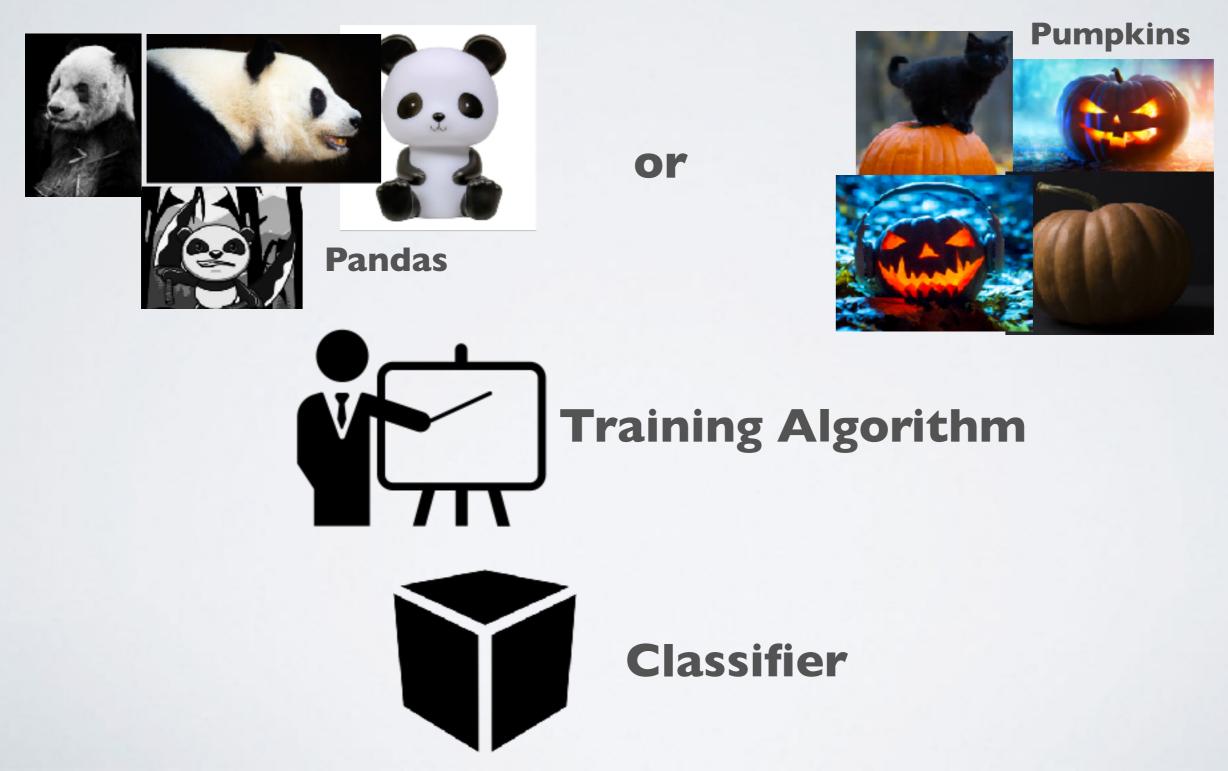


Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry Davis, Gavin Taylor, Tom Goldstein

2019

SUPERVISED MACHINE LEARNING

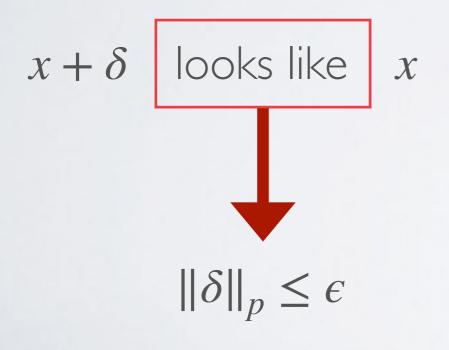
some training data (image, labels)



ADVERSARIAL EXAMPLES "Ox" 85% "Traffic light" 96%

 $f(x) \to y$ $f(x + \delta) \neq f(x)$

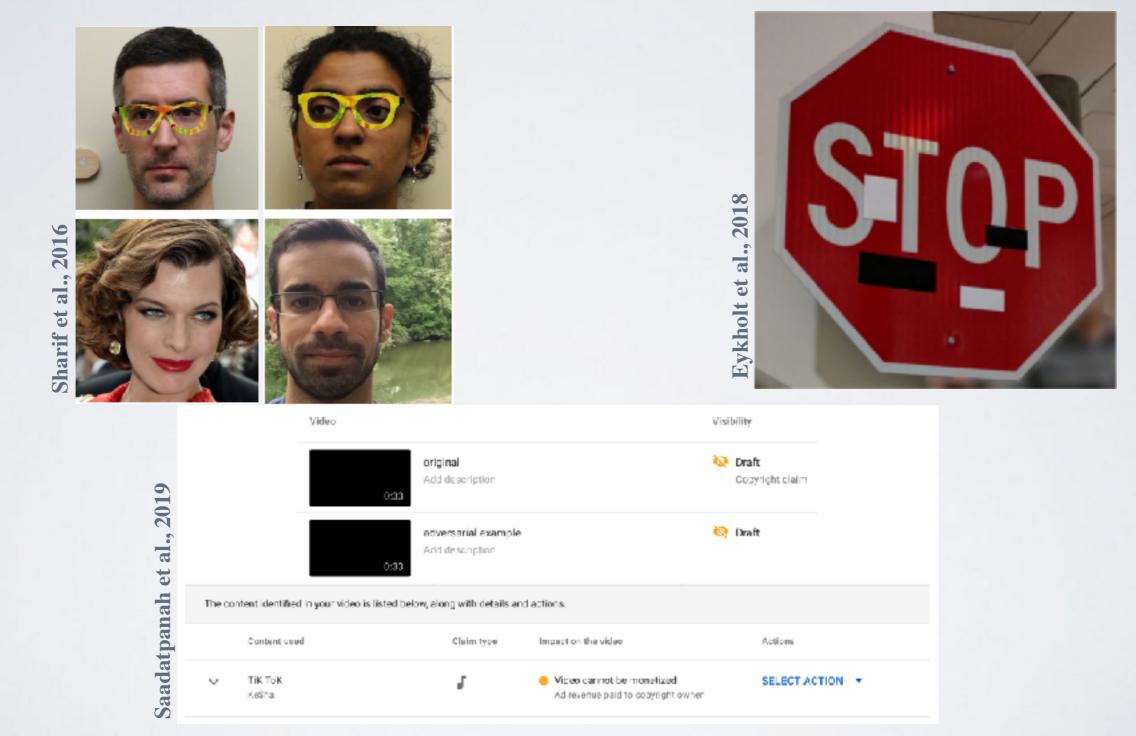
s.t.



 ℓ_{∞}

only 3% of pixels

REALISTIC ATTACKS



CCS'16 Sharif, Bhagavatula, Bauer, Reiter "Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition" CVPR 18 Eykholt, Evtimov, Fernandes, Li, Rahmati, Xiao, Prakash, Kohno, Song "Robust Physical-World Attacks on Deep Learning Visual Classification" ArXiv 19 Saadatpanah, Shafahi, Goldstein "Adversarial Attacks on Copyright Detection"

ROBUSTNESS AGAINST PER-INSTANCE PERTURBATIONS

Defending against non-targeted per-instance attacks is difficult...

Small ϵ is used for p-norm bounded attacks

For larger datasets (ImageNet) defenses focused on random targets Most studies focus on smaller datasets (CIFAR & MNIST)

DEFENDING ISTOUGH

Defense	Defense type	Under which attack	Dataset	Distance	$\mathcal{A}_{\rm nat}(f)$	$\mathcal{A}_{\rm rob}(f)$
[BRRG18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	0%
[MLW+18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	5%
[DAL+18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	0%
[SKN+18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	9%
[NKM17]	gradient mask	[ACW18]	CIFAR10	$0.015 \ (\ell_{\infty})$	-	15%
[WSMK18]	robust opt.	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	27.07%	23.54%
[MMS ⁺ 18]	robust opt.	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	87.30%	47.04%
[ZSLG16]	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	94.64%	0.15%
[KGB17]	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	85.25%	45.89%
[RDV17]	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031~(\ell_{\infty})$	95.34%	0%

source: Zhang et. al, 20/9

Defense	Dataset	Distance	Accuracy	
Buckman et al. (2018) Ma et al. (2018) Guo et al. (2018)	CIFAR CIFAR ImageNet	$\begin{array}{c} 0.031 \ (\ell_{\infty}) \\ 0.031 \ (\ell_{\infty}) \\ 0.005 \ (\ell_{2}) \end{array}$	0%* 5% 0%*	
Dhillon et al. (2018) Xie et al. (2018) Song et al. (2018) Samangouei et al.	CIFAR ImageNet CIFAR MNIST	$\begin{array}{l} 0.031 \ (\ell_{\infty}) \\ 0.031 \ (\ell_{\infty}) \\ 0.031 \ (\ell_{\infty}) \\ 0.031 \ (\ell_{\infty}) \\ 0.005 \ (\ell_{2}) \end{array}$	0% 0%* 9%* 55%**	PGD Adversarial traini
(2018) Madry et al. (2018) Na et al. (2018)	CIFAR CIFAR	$0.031 \ (\ell_{\infty})$ $0.015 \ (\ell_{\infty})$	47% 15%	

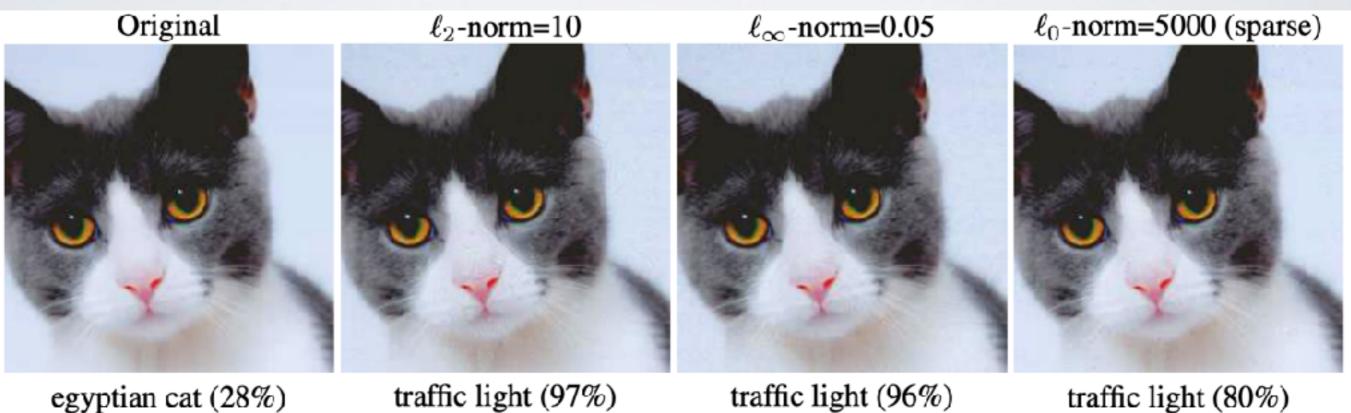
source: Athalye et. al, 2018

ICML 18 Athalye, Carlini, Wagner "Obfuscated gradients give a false sense of security"

ICML 19 Zhang, Yu, Jiao, Xing, El Ghaoui, Jordan "Theoretically principled trade-off between robustness and accuracy"

ADVERSARIALTRAINING

$$\min_{w} \max_{\delta_{i}} \frac{1}{N} \sum_{i=1}^{N} J(w, x_{i} + \delta_{i})$$
s.t. $\|\delta_{i}\|_{p} \leq \epsilon \quad \forall i \in \{1..N\}$



egyptian cat (28%)

traffic light (97%)

image source: Shafahi et. al, 2019

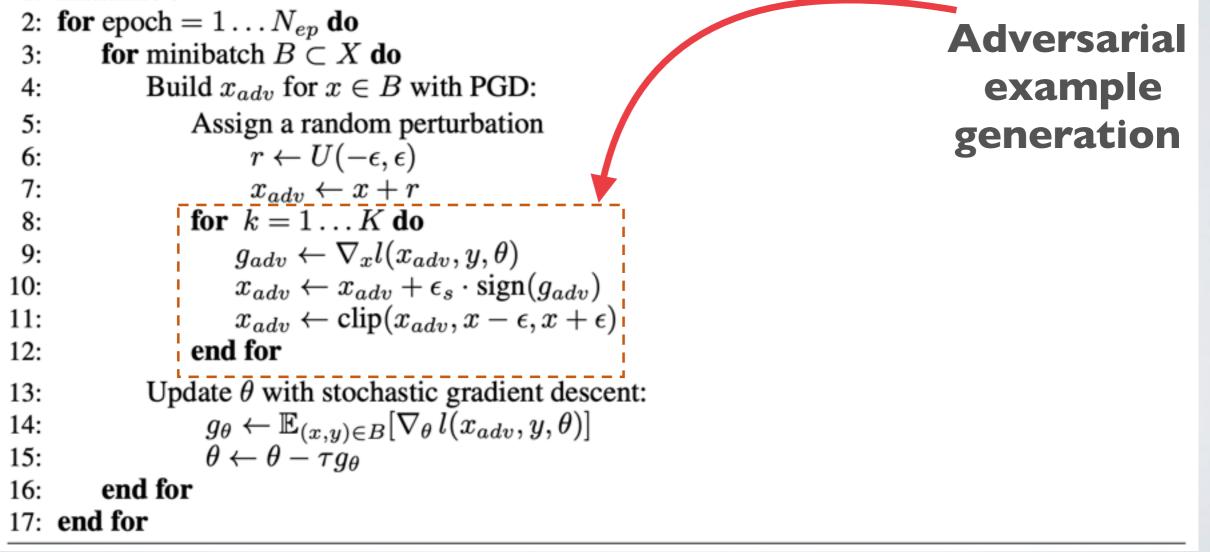
ICLR 19 Shafahi, Huang, Studer, Feizi, Goldstein "Are adversarial examples inevitable?"

PGD ADVERSARIAL TRAINING

Algorithm 1 Standard Adversarial Training (K-PGD)

Require: Training samples X, perturbation bound ϵ , step size ϵ_s , maximization iterations per minimization step K, and minimization learning rate τ

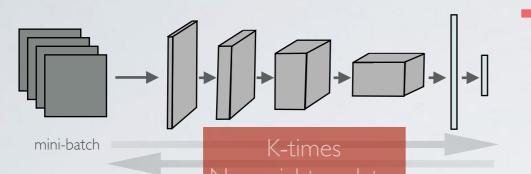
1: Initialize θ



Madry et. al, 2018

ICLR 18 Madry, Makelov, Schmidt, Tsipras, Vladu "Towards deep learning models resistant to adversarial attacks"

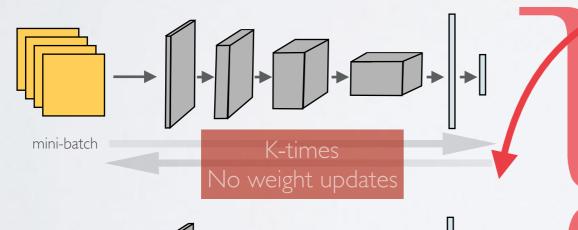
PGD ADV. TRAINING

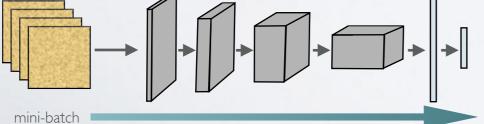


mini-batch

K-PGD adversarial training

 $\min_{w} \max_{\delta_{i}} \frac{1}{N} \sum_{i=1}^{N} J(w, x_{i} + \delta_{i})$ First weight update





Adds a K-factor Overhead: We perform an additional K Forward and Backward passes without updating the network parameters

Second weight update

ADVERSARIAL TRAINING WITH PGD REQUIRES MANY FWD/BWD PASSES

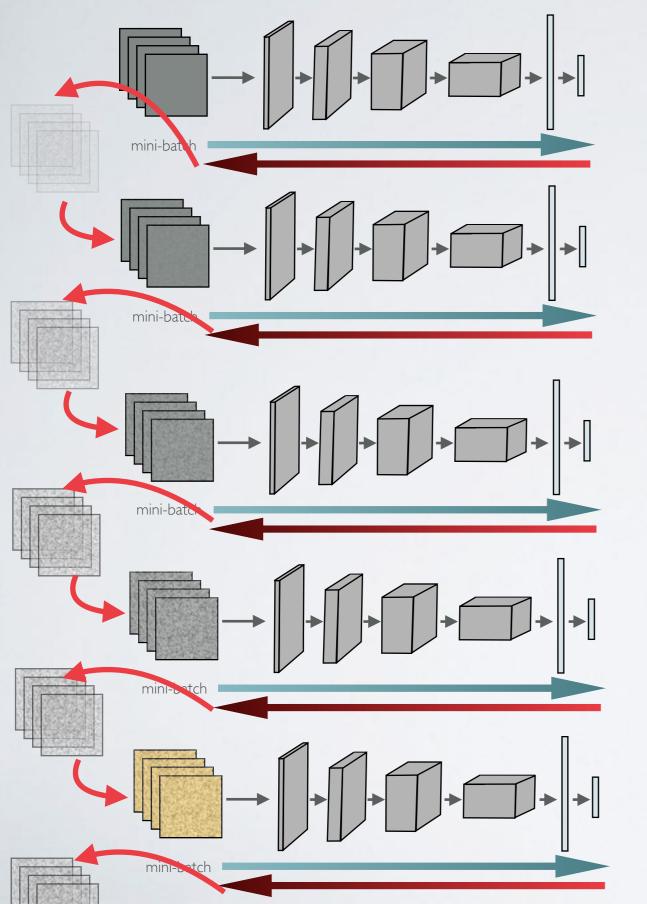
Impractical for ImageNet?

Not if you have a lot of compute...

Kannan et al., 2018	53 P100s
Xie et al., 2019	128 V100s
Qin et al., 2019	128 TPUv3

ArXiv 18 Kannan, Kurakin, Goodfellow "Adversarial Logit Pairing" CVPR 19 Xie, Wu, Maaten, Yuille, He "Feature denoising for improving adversarial robustness" NeurIPS 19 Qin, Martens, Gowal, Krishnan, Fawzi, De, Stanforth, Kohli "Adversarial Robustness Through Local Linearization"

ADV. TRAINING FOR FREE!



Free-m adversarial training

First weight update

Second weight update

m[=4] replays of the same mini-batch Third weight update

Fourth weight update

Unlike K-PGD training, we update the network parameters every time we do a back-ward pass Fifth weight update

ADVERSARIAL TRAINING FOR

FRFF!

Algorithm 2 "Free" Adversarial Training (Free-m)

Require: Training samples X, perturbation bound ϵ , learning rate τ , hop steps m 1: Initialize θ 2: $\delta \leftarrow 0$ 3: for epoch = $1 \dots N_{ep}/m$ do for minibatch $B \subset X$ do 4: for i = 1 ... m do 5: Update θ with stochastic gradient descent 6: $g_{\theta} \leftarrow \mathbb{E}_{(x,y)\in B}[\nabla_{\theta} l(x+\delta, y, \theta)]$ 7: $g_{adv} \leftarrow \nabla_x l(x+\delta,y, heta)]$ 8: $\theta \leftarrow \theta - \tau g_{\theta}$ 9: Use gradients calculated for the minimization step to update δ 10: $\delta \leftarrow \delta + \epsilon \cdot \operatorname{sign}(g_{adv})$ 11: $\delta \leftarrow \operatorname{clip}(\delta, -\epsilon, \epsilon)$ 12: 13: end for end for 14: 15: end for

Update both perturbation and network parameters in one pass
Replay every mini-batch *m* times to simulate PGD training

ADVERSARIAL TRAINING FOR FREE!

Table 1: Validation accuracy and robustness of CIFAR-10 models trained with various methods.

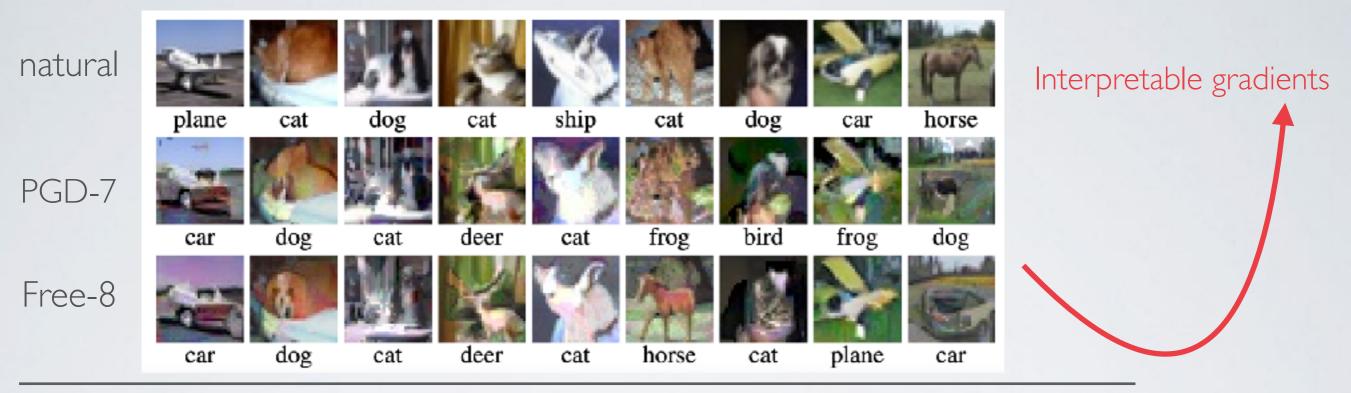
Training		Training				
ITannig	Natural Images	PGD-20	PGD-100	CW-100	10 restart PGD-20	Time (minutes)
Natural	95.01%	0.00%	0.00%	0.00%	0.00%	780
Free $m = 2$	91.45%	33.92%	33.20%	34.57%	33.41%	816
Free $m = 4$	87.83%	41.15%	40.35%	41.96%	40.73%	800
Free $m = 8$	85.96%	46.82%	46.19%	46.60%	46.33%	785
Free $m = 10$	83.94%	46.31%	45.79%	45.86%	45.94%	785
Madry <i>et al.</i> (7-PGD trained)	87.25%	45.84%	45.29%	46.52%	45.53%	5418

Architecture: WRN 32-10 No. of iterations = 80k batchsize=128 epsilon=8

Robust against many attacks

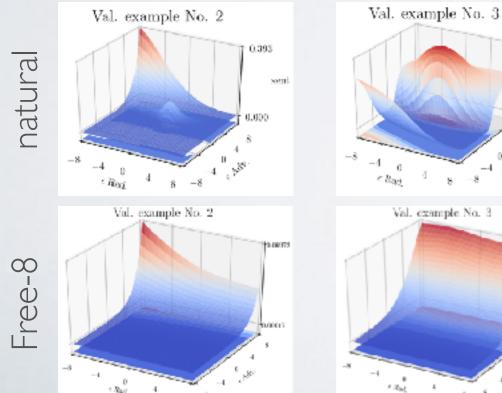
ADV. TRAINING FOR FREE!

Free-m also maintains important valuable properties of PGD adversarially trained models



13.1

xent

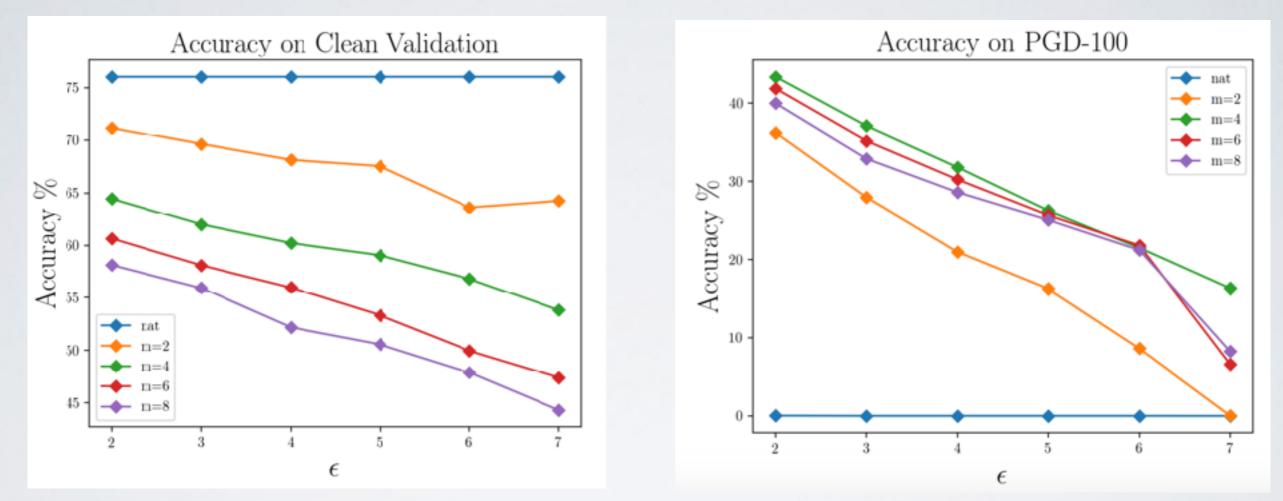


s -3

Smooth and flattened loss surface compared to naturally trained models

ADV.TRAINING FOR FREE!

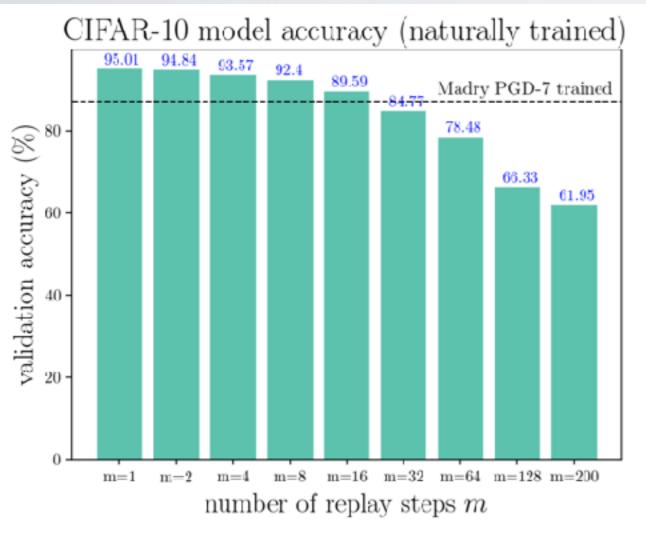
ImageNet (ResNet-50)



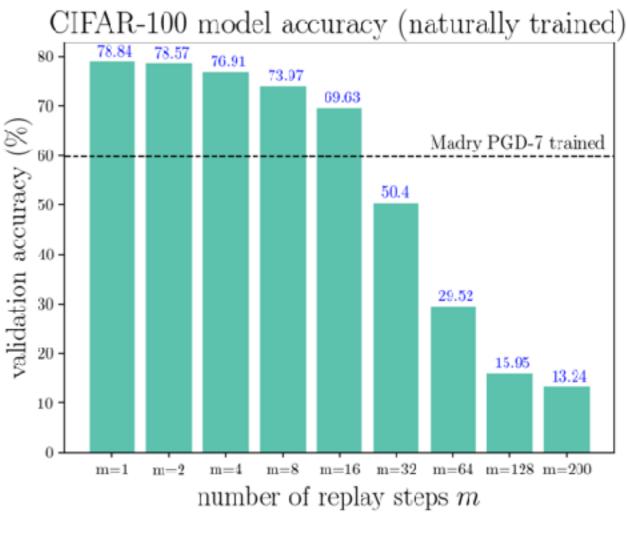
	Architecture	Evaluated Against					
Free-4	Architecture	Natural Images	PGD-10	PGD-50	PGD-100		
	ResNet-50	60.206%	32.768%	31.878%	31.816%		
(epsilon=4)	ResNet-101	63.340%	35.388%	34.402%	34.328%		
batchsize=256	ResNet-152	64.446%	36.992%	36.044%	35.994%		

ADVERSARIAL TRAINING FOR FREE!

How much replaying a mini-batch hurts...



(a) CIFAR-10 sensitivity to m



(b) CIFAR-100 sensitivity to m

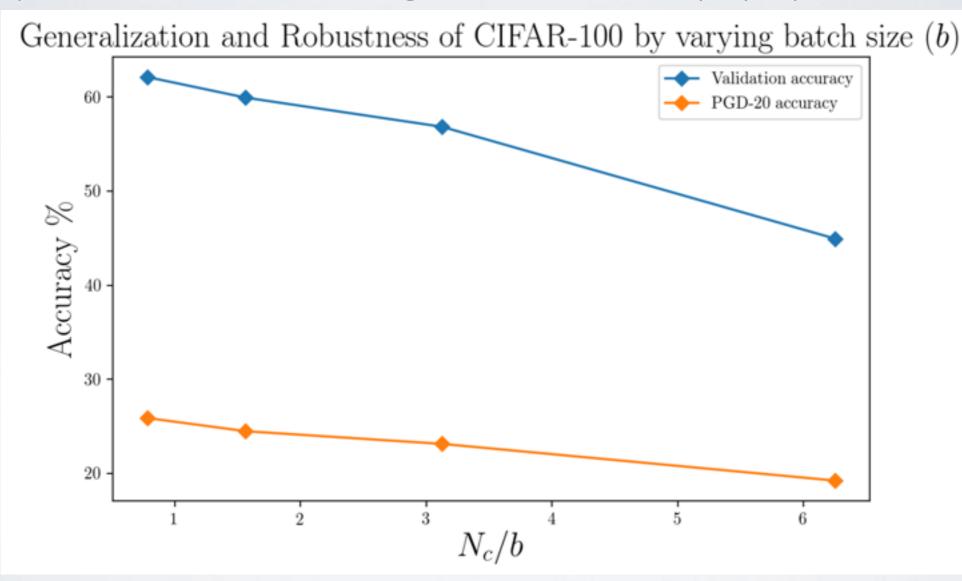
Architecture: WRN 32-10

No. of iterations = 80k

batchsize=128

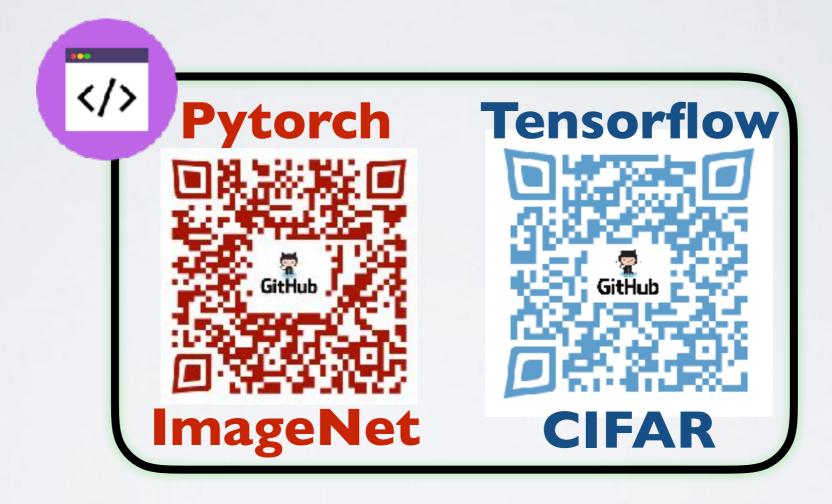
ADVERSARIAL TRAINING FOR FREE!

Could compensate some of the negative effects of replay by increasing batch-size



Our ImageNet result were with a batch-size of 256 ... $N_c/b = \frac{1000}{256} = 3.91$

FREE CODE!



THANKYOU!