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Motivation

e Unprecedented, and rapidly increasing, instrumentation of our
every-day world

Overwhelmingly large raw data volumes generated continuously

Data must be processed in real-time

The applications have strong acquisitional aspects

» Data may have to be actively acquired from the environment

Typically imprecise, unreliable and incomplete data

« Inherent measurement noises (e.g. GPS) and low success rates (e.g. RFID)

o Communication link or sensor node failures (e.g. wireless sensor networks)
o Spatial and temporal biases because of measurement constraints
e Traditional data management tools are ill-equipped to handle these
challenges



Example: Wireless Sensor Networks

User 1. Spatially biased deployment

= these are not true averages

% / 2. High data loss rates
= averages of different sets
{10am, 23.5} : 7 of sensors
{11am, 24}
{12pm, 30}
\ 3. Measurement errors

select time, avg(temp)
from sensors
epoch 1 hour

time | id | temp propagated to the user
10am | 1 20 ~
{12pm, 70}
10am 2 21
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A wireless sensor network deployed to monitor temperature




Example: Wireless Sensor Networks

Impedance mismatch
User wants to query the “underlying environment’,
and not the sensor readings at selected locations

time id temp
10am 1 20
10am 2 21
10am 7 29 /YQ
sensors _— y
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A wireless sensor network deployed to monitor temperature




Typical Solution

e Process data using a statistical/probabilistic model before operating on it

Regression and interpolation models

« To eliminate spatial or temporal biases, handle missing data, prediction
Filtering techniques (e.g. Kalman Filters), Bayesian Networks

» To eliminate measurement noise, to infer hidden variables etc

select *
from raw-data

1. Extract all readings into a file
Table raw-data % 2. Run a statistical model (e.g.

T z =1 regression) using MATLAB
NS :> on | 2 | 7 raw-data 3. Write output to a file
insert into - - tuples
raw-data L A 4. Write data processing tools to
' process/aggregate the output
Sensor Database User
Network

Databases typically only used as a backing store;
All data processing done outside




e Can’t exploit commonalities, reuse/share computation
e No easy way to keep the model outputs up-to-date

e Lack of declarative languages for querying the
processed data

e Large amount of duplication of effort

e Non-trivial
Expert knowledge & MATLAB familiarity required !

e Prevents real-time analysis of the data in most cases

e Why are databases not doing any of this ?
We are very good at most of these things



Solution: Model-based User Views

e An abstraction analogous to tfraditional database views
e Provides independence from the messy measurement details

A traditional database view
(defined using an SQL query)
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(defined using a statistical model)
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MauveDB System

e Supports the abstraction of Model-based User Views

e Provides declarative language constructs for creating
such views

e Supports SQL queries over model-based views

e Keeps the models up-to-date as new data is inserted
into the database



MauveDB System

e Supports the abstraction of Model-based User Views

e Provides declarative language constructs for creating
such views

e Supports SQL queries over model-based views

e Keeps the models up-to-date as new data is inserted
into the database
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e Motivation

e Model-based views
Details, view creation syntax, querying

e Query execution strategies
e MauveDB implementation details
e Experimental evaluation



Linear Regression

e Models a dependent variable as a function of a set of
independent variables

Basis Functions

Model temperature as a function of (x, y / /
E.g.

temp = w; + W, "X + W3 " X2+ W, Y+ wg Ty

\

Weights




Grid Abstraction

A Regression-based View
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Creating a Regression-based View

Matlab-like syntax used for

specifying the grid N
CREATE VIEW _
o > | Schema of the View
RegView(time [0::1], X [0:100:10), y[0:100:10], temp)
>
AS

FIT temp USING time, X, y
BASES 1, x, x2 y, y?

FOR EACH time T
TRAINING DATA

> | Model to be used

Training data for

SELECT temp, time, x, y
' learning parameters

FROM raw-temp-data
WHERE raw-temp-data.time = T J




View Creation Syntax

e Somewhat model-specific, but many commonalities

A Interpolation-based View

CREATE VIEW
IntView(t [0::1], sensorid [::1], y[0:100:10], temp)
AS
GNTERPOLATE temp USING time, sensorid >
FOR EACH sensorid M
TRAINING DATA
SELECT temp, time, sensorid

FROM raw-temp-readings
WHERE raw-temp-readings.sensorid = M
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Querying a Model-based View

e Analogous to traditional views

e So:
select * from reg-view
o Lists out temperatures at all grid-points

select * from reg-view where x = 15 and y = 20
o Lists temperature at (15, 20) at all times



Query Processing

e Two operators per view type that support get next() API
ScanView
» Returns the contents of the view one-by-one

IndexView (condition)

» Returns tuples that match a condition
o e.g. return temperature where (x, y) = (10, 20)

select *
from locations I, reg-view r Plan 1 Plan 2
where (1.x, .y) = (r.x, r.y) T
and r.time = “10am” T
1 Hash join > Index join

/NN

Seqscan(l) Scanview(r) Segscan(l) Indexview(r)




View Maintenance Strategies

e Option 1: Compute the view as needed from base data
For regression view, scan the tuples and compute the weights
e Option 2: Keep the view materialized

Sometimes too large to be practical
o E.g.ifthe grid is very fine
May need to be recomputed with every new tuple insertion
« E.g. aregression view that fits a single function to the entire data
e Option 3: Lazy materialization/caching

Materialize query results as computed

e Generic options shared between all view types



View Maintenance Strategies

e Option 4: Maintain an efficient intermediate representation

e Typically model-specific

e Regression-based Views
Say temp =1(x, y) =w, h,(x,y) + ... + w, h(x, y)
Maintain the weights for f(x, y) and a sufficient statistic
» Two matrices (O(k?) space) that can be incrementally updated
ScanView: Execute f(x, y) on all grid points
IndexView: Execute f(x, y) on the specified point

InsertTuple: Recompute the coefficients

« Can be done very efficiently using the sufficient statistic

e Interpolation-based Views
Build and maintain a tree over the tuples in the TRAINING DATA
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MauveDB: Implementation Details

e Written in the Apache Derby Java open source database system
e Support for Regression- and Interpolation-based views
e Minimal changes to the main codebase
e Much of the additional code (approx 3500 lines) fairly generic in
nature
A view manager (for bookkeeping)
Query processing operators
View maintenance strategies
e Model-specific code

Intermediate representation

Part of the view creation syntax



MauveDB: Experimental Evaluation

¢ Intel Lab Dataset
94-node sensor network monitoring temperature, humidity etc
Approx 400,000 readings

Attributes used
» Independent - time, sensorid, x-coordinate, y-coordinate
o Dependent - temperature




Spatial Regression

Temperature vs. X and Y Coordinates in Lab
Raw Data Overlayed on Linear Regression

Contour plot over the data

obtained using:

select *

- 121

from reg-view

where time = 2100

205

195

t=C, +CX+CY+CX +Cy°
- it N
+C X +Cy +C X +Cpy

X € Prodicted temperature
® Raw Temperature




Interpolation
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Comparing View Maintenance Options

e 50000 tuples initially

e Mixed workload:
insert 1000 records
issue 50 point queries
issue 10 average queries

e Brief summary:

Intermediate representation
typically the best

Among others, dependent on
the view properties, and query
workload
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Ongoing and Future Work

Adding support for views based on dynamic Bayesian
networks (e.g. Kalman Filters)
A very general class of models with wide applicability

Generate probabilistic data

Developing APls for adding arbitrary models

Minimize the work of the model developer

Query processing, query optimization, and view
maintenance issues

Much research still needs to be done



Conclusions

e Proposed the abstraction of model-based views
Poweful abstraction that enables declarative querying over noisy,
imprecise data
e Exploit commonalities fo define, to create, and to process
queries over such views

e MauveDB prototype implementation
Using the Apache Derby open source DBMS
Supports Regression- and Interpolation-based views

Supports many different view maintenance strategies



Thank you !!

® Questions ?



