
1

An Applicable Family of Data 
Flow Testing Criteria

• Assumptions about the program
– No 

• goto statements
• with
• variant records
• Functions having ‘var’ parameters

– By reference
• Procedural or functional parameters
• Conformant arrays

– size of an array parameter is not known to the called 
function until run-time

– Every Boolean expression that determines the 
flow of control has at least one occurrence 
of a variable or a call to the function ‘eof’ or 
‘eoln’

Program Structure
• Program consists of ‘blocks’
• Block

– Sequence of statements
• Whenever the first statement is executed, 

the remaining statements in the block are 
executed in the given order

• Can be represented by a flow graph

Classifying each 
variable occurrence

• Definition
– Value is stored in a memory location

• Use
– Value is fetched from a memory location

• Undefinition
– Value and location becomes unbound

• C-use
– Use in a computation or output statement
– Associated with each node

• P-use
– Use in a predicate
– Associated with each edge

Simple Statements

Simple Statements Simple Statements



2

Repetitive Statements Repetitive Statements

Repetitive Statements Conditional Statements

Conditional Statements Entry and exit nodes
• Entry node

– Has the definition of 
• Each parameter
• Each non-local variable that is used in the program
• Input buffer input↑

• Exit node has
– An undefinition of each local variable
– A c-use of each variable parameter
– A c-use of each non-local variable
– A c-use of the input buffer input↑↑↑↑



3

Arrays
• It is impossible to determine the 

particular array element which is being 
used or defined in an occurrence of an 
array variable
– A[2]
– A[i+j]

• Definition of a[expr]
– A c-use of each variable in expr
– Followed by a definition of a

• Use of a[expr]
– c-uses of all the variables in expr
– Followed by a use of a

Pointers
• Impossible to determine statically the 

memory location to which a pointer points
• Syntactic treatment
• If p is a pointer variable

– Definition of p^
• C-use of p
• Followed by a definition of p^

– Use of p^
• C-use of p
• Followed by a c-use of p^

• Ignore definitions and uses of p^

Records & Files
• Records

– Each field is treated as an individual 
variable

– Any unqualified occurrence of a record 
is treated as an occurrence of each 
field 

• File variables
– Considering the effect on the file 
buffer

Simplifying Assumptions
• No interprocedural dataflow 
analysis

• Ignore pointers
• Array reference simplification
• No aliasing/side-effects
• Consequences

– Perhaps “less than perfect” test data

Global Definition
• Global c-use

• A c-use of x in node i is global if x has been assigned 
in some block other than i

• Def-clear path wrt x “from node i to 
node j” and “from node i to edge (nm, j)”

• A path (i, n1, n2, …, nm, j) containing no definitions or 
undefinitions of x in nodes n1, n2, …, nm

• Global definition of x
– A node i has a global definition of a variable 

x if 
• it has a definition of x and 
• there is a def-clear path wrt x from node i to some 

node containing 
– a global c-use or 
– edge containing a p-use of x

Restricted Programs Class
• Satisfying the following properties

– NSUP
• No-syntactic-undefined-p-use Property

– For every p-use of a variable x on an edge (i,j), in 
P, there is some path from the start node to edge 
(i,j), which contains a global definition of x

– NSL
• Non-straight-line property

– P has at least one conditional or repetitive 
statement

» At least one node in P’s flow-graph has more 
than one successor

» At least one variable has a p-use in P



4

Def-use graph
• Obtained from the flow graph
• Associate with each node the sets

– C-use(i)
• Variables which have global c-uses in block-i

– Def(I)
• Variables which have global definitions in block-i

• Associate with each edge (i,j)
– P-use(i,j)

• Variables which have p-uses on edge (i,j)
• Define sets of nodes

– dcu(x,i)
• Nodes j such that x ∈∈∈∈ c-use(j) and there is a def-clear 

paths with respect to x from i to j
– dpu(x,i)

• Edges (j,k) such that x ∈∈∈∈ p-use(j,k) and there is a def-clear 
path with respect to x from i to (j,k)

Definitions for def-use graph

Explanation
• If x ∈∈∈∈ def(i) and j ∈∈∈∈ dcu(x,i), then

– x has a global definition in node i and 
– A c-use in node j, and
– There is a definition clear path with respect 

to x from node i to node j
• Hence

– It may be possible for control to reach node 
j with the variable x having the value which 
was assigned to it in node i

More definitions
• Definition-c-use association

– Triple (i,j,x) where i is a node containing a global 
definition of x and j ∈∈∈∈ dcu(x,i)

• Definition-p-use association
– Triple (i,(j,k),x) where i is a node containing a global 

definition of x and (j,k) ∈∈∈∈ dpu(x,i)
• A path (n1,n2, …, nj,nk) is a du-path wrt x if n1

has a global definition of x and either
– nk has a global c-use of x and (n1, …,nj, nk) is a def-

clear simple path wrt x, and
– (nj, nk) has a p-use of x and (n1, .., nj) is a def-clear 

loop-free path wrt x
• An association is a definition-c-use association, 

a definition-p-use association, or a du-path

Yet more definitions
• Complete path

– Path from the entry node to the exit node
• Covering

– A complete path ππππ covers a definition-c-use 
association (i,j,x) if it has a definition clear subpath 
wrt x from i to j

– A complete path ππππ covers a definition-p-use 
association (i,(j,k),x) if it has a definition clear
subpath wrt x from i to (j,k)

– ππππ covers a du-path ππππ’ if ππππ’ is a subpath of ππππ
– The set ΠΠΠΠ of paths covers an association if some 

element of the set does
– A test set T covers an association if the elements of 

T cause the execution of the set of paths ΠΠΠΠ, and ΠΠΠΠ
covers the association

Finally, the criteria
• Intuitively

– The family of DF testing criteria is based on 
requiring that 

• the test data execute definition-clear paths from 
each node containing a global definition of a variable 
to specified nodes containing 

– global c-uses and 
– edges containing p-uses of that variable

– For each variable definition, the criteria 
require that

• All/some definition-clear paths wrt that variable 
from the node containing the definition to all/some of 
the uses/c-uses/p-uses reachable by some such paths 
be executed



5

All-defs criterion
• If variable x has a global definition 
in node i, the all-defs criterion 
requires the test data to exercise 
some path which goes from i to 
some node or edge at which the 
value assigned to x in node i is used

All-uses criterion
• If variable x has a global definition 
in node i, the all-uses criterion 
requires the test data to exercise 
at least one path which goes from i 
to each node and edge at which the 
value assigned to x in node i is used

All-DU-paths criterion
• If variable x has a global definition 
in node i, the all-DU-paths 
criterion requires the test data to 
exercise all paths which go from i 
to each node and edge at which the 
value assigned to x in node i is used

Other DF testing criteria
• All-p-uses
• All-c-uses
• All-p-uses/some-c-uses
• All-c-uses/some-p-uses

Definitions of DF criteria “includes”
• Criterion C1 includes criterion C2 iff

– For every subprogram, any test set 
that satisfies C1 also satisfies C2

• C1 strictly includes C2, iff 
– denoted C1 ⇒⇒⇒⇒ C2, 
– C1 includes C2 and for some 
subprogram P there is a test set that 
satisfies C2 but does not satisfy C1



6

Includes relationship Applicability
• It may be the case that no test set for 

program P satisfies criterion C
– Infeasible paths

• Tailor the DF criteria so that they are 
applicable

• Assumptions
– All aliases are known
– All side effects are known
– No element of the test set causes the 

program to crash
• Execution of entry node to exit node

Executable/Feasible Paths
• Recall

– Complete path
• Path from the entry node to the exit node

• Executable/feasible complete path
– A complete path that is executed on 
some assignment of values to input 
variables

• Executable/feasible path
– A subpath of an executable complete 
path

Recall Definition
• Definition-c-use association

– Triple (i,j,x) where i is a node containing a global 
definition of x and j ∈∈∈∈ dcu(x,i)

• Definition-p-use association
– Triple (i,(j,k),x) where i is a node containing a global 

definition of x and (j,k) ∈∈∈∈ dpu(x,i)
• A path (n1,n2, …, nj,nk) is a du-path wrt x if n1

has a global definition of x and either
– nk has a global c-use of x and (n1, …,nj, nk) is a def-

clear simple path wrt x, and
– (nj, nk) has a p-use of x and (n1, .., nj) is a def-clear 

loop-free path wrt x
• An association is a definition-c-use association, 

a definition-p-use association, or a du-path

Executable Associations
• Definition

– An association is executable if there is some 
executable complete path that covers it; 
otherwise it is unexecutable

• fdcu(x,i) ∈∈∈∈ dcu(x,i)
– Nodes j such that x ∈∈∈∈ c-use(j) and there is 

an executable definition clear path wrt x 
from i to j

• fdpu(x,i) ∈∈∈∈ dpu(x,i)
– Edges (j,k) such that x ∈∈∈∈ p-use(j,k) and 

there is an executable definition clear path 
wrt x from i to (j,k)

Equivalently
• fdcu(x,i) =

– {j ∈∈∈∈ dcu(x,i) | the association (i,j,k) is 
executable}

• fdpu(x,i) =
– {(j,k) ∈∈∈∈ dpu(x,i) | the association 
(i,(j,k),x) is executable}

• Intuitively
• new criterion C* for each DF criterion C
• By selecting the required associations from 

fdcu(x,i) and fdpu(x,i) instead of from 
dcu(x,i) and dpu(x,i)



7

Feasible Data-flow Criteria 
(FDF) Includes Relationships

Interprocedural DF Testing
• Most DF testing methodologies deal with 

dependencies that exist within a 
procedure (i.e., intraprocedural)

• Data dependencies also exist among 
procedures

• Requires analysis of the flow of data 
across procedure boundaries

• Calls and Returns 
• Direct dependencies (single call/return)
• Indirect dependencies (multiple 

calls/returns)

Recursive procedureRecursive procedure

First element of arrayFirst element of array

last element of arraylast element of array

Returns the largest 
element in array

Returns the largest 
element in array

Global variableGlobal variable

Lets consider only 
reference parameters 

that reach across 
procedure boundaries

Lets consider only 
reference parameters 

that reach across 
procedure boundaries

MXMX

Actual parameters at the 
call site that are bound 

to formal reference 
parameters in called 

procedures

Actual parameters at the 
call site that are bound 

to formal reference 
parameters in called 

procedures

M1M1

M2M2

MXMX

The Def-uses A test case
S = {3,5,1,6}

F = 1
L = 4

All def-use 
pairs are 
covered

All def-use 
pairs are 
covered

Execute and 
check

Execute and 
check



8

Any missed 
def-uses?


