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Motivation 

  Unprecedented, and rapidly increasing, instrumentation of our 
every-day world 

Wireless sensor  
networks 

RFID 

Distributed measurement 
networks (e.g. GPS) 

Industrial Monitoring 



Motivation 

  Unprecedented, and rapidly increasing, instrumentation of our 
every-day world 

  Overwhelmingly large raw data volumes generated continuously 
  Data must be processed in real-time 

  The applications have strong acquisitional aspects 
  Data may have to be actively acquired from the environment 

  Typically imprecise, unreliable and incomplete data 
  Inherent measurement noises (e.g. GPS) and low success rates (e.g. RFID) 

  Communication link or sensor node failures (e.g. wireless sensor networks) 

  Spatial and temporal biases because of measurement constraints 

  Traditional data management tools are ill-equipped to handle these 
challenges  



Example: Wireless Sensor Networks 

A wireless sensor network deployed to monitor temperature 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 
sensors 

select time, avg(temp) 
from sensors 
epoch 1 hour 

User 

2. High data loss rates 
         averages of different sets 
             of sensors 

1. Spatially biased deployment 
         these are not true averages 

{10am, 23.5} 
{11am, 24} 

{12pm, 70} 

3. Measurement errors  
       propagated to the user 

{10am, 23.5} 
{11am, 24} 
{12pm, 30} 



Example: Wireless Sensor Networks 

A wireless sensor network deployed to monitor temperature 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 
sensors 

User 

Impedance mismatch 
        User wants to query the “underlying environment”, 
         and not the sensor readings at selected locations 



Typical Solution 

  Process data using a statistical/probabilistic model before operating on it 
  Regression and interpolation models 

  To eliminate spatial or temporal biases, handle missing data, prediction  
  Filtering techniques (e.g. Kalman Filters), Bayesian Networks 

  To eliminate measurement noise, to infer hidden variables etc 

Database 

insert into 
   raw-data 
… 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 

Table raw-data 

select * 
from raw-data 

1.  Extract all readings into a file 
2.  Run a statistical model (e.g.

 regression) using MATLAB 
3.  Write output to a file 
4.  Write data processing tools to

 process/aggregate the output 

raw-data 
tuples 

Sensor 
Network 

User 

Databases typically only used as a backing store; 
All data processing done outside 



Issues 

  Can’t exploit commonalities, reuse/share computation 
  No easy way to keep the model outputs up-to-date 
  Lack of declarative languages for querying the 

processed data 
  Large amount of duplication of effort 
  Non-trivial 

   Expert knowledge & MATLAB familiarity required ! 

  Prevents real-time analysis of the data in most cases 
  Why are databases not doing any of this ? 

  We are very good at most of these things 



Solution: Model-based User Views 

  An abstraction analogous to traditional database views 
  Provides independence from the messy measurement details 

acct-no balance zipcode 

101 a 20001 

102 b 20002 

.. .. 

.. .. 

User 

            avg-balances 
select zipcode, avg(balance) 
from accounts 
group by zipcode 

A traditional database view 
(defined using an SQL query) 

accounts 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 

         temperatures 
Use Regression to predict 
missing values and to  
remove spatial bias 

A model-based database view 
(defined using a statistical model) 

raw-temp-data 

User 

No difference 
from a user’s  
perspective 



MauveDB System 

  Supports the abstraction of Model-based User Views 
  Provides declarative language constructs for creating 

such views 
  Supports SQL queries over model-based views 
  Keeps the models up-to-date as new data is inserted 

into the database 



MauveDB System 

  Supports the abstraction of Model-based User Views 
  Provides declarative language constructs for creating 

such views 
  Supports SQL queries over model-based views 
  Keeps the models up-to-date as new data is inserted 

into the database 



Outline 

 Motivation 
 Model-based views 

  Details, view creation syntax, querying 

 Query execution strategies 
 MauveDB implementation details 
 Experimental evaluation 



Linear Regression 

  Models a dependent variable as a function of a set of 
independent variables 

x 

y

Model temperature as a function of (x, y) 

E.g.  
       temp = w1 + w2 * x + w3 * x2 + w4 * y + w5 * y2 

Weights 

Basis Functions 



Grid Abstraction 

time id temp 

10am 1 20 

10am 2 21 

.. .. … 

10am 7 29 

         temperatures 
Use Regression to model 
temperature as: 
     temp = w1 + w2 x +  w3 x2  
                  + w4 y + w5 y2 

A Regression-based View 

raw-temp-data 

User 

x 

y

Continuous 
Function 

User 

x 

y

Consistent uniform view 

Apply regression; 
Compute “temp” at grid 
       points 



Creating a Regression-based View 

CREATE VIEW  

      RegView(time [0::1], x [0:100:10], y[0:100:10], temp) 

AS  

     FIT temp USING time, x, y 

     BASES 1, x, x2, y, y2 

       FOR EACH time T 

     TRAINING DATA  

                SELECT temp, time, x, y 

                FROM raw-temp-data 

                WHERE raw-temp-data.time = T 

Schema of the View 

Model to be used 

Training data for  
 learning parameters 

Matlab-like syntax used for 
     specifying the grid 



View Creation Syntax 

  Somewhat model-specific, but many commonalities 

CREATE VIEW  

      IntView(t [0::1], sensorid [::1], y[0:100:10], temp) 

AS  

     INTERPOLATE temp USING time, sensorid 

     FOR EACH sensorid M 

    TRAINING DATA  

                SELECT temp, time, sensorid 

                FROM raw-temp-readings  

                       WHERE raw-temp-readings.sensorid = M 

A Interpolation-based View 
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Querying a Model-based View 

  Analogous to traditional views 
  So:  

  select * from reg-view 
  Lists out temperatures at all grid-points 

  select * from reg-view where x = 15 and y = 20 
  Lists temperature at (15, 20) at all times 

  … 



Query Processing 

  Two operators per view type that support get_next() API 
  ScanView 

  Returns the contents of the view one-by-one 

  IndexView (condition) 
  Returns tuples that match a condition 

  e.g. return temperature where (x, y) = (10, 20) 

select *  
from locations l, reg-view r 
where  (l.x, l.y) = (r.x, r.y)  
           and r.time = “10am” 

Seqscan(l) Scanview(r) 

Hash join 

Plan 1 

Seqscan(l) Indexview(r) 

Index join 

Plan 2 



View Maintenance Strategies 

  Option 1: Compute the view as needed from base data 
  For regression view, scan the tuples and compute the weights 

  Option 2: Keep the view materialized 
  Sometimes too large to be practical  

  E.g. if the grid is very fine 

  May need to be recomputed with every new tuple insertion 
  E.g. a regression view that fits a single function to the entire data 

  Option 3: Lazy materialization/caching 
  Materialize query results as computed 

  Generic options shared between all view types 



View Maintenance Strategies 

  Option 4: Maintain an efficient intermediate representation 

  Typically model-specific 

  Regression-based Views 

  Say temp = f(x, y) = w1 h1(x, y) + … + wk hk(x, y) 

  Maintain the weights for f(x, y) and a sufficient statistic 

  Two matrices (O(k2) space) that can be incrementally updated  

  ScanView: Execute f(x, y) on all grid points 

  IndexView: Execute f(x, y) on the specified point 

  InsertTuple: Recompute the coefficients 

  Can be done very efficiently using the sufficient statistic 

  Interpolation-based Views 
  Build and maintain a tree over the tuples in the TRAINING DATA 
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MauveDB: Implementation Details 

  Written in the Apache Derby Java open source database system 

  Support for Regression- and Interpolation-based views 
  Minimal changes to the main codebase  

  Much of the additional code (approx 3500 lines) fairly generic in 
nature 
  A view manager (for bookkeeping) 

  Query processing operators 

  View maintenance strategies 

  Model-specific code 
  Intermediate representation 

  Part of the view creation syntax 



MauveDB: Experimental Evaluation 

  Intel Lab Dataset 
  54-node sensor network monitoring temperature, humidity etc 
  Approx 400,000 readings 
  Attributes used 

  Independent - time, sensorid, x-coordinate, y-coordinate 
  Dependent -   temperature 



Spatial Regression 

Contour plot over the data  
obtained using: 
        select *  
        from reg-view 
        where time = 2100 



Average temperature over  
raw sensor readings 

Interpolation 

Time 

Time 

Average temperature over  
an interpolation-view over  
the raw sensor readings 

Time 

Over 40% missing data 



Comparing View Maintenance Options 

  50000 tuples initially 
  Mixed workload: 

  insert 1000 records 
  issue 50 point queries 
  issue 10 average queries 

  Brief summary: 
  Intermediate representation 

typically the best 
  Among others, dependent on 

the view properties, and query 
workload 

Regression, per time 

Interpolation, per sensor 

112.6s 



Ongoing and Future Work 

  Adding support for views based on dynamic Bayesian 
networks (e.g. Kalman Filters) 
  A very general class of models with wide applicability 

  Generate probabilistic data 

  Developing APIs for adding arbitrary models 
  Minimize the work of the model developer 

  Query processing, query optimization, and view 
maintenance issues 

  Much research still needs to be done 



Conclusions 

  Proposed the abstraction of model-based views 
  Poweful abstraction that enables declarative querying over noisy, 

imprecise data 

  Exploit commonalities to define, to create, and to process 
queries over such views 

  MauveDB prototype implementation 
  Using the Apache Derby open source DBMS 

  Supports Regression- and Interpolation-based views 

  Supports many different view maintenance strategies 



Thank you !! 

 Questions ? 


