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Abstract— Software engineers increasingly emphasize agility
and flexibility in their designs and development approaches
They increasingly use distributed development teams, relyon
component assembly and deployment rather than green field de
writing, rapidly evolve the system through incremental dewelop-
ment and frequent updating, and use flexible product designs
supporting extensive end-user customization. While agtly and
flexibility have many benefits, they also create an enormous
number of potential system configurations built from rapidly
changing component implementations. Since today’s qualitas-
surance (QA) techniques do not scale to handle highly config-
urable systems, we are developing and validating novel sefare
QA processes and tools that leverage the extensive compugin
resources of user and developer communities in a distributh
continuous manner to improve software quality significanty.

This paper provides several contributions to the study of
distributed, continuous QA (DCQA). First, it shows the structure
and functionality of Skoll, which is an environment that defines
a generic around-the-world, around-the-clock QA process ad
several sophisticated tools that support this process. Semwd,
it describes several novel QA processes built using the Skol
environment. Third, it presents two studies using Skoll: or
involving user testing of the Mozilla browser and another irvolv-
ing continuous build, integration, and testing of the ACE+TAO
communication software package.

The results of our studies suggest that the Skoll environmen
can manage and control distributed continuous QA processes
more effectively than conventional QA processes. For exanig
our DCQA processes rapidly identified problems that had take
the ACE+TAO developers much longer to find and several of
which they had not found. Moreover, the automatic analysis
QA results provided developers information that enabled tlem
to quickly find the root cause of problems.

I. INTRODUCTION

platform at the developer’s site differ from those in thediel
These problems are magnified in modern software systems
that are increasingly subject to two trendfstributed and
evolution-oriented development processesl cost and time-
to-market pressures

Today’s development processes are increasingly diseibut
across geographical locations, time zones, and business or
ganizations [1]. This distribution helps reduce cycle time
by having developers and teams work simultaneously and
virtually around the clock, with minimal direct inter-dduper
coordination. Distributed development can also increage s
ware churn rates, however, which in turn increases the need
to detect, diagnose, and fix faulty changes quickly. The same
is true for evolution-oriented processes, where many small
increments are routinely added to the base system.

Global competition and market deregulation is encouraging
the use of off-the-shelf software packages. Since one-size
fits-all software solutions rarely meet user needs in a wide
range of domains, these packages must often be configured and
optimized for particular run-time contexts and applicatie-
quirements to meet portability and performance requirémen
Due to shrinking budgets for the development and QA of
software in-house, however, customers are often unwiling
unable to pay much for customized software. As a result, a
limited amount of resources are available for the develagme
and QA of highly customizable and performant software.

These trends present several new challenges to developers,
including the explosion of th&A task spaceTo support
customizations demanded by users, software often runs on
multiple hardware and OS platforms and has many options to
configure the system at compile- and/or run-time. For exam-

Software quality assurance (QA) tasks are typically peple, web serverse(g, Apache), object request brokems.d,
formed in-house by developers, on developer platformsigusiTAO), and databases.q, Oracle) have dozen or hundreds
developer-generated input workloads. One benefit of irsbowf options. While this flexibility promotes customizatioit,

QA is that programs can be analyzed at a fine level of detaileates many potential system configurations, each of which
since QA teams have extensive knowledge of, and unregsirictieserves extensive QA.

access to, the software. The shortcomings of in-house QAIn addition, QA processes themselves require ever more
efforts are well-known and severe, however, including (Bophisticated and flexible control mechanisms to meet the
increased QA cost and schedule and (2) misleading resuifisle-ranging and often dynamic QA goals of today’s complex
when the test cases, input workload, software version aadd rapidly changing systems. For instance, QA processes
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might want to control input workload characteristics, vary
test case selection and prioritization policies, or endidable
specific measurement probes at different times. In earlier
work [2] we developed a QA process to isolate the causes of
failures in fielded systems. In this process, differentanses

of a system enable different sets of measurement probes, thu
sharing data collection overhead across the participdting



stances. In addition, the choice of which measurement groleg techniqueshat adapt the mapping of QA tasks to remote
to enable in a new program instance depends on each prolmegchines based on a variety of factors, such as resource
historical ability (across all previous instances) to jced availability and end user preferences.
system failure [3]. Fourth, operating a distributed continuous QA process re-
When increasingly larger QA task spaces are coupled wiffuires the integration of many artifacts, tools, and resesy
shrinking software development resources, it becomesinfeuch as models of QA process’ task spaces, search/navigatio
sible to handle all QA in-house. For instance, developeng matrategies for intelligently and adaptively allocating @#sks
not have access to all the hardware, OS, and compiler plai-clients, and advanced mechanisms for feedback generatio
forms on which their software will run. In this environmentjncluding statistical analysis and visualization of QA kas
developers are forced to release software with configuratioresults. We therefore developed tBkoll processhat provides
that have not been subjected to extensive QA. Moreovarflexible framework to coordinate the QA techniques andstool
the combination of an enormous QA task space and tigiéscribed above. As Skoll executes, QA tasks are scheduled
development constraints means that developers must makel executed in parallel at multiple remote sites. The tesil
design and optimization decisions without precise knogtedthese subtasks are collected and analyzed continuallyeabion
of the consequences in fielded systems. more central locations. The Skoll process can use adaptatio
To address the challenges described above, we have steategies to vary its behavior based on this feedback. \We ha
veloped a collaborative research environment calall also developed techniques for automatically charactegiand
whose ultimate goal is to support continuous, feedbackedri presenting feedback to human developers.
processes and automated tools to perform QA around-theFinally, it is hard to evaluate this kind of research since
world, around-the-clock. Skoll QA processes are logicallgpproaches are experimental and thus risky. At the same
divided into multiple tasks that are distributed intelliigly time, the work requires a distributed setting with multiple
to client machines around the world and then executed hgrdware platforms, operating systems, software libsagéc.
them. The results from these distributed tasks are retuimedTo deal with this we have developedarge-scale distributed
central collection sitesvhere they are merged and analyzedvaluation testbedtonsisting of a pair of dedicated clusters
to complete the overall QA process. at University of Marylandwwv. cs. und. edu/ pr oj ect s/
When developing and operating Skoll we encountereds&ol | and Vanderbilt Universityww. dr e. vander bi | t .
number of research challenges and created novel solutioggu/ | SI SI ab and containing over 225 top-end x86 CPUs
First, to understand the QA space it is necessarfotmally running many versions of Linux, Windows, Solaris, Mac OSX,
model aspects of both the QA process and the system. d#nd BSD UNIX. They also have several terabytes of disk space
our feasibility studies we found it helpful to model exeouti for long-term data storage. We are enhancing these clusters
platforms, static system configurations, which build totls with EMUIlab control software developed in an NFS-sponsored
use, runtime optimization levels, and which subset of teststestbed at the University of Utah to facilitate experiménta
run. To support this modeling, we developed a general repesraluation of networked systems.
sentation with options that take values from a discrete et o This paper significantly extends our previous work [4]
option settings. We also developed a tool for expressirg-intby providing new information about the Skoll system and
option constraints that indicate valid and invalid combimias  algorithms and substantially extending our empirical eval
of options and settings. In addition, we developed the moti@tion of software using Skoll. The remainder of this paper
of temporary inter-option constraints to help us restrie t s organized as follows: Section Il explains the Skoll psxce
configuration and control space in certain situations. and infrastructure, QA processes built using Skoll; Sexsticl
Second, because the task space of a QA process canahé Section |V describe the design and results from feégyibil
large, brute-force approaches may be infeasible or simgjudies that applied Skoll to enhance the QA processes of two
undesirable, even with a large pool of supplied resourcegibstantial software projects; Section V compares our wark
We therefore developed techniqueseiplore/searctthe QA Skoll with related work; and Section VI presents concluding

task space. We developed a general search strategy baseshrks and discusses directions for future work.
on uniform random sampling of the space and supplemented

it with customized adaptation strategies to allow goal«etmi
process adaptation. One adaptation strategy callearest
neighborrefocuses search around a failing configuratmag, To address the limitations with current QA approaches
a point in the QA task space. This strategy helps find addition(described in Section V), the Skoll project is developing an
failing configurations quickly and delineates the bounekriempirically evaluating processes, methods, and suppols to
between failing and passing QA task subspaces. for distributed, continuous QA. A distributed continuous Q
Third, because QA tasks are assigned to remote machineprecess is one in which software quality and performance
often volunteered by end users—it may be hard to kreoware improved—iteratively, opportunistically, and efficily—
priori when resources will be available. For instance, sonaound-the-clock in multiple, geographically distribditeca-
volunteers may wish to control how their resources will b&ons. Ultimately, we envision distributed continuous QAop
used,e.g, limiting which version of a system can undergaesses involving geographically decentralized compuioas
QA on their resources. In such cases, it is impossible to pmade up of thousands of machines provided by end users,
compute QA task schedules. We therefore develgobeédul- developers, and companies around the world. The expected

II. THE SKOLL PROJECT



benefits of this approach include: massive parallelizabbn  Skoll's default behavior is to cover the configuration and
QA processes, greatly expanded access to resources andcentrol space by allocating subtasks upon request, on anand
vironment not easily obtainable in-house, and (dependimg basis without replacement. The results of these subtasks ar
the specific QA process being executed), visibility intouatt returned to collection sites and stored. They are not agdlyz
fielded usage patterns. This section describes our intéglss however, so no effort is made to optimize or adapt the

towards realizing our vision. global process based on subtask results. When more dynamic
behavior is desired, process designers can vadaptation
A. Distributed Continuous QA processes strategieswhich are programs that monitor the global process

State, analyze it, and modify how Skoll makes future subtask
assignments. The goal is to steer the global process in a
way that improves process performance, where improvement
criteria can be specified by users.
Computing Nodes Computing Nodes To support the distributed continuous QA processes de-
LI = scribed above, we have implemented a general set of com-
ponents and services that we call tBkoll infrastructure We
have applied this infrastructure to prototype severatitisted,
continuous QA processes aimed at highly configurable soft-
ware systems. We have also evaluated the Skoll infrastreictu
on two software projects, as described in Sections Ill and IV
The remainder of this section describes the components,
services, and interactions within the Skoll infrastruetand
provides an example scenario showing how they can be used
to implement Skoll processes.

At a high level, distributed continuous QA processes r
semble certain traditional distributed computations asash
in Figure 1. As implemented in Skoliasksare QA activities,

QA Task 1 is split into three subtasks

,‘I ... %
computing node clusters 1, 2, and 3 | | I

(1.1, 1.2, 1.3) and allocated to
respectively.

computing Nodes  B. The Skoll infrastructure

Cluster#3 Skoll processes are based on a client/server model, in which
Skoll Coordinator clients request job configurations (QA subtask scriptsinfio
server that determines which subtask to allocate, bundgies u
Fig. 1. Skoll Tasks/subtasks allocated to computing nodes a network.  all necessary scripts and artifacts, and sends them toitré.cl
Operationalizing such a process involves humerous dessio
such as testing, capturing usage patterns, and measussng sych as how will tasks be decomposed into subtasks, on what
tem performance. They are decomposed Bubtaskswhich basis and in what order subtasks will be allocated, how will
perform part of the overall task. Example subtasks migtitey be implemented so that they run on a wide set of client
execute test cases on a particular platform, test a subseplaftforms, how results will be merged together and integate
system functions, monitor a subgroup of users, or measiffand how should the process adapt to incoming results, and
performance under one particular workload charactedmati how will the results of the overall process be summarized
For example, the global QA task in Section IV’s feasibilittand communicated to software developers. To support these
study performs functional testing that “covers” the spate decisions, we have developed several components andegrvic
system configurations.e., each individual subtask executes dor use by Skoll process designers.
set of tests in one specific system configuration. The first component is a formal model of a QA process’
Skoll allocates subtasks tocomputing nodeswhere they configuration and control space. The model essentially pa-
are executed. Computing nodes in Skoll are remote machimameterizes all valid QA subtasks. This information is used
that elect to participate in specific distributed continel@A in planning the global QA process, for adapting the process
processes. When these nodes decide they are availablalyinamically, and to help interpret the results.
perform QA activities they pull work from &Kkoll coordinator  In our model, subtasks are generic processes parameterized
site. As subtasks run, results are returnedStkoll collection by configuration and control options. These options capture
sites merged with previous results, and analyzed incremeimformation (1) that will be varied under process control
tally. Based on this analysis, control logic may dynamicallor (2) that is needed by the software to build and execute
steer the global computation for reasons of performance gmaperly. Such options are application specific, but could
correctness. In addition to incremental analysis, resuldy include workload parameters, OS version, library implemen
be analyzed manually and/or automatically after process cotations, compiler flags, run-time optimization controlsc.e
pletion to calculate the result of the entire QA task. Each option must take its value from a discrete number of
We envision Skoll QA processes involving geographicallyettings. For example, one configuration option (cad)l in
decentralized computing pools composed of numerous clienir feasibility study in Section IV takes values from the set
machines provided by end users, developers, and compar{i8n32, Linux}. Skoll uses this option for a variety to tasks,
around the world. This environment can perform large an®urd.g, to select appropriate binaries for the subtasks.
of QA at fielded sites, giving developers unprecedentedsacce Defining a subtask involves mapping each option to one of
to user resources, environments, and usage patterns. its allowable settings. We call this mappingcanfiguration




TABLE |

EXAMPLE OPTIONS AND CONSTRAINTS neighbor strategy is designed to generate such configngatio

when the ISA is configured to choose configurations using

Option Settings Interpretation random selection without replacement.

glal’\/'P'LER {?fizegsy \SC:T\I%@ E?]r;‘gliée::eature For example, suppose that a test on a configuration and
MINIMUM _CORBA | {1 = Yes: 0=Ng Enable Feature| CONtrol space with three binary options fails in configuati
run(T) {1 =True, 0 = Falsp | Test T runnable| {0,0,0}. The nearest neighbor search strategy marks that
ORBCollocation {gl((:)gr?ls,trr;?r:;grb, NQ | runtime control | configuration as failed and records its failure informatitin
AN =T = MINIVUM CORBA= 0 then gchedules for |.mmed|at.e testing all valid conﬂggraﬂo
run(Multiple/runtest.pl) = 1— (Compiler = VC++6.0) that differ from the failed one in the value of exactly oneiopt

setting: {1, 0,0}, {0,1,0} and{0,0, 1}, i.e, all distance-one
neighbors. This process continues recursively.

Figure 2 depicts the nearest neighbor strategy on a con-
figuration and control space taken from our feasibility gtud
in Section IV-C. Nodes in this figure represent valid config-

Configurations are represented as a{s¢ii, C1), (Va, Cs),
..., (VN,Cn) }, where eachV; is an option andC; is its
value, drawn from the allowable settings 6f.

In practice not all configurations make sensey( feature
X is not supported on OS Y). We therefore allavter-option
constraintsthat limit the setting of one option based on the
setting of another. We represent constraints Bs & P;), “
meaning “if predicateP; evaluates tdl’RU E, then predicate
P; must evaluate td’"RUE.” A predicate P, can be of the
form A, —A, A& B, A|B, or simply (; = C;), where A, B , \
are predicatesy; is an option and”; is one of its allowable
values. Avalid configurationis a configuration that violates
no inter-option constraints. [

Table | presents some sample options and constraints fron
the feasibility study in Section IV (similar options appeain
the study described in Section Ill). The sample optionsrrefe
to things like the end-user’s compiler (COMPILER); whetheFig. 2. Nearest Neighbor Strategy
or not to compile in certain features, such as support for
asynchronous messaging invocation (AMI); whether certaiirations; edges connect distance one neighbors. The dotted
test cases are runnable in a given configuration (run(TY; agllipse encircles configurations that failed for the sanzsoa.
at what level to set a run-time optimization (ORBColloca}io The arrow indicates an initial failing node. Once it failts i
One sample constraint shows that AMI support cannot beighbors are tested; they fail, so their neighbors aredestd
enabled on a minimum CORBA configuration. so on. The process stops when nodes outside the ellipse are

As QA subtasks are performed, their results are returnggsted (since they will either pass or fail for a differergsen).
to an Intelligent Steering Agent (ISA). By default, the ISAAs we show in the feasibility study IV-E, this approach quyck
simply stores these results. Often, however, we want taleddentifies whether similar configurations pass or fail. This
from incoming resultse.g, when some configurations prove tanformation is then used by the automatic characterization
be faulty, why not refocus resources on other unexploret$ paservice described later in Section II-C.
of the configuration and control space. When such dynamicThe next ISA adaptation strategy involves the use of tem-
behavior is desired, process designers develop customigetlary constraints. Suppose that a software system irattyrre
adaptation strategigsthat monitor the global process statefails to build whenever binary option AMI = 0 and binary
analyze it, and use the information to modify future subtasiption CORBAMSG = 1. Suppose further that this fact can
assignments in ways that improve process performance. e discerned well before testing all such configurationsdiwh

Since they must process subtask results, adaptation-stra@mprise 25% of the entire configuration and control space).
gies must be tailored for each QA process. Consequently, this situation, developers would obviously want to stop
adaptation strategies in Skoll are independent programs &ssting these configurations and instead use their resdtoce
ecuted by the Skoll server when subtask results arrive. Thést other parts of the configuration and control space.
decoupling of Skoll and the adaptation strategies allow®us To use resources more effectively, we therefore created an
develop, add, and remove adaptation strategies as neelued. ddaptation strategy that insertismporary constraintssuch
following three general adaptation strategies are usediin &is CORBAMSG = 1 — AMI = 1 into the configuration
feasibility studies in Sections Il and IV (other strategy@e model. This constraint excludes configurations with the of-
discussed in Section VI). fending option settings from further exploration. Once the

The first ISA adaptation strategy is callbig@arest neighbor. problem that prompted the temporary constraints has been
Suppose a test case run in a specific configuration repdiked, the constraints are removed, thus re-enabling normal
a failure. Developers might want to focus on other simildSA execution. Once these constraints are negated theyecan b
configurations to see whether they pass or fail. The nearased to spawn new Skoll subtasks that test patches on only




the previously failing configurations. We employ this st CORBANSG =0
in our feasibility study in Section IV-C. POLLIER=O AN”':O
A third ISA adaptation strategy terminates or modifies l
subtasks. Suppose a test program is run at many user sites, CALLBIACK:O
failing continuously. At some point, continuing to run thast
program provides little new information. Time and resosrce oK
might be better spent running some previously unexecutd te oK ERR-2
program. This adaptation strategy monitors for such saoat
and—depending on how it is implemented—can modify sulgig. 3. Sample Classification Tree Model
task characteristics or even terminate the global process.
The three ISA adaptation strategies described above dre jus
some examples of the ones that we use in our work. As wéth varying needs. We also incorporated a multi-dimenaion
encounter new situations, we implement new strategies. Ftata visualizer called Treemapgiw. cs. und. edu/ hci | /
example, we have observed that passing/failing configamatit r eermap) to display the results of automatic characterization,
spaces are not necessarily contigudues, failing subspaces which we described earlier.
may be disjoint. These situations might not be found quickly
using the nearest neighbor strategy described above. We are .
therefore exploring the design of a variant of the nearest Skoll Implementation

neighbor strategy that sometimes jumps across neighbihs, w Skoll is designed as a client/server system. To ensure-cross
the goal of finding other failing subspaces that are disjoipfatform compatibility, the Skoll system is written entire
from the subspace currently being explored. in Perl and all communication between the Skoll server and
Another useful Skoll component encapsulates the automagifents is done in XML using the HTTP protocad,g, via
characterization of subtask results. As QA processes a@ET and POST methods. The remainder of this section
unfold over long periods of time, we often interpret subtasihows Skoll's design details by tracing through a sequence
results incrementally, which is useful for adapting thegess of events that execute during a typical distributed, cartirs
and for providing feedback to developers. Given the sizgA process.
and complexity of the data, this process must be automatedsjnce Skoll is designed to support a wide range of soft-
Consequently, we have included implementations of Clasgjare systems and QA processes, it requires customization/-
fication Tree Analysis (CTA) [5] in the Skoll infrastructure configuration before it can be used with a new software
CTA approaches are based on algorithms that take a Sets?%tem and a QA process. Given a QA task, the first step
objects,0;, each of which is described by a set of featuregy configuring Skoll is to create a configuration and control
Fij, and a class assignmerd;. Typically, class assignmentsmodel that specifies how the QA task is divided into several
are binary and categoricaé.g, pass or fail, yes or no), butgyptasks. The interpretation and execution details of QA
approaches exist for multi-valued categorical, integed &eal sybtasks are application-specific and provided to the Skoll
valued class assignments. CTAs output is a tree-based Imoggstem by implementing two application-specific interface
that predicts object class assignment based on the values ghjled Ser ver Si deAppl i cati onConponent (shown in

subset of object features. Other approaches such as regressigure 4) andl i ent Si deAppl i cat i onConponent , re-
modeling, pattern recognition, neural networks, each Wiéir  gpectively!

own strengths and weaknesses, could be used instead of CTAy skoll server uses theSer ver Si deAppl i cat i on-

though they are beyond the scope of this paper. Conponent to help the ISA interpret QA subtasks and create
We used CTA in our feasibility studies to determine whichciyal QA jobs. The Skoll server invokes thai t () and
options and their specific settings best explained obseredna| j ze() methods just before starting a new DCQA
test case failures. Figure 3 shows a classification tree moﬁ?ocess and immediately after finishing one, respectivély.
that characterizes 3 different compilation failures andut-s gkol| client usesd i ent Si deAppl i cati onConponent
cess condition for the results of 89 different configuragiony execute the QA jobs sent by the ISA. Theit () and
When a predicate (node in the figure) is true the right na) i ze() methods of this component are invoked just
branch is followed, otherwise the left. This figure also sBow,efore and immediately after executing a QA job, respelgtive
that compilation fails with error message "ERR-1" whenever gnq.sers use a web-based form to register with the Skoll
CORBAMSG is disabled and AMI is enabled. server registration manageand characterize their client plat-
Since Skoll processes are expected to generate lafgfins This information is used by the ISA when it selects
amounts of data, Skoll supports the organization and Visilyy generates job configurations to tailor generic subtask
alization of process results. We employ web-based sCOfgisiementation code. For example, some tailoring is faaruh
boards that use XML to display !ob configuration resultgpeciﬁC issues, such as operating system type or compiler,
The server scoreboard managerovides a web-based queryyhereas other tailoring is for task-specific issues, such as
form allowing developers to browse Skoll databases for tril?entifying the location of the project's CVS server.
results of particular job configurations. Visualizationee a

programmable with results presented i.n ways that are easy tQ\lote that, for clarity purposes, we simplified the interfaggven in this
use, readily deployed, and helpful to wide range of deve®peaper; in an actual implementation, these interfaces maydre complex.

ERR-1 ERR-3



m:)gg;‘ 2;?1 Isﬁlr;”(e; Si deAppli cationConponent { the order they are received. Instructions that are not in

Instructions QA job(Configuration c) the default set of instructions supported by the Skoll
bool ean finalize()} client are considered application-specific and passed do th
Cl i ent Si deAppl i cati onConponent component via
the di spat ch.i nstructi on() method (Figure 4). This
component is responsible for executing the instructiorchEa

interface CientSideApplicati onConponent {
bool ean init (QAJob job)
InstructionResult dispatch_instruction(

Instruction i) application-specific instruction is implemented as a Padkp

bool ean finalize()} age, conforming to a well-defined interface. The instructioe
terface includes method signatures for setting the enxrieont

Fig. 4. Server- and Client-side Application Component fiaizes variables to execute the instruction, executing the iction,

and logging and parsing the output of the instruction.
All client activities are stored into a log file that consists

After a registration form has been submitted, t&rver of multiple sections where each section corresponds to-an in
registration managereturns a unique ID and configurationstruction executed by the clierg.g, “download” and “build”).
template to the end-user. The configuration template cesitajpfter the QA subtask is completed, the client is often asked
any user-specific information that cannot be modified by the parse the log file into an XML document, summarizing the
ISA when generating job configurations. The template capA subtask results.
be modified by end-users who wish to restrict which job QA job results are collected and stored in a database at
configurations they will accept from the Skoll server. Thehe Skoll server. The Skoll database is implemented using
end-user also receives a Skoll client kit, consisting ofssfo MySQL and it contains tables to store information about
platform client software that provides basic serviceshsag clients €.g, OS, compiler, and hardware information, etc.),
contacting the Skoll server for jobs. QA job configurations allocatede(g, QA job IDs, and the

Once installed, the Skoll client periodically or on-demangurrent status of the jobs, etc.), and the QA job resutg,(
requests QA jobs from the Skoll server. At each request, thgild results, functional test results, performance testiits,
Skoll client automatically detects information that déises etc.). After the database is populated, the ISA is notifiealiab
its platform configuration, including its OS.€., OS version, the incoming results. The ISA may use this information to
kernel version, vendor, etc.), compilére(, version, patches, modify future subtask allocation via adaptation strategie
etc.), and hardware specificatiorise(, CPU details, number
of CPUs, memory sizes, etc.). The ISA uses this information i nt erface Adaptati onStrategy {
to guide the subsequent QA processg, to ensure that bool ean init ()
certain types of functional or performance regressiorstast Configurations adapt_t o(QAJobl D id)
on the appropriate platform configuration. The Skoll client bool ean finalize()}
packages the platform configuration information togethit w
the configuration template into a QA job request messageg. 5. Interface Between the ISA and Adaptation Strategies
(QAJobRegMsg) and sends it to the ISA.

The ISA responds to each incoming request with a QA Figure 5 shows the interface between the ISA and adap-
job configuration i(e., QA subtask), which is customized intation strategies. Thénit () andfinalize() methods
accordance with the characteristics of the client platfitoyn are called once DCQA processes start and finish, respactivel
the ISA. After a QA subtask is computed for a requestinghe ISA notifies the registered adaptation strategies wa th
client, the ISA consults th&er ver Si deAppl i cati on- adapt t o() method by passing the QA job ID. The adap-
Conponent via the QAj ob() method by passing the se-tation strategies then analyze the current state of theepsoc
lected configuration as an argument. This method returns a aed schedule configurations for future allocation.
of instructions that assists the client in performing thegrsed The analysis and visualization of QA job results are
QA subtask. The ISA then packages these instructions and #pplication-specific. Depending on the characteristicsaof
selected configuration into a QA joliJob). A unique ID particular QA task—and the preferences of developers—some
(QAJobl D) is assigned to each QA job and stored in the Skaddinalysis/visualization tools may be preferable to oth&kall
database, along with the QA job information. therefore provides a web-based portal to various analysis a

The Skoll client kit provides implementations for a setisualization tools.
of generic instructionse.g, setting environment variables, We have put together all the components discussed above
downloading a software from a CVS repository, startingto develop a Skoll process, which is described next.
stopping a log, running system commands, uploading a file,
etc. Each instruction is implemented as a separate componen ) )
that complies with a common interface, ensuring that deoIID' Skoll in Action
default instruction set can be expanded easily. Moreover,The Skoll process performs the following steps using the
instruction components are loaded dynamically at runtime @omponents and services described in Section II-B:
demand, allowing online upgrades of Skoll client with a newtep 1.Developers create the configuration and control model
set of instruction components even after deployment. and adaptation strategies. The ISA automatically traesltite

The Skoll client executes the set of instructions imodel into planning operators. Developers create the gener



TABLE Il

QA subtask code that will be specialized when creating &ctua
EXAMPLE CONFIGURATION MODEL

job configurations.

Step 2.A userrequests the Skoll client kit via the registration "~ Option Type Settings
process described earlier. The user receives the Skail elied select HTML tag {I = Yes, X = Don't Caré
a configuration template. If users wish to temporarily clang ~ table HTML tag {1 = Yes, X = Don't Car¢
option settings or constrain specific options they do so by  pin User action {1=Yes, 0=Ng
modifying the configuration template. bookmark User action {1 = Yes, 0 = Ng
Step 3_.The client requests a job configuration from a server safe-mode Run-time option (1= Yes, 0= NG
periodically or on-demand. sync Run-time option {1 = Yes, 0 = Ng

Step 4.The server queries its databases and the user-provided ...

configuration template to determine which option settings a _1vead-ID__ Client characteristic {1,20r3

fixed for that user and which must be set by the ISA. It then

packages this information as a planning goal and queries the o )

ISA. The ISA generates a plan, creates the job configuratigf€rs. Browser proxies intercept client web page requests,

and returns it to the client. retrieve the pages, and analyze them to determine whetier th
Step 5.The client invokes the job configuration and returngontain particular HTML tags (previously uncaptured) awd d
the results to the server. not contain other HTML tags (already captured and known to

Step 6. The server examines these results and invokes §fUse failures). Each proxy looks for a different set of HTML
adaptation strategies, which update the ISA operatorsaptadt@ds and the list of uncaptured tag sets is updated over lime.
the global process. Skoll adaptation strategies can dlyrerf€ currently requested page contains a desired tag seg, use
use built-in statistical analyses to help developers dyickd® asked to quthorlze sending the page to the S.ko'll server fo
identify large subspaces in which QA subtasks have faildgrther analysis. After a tag set has been found it is removed
(or performed poorly). from the list of previously unseen tag sets.

Step 7. Periodically—or when prompted by developers—the 1hread-2 tests the web pages captured in Thread-1. When
server updates wirtual scoreboardthat summarizes subtask® Thread-2 client becomes available, the I1SA selects one
results and the current state of the overall process. previously captured web page, selects specific user adions

Sections 11l and IV present feasibility studies that demor2® a@pplied to that page, and chooses the configuration under
strate the usefulness of the Skoll process and tools. which Mozilla is to be run. The job is then sent to the client,

which configures Mozilla, opens the page in it, and invokes an
automated robot to carry out the selected user actionsurgail
or non-failures are returned to the Skoll server.
To gain experience with Skoll, we developed and executedThread-3 applies Zeller's Delta Debugging [7] algorithm
a distributed continuous QA process as an initial feaybili(in parallel across multiple nodes) to minimize test cabes t
study. Since our goal was to gather experience, we simulafeded in Thread-2. Starting with such a failed test casdfdDe
several parts of the process and ignored some issues (sDefbugging works by removing a portion of test case and
as privacy and security) that would be important in an actudlen retesting the remainder to determine whether the rechov
deployment with real end users. The application scenariosgbset affects the failure’s manifestation. This contnustil
inspired by a software failure in version 1.7 of the Mozil@ [ removing any more of the test causes the test to no longer
web browser that Zeller et al. diagnosed using their Delta D&il. After this minimization, the set of HTML tags remaimgn
bugging technique [7]. This bug occurs when a user attemjasthe test case is added to the sets of tags known to cause
to print an HTML document containing theel ect tag (the a failure. This action prevents Thread-1 from searching for
select tag creates a drop-down list and allows users to ehofigther pages containing this set of tags.
one or more of its items) and results in the browser crashingThe overall goal of this process is to gather a wide variety of
(see bug report 69634 ibugzill a. mozilla. org for web pages efficiently, where each page contains different co
more information). binations of HTML tags. We then test Mozilla in numerous
This scenario is a good test of Skoll because the failuresn-time configurations by applying a wide set of user agion
appearance depends on specific combinations of (1) inpotthe pages. When test fail, we use Zeller’s Delta Debugging
featuresice., an HTML document containing sel ect tag), to help identify which subset of the test caseg( HTML
(2) user actionsif., printing an HTML document), and (3) tags, user actions and runtime configurations) caused Mozil
execution platformi(e., version 1.7 of Mozilla, running in its to crash. This information is then fedback to the process to
default configuration. prevent retesting of conditions known to cause failure.
We developed the following distributed continuous QA pro- We implemented the process described above using Skoll,
cess to test Skoll. In practice this process would be exdcutmulating several steps, such as the user interactionneath
by end-user machines. Clients on these machines would bthat issues web page requests and the crashing of the Mozill
divided into three groups, each of which is assigned to erecbrowser. We first developed a configuration and control model
jobs coming from one of the three threads described belowfor this process, a subset of which is shown in Table Il. This
Thread-1 captures web pages for later testing by creatingodel captures four types of options: (1) the HTML tags that
browser proxy components and deploying them to volunteeray be present in a web page, (2) user actions that may

[1l. I NITIAL FEASIBILITY STUDY



be executed on the page, (3) Mozilla run-time configuratidn disappear. After the algorithm terminates, we manually
options, and (4) client characteristics. There were a total analyze the results to identify the failure inducing tagsset
26 HTML tag options, 6 run-time configuration options, 3Ve then use adaptation strategies to prevent the creation of
user action options, and 1 client characteristic optionictvh new QA subtasks involving these tags.

induce an enormous configuration and control space ovefpe spent~30 person hours directly implementing this
which we want to test. The Skoll system translated this modglenario using the Skoll infrastructure. Two-thirds ottime
automatically into the ISA's planning language. (~20 person hours) was sent fixing bugs in Skoll uncovered
Next, we wrote the necessary QA subtask code that ifgring our exploration. To run the process, we installed ten
plements QA tasks, such as (1) preparing and deployiggo|| clients and one Skoll server across workstations dis-
browser configuration scripts and browser proxy componerfyted throughout computer science labs at the Uniyedit
that intercept web page requests and then analyze the teduegaryland. All Skoll clients ran on Linux 2.4.9-3 platform.en
web page to see whether it contains certain sets of HTMlsed Mozilla v1.7 as our subject software. We then executed

tags, (2) deploying and executing a test case, where eréCUljarious QA processes for over 100 hours as described above.

a test case requires viewing one web page within a sPecncICAs a result of conducting the initial feasibility study on

configuration of the Mozilla browser and then invoking ozi : . .
a . : . ozilla we gained valuable experience with our Skoll praces
specific set of user actions on it, and (3) executing stepseof {

. : N ) ; and infrastructure. For example, we demonstrated that'Skol
Delta Debugging algorithm to minimize the input to previlgus . . . .
failed test cases. configuration and control model was sufficient to define a test

To execute the QA process, we instructed the ISA tsooace consisting of subspaces for input cases HTML tag

navigate the configuration and control space using randc%tlons)’ user actionsi.¢, user action options), traditional

sampling without replacemenite., each valid configuration software configuration options.&, Mozilla's run-time con-
ping P N g figuration options), and client characteristiasgignment of

was scheduled exactly once by having the ISA randomly _
select (1) HTML tags to locate in a webpage, (2) runtim?'e.nts to thread poojs One def|C|_ency of the model was _that
It did not naturally support ordering among different opso

configuration options for Mozilla, and (3) a set of user atsio o .
and the order in which they should execute. This confingatioSp?C'ﬂca”y‘ we wanted to generate an ordering to the user
: ctions é.g., first bookmark, then printAlthough this can

is then placed on both the Thread-1 and Thread-2 job I|sy(orﬁe done using constraints, doing so is quite cumbersome. We

the HTML tags are important for Thread-1). Klerefore chose to model only the presence or absence of each

For each job request from a Thread-1 client, the ISA .~ " .
) . . action in the current test case and then randomized the order
randomly selects a job from the Thread-1 job list. Next, . L
of their application.

browser proxy component is configured to search for the o )
HTML tags indicated by the configuration. The browser proxy Our feasibility study also demonstrated the generality of
is then deployed on the client machine. To facilitate th@€ Skoll system and distributed continuous QA concepts by
demonstration, we configured the proxy to generate andret@€veloping and executing a simple yet interesting proceas a
canned web pages containing the required tags. reasonable level of effort. We were able to integrate artiegis

Upon receiving a job request from a Thread-2 client, the IS{&St automation toolig., a GUI test automation tool [8]),
randomly selects a job from the Thread-2 job list for whicRN analysis technique.¢., Delta Debugging algorithm), and
the corresponding web page has already been captured aadaptation strategyi.€., temporary constraints) within
Thread-1 client. The ISA then builds a job package directifg® Skoll infrastructure. During this activity we encouneie
the client to (1) download the Mozilla software from a remotg€rious difficulties implementing this process because our
repository, (2) configure it, (3) open the HTML document ipnitial Skoll implementation hardwired many aspects of the
the browser, (4) execute the sequence of user actions using@QA process workflow. This experience led us to create the
GUI test automation tool called GUITAR [8], and then (5) sen@P!S described in Section II-C, which greatly simplify adgi
the resultsi(e., Mozilla crashed or did not crash as determine@PPplication-specific QA instructions to a DCQA process.
by our simulated oracle) to the Skoll server. Each step wasFinally, we also uncovered some practical limitations. For
realized as an individual instruction in the QA jobs sent bgxample, we found we needed a debugging mode for Skoll
the Skoll server. We implemented only the application dpecisince there was no easy way to see what actions would
instructions for step (3) and (4). For the rest, we used Skolhappen during a process without actually executing them,
default set of instructions. When a test case fails in Threaalsing resources, and updating Skoll's internal databases.
2, it is subdivided into two pieces as dictated by the Deltherefore added a feature to Skoll that echoes the insbngti
Debugging algorithm and both pieces are added to the Thre#tht should be executed, but does not actually run them (this
3 subtask queue. behavior is similar to what happens when tieke program

For each Thread-3 job request, an available job is pullésl run with the “-n” flag). We also identified a need for a
from the Thread-3 queue and tested using the same systematic method of terminating outstanding jobs or elkss
frastructure as in Thread-2. If the test fails (as deterchinef jobs. For instance, while running Delta Debugging we
by our simulated oracle), the Delta Debugging algorithm wften found solutions on one branch of the recursively ddfine
invoked. This recursive process reduces the input andtsetesgorithm. At this point there was no reason to continue
looking to find the smallest input that still fails. The algbm running jobs from other branches, so we had to extend Skoll
stops when further reduction of test case causes the failtoeshut them down safely.



IV. A MULTI-PLATFORM FEASIBILITY STUDY OF SKOLL heavyweight activities, such as downloading a large code ba

Based on the success of our initial Mozilla feasibility stud ffom CVS, compiling the system, and running resource inten-
we decided to explore the use of Skoll on a larger projectVe test cases. This process is therefore conducted mastly
ACE+TAO, where ACE [9] implements core concurrency anffSources volunteered by project developers and by corepani
distribution services and TAO [10] is a CORBA object reque&fat use the software in their products.
broker (ORB) built using ACE. We conjectured that the Skoll Ve installed Linux and Windows Skoll clients and one Skoll
prototype would be superior to treal hocQA processes used SEMVer across 25 (11 Linux and 14 Windows) workstations
by ACE+TAO developers because it (1) automatically manag@i§tributed throughout computer science labs at the Usityer
and coordinates QA processes, (2) detects problems mgfel\./laryland. All Linux Skoll chents.ran on LII.’IUX 2.4..9-3
quickly on the average, and (3) automatically characteriz&@tions and used gcc v2.96 as their compiler; the Windows
subtask results, directing developers to potential caoes clients ran on Windows XP stations with Microsoft’s Visual
given problem. This section describes the results of owrmc C++ V6.0 compiler. On both platforms, we used TAO v1.2.3
feasibility study that addressed these conjectures. with ACE v5.2.3 as the subject software.

A. Motivation and Design of the ACE+TAO Study B. Configuring the Skoll Infrastructure

We chose ACE+TAO since they embody many of thlf We implemented all the components of the Skoll infrastruc-

. e ure described in Section 1I-B. We then developed different
challenging characteristics of modern software systerns. QdA task models for each scenario. We configured the ISA

example, they have a 2 MLOC+ source code base a d instructed it to navigate the QA task space using random
substantial test code. ACE+TAO run on dozens of OS ar%1 9 Q P 9

. . ' . sampling without replacement.
compiler platforms and are highly configurable, with hurtdre . . .
of options supporting a wide variety of program families We used several adaptation strategies provided by Skoll.

ACE+TAO are maintained by a geographically distributedacorS p_ecmcally, we integrated the nearest adgptatlon syE&teg
gghbor, temporary constraints, and terminate/modifly- su

team of~40 developers whose code base changes dynamlc:{ﬁagks described in Section 1I-B into these distributed con-

and averages over 400+ CVS repository commits per Wee'i'nuous QA processes. We used temporary constraints and
The ACE+TAO developers currently run the regression tes#s P ’ porary

continuously on 100+ largely uncoordinated workstationg auerrr:jlnra]\tezrn;;)td ILyeiSllillll?)tc)al’Slf)Snlad\;a\/II:’)]frglotrIl}elnQiaigsicin:::“e), v?:s
servers at a dozen sites around the world. The results osfe 9 y P

their testing appear at w.dre.vanderbilt.edu/scorebo@ing co_n&_dered Iarge_. In practice, process deS|g_ners detertnen
criteria for deciding when a QA task space is large or small.

interval between build/test runs ranges from 3 hours on quad :
CPU machines to 12-18 hours on less powerful machineswe developed scripts that prepare task results and feed them

. . . info the CTA algorithms for automatic fault characterioati
The platforms vary in versions of UNIXe(g, Solaris, AlX, We also wrote scripts that used the classification tree nsodel
HP, and Linux) to Windows (Windows XP, Windows 2000 P

. . . as input to visualizations.
Windows CE) to Mac OS, as well as to real-time operating The QA tasks for these studies must run on both the
systems, such as VxWorks and LynxOS.

Another motivation for choosing ACE+TAQ is that their de—V\/meWS and Linux operating systems. We therefore imple-

. ... mented client side QA tasks as portable Perl scripts. These
velopers cannot test all possible platform and OS comlanati . . . . .
. scripts request new QA job configurations, receive, parse, a
because there simply are not enough people, OS/compiler

platforms, CPU cycles, or disk space to run the hundre éécute the jobs, and return results to the server. We also

of ACE+TAO regression tests in a timely manner. More_eveloped web registration forms and Skoll client kit. $kol

over, since ACE+TAO are designed for ease of subsectllems are |n|t|allzed with the reg|§trat|on |nf9rmat|d1utth|s .
. . information is rechecked on the client machine before sendi
ting, several hundred orthogonal features/options canrbe ¢

abled/disabled for application-specific use-cases. Thmebeu a job request. We developed MySQL database schemas to

of possible configurations is thus far beyond the resourtes o 129€ USEr data and test results,

the core ACE+TAO development team. These characteristics
of ACE+TAO are similar to other complex systems. C. Study 1: Clean Compilation
Our study applied several QA scenarios to ACE+TAO, Study design ACE+TAO features can be compiled in or out
testing it for different purposes. We used three QA tasif the systeme.g, features are often omitted reduce memory
scenarios applied to a specific version of ACE+TAO: (Ifpotprint in embedded systems. The QA task for this study
checking for clean compilation, (2) testing with defaulhfu was to determine whether each ACE+TAQ feature combination
time options, and (3) testing with configurable runtime ops. compiled without error, which is important for open-source
We also enabled automatic characterization to give ACE+TA¢édftware since any valid feature combination should coenpil
developers concise descriptions of failing subspaces. Unexpected build failures not only frustrate users, bub als
As we identified problems with the ACE+TAO, we time-waste time. For example, compiling the 2 MLOC+ took us
stamped them and recorded pertinent information, which abughly 4 hours on a 933 MHz Pentium IIl with 400 Mbytes
lowed us to qualitatively compare Skoll's performance tatthof RAM, running Linux.
of ACE+TAQ’s ad hocprocess. The tasks involved in these Our first step was to build a QA task model. The feature
scenarios are typically done by developers and involvéyfairinteraction model for ACE+TAO was undocumented, so we



built the QA task model bottom-up. First, we analyzed thiey adding this constraint.
source and interviewed several senior ACE+TAO developers.The ACE+TAO build also failed line 38 (line 37 for Win-
We selected 18 options; one of these options was the OS; tlvs) in Asynch_Repl y_Di spat cher. h (16 configura-
remaining 17 were binary-valued compile-time options thébns) whenever CALLBACK = 0 and POLLER = 1. Since this
control build time inclusion of various CORBA features.  configuration should be legal, we had identified a previously
We also identified 35 inter-option constraints. For examplandiscovered bug. Until the bug could be fixed, we tempararil
one constraint is (AMI = 1— MINIMUM _.CORBA = 0), added a new constraint POLLER =-% CALLBACK = 1,
which means that asynchronous method invocation (AMWhich we also used in later studies.
is not supported by the minimal CORBA implementation. The ACE+TAO build failed at line 137 in
This QA task space has over 164,000 valid configuratiori®T_ORBI niti al i zer. cpp (40 configurations) whenever
Since no constraints were related to the OS option, the sp@@RBA MSG = 0. The problem was due to# ncl ude
was divided equally by OS,e., 82,000 valid configurations statement, missing because it was conditionally incluceal (
per OS. Since the QA task space was large, we used th#defi ne block) only when CORBAMSG = 1. Again, the
nearest neighbor adaptation strategy to navigate this Imoderor was reported on line 665 in filBT_Pol i cy_i . cpp
We also configured the ISA to use random sampling withouthen the system was compiled under Windows; we attribute
replacement since one observation per valid configurat@s whis difference to the compiler and not an ACE+TAO
sufficient. platform-specific problem.
After testing ~500 configurations, the terminate/modify This study did not find any actual platform-specific com-
adaptation strategy signaled that every configuration hiéeldf pilation problems since the faults characterized as plaifo
to compile. We terminated the process and discussed #pecific were actually due to differences in how compilers
results with ACE+TAO developers. Automatic characteitmat generated error messages, and reported error locatioftweBe
showed that the problem stemmed from 7 options providimgoving on to the next study we fixed those errors that we
fine-grained control over CORBA messaging policies. Thisould and worked around those we could not fix by leaving
code had been modified and moved to another library, kthe appropriate temporary constraints in the second study’
developers had forgotten to check whether these optiolhs SPA task model.
worked. Lessons learned We learned several important lessons
Based on this feedback, ACE+TAO developers chose fioam Study 1. For example, we found that even ACE+TAO
control these policies at link-time, not at compile time. Welevelopers did not completely understand the QA task model
therefore refined our QA task model by removing the optiorier their complex software. In fact, they provided us withttbo
and corresponding constraints. Since these options aggbearroneous and missing model constraints.
in many constraints—and because the remaining constraint§Vle also discovered that model building is an iterative
are tightly coupled €.g, were of the form (A=1— B=1) process. Using Skoll we quickly identified coding errorsigo
and (B=1— C=1))—removing them simplified the QA modelpreviously undiscovered) that prevented the software from
considerably. As a result, the QA task model contained tbmpiling in certain configurations. We learned that the-tem
options (one being OS) and 7 constraints, yielding only 1ffrary constraints and terminate/modify subtasks adaptat
valid configurations. Of course, we investigated only a $maltrategies performed well, directing the global processtds
subset of ACE+TAO's total QA task space; the actual spacgeful activities, rather than wasting effort on configimas
is much larger. that would surely fail without providing any new informatio
We then continued the study using the new QA task model ACE+TAO developers told us that automatic characteriza-
and removing the nearest neighbor adaptation strategge(sifion was useful to them because it greatly narrowed down the
now we could easily build all valid configurations). Of thdssues they had to examine in tracking down the root cause
178 valid configurations only 58 compiled without errorsr Foof the failure. We also learned that as fixes to problems were
the 120 (178-58) remaining configurations that did not huilghroposed, we could easily test them by spawning a new Skoll
automatic characterization helped clarify the conditianger process based on the previously inserted temporary cantstra
which they failed. i.e.,, the new Skoll process tested the patched software only for
Analysis of results After conducting the study we analyzedhose configuration that had failed previously.
the data and drew some preliminary conclusions. Beyond
identifying failures, in several cases, automatic chamdca-
tion provided concise, statistically significant desédps of
the subspaces in which 120 configurations failed. Below we Study design The QA task for the second study was to de-
describe the cause of the failure, present the automaticdfrmine whether each configuration would run the ACE+TAO
generated characterization, and discuss the action tajenr@dression tests without error with the system’s defauttinoe
ACE+TAO developers. options. This activity is important for systems that distite
The ACE+TAO build failed at line 630 inser or bconf .  tests to run at installation time because it is intended e gi
h (64 configurations - 32 per OS) whenever AMI = 1 an§Sers confidence that they installed the system correatly. T
CORBAMSG __O' ACE+TAO develoeers determm.ed that the 2We noted that the compilers (gcc and MSVC++) reported difierine
constraint AMI = 1— CORBAMSG = 1 was missing from numbers for the same error, requiring manual examinatiah raatching of
the model. We therefore refined the model (for later studiesjor messages.

D. Study 2: Testing with Default Runtime Options



perform this task, users compile ACE+TAO, compile the test® start on Windows platforms; this failure is caused by
and execute the tests. incorrect coding (Linux vs. Windows) of server-invocation
On our Linux machines it took around 4 hours to compilscripts in the tests. Increasing the number of platforms on
ACE+TAO, about 3.5 hours to compile all tests, and 3@hich tests run helped pinpoint this problem.
minutes to execute them, for a total of around 8 hours. On ourTwo tests failed in 17 configurations when the options
Windows machines, it took 19 minutes to compile ACE+TAOQ(OS=Windows and AMIPOLLER = 0) were enabled. These
about 22 minutes to compile all tests, and 37 minutes tests failed because clients did not get correct (or anyomrese
execute them, for a total of around 1.5 hours. These spdesin the server. Although these tests should actually have
differences occurred because the Windows experiments failed on Linux, it tolerates some amount of invalid memory
on faster machines with more memory. scribbling without killing the process, thereby allowiniet
We first created the QA task model. In this study we usadst to pass, even though it should have failed. The failsire i
96 ACE+TAO tests, each containing its own test oracle amédvealed only on Windows because it is more rigorous in its
reporting success or failure on exit. These tests are ofteremory management. We were able to detect this previously
intended to run in limited situations, so we extended the Qénrevealed problem by increasing the number of platfornds an
task space, adding test-specific options. We also added sahmes enlarging the test diversity.
options capturing low-level system information, indicgtithe Two tests failed in 3 configurations when the options (OS
use of static or dynamic libraries, whether multithreading Linux and AMI = 1 and AMLPOLLER and DIOP = 0
support is enabled, etc. This last step was necessary sianél INTERCEPTORS = 1) were enabled. The same 2 tests
clients were running on Windows and Linux machines, eadhiled in 6 configurations when the options (OS = Linux
with its own low-level policies. and AMI = 1 and AMLPOLLER = 0 and DIOP = 1) were
The new test-specific options contain one option per teshabled. The same 2 tests failed 29 configurations when
They indicate whether that test is runnable in the configamat the option (OS = Windows) was enabled. According to the
represented by the compile time options. For convenienee, WCE+TAO developers, this problem occurs sporadically due
named these optionsin(7;). We also defined constraints ovetto a quirk in the way theTP_React or (the default event
these options. For example, some tests should run only @multiplexer in TAO) handles active handles in an_.6BT?
configurations with more than the Minimum CORBA featuresthe TP_r eact or was therefore not picking up the sockets.
So for all such testsT;, we added a constraimtun(T;) = 1  This error still occurs but not all the time, which suggebtstt
— MINIMUM _CORBA = 0, which prevented us from runningtesting each configuration exactly once may be inadequate to
tests that are bound to fail. By default, we assumed that dkttect rarely occurring, nondeterministic faults.
test were runnable unless otherwise constrained. In several cases, multiple tests failed for the same reason o
After making these changes, the space had 15 compile tithe same configurations. For example, test compilatioedail
options with 13 constraints and 96 test-specific option$ wikt line 596 ofani _t est C. h for 7 tests, each when options
an additional 120 constraints. We again configured the ISEORBAMSG = 1 and POLLER = 0 and CALLBACK =
for random sampling without replacement. We did not use tli§ were enabled. This bug was previously undiscovered and
nearest neighbor adaptation strategy since we only teb&d §temmed from the fact that certain files in TAO implementing
58 configurations that built in Study 1. In Study 2, automaticORBA Messaging incorrectly assumed that at least one of the
characterization is done separately for each test and erR@LLER or CALLBACK options would always be set to 1.
message combination, but is based only on the settings of IR€E+TAO developers also noticed that the failure maniféste
compile time-options. itself no matter what the setting of the AMI was, which also
Analysis of results Overall, we compiled 4,154 individual had not been discovered previously because these testisl shou
tests. Of these 196 did not compile, 3,958 did. Of these, 3@4t have been runnable when AMI = 0. Consequently, there
failed, while 3,654 passed. This process took2 hours of was a missing testing constraint, which we then included in
computer time. We now describe some interesting failur@se test constraint set.
we uncovered, the automatically-generated failure cti@rac  The test MI_Ti meout/run_test. pl failed in 28 of
izations, and the action taken by ACE+TAO developers. 58 configurations with an error message indicating response
Three tests failed in all configurations regardless of the Offimeout. No statistically significant model could be found,
Even though the underlying problem that led to the failureghich suggests that (1) the error report might be covering
was not configuration-specific, the overall Skoll automatiomultiple underlying failures, (2) the failure(s) manifet
process helped uncover it. The failures were caused by metiemselves intermittently, or (3) some other factor noates
ory corruption due to command-line processing. Wheneves configuration options is causing the problem. This pafgic
the test script used a particular command-line option, mameroblem appears intermittently and is related to incoasist
ORBSKi pSer vi ceConf i gOpen, the tests failed. The usagetimer behavior on certain OS/hardware platform combinetio
of the above mentioned option is not mandatory for the s&ript | essons learnedWe learned several lessons from Study 2.
but Skoll used it during the model-building and stepwise rg=or example, we found it was relatively easy to extend and
finement of command line options, identifying this previgus refine the initial QA task model to create more complex QA

undiscovered problem. processes. We were again able to conduct a sophisticated QA
Three tests failed only when the option (OS = Windows)

was enabled. These tests failed because the ACE serveat failésee doc.wustl.edu/bugzilla/shobug.cgi?id=982 for more details.



process across remote user sites on a continuous basis. Fa&ight tests failed in 12,441 configurations when option
example, we exhaustively explored the QA task space in Ig&8RBCollocation = NO). These failures stemmed from a
than a day and quickly flagged numerous real problems wibig in TAO where object references were created prop-
ACE+TAO. Some of these problems had not been found withly but not activated properly. The ACE+TAO devel-
ACE+TAQO’s ad hocQA processes. In fact, the model-buildingopers have fixed this very serious problem. One test
and automation process led to the discovery of the improd@FfCORBA Pol i cy _Combi nati ons_run_test failed in
handling of command-line options. 18,585 configurationswhen option (OS = Windows). This bug
We also learned that Skoll's generated models can fas due to a race condition in the SHMIOP code in TAO and
unreliable. We use notions of statistical significance t{p hehas also now been fixed.
indicate weak models, but more investigation is neces3&g. A group of three tests had particularly interesting failure
tree models we use may also not be reliable when failures @atterns. These tests failed between 2,500 and 4,400 times.
non-deterministic and the ISA has been configured to gemeraich case automatic characterization showed that thedsilu
only a single observation per valid configuration. In theccurred when optio@RBCol | ocat i on = NO was enabled.
presence of potentially non-deterministic failures, &fere, No other option influenced failure manifestation. In fadt, i
it may desirable to configure the ISA for random selectioturned out that this setting was in effect over 99% of the time

with replacement. when testsBi g_Twoways/ run_test. pl, ParamTest/
_ _ . _ runtest.pl,orM_BiDir/runtest.pl failed. TAO’s
E. Study 3: Testing with Configurable Options ORBCol | ocati on option controls the conditions under

Study design The QA task for the third study was to de-which the ORB should treat objects as being collocated in
termine whether each configuration would run the ACE+TA@ single process and thus should communicate directly via
regression tests without errors for all settings of theeays method calls instead of sending messages through the OS
runtime options, which is important for building confidenc@rotocol stack. TheNO option setting means that objects
in the system’s correctness. This task involves compilirgould not be collocated. The fact that these tests worked
ACE+TAO, compiling the tests, setting the appropriateimet When objects communicated directly, but failed when segdin
options, and executing the tests. Doing this for one configmessaging through the protocol stack clearly suggested a
ration took from 4 to 8 hours on our machines. problem related to message passing. The source of the proble

First, we develop the QA task model. To examinwas a bug in TAO’s (de)marshaling of object references.
ACE+TAO’s behavior under differing runtime conditions, we Three tests failed in 6 configurations when options
modified the QA task model to reflect 6 multi-valued (nonfOS=Linux and AMLPOLLER = 0 and INTERCEPTORS =
binary) runtime configuration options. These options setaup O and NAMEDRT_MUTEXES = 1) were enabled. The same
648 different combinations of CORBA runtime policiesg, 3 tests failed in 10 configurations when options (OS=Linux
when to flush cached connections, what concurrency stestegind AMI_LPOLLER = 0 and INTERCEPTORS = 1) were
the ORB should support, etc. Since these runtime options &mabled. This failure was a side-effect of the order in which
independent, we added no new constraints. the test cases ran and had nothing to do with the specific test

After making these changes, the compile-time option spacases themselves or the options (except OS=Lin),this
had 15 options and 13 constraints. There were 96 test-gpedifioblem was specific only to the Linux platform. These test
options with an additional 120 constraints and 6 runtimf@ilures occurred when Linux ran out of the shared memory
options with no new constraints. segments available to the OS. We discovered that TAO leaked

Analysis of results The QA task space for this studythese segments on Unix-based platforms. If enough tests wer
had 37,584 valid configurations. At roughly 30 minutes peun on a particular Linux machine, the machine ran out of the
test suite, the entire process involved around 18,800 hafursshared memory segments, causing all subsequent testd. to fai
computer time. Given the large number of configurations, wethese particular tests had been run earlier, they would no
used the nearest neighbor adaptation strategy. The tatd#deu have failed. In effect, we inadvertently conducted a loast te
of test executions was 3,608,064. Of these, 689,603 tdstifai on some machines.
with 458 unique error messages. We analyze these executionsessons learnedWe learned several things from Study 3.
and failures below. First, we confirmed that our general approach could scale to

One observation is that several tests failed in this stuthgrger QA task spaces. We also reconfirmed one of our key
even though they had not failed in Study 2 (when runningpnjectures: that data from the distributed QA process can
tests with default runtime options). Some even failed omevebe analyzed and automatically characterized to provid&ilse
single configuration (including the default configuratiested information to developers. We also saw how the Skoll process
earlier), despite not failing in Study 2! In the former caseyrovided better coverage of the QA task space than the oces
the problems were often in feature-specific code, whereased by ACE+TAO (and, by inference, many other projects).
in the latter case the problems were often caused by bug&Ve also note that our nearest neighbor adaptation strategy
in option setting and processing code. ACE+TAO developeggplores configurations until it finds no more failing config-
were intrigued by these findings because they rely heavily amations. Much work will therefore be done where a large
testing of the default configuration by users at instaltatime, subspace is failing,g(g, as described above in roughly 5,000
not just to verify proper installation, but to provide feedk out of a total 20,000 configuration§RBCol | ocati on =
on system correctness. NO and the test failed). In this case we could have stopped



the search much earlier and still correctly characterized tfind and fix more of these errors as new distributed continuous
failing subspace. In future work, we will explore criteriarf QA processes are developed.
stopping the search process. We learned (from Study 3) that tleederin which sub-tasks
are executed may also have an impact on their results. This re
sult uncovered a deeper issue that we need to handle cgrefull
in the future: the context in which a test case executes has
The above three studies confirmed or reinforced multiplgh impact on its outcome. We will need to improve the Skoll
lessons learned about the characteristics of Skoll, biggd task execution policies to handle context more effectiveiy
continuous QA, and the specific subject applications. Firgbbustly. Each task should execute in a pre-determinedclea
our conjectures about Skoll were supported, the overall context; each task should also restore the system envimnme
approach worked well. In particular, Skoll was superiorite t so that subsequent tasks remain unaffected.
ad hocQA processes used by ACE+TAO developers.
ACE+TAQ developers were also happy with the results and V. RELATED WORK
will use Skoll more aggressively in the future. They report

that the Skoll-based process is significantly more effebfiv emote analysis and measurement of software systemsedppli
than their current QA process. It detected problems quick y Y bp

several of which they were not aware of. They also benefitedSOftWare engineering techniques used to create, mamage a

from Skoll's automatic fault characterization, which haiip validate configurable systems.
them narrow down the set of possible failure causes quickly,
avoiding multiple rounds of fruitlessly guessing the cause A. Remote Analysis and Measurement of Software Systems
specific failures. Several prior attempts have been made to feedback fielded
Our use of the QA task model helped us to extend the stuskhavioral information to designers. As described belbase
ies quickly to a completely different platform.€., Windows approaches gather various types of runtime and envirorahent
vs. Linux vs. Solaris) with little work and code modificationinformation from programs deployed the field i.e.,, on user
The fundamental change required for this extension was thlatforms with user configurations.
addition of a new variabl&S. We also added some options Distributed regression test suiteslany popular projects
to capture low-level system information, indicating thee usdistribute regression test suites that end-users run thu-eva
of static or dynamic libraries, whether multithreading jsofi  ate installation success. Well-known examples include GNU
is enabled, etc. This step was necessary since clients wa@C [11], CPAN [12], and Mozilla [6]. Users can—but
running on Windows and Linux machines and each OS hfiequently do not—return the test results to project staffen
its own low-level policies. when results are returned, however, the testing procesteis o
Constraints associated with the option variables outlinethdocumented and unsystematic. Developers therefore have
above helped control platform-specific test cases; theste teo record of what was tested, how it was tested, or what the
cases were already available for ACE+TAO. Since many edsults were, resulting in the loss of crucial information.
these tests are often intended to run in limited situatiores,  Auto-build scoreboardsAuto-build scoreboards monitor
extended the QA task space by adding test-specific optionaultiple sites that build/test a software system on vartuarsl-
Much of the Skoll code is portableQ, the control scripts are ware, operating system, and compiler platforms. The Mazill
implemented in Perl), we could reuse it across platforms. Wénderbox [13] and ACE+TAO Virtual Scoreboard [14] are
are confident that future extensions can also be added .easilyamples of auto-build scoreboards that track end-usdd bui
We learned that full automation of all Skoll processes willesults across various volunteered platforms. Bugs aetiegh
require adaptation of several low-level tools. For exampleia the Bugzilla issue tracking system [15], which provides
automatic characterization of errors requires that altffpten- inter-bug dependency recording and integration with auto-
specific tools €.g, compliers) report the errors in a similarmated software configuration management systems, such as
format. Study 2 showed us that some tools (such as compile€3)S or Subversion. While these systems help to document
report the same error differently across platforms. In thiere, multiple build processes, deciding what to put under system
we will need to wrap the error messages generated by thesatrol and how to do it is left to users. Unless developers
tools so that they look similar to our automatic charactgi can control at least some aspects of the build and process,
algorithms. We envision that some manual work will be needé@dwever, important gaps and inefficiencies will still occur
to write these wrappers each time a new error is encounteredRemote data collection system@nline crash reporting
subsequent encounters should be handled automatically. systems, such as the Netscape Quality Feedback Agent [16]
We discovered that there is significant effort associateéd wiand Microsoft XP Error Reporting [17], gather system state
putting each application under Skoll control. These cosigew at a central location when fielded systems crash, simptifyin
not necessarily caused by Skoll, howeweqg, understanding user participation by automating parts of problem repgrtin
the ACE+TAO QA task space required significant interactio@rso et al. [18] developed GAMMA to collect partial runtime
with ACE+TAO developers, who did not completely underinformation from multiple fielded instances of a software
stand their own system. We also needed to discover asystem. GAMMA allows users to conduct a variety of different
eliminate several errors in ACE+TAO’s command-line optioanalyses, but is limited to tasks for which capturing lowele
processing before the Skoll scripts could be used. We expecprofiling information is appropriate. One limitation of #e

F. Discussion of the Studies Results

Our research is closely related to other efforts in the afea o



approaches is their limited scop®,, they capture only a small continuously, before problems occur).

fraction of interesting behavioral information. Moreoytrey Existing approaches also ofteénadequately document
arereactive(i.e., the reports are only generatatter systems their activities, which makes it hard to determine the futiemt
crash), rather thaproactive(i.e., attempting to detect, identify, of (or gaps in) the measurement and analysis process. These
and remedy problemiseforeusers encounter them). approaches aldanit developer control over the measurement

Remote data analysis techniqgu&se emergence of remoteand analysis proces.(, although developers may be able
data collection systems has spurred research into bettetee to decide what aspects of their software to examine, some
analysis techniques. Podgursky et al. [19] present tedlesiq usage contexts are evaluated multiple times, whereassother
for clustering program executions. Their goal is to suppoate not evaluated at all). Finally, most existing approaciee
automated fault detection and failure classification. Bog/et not intelligently adapt by learning from measurement results
al. [20] classify program executions using a technique dbasebtained earlier by other users. These limitations callebt
on Markov models. Brun and Ernst [21] use machine learniiygeld inefficient and opaque in-the-field measurement and
approaches to identify types of invariants likely to be faubnalysis processes that are insufficient to support today’s
indicators. Liblit et al. [22] remotely capture data on botBoftware designers.
crashing and non-crashing executions, using statisgeahing Our work with Skoll is intended to improve this situa-
algorithms to identify data that predicts each outcomeattth tion. For example, we have used Skoll to support distributed
and Diep [23] investigate ways to efficiently collect fieldi@a continuous performance assessment [25]. In that effort we
and use them for improving the representativeness of telglveloped a new adaptation strategy based on uS&gign
suites. Michail and Xie's [24] Stabilizer system corretateof Experiments(DOE) theory to identify a small set of
users’ partial event histories with failures they reporheT observations (an experimental design selecting configunst
models are then linked back into running systems allowirtg test) that allows Skoll to determine which combinations
them to predict reoccurences of the failure. Users are alsboptions and settings significantly affect performanckisT
offered a chance to terminate the current operation whgtformation allowed us to then quickly estimate whetheufat
imminent failure is predicted. changes to the system degraded performance.

Earlier remote data analysis techniques share several lim-
itations. Most of them consider only a few specific feature
of program executions, such as program branches or variable
values. They do not support broader types of quality asseran Our work is related to the following research activitiesttha
techniques. Moreover, many such technigues require heabipve created, managed, and validated configurable software
weight data collection, which creates considerable owmthesystems. Note, however, that Skoll is not limited to only
in terms of code bloat, data transmission and analysis costfigurable software systems.
and, in most cases, execution time. Software development approaches that emphasize portabil-

Distributed continuous quality assurance (QA) environity, customizability, large-scale reuse or incrementalaiiep-
ments.Distributed continuous QA environments are designadent often rely on identifying and leveraging the commonal-
to support the design, implementation, and execution obtem ities and variabilities of their target application dom§&®].
data analysis techniques such as the ones described albove SEveral researchers have therefore created techniquesd m
example, Dart and CruiseControl are continuous integnatithe configuration spaces and interdependencies of such sys-
servers that initiate build and test processes whenevesrepgems. Most processes for developing product-line architec
itory check-ins occur. Users install clients that autogwdly tures, for example, incorporate visual models [27] of the-sy
check out software from a remote repository, builds it, exeg tem’s variation points. More recent work has focused specif
the tests, and submits the results to the Dart server. A majoally on system variability and supporting various typds o
limitation of Dart and CruiseControl, however, is that theeasoning and analysis over the models [28]. With apprtgria
underlying QA process is hard-wireidg., other QA processes translators, most of these models could easily be tramslate
or other implementations of the build and test process ate muato Skoll's format.
easily supported and the process cannot be steered. Aslta resuCovering arrays have been used to reduce the number of
these QA processes cannot exploit incoming results nodavamput combinations needed to test a program [29]-[34]. Mand
already discovered problems, which leads to wasted ressurf34] first used orthogonal arrays, a special type of covering
and lost improvement opportunities. array in which allt-sets occuexactlyonce, to test enumerated

Although these efforts described above can provide sornypes in ADA compiler software. This idea was extended
insight into fielded behavior, they have significant limats. by Brownlie et al. [29] who developed the orthogonal array
For example, they are largelgd hoc and often haveno testing system (OATS). They provided empirical results to
scientific basis for assuring that information is gatheredsuggest that the use of orthogonal arrays is effective iit fau
systematically and comprehensively. Moreover, many iegjst detection and provides good code coverage. Detlall. [32]
approaches aresactive and have limited scope(e.g, they argue that the testing of all pairwise interactions in avgafe
can be used only when software crashes or only focus omlystem finds a large percentage of the existing faults. héur
on a single, narrow task), whereas effective measuremeht avork, Burr et al. [30], Dunietz et al. [33], and Kuhn et
analysis support needs to be much broader and more proac#ig35] provide more empirical results to show that this type of
(e.g, seeking to collect and analyze important informatiotest coverage is effective. The above studies focus on findin
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unknown faults in tested systems and equate covering arraysdel so that different parts of the configuration space can
with code coverage metrics [31], [33]. Yilmaz et al. [36] §pp be explored with different frequencies and are incorpocati
covering arrays to test configurable systems. They show the&l-valued option settings into the models.
covering arrays were effective not only in detecting fakir ~ We are enhancing Skoll’s Intelligent Steering Agent (ISA)
but also in characterizing the specific failure inducingi@ps. to allow planning based on cost models and probabilistiarinf
mation. For example, if historical data suggests that uséhs
certain platforms send requests at certain rates, it canttag
information into account when allocating job configuraton
This paper described the results of our initial efforts desi We are also exploring the use of higher level ISA planners
ing, executing, and evaluating distributed continuouslitjua that simultaneously plan for multiple QA processes (not jus
assurance (QA) processes. We first presented Skoll, whichpige at a time as the ISA does now).
an environment for implementing feedback-driven distiéloll  We are also integrating Skoll with model-based test-case
continuous QA processes that leverage distributed computgeneration techniques.g, our work with GUITAR [37].
resources to improve software quality. We then implementgge envision that this model will supplement the QA task
several such processes using Skoll and evaluated thea- effepace. While traversing the QA task space, Skoll's na\dgéti
tiveness in two feasibility studies that applied Skoll toM@ adaptation strategies may use the test-case generatibn tec
and ACE+TAO, which are several large-scale open-sourgRjues to obtain new test cases demand
software systems containing millions of lines of code. Currently individual QA tasks must be executed on a single
Using Skoll, we iteratively modeled complex QA task:omputing node. This restriction prevents us from answgerin
spaces, developed novel large-scale distributed conisuegertain kinds of questions, such as what is the averagemsspo
QA processes, and executed them on multiple clients. Asime for requests sent from users in one geographical region
result, we found bugs, some of which had not been identifiggl servers in another region. We are therefore investigatin
previously. Moreover, the ACE+TAO developers reported thaow peer-to-peer and overlay network technologies can help
Skoll's automatic failure characterization greatly siifipl to broaden the QA tasks Skoll can handle.
identifying the root causes of certain failures.
Our work on the Skoll environment is part of an ongoing VIl. ACKNOWLEDGMENTS
research project. In addition to providing insight into k0 .5 material is based on work supported by the US

benefits and limitations, the results of our studies areiggid National Science Foundation under NSF grants ITR CCR-
our future work, as summarized below. 0312859, CCF-0447864, CCR-0205265, and CCR-0098158,
Our initial feasibility studies were limited to a small nue™ 55 \yell as funding from BBN, Cisco, DARPA, Lockheed
of machines at the University of Maryland. We are extending, iy Advanced Technology Lab and Advanced Technology
and generalizing this work in two dimensions. First, Wesapter ONR Qualcomm, Raytheon, and Siemens.
recently built a large-scale, heterogeneous computingteu
with hundreds of CPUs to support our research, as described
in Section I. We have rerun the experiments described in this] RS VLB \. Mullick. D. 3. Paulish. and 3. Kei
. . . . Sangwan, . bass, . UlliCK, . J. Paulish, an . Ka@En
article on this cIusFer (the results were the Same) and Wlhl Global Software Development Handboolduerbach Series on Applied
expand our use of it in the future. Software Engineering, September 2006. _ _
Second, we are replicating our feasibility studies on a dozel2l M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil, “Apjig

. . . classification techniques to remotely-collected programtetion data,”
test sites and hundreds of machines provided by ACE+TAO in Proceedings of the International Symposium on the Fouadstiof

developers and user groups in two continensamy. dr e. Software EngineeringLisbon, Portugal, Sept. 2005.
vander bi | t . edu/ scor eboar d lists sites that are con- [3] M. Haran, A. F. Karr, M. Last, A. Orso, A. Porter, A. Sanind

. . . . S. Fouche, “Techniques for classifying executions of dggrosoftware
tributing machines). As the scope of our work increases we to support software engineering taskdEFEE Transactions on Software

will investigate security and privacy issues more thordugh Engineering
For now, ACE+TAO parthlpantS are accustomed to downloadél] Atif M. Memon and Adam Porter and Cemal Yilmaz and AdithMa-

. - . . - garajan and Douglas C. Schmidt and Bala Natarajan, “Skaitributed
ing, compiling and testing ACE+TAO, so no special security continuous quality assurance,” Rroceedings of the 26th International

and privacy precautions were necessary. We are developing Conference on Software Engineerifigay 2004.
security and privacy policies based on existing volunteenc  [5] R-C}N- Sle'b¥ a“df/z- A ,P°rtter' "'—feam"}tgwffom examp'eséw?ggg
. . , ana evaluation of decision trees for soltware resourceyal
puting systems, such as Microsoft's Watson SySt_em a”O! the Trans. Software Engrvol. 14, no. 12, pp. 1743-1757, December 1988.
Berkeley Open Infrastructure for Network Computing (which[6] The Mozilla Organization, “Mozilla,” www.mozilla.org 1998.

supports projects such as seti@home). [71 A Ze!!er and R. Hildebrandt, “Simplifying and isolagrfailure-inducing
Wi Vi Skoll t b d f licati input,” IEEE Trans. Softw. Engvol. 28, no. 2, pp. 183-200, 2002.
€ are applying okoll 1o a broader rangeé or applicaliOfyg) x11-GUITest-0.20, search.cpan.orgtrondlp/X11-GUITest-0.20.

domains, including running prototyping experiments foteen [9] D. Schmidt and S. HustonC++ Network Programming: Resolving

prise distributed systems and large-scale shipboard ctingpu _ Complexity with ACE and Patterns Addison-Wesley, 2001.
. . . 6[1%] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Designd an
environments, that have many configuration parameters an Performance of Real-Time Object Request Broke@gmputer Com-

options, some of which must be evaluated dynamically as well munications vol. 21, no. 4, pp. 294-324, Apr. 1998.
as statically. We are also enriching Skoll's QA task models {11 GNU. Gnu gcc. [Online]. Available: http://gcc.gnugor .

hi hical dels. not iust the flat option s ac[elg] CPAN. Comprehensive perl archive network (cpan). [@gjl Available:
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supported currently. We are incorporating priorities ire th[13] Mozilla. Tinderbox. [Online]. Available: http://wwwnozzila.org

VI. CONCLUDING REMARKS AND FUTURE WORK
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