
MauveDB: Supporting Model-based
User Views in Database Systems

Amol Deshpande, University of Maryland
Samuel Madden, MIT

Motivation

  Unprecedented, and rapidly increasing, instrumentation of our
every-day world

Wireless sensor
networks

RFID

Distributed measurement
networks (e.g. GPS)

Industrial Monitoring

Motivation

  Unprecedented, and rapidly increasing, instrumentation of our
every-day world

  Overwhelmingly large raw data volumes generated continuously
  Data must be processed in real-time

  The applications have strong acquisitional aspects
  Data may have to be actively acquired from the environment

  Typically imprecise, unreliable and incomplete data
  Inherent measurement noises (e.g. GPS) and low success rates (e.g. RFID)

  Communication link or sensor node failures (e.g. wireless sensor networks)

  Spatial and temporal biases because of measurement constraints

  Traditional data management tools are ill-equipped to handle these
challenges

Example: Wireless Sensor Networks

A wireless sensor network deployed to monitor temperature

time id temp

10am 1 20

10am 2 21

.. .. …

10am 7 29
sensors

select time, avg(temp)
from sensors
epoch 1 hour

User

2. High data loss rates
  averages of different sets
 of sensors

1. Spatially biased deployment
  these are not true averages

{10am, 23.5}
{11am, 24}

{12pm, 70}

3. Measurement errors
 propagated to the user

{10am, 23.5}
{11am, 24}
{12pm, 30}

Example: Wireless Sensor Networks

A wireless sensor network deployed to monitor temperature

time id temp

10am 1 20

10am 2 21

.. .. …

10am 7 29
sensors

User

Impedance mismatch
 User wants to query the “underlying environment”,
 and not the sensor readings at selected locations

Typical Solution

  Process data using a statistical/probabilistic model before operating on it
  Regression and interpolation models

  To eliminate spatial or temporal biases, handle missing data, prediction
  Filtering techniques (e.g. Kalman Filters), Bayesian Networks

  To eliminate measurement noise, to infer hidden variables etc

Database

insert into
 raw-data
…

time id temp

10am 1 20

10am 2 21

.. .. …

10am 7 29

Table raw-data

select *
from raw-data

1.  Extract all readings into a file
2.  Run a statistical model (e.g.

 regression) using MATLAB
3.  Write output to a file
4.  Write data processing tools to

 process/aggregate the output

raw-data
tuples

Sensor
Network

User

Databases typically only used as a backing store;
All data processing done outside

Issues

  Can’t exploit commonalities, reuse/share computation
  No easy way to keep the model outputs up-to-date
  Lack of declarative languages for querying the

processed data
  Large amount of duplication of effort
  Non-trivial

  Expert knowledge & MATLAB familiarity required !

  Prevents real-time analysis of the data in most cases
  Why are databases not doing any of this ?

  We are very good at most of these things

Solution: Model-based User Views

  An abstraction analogous to traditional database views
  Provides independence from the messy measurement details

acct-no balance zipcode

101 a 20001

102 b 20002

.. ..

.. ..

User

 avg-balances
select zipcode, avg(balance)
from accounts
group by zipcode

A traditional database view
(defined using an SQL query)

accounts

time id temp

10am 1 20

10am 2 21

.. .. …

10am 7 29

 temperatures
Use Regression to predict
missing values and to
remove spatial bias

A model-based database view
(defined using a statistical model)

raw-temp-data

User

No difference
from a user’s
perspective

MauveDB System

  Supports the abstraction of Model-based User Views
  Provides declarative language constructs for creating

such views
  Supports SQL queries over model-based views
  Keeps the models up-to-date as new data is inserted

into the database

MauveDB System

  Supports the abstraction of Model-based User Views
  Provides declarative language constructs for creating

such views
  Supports SQL queries over model-based views
  Keeps the models up-to-date as new data is inserted

into the database

Outline

 Motivation
 Model-based views

  Details, view creation syntax, querying

 Query execution strategies
 MauveDB implementation details
 Experimental evaluation

Linear Regression

  Models a dependent variable as a function of a set of
independent variables

x

y

Model temperature as a function of (x, y)

E.g.
 temp = w1 + w2 * x + w3 * x2 + w4 * y + w5 * y2

Weights

Basis Functions

Grid Abstraction

time id temp

10am 1 20

10am 2 21

.. .. …

10am 7 29

 temperatures
Use Regression to model
temperature as:
 temp = w1 + w2 x + w3 x2
 + w4 y + w5 y2

A Regression-based View

raw-temp-data

User

x

y

Continuous
Function

User

x

y

Consistent uniform view

Apply regression;
Compute “temp” at grid
 points

Creating a Regression-based View

CREATE VIEW

 RegView(time [0::1], x [0:100:10], y[0:100:10], temp)

AS

 FIT temp USING time, x, y

 BASES 1, x, x2, y, y2

 FOR EACH time T

 TRAINING DATA

 SELECT temp, time, x, y

 FROM raw-temp-data

 WHERE raw-temp-data.time = T

Schema of the View

Model to be used

Training data for
 learning parameters

Matlab-like syntax used for
 specifying the grid

View Creation Syntax

  Somewhat model-specific, but many commonalities

CREATE VIEW

 IntView(t [0::1], sensorid [::1], y[0:100:10], temp)

AS

 INTERPOLATE temp USING time, sensorid

 FOR EACH sensorid M

 TRAINING DATA

 SELECT temp, time, sensorid

 FROM raw-temp-readings

 WHERE raw-temp-readings.sensorid = M

A Interpolation-based View

Outline

 Motivation
 Model-based views

  Details, view creation syntax, querying

 Query execution strategies
 MauveDB implementation details
 Experimental evaluation

Querying a Model-based View

  Analogous to traditional views
  So:

  select * from reg-view
  Lists out temperatures at all grid-points

  select * from reg-view where x = 15 and y = 20
  Lists temperature at (15, 20) at all times

  …

Query Processing

  Two operators per view type that support get_next() API
  ScanView

  Returns the contents of the view one-by-one

  IndexView (condition)
  Returns tuples that match a condition

  e.g. return temperature where (x, y) = (10, 20)

select *
from locations l, reg-view r
where (l.x, l.y) = (r.x, r.y)
 and r.time = “10am”

Seqscan(l) Scanview(r)

Hash join

Plan 1

Seqscan(l) Indexview(r)

Index join

Plan 2

View Maintenance Strategies

  Option 1: Compute the view as needed from base data
  For regression view, scan the tuples and compute the weights

  Option 2: Keep the view materialized
  Sometimes too large to be practical

  E.g. if the grid is very fine

  May need to be recomputed with every new tuple insertion
  E.g. a regression view that fits a single function to the entire data

  Option 3: Lazy materialization/caching
  Materialize query results as computed

  Generic options shared between all view types

View Maintenance Strategies

  Option 4: Maintain an efficient intermediate representation

  Typically model-specific

  Regression-based Views

  Say temp = f(x, y) = w1 h1(x, y) + … + wk hk(x, y)

  Maintain the weights for f(x, y) and a sufficient statistic

  Two matrices (O(k2) space) that can be incrementally updated

  ScanView: Execute f(x, y) on all grid points

  IndexView: Execute f(x, y) on the specified point

  InsertTuple: Recompute the coefficients

  Can be done very efficiently using the sufficient statistic

  Interpolation-based Views
  Build and maintain a tree over the tuples in the TRAINING DATA

Outline

 Motivation
 Model-based views

  Details, view creation syntax, querying

 Query execution strategies
 MauveDB implementation details
 Experimental evaluation

MauveDB: Implementation Details

  Written in the Apache Derby Java open source database system

  Support for Regression- and Interpolation-based views
  Minimal changes to the main codebase

  Much of the additional code (approx 3500 lines) fairly generic in
nature
  A view manager (for bookkeeping)

  Query processing operators

  View maintenance strategies

  Model-specific code
  Intermediate representation

  Part of the view creation syntax

MauveDB: Experimental Evaluation

  Intel Lab Dataset
  54-node sensor network monitoring temperature, humidity etc
  Approx 400,000 readings
  Attributes used

  Independent - time, sensorid, x-coordinate, y-coordinate
  Dependent - temperature

Spatial Regression

Contour plot over the data
obtained using:
 select *
 from reg-view
 where time = 2100

Average temperature over
raw sensor readings

Interpolation

Time

Time

Average temperature over
an interpolation-view over
the raw sensor readings

Time

Over 40% missing data

Comparing View Maintenance Options

  50000 tuples initially
  Mixed workload:

  insert 1000 records
  issue 50 point queries
  issue 10 average queries

  Brief summary:
  Intermediate representation

typically the best
  Among others, dependent on

the view properties, and query
workload

Regression, per time

Interpolation, per sensor

112.6s

Ongoing and Future Work

  Adding support for views based on dynamic Bayesian
networks (e.g. Kalman Filters)
  A very general class of models with wide applicability

  Generate probabilistic data

  Developing APIs for adding arbitrary models
  Minimize the work of the model developer

  Query processing, query optimization, and view
maintenance issues

  Much research still needs to be done

Conclusions

  Proposed the abstraction of model-based views
  Poweful abstraction that enables declarative querying over noisy,

imprecise data

  Exploit commonalities to define, to create, and to process
queries over such views

  MauveDB prototype implementation
  Using the Apache Derby open source DBMS

  Supports Regression- and Interpolation-based views

  Supports many different view maintenance strategies

Thank you !!

 Questions ?

