MauveDB: Supporting Model-based
User Views in Database Systems

Amol Deshpande, University of Maryland
Samuel Madden, MIT

Motivation

e Unprecedented, and rapidly increasing, instrumentation of our
every-day world

CarTelautorortal
T B

Distributed measurement
networks (e.g. GPS)

RFID

Wireless sensor
networks

Industrial Monitoring

Motivation

e Unprecedented, and rapidly increasing, instrumentation of our
every-day world

Overwhelmingly large raw data volumes generated continuously

Data must be processed in real-time

The applications have strong acquisitional aspects

» Data may have to be actively acquired from the environment

Typically imprecise, unreliable and incomplete data

« Inherent measurement noises (e.g. GPS) and low success rates (e.g. RFID)

o Communication link or sensor node failures (e.g. wireless sensor networks)
o Spatial and temporal biases because of measurement constraints
e Traditional data management tools are ill-equipped to handle these
challenges

Example: Wireless Sensor Networks

User 1. Spatially biased deployment

= these are not true averages

% / 2. High data loss rates
= averages of different sets
{10am, 23.5} : 7 of sensors
{11am, 24}
{12pm, 30}
\ 3. Measurement errors

select time, avg(temp)
from sensors
epoch 1 hour

time | id | temp propagated to the user
10am | 1 20 ~
{12pm, 70}
10am 2 21
A wﬂ

N . 5 : ‘s

10am 7 29 /YQ I‘,Q’
Sensors _— y

v ‘& N
T A A

A wireless sensor network deployed to monitor temperature

Example: Wireless Sensor Networks

Impedance mismatch
User wants to query the “underlying environment’,
and not the sensor readings at selected locations

time id temp
10am 1 20
10am 2 21
10am 7 29 /YQ
sensors _— y

\ ‘& N
T A A

A wireless sensor network deployed to monitor temperature

Typical Solution

e Process data using a statistical/probabilistic model before operating on it

Regression and interpolation models

« To eliminate spatial or temporal biases, handle missing data, prediction
Filtering techniques (e.g. Kalman Filters), Bayesian Networks

» To eliminate measurement noise, to infer hidden variables etc

select *
from raw-data

1. Extract all readings into a file
Table raw-data % 2. Run a statistical model (e.g.

T z =1 regression) using MATLAB
NS :> on | 2 | 7 raw-data 3. Write output to a file
insert into - - tuples
raw-data L A 4. Write data processing tools to
' process/aggregate the output
Sensor Database User
Network

Databases typically only used as a backing store;
All data processing done outside

e Can’t exploit commonalities, reuse/share computation
e No easy way to keep the model outputs up-to-date

e Lack of declarative languages for querying the
processed data

e Large amount of duplication of effort

e Non-trivial
Expert knowledge & MATLAB familiarity required !

e Prevents real-time analysis of the data in most cases

e Why are databases not doing any of this ?
We are very good at most of these things

Solution: Model-based User Views

e An abstraction analogous to tfraditional database views
e Provides independence from the messy measurement details

A traditional database view
(defined using an SQL query)

User

g

1

101 a 20001

102 b 20002

accounts

/

No difference
from a user’s
perspective

A model-based database view
(defined using a statistical model)

User

N I

U

10am 20

=
E

10am 21

10am 7 29
raw-temp-data

MauveDB System

e Supports the abstraction of Model-based User Views

e Provides declarative language constructs for creating
such views

e Supports SQL queries over model-based views

e Keeps the models up-to-date as new data is inserted
into the database

MauveDB System

e Supports the abstraction of Model-based User Views

e Provides declarative language constructs for creating
such views

e Supports SQL queries over model-based views

e Keeps the models up-to-date as new data is inserted
into the database

T THINK (WE SHOULD DOES HE UNDERSTAND LIHAT COLOR DO YOU ‘]
DATABASE. IS IT SOMETHING
UH-OH HE SAW IN A TRADE it ';FINK W
) MAGATINE AD? MAUVE HAS
THE MOST

e Motivation

e Model-based views
Details, view creation syntax, querying

e Query execution strategies
e MauveDB implementation details
e Experimental evaluation

Linear Regression

e Models a dependent variable as a function of a set of
independent variables

Basis Functions

Model temperature as a function of (x, y / /
E.g.

temp = w; + W, "X + W3 " X2+ W, Y+ wg Ty

\

Weights

Grid Abstraction

A Regression-based View

User

(

g
3

temp

10am

v =B

20

10am

21

10am

7

29

raw-temp-data

Continuous
Function

User
ﬁ Consistent uniform view

> X

o
| J o
]

|

Apply regression;
Compute “temp” at grid

points
w@ v
&

Creating a Regression-based View

Matlab-like syntax used for

specifying the grid N
CREATE VIEW _
o > | Schema of the View
RegView(time [0::1], X [0:100:10), y[0:100:10], temp)
>
AS

FIT temp USING time, X, y
BASES 1, x, x2 y, y?

FOR EACH time T
TRAINING DATA

> | Model to be used

Training data for

SELECT temp, time, x, y
' learning parameters

FROM raw-temp-data
WHERE raw-temp-data.time = T J

View Creation Syntax

e Somewhat model-specific, but many commonalities

A Interpolation-based View

CREATE VIEW
IntView(t [0::1], sensorid [::1], y[0:100:10], temp)
AS
GNTERPOLATE temp USING time, sensorid >
FOR EACH sensorid M
TRAINING DATA
SELECT temp, time, sensorid

FROM raw-temp-readings
WHERE raw-temp-readings.sensorid = M

e Motivation

e Model-based views
Details, view creation syntax, querying

e Query execution strategies
e MauveDB implementation details
e Experimental evaluation

Querying a Model-based View

e Analogous to traditional views

e So:
select * from reg-view
o Lists out temperatures at all grid-points

select * from reg-view where x = 15 and y = 20
o Lists temperature at (15, 20) at all times

Query Processing

e Two operators per view type that support get next() API
ScanView
» Returns the contents of the view one-by-one

IndexView (condition)

» Returns tuples that match a condition
o e.g. return temperature where (x, y) = (10, 20)

select *
from locations I, reg-view r Plan 1 Plan 2
where (1.x, .y) = (r.x, r.y) T
and r.time = “10am” T
1 Hash join > Index join

/NN

Seqscan(l) Scanview(r) Segscan(l) Indexview(r)

View Maintenance Strategies

e Option 1: Compute the view as needed from base data
For regression view, scan the tuples and compute the weights
e Option 2: Keep the view materialized

Sometimes too large to be practical
o E.g.ifthe grid is very fine
May need to be recomputed with every new tuple insertion
« E.g. aregression view that fits a single function to the entire data
e Option 3: Lazy materialization/caching

Materialize query results as computed

e Generic options shared between all view types

View Maintenance Strategies

e Option 4: Maintain an efficient intermediate representation

e Typically model-specific

e Regression-based Views
Say temp =1(x, y) =w, h,(x,y) + ... + w, h(x, y)
Maintain the weights for f(x, y) and a sufficient statistic
» Two matrices (O(k?) space) that can be incrementally updated
ScanView: Execute f(x, y) on all grid points
IndexView: Execute f(x, y) on the specified point

InsertTuple: Recompute the coefficients

« Can be done very efficiently using the sufficient statistic

e Interpolation-based Views
Build and maintain a tree over the tuples in the TRAINING DATA

e Motivation

e Model-based views
Details, view creation syntax, querying

e Query execution strategies
e MauveDB implementation details
e Experimental evaluation

MauveDB: Implementation Details

e Written in the Apache Derby Java open source database system
e Support for Regression- and Interpolation-based views
e Minimal changes to the main codebase
e Much of the additional code (approx 3500 lines) fairly generic in
nature
A view manager (for bookkeeping)
Query processing operators
View maintenance strategies
e Model-specific code

Intermediate representation

Part of the view creation syntax

MauveDB: Experimental Evaluation

¢ Intel Lab Dataset
94-node sensor network monitoring temperature, humidity etc
Approx 400,000 readings

Attributes used
» Independent - time, sensorid, x-coordinate, y-coordinate
o Dependent - temperature

Spatial Regression

Temperature vs. X and Y Coordinates in Lab
Raw Data Overlayed on Linear Regression

Contour plot over the data

obtained using:

select *

- 121

from reg-view

where time = 2100

205

195

t=C, +CX+CY+CX +Cy°
- it N
+C X +Cy +C X +Cpy

X € Prodicted temperature
® Raw Temperature

Interpolation

: 100 =
? Average te
2 raw senso % 50-
H s
; 20 - lg
§ ¥ 60
-u m
= 18
i i
16~ é
S00 1X) 1500 200 2500 a% 20 -
Time
A N S R aman s e
o S00 1000 1500 2000 2500
Time
£ Over 40% missing data
:5_. 20
S
=
< 184
Average temperature over
7 an interpolation-view over
00 1000 1500 2000 2500 the raw sensor readings
Time

Comparing View Maintenance Options

e 50000 tuples initially

e Mixed workload:
insert 1000 records
issue 50 point queries
issue 10 average queries

e Brief summary:

Intermediate representation
typically the best

Among others, dependent on
the view properties, and query
workload

Total Time (s)
ocnd3ABNRNBREEH S

112.6s

e

O From Scratch
@ Coeff

O Lazy

O Force

;

Inserts Point
queries

Average
Queries

Regression, per time

Total Time (s)

O From Scratch
@ Coeff

O Lazy

O Force

8 8 38 3 38 3 8 8 8

[T T T T

0 T

Inserts Point
queries

1

Average
Queries

Interpolation, per sensor

Ongoing and Future Work

Adding support for views based on dynamic Bayesian
networks (e.g. Kalman Filters)
A very general class of models with wide applicability

Generate probabilistic data

Developing APls for adding arbitrary models

Minimize the work of the model developer

Query processing, query optimization, and view
maintenance issues

Much research still needs to be done

Conclusions

e Proposed the abstraction of model-based views
Poweful abstraction that enables declarative querying over noisy,
imprecise data
e Exploit commonalities fo define, to create, and to process
queries over such views

e MauveDB prototype implementation
Using the Apache Derby open source DBMS
Supports Regression- and Interpolation-based views

Supports many different view maintenance strategies

Thank you !!

® Questions ?

