hence, two objects with
identical data will have the same POS-Tree. In addition,
comparing two trees can be done e�ciently by recursively
comparing the cids.

4.3.2 Splitting a Leaf Node
Here we describe the pattern used to split a leaf node.

Given a k-byte sequence (b1, .., bk), let P be a function taking
k bytes as input and returning a pseudo-random integer of
at least q bits. The pattern is said to occur if and only if:

P (b1...bk) BITWISE AND (2q � 1) = 0

In other words, the pattern occurs when the function P re-
turns 0 for the q least significant bits. The complexity of

} Leaf nodes are created through “content-based slicing”
◦ Treat the data as sequence of bytes
◦ Look for the first k-byte sequence that hashes to a fixed pattern

(e.g., “…0000000”)
◦ Create first leaf node that ends at that sequence
◦ Look for the next k-byte sequence…
◦ Use “rolling hashes” to speed this up (lot of work in storage

deduplication)

} Index nodes use the same idea, but using the “cid” of
the leaves instead of hashing
◦ Those have some randomness properties since they are

cryptographic hashes

} Hyperledger Blockchain
◦ Can replace the underlying state storage (Merkle Tree) with

Forkbase

} Wiki Engine
◦ For collaborative editing workflows
◦ Can directly store the data into Forkbase

} Collaborative Analytics

} Immutability increasingly seen as a must-have in many
data management systems
◦ Versioning, tamper-resistance, fork/branch semantics etc.

} Many open challenges
◦ Storage management, support for queries/transactions, schema

evolution, analytics, …

