

Adversarial Training for

Ali Shafahi¹, Mahyar Najibi¹, Amin Ghiasi¹, Zheng Xu¹, John Dickerson¹,

¹University of Maryland, ²Cornell University, and ³US Naval Academy

400 S/OW,...

Backprop

K times

Adversarial training (using PGD attacks) is one of the best defenses and wins nearly all defense competitions. But it's slow, taking 5-50X longer than regular training. This makes it nearly intractable for large problems like ImageNet.

We present a method that adversarially trains with no added cost beyond regular training. Our "free" method gets comparable results to adversarial training on CIFAR, and can adversarially train ImageNet on a desktop computer in just a day!

Adversarial examples

Modify target images at *test* time

Adversarial Training

Input: Training samples X, perturbation bound C, step-size ϵ_s , PGD iterations K, learning-rate τ

for epoch = 1 ... N **do**

for minibatch $B \subset X$ do

Build x_{adv} for all $x \in B$ with PGD:

$$x_{adv} \leftarrow x + r; \quad r \leftarrow U(-\epsilon, \epsilon)$$

for k = 1 ... K do

 $g_{adv} \leftarrow \nabla_x l(x_{adv}, y, \theta)$

 $x_{adv} \leftarrow \text{clip}(x_{adv} + \epsilon_s \cdot \text{sign}(g_{adv}), x - \epsilon, x + \epsilon)$

end for

update θ with SGD:

 $g_{\theta} \leftarrow \mathbb{E}_{(x,y) \in B} [\nabla_{\theta} l(x_{adv}, y, \theta)]$

 $\theta \leftarrow \theta - \tau g_{\theta}$

end for

end for

(7-PGD trained)

Adversarial Training for Free!

Algorithm: Free-m

Input: Training samples $oldsymbol{X}$, perturbation bound $oldsymbol{\epsilon}$, learning-rate τ , replay m

 $\delta \leftarrow 0$

for epoch = 1 ... N/m **do** for minibatch $B \subset X$ do

for i = 1 ... m **do**

Update θ with SGD: $g_{\theta} \leftarrow \mathbb{E}_{(x,y) \in B} [\nabla_{\theta} l(x + \delta, y, \theta)]$ **Backprop just** $g_{adv} \leftarrow \nabla_x l(x + \delta, y, \theta)$ 1 time! $\theta \leftarrow \theta - \tau g_{\theta}$ Use grads calculated at min step for updating δ $\delta \leftarrow \text{clip}(\delta + \epsilon \cdot \text{sign}(g_{adv}), -\epsilon, +\epsilon)$ end for end for end for

Results: Free vs K-PGD

Model & Training		Train time			
	Natural Images	PGD-10	PGD-50	PGD-100	(minutes)
ResNet-50 – Free $m=4$	60.206%	32.768%	31.878%	31.816%	3,016
ResNet-101 – Free $m = 4$	63.340%	35.388%	34.402%	34.328%	5,122
ResNet-152 – Free $m=4$	64.446%	36.992%	36.044%	35.994%	7,526
ResNet-50 – 2-PGD trained	64.134%	37.172%	36.352%	36.316%	10,435

Backprop 1 time

Training	Evalua Natural Images	Training Time (minutes)		
	Natural Illiages	PGD-20	PGD-100	(minutes)
Natural	78.84%	0.00%	0.00%	811
Free $m=4$	65.28%	20.64%	20.15%	767
Free $m=6$	64.87%	23.68%	23.18%	791
Free $m=8$	62.13%	25.88%	25.58%	780
Free $m = 10$	59.27%	25.15%	24.88%	776
Madry et al. (7-PGD trained)	59.87%	22.76%	22.52%	5157

 ∞

ResNet-50

adv for

Free-8

Free-m has interpretable grads

deer

