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Abstract— Software engineers increasingly emphasize agility
and flexibility in their designs and development approaches.
They increasingly use distributed development teams, relyon
component assembly and deployment rather than green field code
writing, rapidly evolve the system through incremental develop-
ment and frequent updating, and use flexible product designs
supporting extensive end-user customization. While agility and
flexibility have many benefits, they also create an enormous
number of potential system configurations built from rapidly
changing component implementations. Since today’s quality as-
surance (QA) techniques do not scale to handle highly config-
urable systems, we are developing and validating novel software
QA processes and tools that leverage the extensive computing
resources of user and developer communities in a distributed,
continuous manner to improve software quality significantly.

This paper provides several contributions to the study of
distributed, continuous QA (DCQA). First, it shows the structure
and functionality of Skoll, which is an environment that defines
a generic around-the-world, around-the-clock QA process and
several sophisticated tools that support this process. Second,
it describes several novel QA processes built using the Skoll
environment. Third, it presents two studies using Skoll: one
involving user testing of the Mozilla browser and another involv-
ing continuous build, integration, and testing of the ACE+TAO
communication software package.

The results of our studies suggest that the Skoll environment
can manage and control distributed continuous QA processes
more effectively than conventional QA processes. For example,
our DCQA processes rapidly identified problems that had taken
the ACE+TAO developers much longer to find and several of
which they had not found. Moreover, the automatic analysis of
QA results provided developers information that enabled them
to quickly find the root cause of problems.

I. I NTRODUCTION

Software quality assurance (QA) tasks are typically per-
formed in-house by developers, on developer platforms, using
developer-generated input workloads. One benefit of in-house
QA is that programs can be analyzed at a fine level of detail
since QA teams have extensive knowledge of, and unrestricted
access to, the software. The shortcomings of in-house QA
efforts are well-known and severe, however, including (1)
increased QA cost and schedule and (2) misleading results
when the test cases, input workload, software version and
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platform at the developer’s site differ from those in the field.
These problems are magnified in modern software systems
that are increasingly subject to two trends:distributed and
evolution-oriented development processesand cost and time-
to-market pressures.

Today’s development processes are increasingly distributed
across geographical locations, time zones, and business or-
ganizations [1]. This distribution helps reduce cycle time
by having developers and teams work simultaneously and
virtually around the clock, with minimal direct inter-developer
coordination. Distributed development can also increase soft-
ware churn rates, however, which in turn increases the need
to detect, diagnose, and fix faulty changes quickly. The same
is true for evolution-oriented processes, where many small
increments are routinely added to the base system.

Global competition and market deregulation is encouraging
the use of off-the-shelf software packages. Since one-size-
fits-all software solutions rarely meet user needs in a wide
range of domains, these packages must often be configured and
optimized for particular run-time contexts and application re-
quirements to meet portability and performance requirements.
Due to shrinking budgets for the development and QA of
software in-house, however, customers are often unwillingor
unable to pay much for customized software. As a result, a
limited amount of resources are available for the development
and QA of highly customizable and performant software.

These trends present several new challenges to developers,
including the explosion of theQA task space. To support
customizations demanded by users, software often runs on
multiple hardware and OS platforms and has many options to
configure the system at compile- and/or run-time. For exam-
ple, web servers (e.g., Apache), object request brokers (e.g.,
TAO), and databases (e.g., Oracle) have dozen or hundreds
of options. While this flexibility promotes customization,it
creates many potential system configurations, each of which
deserves extensive QA.

In addition, QA processes themselves require ever more
sophisticated and flexible control mechanisms to meet the
wide-ranging and often dynamic QA goals of today’s complex
and rapidly changing systems. For instance, QA processes
might want to control input workload characteristics, vary
test case selection and prioritization policies, or enable/disable
specific measurement probes at different times. In earlier
work [2] we developed a QA process to isolate the causes of
failures in fielded systems. In this process, different instances
of a system enable different sets of measurement probes, thus
sharing data collection overhead across the participatingin-



stances. In addition, the choice of which measurement probes
to enable in a new program instance depends on each probe’s
historical ability (across all previous instances) to predict
system failure [3].

When increasingly larger QA task spaces are coupled with
shrinking software development resources, it becomes infea-
sible to handle all QA in-house. For instance, developers may
not have access to all the hardware, OS, and compiler plat-
forms on which their software will run. In this environment,
developers are forced to release software with configurations
that have not been subjected to extensive QA. Moreover,
the combination of an enormous QA task space and tight
development constraints means that developers must make
design and optimization decisions without precise knowledge
of the consequences in fielded systems.

To address the challenges described above, we have de-
veloped a collaborative research environment calledSkoll
whose ultimate goal is to support continuous, feedback-driven
processes and automated tools to perform QA around-the-
world, around-the-clock. Skoll QA processes are logically
divided into multiple tasks that are distributed intelligently
to client machines around the world and then executed by
them. The results from these distributed tasks are returnedto
central collection siteswhere they are merged and analyzed
to complete the overall QA process.

When developing and operating Skoll we encountered a
number of research challenges and created novel solutions.
First, to understand the QA space it is necessary toformally
model aspects of both the QA process and the system. In
our feasibility studies we found it helpful to model execution
platforms, static system configurations, which build toolsto
use, runtime optimization levels, and which subset of teststo
run. To support this modeling, we developed a general repre-
sentation with options that take values from a discrete set of
option settings. We also developed a tool for expressing inter-
option constraints that indicate valid and invalid combinations
of options and settings. In addition, we developed the notion
of temporary inter-option constraints to help us restrict the
configuration and control space in certain situations.

Second, because the task space of a QA process can be
large, brute-force approaches may be infeasible or simply
undesirable, even with a large pool of supplied resources.
We therefore developed techniques toexplore/searchthe QA
task space. We developed a general search strategy based
on uniform random sampling of the space and supplemented
it with customized adaptation strategies to allow goal-driven
process adaptation. One adaptation strategy callednearest
neighborrefocuses search around a failing configuration,e.g.,
a point in the QA task space. This strategy helps find additional
failing configurations quickly and delineates the boundaries
between failing and passing QA task subspaces.

Third, because QA tasks are assigned to remote machines—
often volunteered by end users—it may be hard to knowa
priori when resources will be available. For instance, some
volunteers may wish to control how their resources will be
used,e.g., limiting which version of a system can undergo
QA on their resources. In such cases, it is impossible to pre-
compute QA task schedules. We therefore developedschedul-

ing techniquesthat adapt the mapping of QA tasks to remote
machines based on a variety of factors, such as resource
availability and end user preferences.

Fourth, operating a distributed continuous QA process re-
quires the integration of many artifacts, tools, and resources,
such as models of QA process’ task spaces, search/navigation
strategies for intelligently and adaptively allocating QAtasks
to clients, and advanced mechanisms for feedback generation,
including statistical analysis and visualization of QA task
results. We therefore developed theSkoll processthat provides
a flexible framework to coordinate the QA techniques and tools
described above. As Skoll executes, QA tasks are scheduled
and executed in parallel at multiple remote sites. The results of
these subtasks are collected and analyzed continually at one or
more central locations. The Skoll process can use adaptation
strategies to vary its behavior based on this feedback. We have
also developed techniques for automatically characterizing and
presenting feedback to human developers.

Finally, it is hard to evaluate this kind of research since
approaches are experimental and thus risky. At the same
time, the work requires a distributed setting with multiple
hardware platforms, operating systems, software libraries, etc.
To deal with this we have developed alarge-scale distributed
evaluation testbedconsisting of a pair of dedicated clusters
at University of Marylandwww.cs.umd.edu/projects/
skoll and Vanderbilt Universitywww.dre.vanderbilt.
edu/ISISlab and containing over 225 top-end x86 CPUs
running many versions of Linux, Windows, Solaris, Mac OSX,
and BSD UNIX. They also have several terabytes of disk space
for long-term data storage. We are enhancing these clusters
with EMUlab control software developed in an NFS-sponsored
testbed at the University of Utah to facilitate experimental
evaluation of networked systems.

This paper significantly extends our previous work [4]
by providing new information about the Skoll system and
algorithms and substantially extending our empirical evalu-
ation of software using Skoll. The remainder of this paper
is organized as follows: Section II explains the Skoll process
and infrastructure, QA processes built using Skoll; Sections III
and Section IV describe the design and results from feasibility
studies that applied Skoll to enhance the QA processes of two
substantial software projects; Section V compares our workon
Skoll with related work; and Section VI presents concluding
remarks and discusses directions for future work.

II. T HE SKOLL PROJECT

To address the limitations with current QA approaches
(described in Section V), the Skoll project is developing and
empirically evaluating processes, methods, and support tools
for distributed, continuous QA. A distributed continuous QA
process is one in which software quality and performance
are improved—iteratively, opportunistically, and efficiently–
around-the-clock in multiple, geographically distributed loca-
tions. Ultimately, we envision distributed continuous QA pro-
cesses involving geographically decentralized computingpools
made up of thousands of machines provided by end users,
developers, and companies around the world. The expected



benefits of this approach include: massive parallelizationof
QA processes, greatly expanded access to resources and en-
vironment not easily obtainable in-house, and (depending on
the specific QA process being executed), visibility into actual
fielded usage patterns. This section describes our initial steps
towards realizing our vision.

A. Distributed Continuous QA processes

At a high level, distributed continuous QA processes re-
semble certain traditional distributed computations as shown
in Figure 1. As implemented in Skoll,tasksare QA activities,
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Subtask 1.1
Subtask 1.2

Subtask 1.3

Task 1

QA Task 1 is split into three subtasks 
(1.1, 1.2, 1.3) and allocated to 
computing node clusters 1, 2, and 3
respectively.

Fig. 1. Skoll Tasks/subtasks allocated to computing nodes over a network.

such as testing, capturing usage patterns, and measuring sys-
tem performance. They are decomposed intosubtasks, which
perform part of the overall task. Example subtasks might
execute test cases on a particular platform, test a subset of
system functions, monitor a subgroup of users, or measure
performance under one particular workload characterization.
For example, the global QA task in Section IV’s feasibility
study performs functional testing that “covers” the space of
system configurations,i.e., each individual subtask executes a
set of tests in one specific system configuration.

Skoll allocatessubtasks tocomputing nodes, where they
are executed. Computing nodes in Skoll are remote machines
that elect to participate in specific distributed continuous QA
processes. When these nodes decide they are available to
perform QA activities they pull work from aSkoll coordinator
site. As subtasks run, results are returned toSkoll collection
sites, merged with previous results, and analyzed incremen-
tally. Based on this analysis, control logic may dynamically
steer the global computation for reasons of performance and
correctness. In addition to incremental analysis, resultsmay
be analyzed manually and/or automatically after process com-
pletion to calculate the result of the entire QA task.

We envision Skoll QA processes involving geographically
decentralized computing pools composed of numerous client
machines provided by end users, developers, and companies
around the world. This environment can perform large amounts
of QA at fielded sites, giving developers unprecedented access
to user resources, environments, and usage patterns.

Skoll’s default behavior is to cover the configuration and
control space by allocating subtasks upon request, on a random
basis without replacement. The results of these subtasks are
returned to collection sites and stored. They are not analyzed,
however, so no effort is made to optimize or adapt the
global process based on subtask results. When more dynamic
behavior is desired, process designers can writeadaptation
strategies, which are programs that monitor the global process
state, analyze it, and modify how Skoll makes future subtask
assignments. The goal is to steer the global process in a
way that improves process performance, where improvement
criteria can be specified by users.

To support the distributed continuous QA processes de-
scribed above, we have implemented a general set of com-
ponents and services that we call theSkoll infrastructure. We
have applied this infrastructure to prototype several distributed,
continuous QA processes aimed at highly configurable soft-
ware systems. We have also evaluated the Skoll infrastructure
on two software projects, as described in Sections III and IV.

The remainder of this section describes the components,
services, and interactions within the Skoll infrastructure and
provides an example scenario showing how they can be used
to implement Skoll processes.

B. The Skoll infrastructure

Skoll processes are based on a client/server model, in which
clients request job configurations (QA subtask scripts) from a
server that determines which subtask to allocate, bundles up
all necessary scripts and artifacts, and sends them to the client.
Operationalizing such a process involves numerous decisions,
such as how will tasks be decomposed into subtasks, on what
basis and in what order subtasks will be allocated, how will
they be implemented so that they run on a wide set of client
platforms, how results will be merged together and interpreted,
if and how should the process adapt to incoming results, and
how will the results of the overall process be summarized
and communicated to software developers. To support these
decisions, we have developed several components and services
for use by Skoll process designers.

The first component is a formal model of a QA process’
configuration and control space. The model essentially pa-
rameterizes all valid QA subtasks. This information is used
in planning the global QA process, for adapting the process
dynamically, and to help interpret the results.

In our model, subtasks are generic processes parameterized
by configuration and control options. These options capture
information (1) that will be varied under process control
or (2) that is needed by the software to build and execute
properly. Such options are application specific, but could
include workload parameters, OS version, library implemen-
tations, compiler flags, run-time optimization controls, etc.
Each option must take its value from a discrete number of
settings. For example, one configuration option (calledOS) in
our feasibility study in Section IV takes values from the set
{Win32, Linux}. Skoll uses this option for a variety to tasks,
e.g., to select appropriate binaries for the subtasks.

Defining a subtask involves mapping each option to one of
its allowable settings. We call this mapping aconfiguration.



TABLE I

EXAMPLE OPTIONS AND CONSTRAINTS

Option Settings Interpretation
COMPILER {gcc2.96, VC++6.0} compiler
AMI {1 = Yes, 0 = No} Enable Feature
MINIMUM CORBA {1 = Yes, 0 = No} Enable Feature
run(T) {1 = True, 0 = False} Test T runnable
ORBCollocation {global, per-orb, NO} runtime control

Constraints
AMI = 1 → MINIMUM CORBA = 0
run(Multiple/run test.pl) = 1→ (Compiler = VC++6.0)

Configurations are represented as a set{ (V1, C1), (V2, C2),
. . ., (VN , CN ) }, where eachVi is an option andCi is its
value, drawn from the allowable settings ofVi.

In practice not all configurations make sense (e.g., feature
X is not supported on OS Y). We therefore allowinter-option
constraintsthat limit the setting of one option based on the
setting of another. We represent constraints as (Pi → Pj ),
meaning “if predicatePi evaluates toTRUE, then predicate
Pj must evaluate toTRUE.” A predicatePk can be of the
form A, ¬A, A&B, A|B, or simply (Vi = Ci), whereA, B

are predicates,Vi is an option andCi is one of its allowable
values. Avalid configurationis a configuration that violates
no inter-option constraints.

Table I presents some sample options and constraints from
the feasibility study in Section IV (similar options appeared in
the study described in Section III). The sample options refer
to things like the end-user’s compiler (COMPILER); whether
or not to compile in certain features, such as support for
asynchronous messaging invocation (AMI); whether certain
test cases are runnable in a given configuration (run(T)); and
at what level to set a run-time optimization (ORBCollocation).
One sample constraint shows that AMI support cannot be
enabled on a minimum CORBA configuration.

As QA subtasks are performed, their results are returned
to an Intelligent Steering Agent (ISA). By default, the ISA
simply stores these results. Often, however, we want to learn
from incoming results,e.g., when some configurations prove to
be faulty, why not refocus resources on other unexplored parts
of the configuration and control space. When such dynamic
behavior is desired, process designers develop customized
adaptation strategies, that monitor the global process state,
analyze it, and use the information to modify future subtask
assignments in ways that improve process performance.

Since they must process subtask results, adaptation strate-
gies must be tailored for each QA process. Consequently,
adaptation strategies in Skoll are independent programs ex-
ecuted by the Skoll server when subtask results arrive. This
decoupling of Skoll and the adaptation strategies allows usto
develop, add, and remove adaptation strategies as needed. The
following three general adaptation strategies are used in our
feasibility studies in Sections III and IV (other strategies are
discussed in Section VI).

The first ISA adaptation strategy is calledNearest neighbor.
Suppose a test case run in a specific configuration reports
a failure. Developers might want to focus on other similar
configurations to see whether they pass or fail. The nearest

neighbor strategy is designed to generate such configurations
when the ISA is configured to choose configurations using
random selection without replacement.

For example, suppose that a test on a configuration and
control space with three binary options fails in configuration
{0, 0, 0}. The nearest neighbor search strategy marks that
configuration as failed and records its failure information. It
then schedules for immediate testing all valid configurations
that differ from the failed one in the value of exactly one option
setting:{1, 0, 0}, {0, 1, 0} and {0, 0, 1}, i.e., all distance-one
neighbors. This process continues recursively.

Figure 2 depicts the nearest neighbor strategy on a con-
figuration and control space taken from our feasibility study
in Section IV-C. Nodes in this figure represent valid config-

Fig. 2. Nearest Neighbor Strategy

urations; edges connect distance one neighbors. The dotted
ellipse encircles configurations that failed for the same reason.
The arrow indicates an initial failing node. Once it fails, its
neighbors are tested; they fail, so their neighbors are tested and
so on. The process stops when nodes outside the ellipse are
tested (since they will either pass or fail for a different reason).
As we show in the feasibility study IV-E, this approach quickly
identifies whether similar configurations pass or fail. This
information is then used by the automatic characterization
service described later in Section II-C.

The next ISA adaptation strategy involves the use of tem-
porary constraints. Suppose that a software system incorrectly
fails to build whenever binary option AMI = 0 and binary
option CORBAMSG = 1. Suppose further that this fact can
be discerned well before testing all such configurations (which
comprise 25% of the entire configuration and control space).
In this situation, developers would obviously want to stop
testing these configurations and instead use their resources to
test other parts of the configuration and control space.

To use resources more effectively, we therefore created an
adaptation strategy that insertstemporary constraints, such
as CORBAMSG = 1 → AMI = 1 into the configuration
model. This constraint excludes configurations with the of-
fending option settings from further exploration. Once the
problem that prompted the temporary constraints has been
fixed, the constraints are removed, thus re-enabling normal
ISA execution. Once these constraints are negated they can be
used to spawn new Skoll subtasks that test patches on only



the previously failing configurations. We employ this strategy
in our feasibility study in Section IV-C.

A third ISA adaptation strategy terminates or modifies
subtasks. Suppose a test program is run at many user sites,
failing continuously. At some point, continuing to run thattest
program provides little new information. Time and resources
might be better spent running some previously unexecuted test
program. This adaptation strategy monitors for such situations
and—depending on how it is implemented—can modify sub-
task characteristics or even terminate the global process.

The three ISA adaptation strategies described above are just
some examples of the ones that we use in our work. As we
encounter new situations, we implement new strategies. For
example, we have observed that passing/failing configuration
spaces are not necessarily contiguous,i.e., failing subspaces
may be disjoint. These situations might not be found quickly
using the nearest neighbor strategy described above. We are
therefore exploring the design of a variant of the nearest
neighbor strategy that sometimes jumps across neighbors, with
the goal of finding other failing subspaces that are disjoint
from the subspace currently being explored.

Another useful Skoll component encapsulates the automatic
characterization of subtask results. As QA processes can
unfold over long periods of time, we often interpret subtask
results incrementally, which is useful for adapting the process
and for providing feedback to developers. Given the size
and complexity of the data, this process must be automated.
Consequently, we have included implementations of Classi-
fication Tree Analysis (CTA) [5] in the Skoll infrastructure.
CTA approaches are based on algorithms that take a set of
objects,Oi, each of which is described by a set of features,
Fij , and a class assignment,Ci. Typically, class assignments
are binary and categorical (e.g., pass or fail, yes or no), but
approaches exist for multi-valued categorical, integer, and real
valued class assignments. CTA’s output is a tree-based model
that predicts object class assignment based on the values ofa
subset of object features. Other approaches such as regression
modeling, pattern recognition, neural networks, each withtheir
own strengths and weaknesses, could be used instead of CTA,
though they are beyond the scope of this paper.

We used CTA in our feasibility studies to determine which
options and their specific settings best explained observed
test case failures. Figure 3 shows a classification tree model
that characterizes 3 different compilation failures and 1 suc-
cess condition for the results of 89 different configurations.
When a predicate (node in the figure) is true the right
branch is followed, otherwise the left. This figure also shows
that compilation fails with error message “ERR-1” whenever
CORBA MSG is disabled and AMI is enabled.

Since Skoll processes are expected to generate large
amounts of data, Skoll supports the organization and visu-
alization of process results. We employ web-based score-
boards that use XML to display job configuration results.
The server scoreboard managerprovides a web-based query
form allowing developers to browse Skoll databases for the
results of particular job configurations. Visualizations are
programmable with results presented in ways that are easy to
use, readily deployed, and helpful to wide range of developers
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CORBA_MSG = 0
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CALLBACK = 0
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ERR-1
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Fig. 3. Sample Classification Tree Model

with varying needs. We also incorporated a multi-dimensional
data visualizer called Treemaps (www.cs.umd.edu/hcil/
treemap) to display the results of automatic characterization,
which we described earlier.

C. Skoll Implementation

Skoll is designed as a client/server system. To ensure cross-
platform compatibility, the Skoll system is written entirely
in Perl and all communication between the Skoll server and
clients is done in XML using the HTTP protocol,e.g., via
GET and POST methods. The remainder of this section
shows Skoll’s design details by tracing through a sequence
of events that execute during a typical distributed, continuous
QA process.

Since Skoll is designed to support a wide range of soft-
ware systems and QA processes, it requires customization/-
configuration before it can be used with a new software
system and a QA process. Given a QA task, the first step
in configuring Skoll is to create a configuration and control
model that specifies how the QA task is divided into several
subtasks. The interpretation and execution details of QA
subtasks are application-specific and provided to the Skoll
system by implementing two application-specific interfaces
calledServerSideApplicationComponent (shown in
Figure 4) andClientSideApplicationComponent, re-
spectively.1

A Skoll server uses theServerSideApplication-
Component to help the ISA interpret QA subtasks and create
actual QA jobs. The Skoll server invokes theinit() and
finalize() methods just before starting a new DCQA
process and immediately after finishing one, respectively.A
Skoll client usesClientSideApplicationComponent
to execute the QA jobs sent by the ISA. Theinit() and
finalize() methods of this component are invoked just
before and immediately after executing a QA job, respectively.

End-users use a web-based form to register with the Skoll
server registration managerand characterize their client plat-
forms. This information is used by the ISA when it selects
and generates job configurations to tailor generic subtask
implementation code. For example, some tailoring is for client-
specific issues, such as operating system type or compiler,
whereas other tailoring is for task-specific issues, such as
identifying the location of the project’s CVS server.

1Note that, for clarity purposes, we simplified the interfaces given in this
paper; in an actual implementation, these interfaces may bemore complex.



interface ServerSideApplicationComponent {
boolean init()
Instructions QA_job(Configuration c)
boolean finalize()}

interface ClientSideApplicationComponent {
boolean init(QAJob job)
InstructionResult dispatch_instruction(

Instruction i)
boolean finalize()}

Fig. 4. Server- and Client-side Application Component Interfaces

After a registration form has been submitted, theserver
registration managerreturns a unique ID and configuration
template to the end-user. The configuration template contains
any user-specific information that cannot be modified by the
ISA when generating job configurations. The template can
be modified by end-users who wish to restrict which job
configurations they will accept from the Skoll server. The
end-user also receives a Skoll client kit, consisting of cross-
platform client software that provides basic services, such as
contacting the Skoll server for jobs.

Once installed, the Skoll client periodically or on-demand
requests QA jobs from the Skoll server. At each request, the
Skoll client automatically detects information that describes
its platform configuration, including its OS (i.e., OS version,
kernel version, vendor, etc.), compiler (i.e., version, patches,
etc.), and hardware specifications (i.e., CPU details, number
of CPUs, memory sizes, etc.). The ISA uses this information
to guide the subsequent QA process,e.g., to ensure that
certain types of functional or performance regression tests run
on the appropriate platform configuration. The Skoll client
packages the platform configuration information together with
the configuration template into a QA job request message
(QAJobReqMsg) and sends it to the ISA.

The ISA responds to each incoming request with a QA
job configuration (i.e., QA subtask), which is customized in
accordance with the characteristics of the client platformby
the ISA. After a QA subtask is computed for a requesting
client, the ISA consults theServerSideApplication-
Component via the QA job() method by passing the se-
lected configuration as an argument. This method returns a set
of instructions that assists the client in performing the assigned
QA subtask. The ISA then packages these instructions and the
selected configuration into a QA job (QAJob). A unique ID
(QAJobID) is assigned to each QA job and stored in the Skoll
database, along with the QA job information.

The Skoll client kit provides implementations for a set
of generic instructions,e.g., setting environment variables,
downloading a software from a CVS repository, starting/-
stopping a log, running system commands, uploading a file,
etc. Each instruction is implemented as a separate component
that complies with a common interface, ensuring that Skoll’s
default instruction set can be expanded easily. Moreover,
instruction components are loaded dynamically at runtime on
demand, allowing online upgrades of Skoll client with a new
set of instruction components even after deployment.

The Skoll client executes the set of instructions in

the order they are received. Instructions that are not in
the default set of instructions supported by the Skoll
client are considered application-specific and passed to the
ClientSideApplicationComponent component via
the dispatch instruction() method (Figure 4). This
component is responsible for executing the instruction. Each
application-specific instruction is implemented as a Perl pack-
age, conforming to a well-defined interface. The instruction in-
terface includes method signatures for setting the environment
variables to execute the instruction, executing the instruction,
and logging and parsing the output of the instruction.

All client activities are stored into a log file that consists
of multiple sections where each section corresponds to an in-
struction executed by the client (e.g., “download” and “build”).
After the QA subtask is completed, the client is often asked
to parse the log file into an XML document, summarizing the
QA subtask results.

QA job results are collected and stored in a database at
the Skoll server. The Skoll database is implemented using
MySQL and it contains tables to store information about
clients (e.g., OS, compiler, and hardware information, etc.),
QA job configurations allocated (e.g., QA job IDs, and the
current status of the jobs, etc.), and the QA job results (e.g.,
build results, functional test results, performance test results,
etc.). After the database is populated, the ISA is notified about
the incoming results. The ISA may use this information to
modify future subtask allocation via adaptation strategies.

interface AdaptationStrategy {
boolean init()
Configurations adapt_to(QAJobID id)
boolean finalize()}

Fig. 5. Interface Between the ISA and Adaptation Strategies

Figure 5 shows the interface between the ISA and adap-
tation strategies. Theinit() and finalize() methods
are called once DCQA processes start and finish, respectively.
The ISA notifies the registered adaptation strategies via the
adapt to() method by passing the QA job ID. The adap-
tation strategies then analyze the current state of the process
and schedule configurations for future allocation.

The analysis and visualization of QA job results are
application-specific. Depending on the characteristics ofa
particular QA task—and the preferences of developers—some
analysis/visualization tools may be preferable to others.Skoll
therefore provides a web-based portal to various analysis and
visualization tools.

We have put together all the components discussed above
to develop a Skoll process, which is described next.

D. Skoll in Action

The Skoll process performs the following steps using the
components and services described in Section II-B:
Step 1.Developers create the configuration and control model
and adaptation strategies. The ISA automatically translates the
model into planning operators. Developers create the generic



QA subtask code that will be specialized when creating actual
job configurations.
Step 2.A userrequests the Skoll client kit via the registration
process described earlier. The user receives the Skoll client and
a configuration template. If users wish to temporarily change
option settings or constrain specific options they do so by
modifying the configuration template.
Step 3.The client requests a job configuration from a server
periodically or on-demand.
Step 4.The server queries its databases and the user-provided
configuration template to determine which option settings are
fixed for that user and which must be set by the ISA. It then
packages this information as a planning goal and queries the
ISA. The ISA generates a plan, creates the job configuration
and returns it to the client.
Step 5. The client invokes the job configuration and returns
the results to the server.
Step 6. The server examines these results and invokes all
adaptation strategies, which update the ISA operators to adapt
the global process. Skoll adaptation strategies can currently
use built-in statistical analyses to help developers quickly
identify large subspaces in which QA subtasks have failed
(or performed poorly).
Step 7.Periodically—or when prompted by developers—the
server updates avirtual scoreboardthat summarizes subtask
results and the current state of the overall process.

Sections III and IV present feasibility studies that demon-
strate the usefulness of the Skoll process and tools.

III. I NITIAL FEASIBILITY STUDY

To gain experience with Skoll, we developed and executed
a distributed continuous QA process as an initial feasibility
study. Since our goal was to gather experience, we simulated
several parts of the process and ignored some issues (such
as privacy and security) that would be important in an actual
deployment with real end users. The application scenario is
inspired by a software failure in version 1.7 of the Mozilla [6]
web browser that Zeller et al. diagnosed using their Delta De-
bugging technique [7]. This bug occurs when a user attempts
to print an HTML document containing theselect tag (the
select tag creates a drop-down list and allows users to choose
one or more of its items) and results in the browser crashing
(see bug report 69634 inbugzilla.mozilla.org for
more information).

This scenario is a good test of Skoll because the failure’s
appearance depends on specific combinations of (1) input
features (i.e., an HTML document containing aselect tag),
(2) user actions (i.e., printing an HTML document), and (3)
execution platform (i.e., version 1.7 of Mozilla, running in its
default configuration.

We developed the following distributed continuous QA pro-
cess to test Skoll. In practice this process would be executed
by end-user machines. Clients on these machines would be
divided into three groups, each of which is assigned to execute
jobs coming from one of the three threads described below.

Thread-1 captures web pages for later testing by creating
browser proxy components and deploying them to volunteer

TABLE II

EXAMPLE CONFIGURATION MODEL

Option Type Settings

select HTML tag {1 = Yes, X = Don’t Care}
table HTML tag {1 = Yes, X = Don’t Care}
. . .

print User action {1 = Yes, 0 = No}
bookmark User action {1 = Yes, 0 = No}
. . .

safe-mode Run-time option {1 = Yes, 0 = No}
sync Run-time option {1 = Yes, 0 = No}
. . .

Thread-ID Client characteristic {1, 2 or 3}

users. Browser proxies intercept client web page requests,
retrieve the pages, and analyze them to determine whether they
contain particular HTML tags (previously uncaptured) and do
not contain other HTML tags (already captured and known to
cause failures). Each proxy looks for a different set of HTML
tags and the list of uncaptured tag sets is updated over time.If
the currently requested page contains a desired tag set, users
are asked to authorize sending the page to the Skoll server for
further analysis. After a tag set has been found it is removed
from the list of previously unseen tag sets.

Thread-2 tests the web pages captured in Thread-1. When
a Thread-2 client becomes available, the ISA selects one
previously captured web page, selects specific user actionsto
be applied to that page, and chooses the configuration under
which Mozilla is to be run. The job is then sent to the client,
which configures Mozilla, opens the page in it, and invokes an
automated robot to carry out the selected user actions. Failures
or non-failures are returned to the Skoll server.

Thread-3 applies Zeller’s Delta Debugging [7] algorithm
(in parallel across multiple nodes) to minimize test cases that
failed in Thread-2. Starting with such a failed test case, Delta
Debugging works by removing a portion of test case and
then retesting the remainder to determine whether the removed
subset affects the failure’s manifestation. This continues until
removing any more of the test causes the test to no longer
fail. After this minimization, the set of HTML tags remaining
in the test case is added to the sets of tags known to cause
a failure. This action prevents Thread-1 from searching for
further pages containing this set of tags.

The overall goal of this process is to gather a wide variety of
web pages efficiently, where each page contains different com-
binations of HTML tags. We then test Mozilla in numerous
run-time configurations by applying a wide set of user actions
to the pages. When test fail, we use Zeller’s Delta Debugging
to help identify which subset of the test case (e.g., HTML
tags, user actions and runtime configurations) caused Mozilla
to crash. This information is then fedback to the process to
prevent retesting of conditions known to cause failure.

We implemented the process described above using Skoll,
simulating several steps, such as the user interaction in Thread-
1 that issues web page requests and the crashing of the Mozilla
browser. We first developed a configuration and control model
for this process, a subset of which is shown in Table II. This
model captures four types of options: (1) the HTML tags that
may be present in a web page, (2) user actions that may



be executed on the page, (3) Mozilla run-time configuration
options, and (4) client characteristics. There were a totalof
26 HTML tag options, 6 run-time configuration options, 3
user action options, and 1 client characteristic option, which
induce an enormous configuration and control space over
which we want to test. The Skoll system translated this model
automatically into the ISA’s planning language.

Next, we wrote the necessary QA subtask code that im-
plements QA tasks, such as (1) preparing and deploying
browser configuration scripts and browser proxy components
that intercept web page requests and then analyze the requested
web page to see whether it contains certain sets of HTML
tags, (2) deploying and executing a test case, where executing
a test case requires viewing one web page within a specific
configuration of the Mozilla browser and then invoking a
specific set of user actions on it, and (3) executing steps of the
Delta Debugging algorithm to minimize the input to previously
failed test cases.

To execute the QA process, we instructed the ISA to
navigate the configuration and control space using random
sampling without replacement,i.e., each valid configuration
was scheduled exactly once by having the ISA randomly
select (1) HTML tags to locate in a webpage, (2) runtime
configuration options for Mozilla, and (3) a set of user actions
and the order in which they should execute. This configuration
is then placed on both the Thread-1 and Thread-2 job list (only
the HTML tags are important for Thread-1).

For each job request from a Thread-1 client, the ISA
randomly selects a job from the Thread-1 job list. Next, a
browser proxy component is configured to search for the
HTML tags indicated by the configuration. The browser proxy
is then deployed on the client machine. To facilitate the
demonstration, we configured the proxy to generate and return
canned web pages containing the required tags.

Upon receiving a job request from a Thread-2 client, the ISA
randomly selects a job from the Thread-2 job list for which
the corresponding web page has already been captured by a
Thread-1 client. The ISA then builds a job package directing
the client to (1) download the Mozilla software from a remote
repository, (2) configure it, (3) open the HTML document in
the browser, (4) execute the sequence of user actions using a
GUI test automation tool called GUITAR [8], and then (5) send
the results (i.e., Mozilla crashed or did not crash as determined
by our simulated oracle) to the Skoll server. Each step was
realized as an individual instruction in the QA jobs sent by
the Skoll server. We implemented only the application specific
instructions for step (3) and (4). For the rest, we used Skoll’s
default set of instructions. When a test case fails in Thread-
2, it is subdivided into two pieces as dictated by the Delta
Debugging algorithm and both pieces are added to the Thread-
3 subtask queue.

For each Thread-3 job request, an available job is pulled
from the Thread-3 queue and tested using the same in-
frastructure as in Thread-2. If the test fails (as determined
by our simulated oracle), the Delta Debugging algorithm is
invoked. This recursive process reduces the input and retests
looking to find the smallest input that still fails. The algorithm
stops when further reduction of test case causes the failure

to disappear. After the algorithm terminates, we manually
analyze the results to identify the failure inducing tag sets.
We then use adaptation strategies to prevent the creation of
new QA subtasks involving these tags.

We spent∼30 person hours directly implementing this
scenario using the Skoll infrastructure. Two-thirds of this time
(∼20 person hours) was sent fixing bugs in Skoll uncovered
during our exploration. To run the process, we installed ten
Skoll clients and one Skoll server across workstations dis-
tributed throughout computer science labs at the University of
Maryland. All Skoll clients ran on Linux 2.4.9-3 platform. We
used Mozilla v1.7 as our subject software. We then executed
various QA processes for over 100 hours as described above.

As a result of conducting the initial feasibility study on
Mozilla we gained valuable experience with our Skoll process
and infrastructure. For example, we demonstrated that Skoll’s
configuration and control model was sufficient to define a test
space consisting of subspaces for input cases (i.e., HTML tag
options), user actions (i.e., user action options), traditional
software configuration options (i.e., Mozilla’s run-time con-
figuration options), and client characteristics (assignment of
clients to thread pools). One deficiency of the model was that
it did not naturally support ordering among different options.
Specifically, we wanted to generate an ordering to the user
actions (e.g., first bookmark, then print). Although this can
be done using constraints, doing so is quite cumbersome. We
therefore chose to model only the presence or absence of each
action in the current test case and then randomized the order
of their application.

Our feasibility study also demonstrated the generality of
the Skoll system and distributed continuous QA concepts by
developing and executing a simple yet interesting process at a
reasonable level of effort. We were able to integrate an existing
test automation tool (i.e., a GUI test automation tool [8]),
an analysis technique (i.e., Delta Debugging algorithm), and
an adaptation strategy (i.e., temporary constraints) within
the Skoll infrastructure. During this activity we encountered
serious difficulties implementing this process because our
initial Skoll implementation hardwired many aspects of the
DCQA process workflow. This experience led us to create the
APIs described in Section II-C, which greatly simplify adding
application-specific QA instructions to a DCQA process.

Finally, we also uncovered some practical limitations. For
example, we found we needed a debugging mode for Skoll
since there was no easy way to see what actions would
happen during a process without actually executing them,
using resources, and updating Skoll’s internal databases.We
therefore added a feature to Skoll that echoes the instructions
that should be executed, but does not actually run them (this
behavior is similar to what happens when themake program
is run with the “-n” flag). We also identified a need for a
systematic method of terminating outstanding jobs or classes
of jobs. For instance, while running Delta Debugging we
often found solutions on one branch of the recursively defined
algorithm. At this point there was no reason to continue
running jobs from other branches, so we had to extend Skoll
to shut them down safely.



IV. A M ULTI -PLATFORM FEASIBILITY STUDY OF SKOLL

Based on the success of our initial Mozilla feasibility study,
we decided to explore the use of Skoll on a larger project:
ACE+TAO, where ACE [9] implements core concurrency and
distribution services and TAO [10] is a CORBA object request
broker (ORB) built using ACE. We conjectured that the Skoll
prototype would be superior to thead hocQA processes used
by ACE+TAO developers because it (1) automatically manages
and coordinates QA processes, (2) detects problems more
quickly on the average, and (3) automatically characterizes
subtask results, directing developers to potential causesof a
given problem. This section describes the results of our second
feasibility study that addressed these conjectures.

A. Motivation and Design of the ACE+TAO Study

We chose ACE+TAO since they embody many of the
challenging characteristics of modern software systems. For
example, they have a 2 MLOC+ source code base and
substantial test code. ACE+TAO run on dozens of OS and
compiler platforms and are highly configurable, with hundreds
of options supporting a wide variety of program families.
ACE+TAO are maintained by a geographically distributed core
team of∼40 developers whose code base changes dynamically
and averages over 400+ CVS repository commits per week.

The ACE+TAO developers currently run the regression tests
continuously on 100+ largely uncoordinated workstations and
servers at a dozen sites around the world. The results of
their testing appear at w.dre.vanderbilt.edu/scoreboard. The
interval between build/test runs ranges from 3 hours on quad-
CPU machines to 12-18 hours on less powerful machines.
The platforms vary in versions of UNIX (e.g., Solaris, AIX,
HP, and Linux) to Windows (Windows XP, Windows 2000,
Windows CE) to Mac OS, as well as to real-time operating
systems, such as VxWorks and LynxOS.

Another motivation for choosing ACE+TAO is that their de-
velopers cannot test all possible platform and OS combinations
because there simply are not enough people, OS/compiler,
platforms, CPU cycles, or disk space to run the hundreds
of ACE+TAO regression tests in a timely manner. More-
over, since ACE+TAO are designed for ease of subset-
ting, several hundred orthogonal features/options can be en-
abled/disabled for application-specific use-cases. The number
of possible configurations is thus far beyond the resources of
the core ACE+TAO development team. These characteristics
of ACE+TAO are similar to other complex systems.

Our study applied several QA scenarios to ACE+TAO,
testing it for different purposes. We used three QA task
scenarios applied to a specific version of ACE+TAO: (1)
checking for clean compilation, (2) testing with default run-
time options, and (3) testing with configurable runtime options.
We also enabled automatic characterization to give ACE+TAO
developers concise descriptions of failing subspaces.

As we identified problems with the ACE+TAO, we time-
stamped them and recorded pertinent information, which al-
lowed us to qualitatively compare Skoll’s performance to that
of ACE+TAO’s ad hocprocess. The tasks involved in these
scenarios are typically done by developers and involve fairly

heavyweight activities, such as downloading a large code base
from CVS, compiling the system, and running resource inten-
sive test cases. This process is therefore conducted mostlyon
resources volunteered by project developers and by companies
that use the software in their products.

We installed Linux and Windows Skoll clients and one Skoll
server across 25 (11 Linux and 14 Windows) workstations
distributed throughout computer science labs at the University
of Maryland. All Linux Skoll clients ran on Linux 2.4.9-3
stations and used gcc v2.96 as their compiler; the Windows
clients ran on Windows XP stations with Microsoft’s Visual
C++ v6.0 compiler. On both platforms, we used TAO v1.2.3
with ACE v5.2.3 as the subject software.

B. Configuring the Skoll Infrastructure

We implemented all the components of the Skoll infrastruc-
ture described in Section II-B. We then developed different
QA task models for each scenario. We configured the ISA
and instructed it to navigate the QA task space using random
sampling without replacement.

We used several adaptation strategies provided by Skoll.
Specifically, we integrated the nearest adaptation strategies
neighbor, temporary constraints, and terminate/modify sub-
tasks described in Section II-B into these distributed con-
tinuous QA processes. We used temporary constraints and
terminate/modify subtasks adaptation in each scenario, but
used nearest neighbor only when the QA task space was
considered large. In practice, process designers determine the
criteria for deciding when a QA task space is large or small.

We developed scripts that prepare task results and feed them
into the CTA algorithms for automatic fault characterization.
We also wrote scripts that used the classification tree models
as input to visualizations.

The QA tasks for these studies must run on both the
Windows and Linux operating systems. We therefore imple-
mented client side QA tasks as portable Perl scripts. These
scripts request new QA job configurations, receive, parse, and
execute the jobs, and return results to the server. We also
developed web registration forms and Skoll client kit. Skoll
clients are initialized with the registration information, but this
information is rechecked on the client machine before sending
a job request. We developed MySQL database schemas to
manage user data and test results.

C. Study 1: Clean Compilation

Study design. ACE+TAO features can be compiled in or out
of the system,e.g., features are often omitted reduce memory
footprint in embedded systems. The QA task for this study
was to determine whether each ACE+TAO feature combination
compiled without error, which is important for open-source
software since any valid feature combination should compile.
Unexpected build failures not only frustrate users, but also
waste time. For example, compiling the 2 MLOC+ took us
roughly 4 hours on a 933 MHz Pentium III with 400 Mbytes
of RAM, running Linux.

Our first step was to build a QA task model. The feature
interaction model for ACE+TAO was undocumented, so we



built the QA task model bottom-up. First, we analyzed the
source and interviewed several senior ACE+TAO developers.
We selected 18 options; one of these options was the OS; the
remaining 17 were binary-valued compile-time options that
control build time inclusion of various CORBA features.

We also identified 35 inter-option constraints. For example,
one constraint is (AMI = 1→ MINIMUM CORBA = 0),
which means that asynchronous method invocation (AMI)
is not supported by the minimal CORBA implementation.
This QA task space has over 164,000 valid configurations.
Since no constraints were related to the OS option, the space
was divided equally by OS,i.e., 82,000 valid configurations
per OS. Since the QA task space was large, we used the
nearest neighbor adaptation strategy to navigate this model.
We also configured the ISA to use random sampling without
replacement since one observation per valid configuration was
sufficient.

After testing ∼500 configurations, the terminate/modify
adaptation strategy signaled that every configuration had failed
to compile. We terminated the process and discussed the
results with ACE+TAO developers. Automatic characterization
showed that the problem stemmed from 7 options providing
fine-grained control over CORBA messaging policies. This
code had been modified and moved to another library, but
developers had forgotten to check whether these options still
worked.

Based on this feedback, ACE+TAO developers chose to
control these policies at link-time, not at compile time. We
therefore refined our QA task model by removing the options
and corresponding constraints. Since these options appeared
in many constraints—and because the remaining constraints
are tightly coupled (e.g., were of the form (A=1→ B=1)
and (B=1→ C=1))—removing them simplified the QA model
considerably. As a result, the QA task model contained 11
options (one being OS) and 7 constraints, yielding only 178
valid configurations. Of course, we investigated only a small
subset of ACE+TAO’s total QA task space; the actual space
is much larger.

We then continued the study using the new QA task model
and removing the nearest neighbor adaptation strategy (since
now we could easily build all valid configurations). Of the
178 valid configurations only 58 compiled without errors. For
the 120 (178-58) remaining configurations that did not build,
automatic characterization helped clarify the conditionsunder
which they failed.

Analysis of results. After conducting the study we analyzed
the data and drew some preliminary conclusions. Beyond
identifying failures, in several cases, automatic characteriza-
tion provided concise, statistically significant descriptions of
the subspaces in which 120 configurations failed. Below we
describe the cause of the failure, present the automatically
generated characterization, and discuss the action taken by
ACE+TAO developers.

The ACE+TAO build failed at line 630 inuserorbconf.
h (64 configurations - 32 per OS) whenever AMI = 1 and
CORBA MSG = 0. ACE+TAO developers determined that the
constraint AMI = 1→ CORBA MSG = 1 was missing from
the model. We therefore refined the model (for later studies)

by adding this constraint.
The ACE+TAO build also failed line 38 (line 37 for Win-

dows2) in Asynch Reply Dispatcher.h (16 configura-
tions) whenever CALLBACK = 0 and POLLER = 1. Since this
configuration should be legal, we had identified a previously
undiscovered bug. Until the bug could be fixed, we temporarily
added a new constraint POLLER = 1→ CALLBACK = 1,
which we also used in later studies.

The ACE+TAO build failed at line 137 in
RT ORBInitializer.cpp (40 configurations) whenever
CORBA MSG = 0. The problem was due to a#include
statement, missing because it was conditionally included (via
a #define block) only when CORBAMSG = 1. Again, the
error was reported on line 665 in fileRT Policy i.cpp
when the system was compiled under Windows; we attribute
this difference to the compiler and not an ACE+TAO
platform-specific problem.

This study did not find any actual platform-specific com-
pilation problems since the faults characterized as platform-
specific were actually due to differences in how compilers
generated error messages, and reported error locations. Before
moving on to the next study we fixed those errors that we
could and worked around those we could not fix by leaving
the appropriate temporary constraints in the second study’s
QA task model.

Lessons learned. We learned several important lessons
from Study 1. For example, we found that even ACE+TAO
developers did not completely understand the QA task model
for their complex software. In fact, they provided us with both
erroneous and missing model constraints.

We also discovered that model building is an iterative
process. Using Skoll we quickly identified coding errors (some
previously undiscovered) that prevented the software from
compiling in certain configurations. We learned that the tem-
porary constraints and terminate/modify subtasks adaptation
strategies performed well, directing the global process towards
useful activities, rather than wasting effort on configurations
that would surely fail without providing any new information.

ACE+TAO developers told us that automatic characteriza-
tion was useful to them because it greatly narrowed down the
issues they had to examine in tracking down the root cause
of the failure. We also learned that as fixes to problems were
proposed, we could easily test them by spawning a new Skoll
process based on the previously inserted temporary constraints,
i.e., the new Skoll process tested the patched software only for
those configuration that had failed previously.

D. Study 2: Testing with Default Runtime Options

Study design. The QA task for the second study was to de-
termine whether each configuration would run the ACE+TAO
regression tests without error with the system’s default runtime
options. This activity is important for systems that distribute
tests to run at installation time because it is intended to give
users confidence that they installed the system correctly. To

2We noted that the compilers (gcc and MSVC++) reported different line
numbers for the same error, requiring manual examination and matching of
error messages.



perform this task, users compile ACE+TAO, compile the tests,
and execute the tests.

On our Linux machines it took around 4 hours to compile
ACE+TAO, about 3.5 hours to compile all tests, and 30
minutes to execute them, for a total of around 8 hours. On our
Windows machines, it took 19 minutes to compile ACE+TAO,
about 22 minutes to compile all tests, and 37 minutes to
execute them, for a total of around 1.5 hours. These speed
differences occurred because the Windows experiments ran
on faster machines with more memory.

We first created the QA task model. In this study we used
96 ACE+TAO tests, each containing its own test oracle and
reporting success or failure on exit. These tests are often
intended to run in limited situations, so we extended the QA
task space, adding test-specific options. We also added some
options capturing low-level system information, indicating the
use of static or dynamic libraries, whether multithreading
support is enabled, etc. This last step was necessary since
clients were running on Windows and Linux machines, each
with its own low-level policies.

The new test-specific options contain one option per test.
They indicate whether that test is runnable in the configuration
represented by the compile time options. For convenience, we
named these optionsrun(Ti). We also defined constraints over
these options. For example, some tests should run only on
configurations with more than the Minimum CORBA features.
So for all such tests,Ti, we added a constraintrun(Ti) = 1
→ MINIMUM CORBA = 0, which prevented us from running
tests that are bound to fail. By default, we assumed that all
test were runnable unless otherwise constrained.

After making these changes, the space had 15 compile time
options with 13 constraints and 96 test-specific options with
an additional 120 constraints. We again configured the ISA
for random sampling without replacement. We did not use the
nearest neighbor adaptation strategy since we only tested the
58 configurations that built in Study 1. In Study 2, automatic
characterization is done separately for each test and error
message combination, but is based only on the settings of the
compile time-options.

Analysis of results. Overall, we compiled 4,154 individual
tests. Of these 196 did not compile, 3,958 did. Of these, 304
failed, while 3,654 passed. This process took∼52 hours of
computer time. We now describe some interesting failures
we uncovered, the automatically-generated failure character-
izations, and the action taken by ACE+TAO developers.

Three tests failed in all configurations regardless of the OS.
Even though the underlying problem that led to the failures
was not configuration-specific, the overall Skoll automation
process helped uncover it. The failures were caused by mem-
ory corruption due to command-line processing. Whenever
the test script used a particular command-line option, namely
ORBSkipServiceConfigOpen, the tests failed. The usage
of the above mentioned option is not mandatory for the scripts,
but Skoll used it during the model-building and stepwise re-
finement of command line options, identifying this previously
undiscovered problem.

Three tests failed only when the option (OS = Windows)
was enabled. These tests failed because the ACE server failed

to start on Windows platforms; this failure is caused by
incorrect coding (Linux vs. Windows) of server-invocation
scripts in the tests. Increasing the number of platforms on
which tests run helped pinpoint this problem.

Two tests failed in 17 configurations when the options
(OS=Windows and AMIPOLLER = 0) were enabled. These
tests failed because clients did not get correct (or any) response
from the server. Although these tests should actually have
failed on Linux, it tolerates some amount of invalid memory
scribbling without killing the process, thereby allowing the
test to pass, even though it should have failed. The failure is
revealed only on Windows because it is more rigorous in its
memory management. We were able to detect this previously
unrevealed problem by increasing the number of platforms and
thus enlarging the test diversity.

Two tests failed in 3 configurations when the options (OS
= Linux and AMI = 1 and AMI POLLER and DIOP = 0
and INTERCEPTORS = 1) were enabled. The same 2 tests
failed in 6 configurations when the options (OS = Linux
and AMI = 1 and AMI POLLER = 0 and DIOP = 1) were
enabled. The same 2 tests failed 29 configurations when
the option (OS = Windows) was enabled. According to the
ACE+TAO developers, this problem occurs sporadically due
to a quirk in the way theTP Reactor (the default event
demultiplexer in TAO) handles active handles in an FDSET.3

The TP reactor was therefore not picking up the sockets.
This error still occurs but not all the time, which suggests that
testing each configuration exactly once may be inadequate to
detect rarely occurring, nondeterministic faults.

In several cases, multiple tests failed for the same reason on
the same configurations. For example, test compilation failed
at line 596 ofami testC.h for 7 tests, each when options
(CORBA MSG = 1 and POLLER = 0 and CALLBACK =
0) were enabled. This bug was previously undiscovered and
stemmed from the fact that certain files in TAO implementing
CORBA Messaging incorrectly assumed that at least one of the
POLLER or CALLBACK options would always be set to 1.
ACE+TAO developers also noticed that the failure manifested
itself no matter what the setting of the AMI was, which also
had not been discovered previously because these tests should
not have been runnable when AMI = 0. Consequently, there
was a missing testing constraint, which we then included in
the test constraint set.

The test MT Timeout/run test.pl failed in 28 of
58 configurations with an error message indicating response
timeout. No statistically significant model could be found,
which suggests that (1) the error report might be covering
multiple underlying failures, (2) the failure(s) manifest(s)
themselves intermittently, or (3) some other factor not related
to configuration options is causing the problem. This particular
problem appears intermittently and is related to inconsistent
timer behavior on certain OS/hardware platform combinations.

Lessons learned. We learned several lessons from Study 2.
For example, we found it was relatively easy to extend and
refine the initial QA task model to create more complex QA
processes. We were again able to conduct a sophisticated QA

3See doc.wustl.edu/bugzilla/showbug.cgi?id=982 for more details.



process across remote user sites on a continuous basis. For
example, we exhaustively explored the QA task space in less
than a day and quickly flagged numerous real problems with
ACE+TAO. Some of these problems had not been found with
ACE+TAO’s ad hocQA processes. In fact, the model-building
and automation process led to the discovery of the improper
handling of command-line options.

We also learned that Skoll’s generated models can be
unreliable. We use notions of statistical significance to help
indicate weak models, but more investigation is necessary.The
tree models we use may also not be reliable when failures are
non-deterministic and the ISA has been configured to generate
only a single observation per valid configuration. In the
presence of potentially non-deterministic failures, therefore,
it may desirable to configure the ISA for random selection
with replacement.

E. Study 3: Testing with Configurable Options

Study design. The QA task for the third study was to de-
termine whether each configuration would run the ACE+TAO
regression tests without errors for all settings of the system’s
runtime options, which is important for building confidence
in the system’s correctness. This task involves compiling
ACE+TAO, compiling the tests, setting the appropriate runtime
options, and executing the tests. Doing this for one configu-
ration took from 4 to 8 hours on our machines.

First, we develop the QA task model. To examine
ACE+TAO’s behavior under differing runtime conditions, we
modified the QA task model to reflect 6 multi-valued (non-
binary) runtime configuration options. These options set upto
648 different combinations of CORBA runtime policies,e.g.,
when to flush cached connections, what concurrency strategies
the ORB should support, etc. Since these runtime options are
independent, we added no new constraints.

After making these changes, the compile-time option space
had 15 options and 13 constraints. There were 96 test-specific
options with an additional 120 constraints and 6 runtime
options with no new constraints.

Analysis of results. The QA task space for this study
had 37,584 valid configurations. At roughly 30 minutes per
test suite, the entire process involved around 18,800 hoursof
computer time. Given the large number of configurations, we
used the nearest neighbor adaptation strategy. The total number
of test executions was 3,608,064. Of these, 689,603 test failed,
with 458 unique error messages. We analyze these executions
and failures below.

One observation is that several tests failed in this study
even though they had not failed in Study 2 (when running
tests with default runtime options). Some even failed on every
single configuration (including the default configuration tested
earlier), despite not failing in Study 2! In the former case,
the problems were often in feature-specific code, whereas
in the latter case the problems were often caused by bugs
in option setting and processing code. ACE+TAO developers
were intrigued by these findings because they rely heavily on
testing of the default configuration by users at installation time,
not just to verify proper installation, but to provide feedback
on system correctness.

Eight tests failed in 12,441 configurations when option
(ORBCollocation = NO). These failures stemmed from a
bug in TAO where object references were created prop-
erly but not activated properly. The ACE+TAO devel-
opers have fixed this very serious problem. One test
RTCORBA Policy Combinations run test failed in
18,585 configurationswhen option (OS = Windows). This bug
was due to a race condition in the SHMIOP code in TAO and
has also now been fixed.

A group of three tests had particularly interesting failure
patterns. These tests failed between 2,500 and 4,400 times.In
each case automatic characterization showed that the failures
occurred when optionORBCollocation = NO was enabled.
No other option influenced failure manifestation. In fact, it
turned out that this setting was in effect over 99% of the time
when testsBig Twoways/run test.pl, Param Test/
run test.pl, or MT BiDir/run test.pl failed. TAO’s
ORBCollocation option controls the conditions under
which the ORB should treat objects as being collocated in
a single process and thus should communicate directly via
method calls instead of sending messages through the OS
protocol stack. TheNO option setting means that objects
should not be collocated. The fact that these tests worked
when objects communicated directly, but failed when sending
messaging through the protocol stack clearly suggested a
problem related to message passing. The source of the problem
was a bug in TAO’s (de)marshaling of object references.

Three tests failed in 6 configurations when options
(OS=Linux and AMIPOLLER = 0 and INTERCEPTORS =
0 and NAMEDRT MUTEXES = 1) were enabled. The same
3 tests failed in 10 configurations when options (OS=Linux
and AMI POLLER = 0 and INTERCEPTORS = 1) were
enabled. This failure was a side-effect of the order in which
the test cases ran and had nothing to do with the specific test
cases themselves or the options (except OS=Linux),i.e., this
problem was specific only to the Linux platform. These test
failures occurred when Linux ran out of the shared memory
segments available to the OS. We discovered that TAO leaked
these segments on Unix-based platforms. If enough tests were
run on a particular Linux machine, the machine ran out of the
shared memory segments, causing all subsequent tests to fail.
If these particular tests had been run earlier, they would not
have failed. In effect, we inadvertently conducted a load test
on some machines.

Lessons learned. We learned several things from Study 3.
First, we confirmed that our general approach could scale to
larger QA task spaces. We also reconfirmed one of our key
conjectures: that data from the distributed QA process can
be analyzed and automatically characterized to provide useful
information to developers. We also saw how the Skoll process
provided better coverage of the QA task space than the process
used by ACE+TAO (and, by inference, many other projects).

We also note that our nearest neighbor adaptation strategy
explores configurations until it finds no more failing config-
urations. Much work will therefore be done where a large
subspace is failing, (e.g., as described above in roughly 5,000
out of a total 20,000 configurations,ORBCollocation =
NO and the test failed). In this case we could have stopped



the search much earlier and still correctly characterized the
failing subspace. In future work, we will explore criteria for
stopping the search process.

F. Discussion of the Studies Results

The above three studies confirmed or reinforced multiple
lessons learned about the characteristics of Skoll, distributed
continuous QA, and the specific subject applications. First,
our conjectures about Skoll were supported,i.e., the overall
approach worked well. In particular, Skoll was superior to the
ad hocQA processes used by ACE+TAO developers.

ACE+TAO developers were also happy with the results and
will use Skoll more aggressively in the future. They report
that the Skoll-based process is significantly more effectively
than their current QA process. It detected problems quickly,
several of which they were not aware of. They also benefited
from Skoll’s automatic fault characterization, which helped
them narrow down the set of possible failure causes quickly,
avoiding multiple rounds of fruitlessly guessing the causes of
specific failures.

Our use of the QA task model helped us to extend the stud-
ies quickly to a completely different platform (i.e., Windows
vs. Linux vs. Solaris) with little work and code modification.
The fundamental change required for this extension was the
addition of a new variableOS. We also added some options
to capture low-level system information, indicating the use
of static or dynamic libraries, whether multithreading support
is enabled, etc. This step was necessary since clients were
running on Windows and Linux machines and each OS has
its own low-level policies.

Constraints associated with the option variables outlined
above helped control platform-specific test cases; these test
cases were already available for ACE+TAO. Since many of
these tests are often intended to run in limited situations,we
extended the QA task space by adding test-specific options.
Much of the Skoll code is portable (e.g., the control scripts are
implemented in Perl), we could reuse it across platforms. We
are confident that future extensions can also be added easily.

We learned that full automation of all Skoll processes will
require adaptation of several low-level tools. For example,
automatic characterization of errors requires that all platform-
specific tools (e.g., compliers) report the errors in a similar
format. Study 2 showed us that some tools (such as compilers)
report the same error differently across platforms. In the future,
we will need to wrap the error messages generated by these
tools so that they look similar to our automatic characterization
algorithms. We envision that some manual work will be needed
to write these wrappers each time a new error is encountered;
subsequent encounters should be handled automatically.

We discovered that there is significant effort associated with
putting each application under Skoll control. These costs were
not necessarily caused by Skoll, however,e.g., understanding
the ACE+TAO QA task space required significant interaction
with ACE+TAO developers, who did not completely under-
stand their own system. We also needed to discover and
eliminate several errors in ACE+TAO’s command-line option
processing before the Skoll scripts could be used. We expectto

find and fix more of these errors as new distributed continuous
QA processes are developed.

We learned (from Study 3) that theorder in which sub-tasks
are executed may also have an impact on their results. This re-
sult uncovered a deeper issue that we need to handle carefully
in the future: the context in which a test case executes has
an impact on its outcome. We will need to improve the Skoll
task execution policies to handle context more effectivelyand
robustly. Each task should execute in a pre-determined clean
context; each task should also restore the system environment
so that subsequent tasks remain unaffected.

V. RELATED WORK

Our research is closely related to other efforts in the area of
remote analysis and measurement of software systems, applied
to software engineering techniques used to create, manage and
validate configurable systems.

A. Remote Analysis and Measurement of Software Systems

Several prior attempts have been made to feedback fielded
behavioral information to designers. As described below, these
approaches gather various types of runtime and environmental
information from programs deployedin the field, i.e., on user
platforms with user configurations.

Distributed regression test suites.Many popular projects
distribute regression test suites that end-users run to evalu-
ate installation success. Well-known examples include GNU
GCC [11], CPAN [12], and Mozilla [6]. Users can—but
frequently do not—return the test results to project staff.Even
when results are returned, however, the testing process is often
undocumented and unsystematic. Developers therefore have
no record of what was tested, how it was tested, or what the
results were, resulting in the loss of crucial information.

Auto-build scoreboards.Auto-build scoreboards monitor
multiple sites that build/test a software system on varioushard-
ware, operating system, and compiler platforms. The Mozilla
Tinderbox [13] and ACE+TAO Virtual Scoreboard [14] are
examples of auto-build scoreboards that track end-user build
results across various volunteered platforms. Bugs are reported
via the Bugzilla issue tracking system [15], which provides
inter-bug dependency recording and integration with auto-
mated software configuration management systems, such as
CVS or Subversion. While these systems help to document
multiple build processes, deciding what to put under system
control and how to do it is left to users. Unless developers
can control at least some aspects of the build and process,
however, important gaps and inefficiencies will still occur.

Remote data collection systems.Online crash reporting
systems, such as the Netscape Quality Feedback Agent [16]
and Microsoft XP Error Reporting [17], gather system state
at a central location when fielded systems crash, simplifying
user participation by automating parts of problem reporting.
Orso et al. [18] developed GAMMA to collect partial runtime
information from multiple fielded instances of a software
system. GAMMA allows users to conduct a variety of different
analyses, but is limited to tasks for which capturing low-level
profiling information is appropriate. One limitation of these



approaches is their limited scope,i.e., they capture only a small
fraction of interesting behavioral information. Moreover, they
are reactive(i.e., the reports are only generatedafter systems
crash), rather thanproactive(i.e., attempting to detect, identify,
and remedy problemsbeforeusers encounter them).

Remote data analysis techniques.The emergence of remote
data collection systems has spurred research into better remote
analysis techniques. Podgursky et al. [19] present techniques
for clustering program executions. Their goal is to support
automated fault detection and failure classification. Bowring et
al. [20] classify program executions using a technique based
on Markov models. Brun and Ernst [21] use machine learning
approaches to identify types of invariants likely to be fault
indicators. Liblit et al. [22] remotely capture data on both
crashing and non-crashing executions, using statistical learning
algorithms to identify data that predicts each outcome. Elbaum
and Diep [23] investigate ways to efficiently collect field data
and use them for improving the representativeness of test
suites. Michail and Xie’s [24] Stabilizer system correlates
users’ partial event histories with failures they report. The
models are then linked back into running systems allowing
them to predict reoccurences of the failure. Users are also
offered a chance to terminate the current operation when
imminent failure is predicted.

Earlier remote data analysis techniques share several lim-
itations. Most of them consider only a few specific features
of program executions, such as program branches or variable
values. They do not support broader types of quality assurance
techniques. Moreover, many such techniques require heavy-
weight data collection, which creates considerable overhead
in terms of code bloat, data transmission and analysis costs
and, in most cases, execution time.

Distributed continuous quality assurance (QA) environ-
ments.Distributed continuous QA environments are designed
to support the design, implementation, and execution of remote
data analysis techniques such as the ones described above. For
example, Dart and CruiseControl are continuous integration
servers that initiate build and test processes whenever repos-
itory check-ins occur. Users install clients that automatically
check out software from a remote repository, builds it, executes
the tests, and submits the results to the Dart server. A major
limitation of Dart and CruiseControl, however, is that the
underlying QA process is hard-wired,i.e., other QA processes
or other implementations of the build and test process are not
easily supported and the process cannot be steered. As a result,
these QA processes cannot exploit incoming results nor avoid
already discovered problems, which leads to wasted resources
and lost improvement opportunities.

Although these efforts described above can provide some
insight into fielded behavior, they have significant limitations.
For example, they are largelyad hoc and often haveno
scientific basis for assuring that information is gathered
systematically and comprehensively. Moreover, many existing
approaches arereactive and have limited scope(e.g., they
can be used only when software crashes or only focus only
on a single, narrow task), whereas effective measurement and
analysis support needs to be much broader and more proactive
(e.g., seeking to collect and analyze important information

continuously, before problems occur).
Existing approaches also ofteninadequately document

their activities, which makes it hard to determine the full extent
of (or gaps in) the measurement and analysis process. These
approaches alsolimit developer control over the measurement
and analysis process (e.g., although developers may be able
to decide what aspects of their software to examine, some
usage contexts are evaluated multiple times, whereas others
are not evaluated at all). Finally, most existing approaches do
not intelligently adapt by learning from measurement results
obtained earlier by other users. These limitations collectively
yield inefficient and opaque in-the-field measurement and
analysis processes that are insufficient to support today’s
software designers.

Our work with Skoll is intended to improve this situa-
tion. For example, we have used Skoll to support distributed
continuous performance assessment [25]. In that effort we
developed a new adaptation strategy based on usingDesign
of Experiments(DOE) theory to identify a small set of
observations (an experimental design selecting configurations
to test) that allows Skoll to determine which combinations
of options and settings significantly affect performance. This
information allowed us to then quickly estimate whether future
changes to the system degraded performance.

B. Software Engineering for Configurable Systems

Our work is related to the following research activities that
have created, managed, and validated configurable software
systems. Note, however, that Skoll is not limited to only
configurable software systems.

Software development approaches that emphasize portabil-
ity, customizability, large-scale reuse or incremental develop-
ment often rely on identifying and leveraging the commonal-
ities and variabilities of their target application domain[26].
Several researchers have therefore created techniques to model
the configuration spaces and interdependencies of such sys-
tems. Most processes for developing product-line architec-
tures, for example, incorporate visual models [27] of the sys-
tem’s variation points. More recent work has focused specif-
ically on system variability and supporting various types of
reasoning and analysis over the models [28]. With appropriate
translators, most of these models could easily be translated
into Skoll’s format.

Covering arrays have been used to reduce the number of
input combinations needed to test a program [29]–[34]. Mandl
[34] first used orthogonal arrays, a special type of covering
array in which allt-sets occurexactlyonce, to test enumerated
types in ADA compiler software. This idea was extended
by Brownlie et al. [29] who developed the orthogonal array
testing system (OATS). They provided empirical results to
suggest that the use of orthogonal arrays is effective in fault
detection and provides good code coverage. Dalalet al. [32]
argue that the testing of all pairwise interactions in a software
system finds a large percentage of the existing faults. In further
work, Burr et al. [30], Dunietz et al. [33], and Kuhn et
al. [35] provide more empirical results to show that this type of
test coverage is effective. The above studies focus on finding



unknown faults in tested systems and equate covering arrays
with code coverage metrics [31], [33]. Yilmaz et al. [36] apply
covering arrays to test configurable systems. They show that
covering arrays were effective not only in detecting failures,
but also in characterizing the specific failure inducing options.

VI. CONCLUDING REMARKS AND FUTURE WORK

This paper described the results of our initial efforts design-
ing, executing, and evaluating distributed continuous quality
assurance (QA) processes. We first presented Skoll, which is
an environment for implementing feedback-driven distributed
continuous QA processes that leverage distributed computing
resources to improve software quality. We then implemented
several such processes using Skoll and evaluated their effec-
tiveness in two feasibility studies that applied Skoll to Mozilla
and ACE+TAO, which are several large-scale open-source
software systems containing millions of lines of code.

Using Skoll, we iteratively modeled complex QA task
spaces, developed novel large-scale distributed continuous
QA processes, and executed them on multiple clients. As a
result, we found bugs, some of which had not been identified
previously. Moreover, the ACE+TAO developers reported that
Skoll’s automatic failure characterization greatly simplified
identifying the root causes of certain failures.

Our work on the Skoll environment is part of an ongoing
research project. In addition to providing insight into Skoll’s
benefits and limitations, the results of our studies are guiding
our future work, as summarized below.

Our initial feasibility studies were limited to a small number
of machines at the University of Maryland. We are extending
and generalizing this work in two dimensions. First, we
recently built a large-scale, heterogeneous computing cluster
with hundreds of CPUs to support our research, as described
in Section I. We have rerun the experiments described in this
article on this cluster (the results were the same) and will
expand our use of it in the future.

Second, we are replicating our feasibility studies on a dozen
test sites and hundreds of machines provided by ACE+TAO
developers and user groups in two continents (www.dre.
vanderbilt.edu/scoreboard lists sites that are con-
tributing machines). As the scope of our work increases we
will investigate security and privacy issues more thoroughly.
For now, ACE+TAO participants are accustomed to download-
ing, compiling and testing ACE+TAO, so no special security
and privacy precautions were necessary. We are developing
security and privacy policies based on existing volunteer com-
puting systems, such as Microsoft’s Watson system and the
Berkeley Open Infrastructure for Network Computing (which
supports projects such as seti@home).

We are applying Skoll to a broader range of application
domains, including running prototyping experiments for enter-
prise distributed systems and large-scale shipboard computing
environments, that have many configuration parameters and
options, some of which must be evaluated dynamically as well
as statically. We are also enriching Skoll’s QA task models to
support hierarchical models, not just the flat option spaces
supported currently. We are incorporating priorities in the

model so that different parts of the configuration space can
be explored with different frequencies and are incorporating
real-valued option settings into the models.

We are enhancing Skoll’s Intelligent Steering Agent (ISA)
to allow planning based on cost models and probabilistic infor-
mation. For example, if historical data suggests that userswith
certain platforms send requests at certain rates, it can take this
information into account when allocating job configurations.
We are also exploring the use of higher level ISA planners
that simultaneously plan for multiple QA processes (not just
one at a time as the ISA does now).

We are also integrating Skoll with model-based test-case
generation techniques,e.g., our work with GUITAR [37].
We envision that this model will supplement the QA task
space. While traversing the QA task space, Skoll’s navigation/-
adaptation strategies may use the test-case generation tech-
niques to obtain new test caseson demand.

Currently individual QA tasks must be executed on a single
computing node. This restriction prevents us from answering
certain kinds of questions, such as what is the average response
time for requests sent from users in one geographical region
to servers in another region. We are therefore investigating
how peer-to-peer and overlay network technologies can help
to broaden the QA tasks Skoll can handle.
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