An Applicable Family of Data
Flow Testing Criteria

* Assumptions about the program
- No
- goto statements
+ with
+ variant records
+ Functions having 'var’ parameters
- By reference
+ Procedural or functional parameters
* Conformant arrays
- size of an array parameter is not known to the called
function until run-time
- Every Boolean expression that determines the
flow of control has at least one occurrence
of Ia variable or a call to the function ‘eof’ or
‘eoln’

Program Structure

* Program consists of ‘blocks’
+ Block

- Sequence of statements

+ Whenever the first statement is executed,
the remaining statements in the block are
executed in the given order

* Can be represented by a flow graph

Classifying each

variable occurrence
- Definition
- Value is stored in a memory location
* Use
- Value is fetched from a memory location
* Undefinition
- Value and location becomes unbound
+ C-use
- Use in a computation or output statement
- Associated with each node
* P-use
- Use in a predicate
- Associated with each edge

Simple Statements

Assignment statement: v:= expr;

¥

1

| Node i bas c-uses of cach variable in
i expr followed by a definition of v.

!
!

Simple Statements

'
Input/Output statements:

!
!

!

[read(vl,...,vn);

i readin(vl,...,vn);
! read(f,v1,...,vn);
X readin(f,v1,...,vn);
I

+

|

1

I

'

1

1

I

]

1

!

!

)

|

Node i has definitions of v1,...,vn. i
If the file variable f is present then node i '
elso has a c-use followed by a definition of f1. é !
777777777777777777777777777777777777777 ! 1
i write(el,...,en); !
'

'

'

1]

\

]

I

I

)
. writeln(el,...,en);

| write(f,¢c1,...,en);

. writeln(f,el,...,en);
|
I
1
|
|
)

Node i has c-uses of cach variable occurring in el,...,en..
If the file variable f is present then node i
also bas a definition followed by a c-use of fr.

Simple Statements

'

Procedure call: P(el,...,en); 0
Node j has c-uses of cach variable occuring in :

the expressions ¢l,...,en. i
1

|

I

I

I

i

,

'

I

These are followed by definitions of each actual
ter which corresponds to avar formal parameter.

P

Nodes i and k are included to assure that
the procedurc call has its own node.

Repetitive Statements

while statement: while B do $;

Let h be the entry node
to subgraph S.

Edges (i,h) and (i,i) have
p-uses of each variable in
the boolean expression B.

Repetitive

for statement:

for vi=el to ¢2 do §;
for v:=e¢1 downto ¢2 do §;

Let mp be a new variable.

Let f and g be the entry

and exit nodes, respectively,

of S. Node h has c-uses of

each variable in el,

followed by a definition of v and
c-uses of each variable in 2
followed by a definition of tmp.
Edges {i,f) and (i,j) have

p-uses of v and tmp. Node g has
a c-use followed by a def of v.

Statements

Repetitive Statements

repeat statement:
repeat 81;...;5n until B;

Let j be the entry node of
§1, end let k be the exit
node of Sn.

Edges (k,j) and (k,i) have
p-uses of cach variable in
the boolean expression B.

Conditional Statements

if B then 51;
if B then S1 else S2;

Let k and j be the entry nodes of
S1 and S2, respectively.

Edges (i,j) and (i,k) have

p-uscs of each variable in the
boolean expression B.

if there is no "else” part then
subgraph S2 has a single node
corresponding to an empty block.

if-then-clse statcment

Conditional Statements

case el of
label-list1 : 81;

label-listn : Sn
end;

Let ji,...,jn be the entry nodes of

§1,...,5n, respectively.
Edges (i,j1),...,(i,in)

have p-uses of each variable
in the expression el.

Entry and exit nodes

* Entry node

- Has the definition of
+ Each parameter

+ Each non-local variable that is used in the program

- Input buffer inputT

- Exit node has

- An undefinition of each local variable
- A c-use of each variable parameter
- A c-use of each non-local variable

- A c-use of the input buffer inputT

Arrays

- It is impossible to determine the
particular array element which is being
used or defined in an occurrence of an
array variable
- Al2]

- Ali+j]

- Definition of a[expr]

- A c-use of each variable in expr
- Followed by a definition of a

+ Use of a[expr]

- c-uses of all the variables in expr
- Followed by a use of a

Pointers

+ Impossible to determine statically the
memory location to which a pointer points

* Syntactic treatment

« If p is a pointer variable
- Definition of p~
+ C-use of p
+ Followed by a definition of p”
- Use of p”
- C-useof p
+ Followed by a c-use of p”

- Ignore definitions and uses of p~

Records & Files

- Records

- Each field is treated as an individual
variable
- Any unqualified occurrence of a record
is treated as an occurrence of each
field
- File variables

- Considering the effect on the file
buffer

Simplifying Assumptions

* No interprocedural dataflow
analysis

+ Ignore pointers
* Array reference simplification
* No aliasing/side-effects
+ Consequences
- Perhaps “less than perfect” test data

Global Definition

- Global c-use
+ A c-use of x in hode i is global if x has been assigned
in some block other than i
- Def-clear path wrt x “from node i to
node j“ and “from node i to edge (n,, j)*
+ Apath (i, n, n,, .., ny, j) containing no definitions or
undefinitions of x in nodes ny, n,, ..., n,

+ Global definition of x
- A node i has a global definition of a variable
x if
+ it has a definition of x and
* there is a def-clear path wrt x from node i to some
node containing

- a global c-use or
- edge containing a p-use of x

Restricted Programs Class

- Satisfying the following properties
- Nsup

* No-syntactic-undefined-p-use Property

- For every p-use of a variable x on an edge (i,j), in
P, there is some path from the start node to edge
(i.§), which contains a global definition of x

- NSL
+ Non-straight-line property
- P has at least one conditional or repetitive
statement

» At least one node in P's flow-graph has more
than one successor

» At least one variable has a p-use in P

Def-use graph

+ Obtained from the flow graph
+ Associate with each node the sets
- C-use(i)
+ Variables which have global c-uses in block-i
- Def(I)
+ Variables which have global definitions in block-i
+ Associate with each edge (i.j)
- P-use(i,j)
+ Variables which have p-uses on edge (i,j)
- Define sets of nodes
- deu(x,i)
+ Nodes j such that x e c-use(j) and there is a def-clear
paths with respect to x from i to j

- dpu(x, i)
+ Edges (j,k) such that x e p-use(j k) and there is a def-clear
path with respect to x from i to (j,k)

Definitions for def-use graph

v = the set of variables

N = the set of nodes

E = the set of edges

def(i) = {x € VI x has a global definizion in block i}

c-use(i) = {xe€ VI x hasa global c-use in block i}

p-use(ij) = {x € V| x has a p-use in edge (ij) }

deu(x,i) = f{je Nlxe c-use(j) and there is a def-clear path wrt x from i to j}
dpu(x) = {(GX) € Elxe puse(jk) and there is a def-clear path wrt x fromito (j,k) }

Explanation

* If x e def(i) and j € dcu(x,i), then
- x has a global definition in node i and
- A c-use in node j, and
- There is a definition clear path with respect
to x from node i to node j
* Hence

- It may be possible for control to reach node
j with the variable x having the value which
was assigned to it in node i

More definitions

+ Definition-c-use association
- Triple (i,j,x) where i is a node containing a global
definition of x and j e dcu(x,i)
+ Definition-p-use association
- Triple (i,(j.k).x) where i is a node containing a global
definition of x and (j,k) e dpu(x,i)
* A path (ng,n;, .., ni,ny) is a du-path wrt x if n,
has a global definition of x and either
- ny has a global c-use of x and (n;, ...,n;, n) is a def-
clear simple path wrt x, and
- (nj, n,) has a p-use of x and (ng, .., nj) is a def-clear
loop-free path wrt x
+ An association is a definition-c-use association,
a definition-p-use association, or a du-path

Yet more definitions

+ Complete path

- Path from the entry node to the exit node
+ Covering

- A complete path & covers a definition-c-use
association (i, j,x) if it has a definition clear subpath
wrt x from i to j
A complete path n covers a definition-p-use
association (i,(j.k),x) if it has a definition clear
subpath wrt x from i to (j,k)
n covers a du-path &' if ©' is a subpath of =
The set II of paths covers an association if some
element of the set does
A test set T covers an association if the elements of
T cause the execution of the set of paths I, and I
covers the association

Finally, the criteria

+ Intuitively

- The family of DF testing criteria is based on
requiring that
+ the test data execute definition-clear paths from
each node containing a global definition of a variable
to specified nodes containing
- global c-uses and
- edges containing p-uses of that variable
- For each variable definition, the criteria
require that
+ All/some definition-clear paths wrt that variable
from the node containing the definition to all/some of
the uses/c-uses/p-uses reachable by some such paths
be executed

All-defs criterion

+ If variable x has a global definition
in node i, the all-defs criterion
requires the test data to exercise
some path which goes from i to
some node or edge at which the
value assigned to x in node i is used

All-uses criterion

+ If variable x has a global definition

in node i, the all-uses criterion
requires the test data to exercise
at least one path which goes from i
to each node and edge at which the
value assigned to x in node i is used

All-DU-paths criterion

+ If variable x has a global definition
in node i, the all-DU-paths
criterion requires the test data to
exercise all paths which go from i
to each node and edge at which the
value assigned to x in node i is used

Other DF testing criteria

* All-p-uses
* All-c-uses
* All-p-uses/some-c-uses
* All-c-uses/some-p-uses

Definitions of DF criteria

CRITERION ASSOCIATIONS REQUIRED

All-defs Some (i,j,x) s.t jedcu(x,i) or
some @Gk)x) st
Gk)e dpugx,i)

All-c-uses All (1,j,x) s.t. jedeou(x,i).

"All-p-uses AlLG,(0.0) s.t. (k)€ dpu(xi).

All-p-uses/some-c-uses All (,GX0),x) s.t. (k) dpu(x.i).

In addidon, if dpu(x,i)=$ then
some (igx) st jedcu(x,i)
Note that since i has a global
definition of x, dpu(x,i)}=¢ =>
deu(x,iy#0.
"All-c-uscs/some-p-uses All (ij,x) st jedeu(xi). In
addition, if dcu(x,i)=¢ then
some (.GJox) st
(k)€ deu(x.i). Note that since
i has a global definition of x,
deu(x,i)= = dpu(x,i)#d.
“All-uses All (ig.x) st j € deu(x,i) and
all (,(GK)x) s.t. (,k)e dpu(x,i).
"All-du-paths All du-paths from i to j with
respect to x for each je dou(x,i)
and all du-paths from i to k)
with respect to x for each
(j.K)e dpux,i).

“includes”

* Criterion C, includes criterion C, iff

- For every subprogram, any test set
that satisfies C, also satisfies C,

* C, strictly includes C,, iff

- denoted C; = C,,

- C, includes C, and for some
subprogram P there is a test set that
satisfies C, but does not satisfy C,

Includes relationship

ALL-PATHS

I

ALL-DU-PATHS

N3
ALL-USES

N
ALL-C-USES/SOME-P-USES ALL-P-USES/SOME-C-USES
N N
ALLC S ALL-DEFS ALL-P-USES

ALL-NODES

Applicability

It may be the case that no test set for
program P satisfies criterion C
- Infeasible paths

* Tailor the DF criteria so that they are
applicable

* Assumptions
- All aliases are known
- All side effects are known

- No element of the test set causes the
program to crash
+ Execution of entry node to exit node

Executable/Feasible Paths

* Recall
- Complete path
+ Path from the entry node to the exit node
- Executable/feasible complete path
- A complete path that is executed on
some assignment of values to input
variables
+ Executable/feasible path

- A subpath of an executable complete
path

Recall Definition

+ Definition-c-use association
- Triple (i,j,x) where i is a node containing a global
definition of x and j e dcu(x,i)
+ Definition-p-use association
- Triple (i,(j.k).x) where i is a node containing a global
definition of x and (j,k) e dpu(x,i)
* A path (ng,n;, .., ni,ny) is a du-path wrt x if n,
has a global definition of x and either
- ny has a global c-use of x and (n;, ...,n;, n) is a def-
clear simple path wrt x, and
- (n;, nY has a p-use of x and (n,, .., ny) is a def-clear
loop-free path wrt x
+ An association is a definition-c-use association,
a definition-p-use association, or a du-path

Executable Associations

- Definition
- An association is executable if there is some
executable complete path that covers it:
otherwise it is unexecutable

+ fdeu(x,i) e deu(x,i)

- Nodes j such that x e c-use(j) and there is
an executable definition clear path wrt x
from i to j

+ fdpu(x,i) € dpu(x,i)

- Edges (j.k) such that x € p-use(j.k) and
there is an executable definition clear path
wrt x from i to (j.k)

Equivalently

« fdeu(x,i) =
- {j € decu(x,i) | the association (i, j,K) is
executable}
+ fdpu(x,i) =
- {(j.k) e dpu(x,i) | the association
(i,(j.k).x) is executable}
+ Intuitively
* new criterion C* for each DF criterion C
+ By selecting the required associations from

fdceu(x,i) and fdpu(x,i) instead of from
deu(x,i) and dpu(x,i)

Feasible Data-flow Criteria
(FDF)

CRITERION REQUIRED ASSOCIATIONS

(all-defs)* if fdcu(x,i) U fdpu(x.i) # ¢ then
some (ij.x) s.t jefdeu(x,i) or
some G.G.X)x) st

- (iX)e fdpu(x,i).

all-c-uses)* all (ij,x) s.t. je fdcu(x,i).

all-p-uses)* all (i,(.K),x) s.t. (j.k)e fdpu(x,i).

(all-p-uses/some-c-uses)* all (i,.k),x) s.t. (j,k)e fdpu(x,i).

In addition, if fdpu(x,i) = ¢ and
fdcu(x,i) # ¢ then some (ij,x)
s.t. je fdcu(x,i).

(all-c-uses/some-p-uses)* all (,jx) s.t. jefdcu(x,i). In
addition, if fdcu(x,i) = ¢ and
fdpu(x,i) # ¢ then some

(1,(16),%) s.t. (.)€ fdpu(x,i).

(all-uses)* all (ij,x) s.t. j € fdcu(x,i) and
all G,Gkx) st (k) e
fdpu(x,i).

(all-du-paths)* all executable du-paths with

respect to x from i to j st
jedcu(x,i) and all executable
du-paths with respect to x from
ito (k) for cach (k) e
dpu(x).

Includes Relationships

(ALL-PATHS)*

| N

(ALL-DU-PATHS)* (ALL-EDGES)*

N
(ALL-USES)* (ALL-NODES)*

7N

(ALL-C-USES/SOME-P-USES)*

AV

(ALL-P-USES/SOME.-C-USES)*

< N Ny

Interprocedural DF Testing

* Most DF testing methodologies deal with
dependencies that exist within a
procedure (i.e., intraprocedural)

- Data dependencies also exist among
procedures

- Requires analysis of the flow of data
across procedure boundaries

Calls and Returns
Direct dependencies (single call/return)

Indirect dependencies (multiple
calls/returns)

(ALL-C-USES)* (ALL-DEFS)* (ALL-P-USES)*
‘module Main
declare . Recursive procedure

S: an array 1..N of integer;

LMAX,MIN: integer; S i - - - - - -
begin Bl « param(F,.L,MX) !

GotMax(l First element of array |

g = Actual parameters at the
/_ call site that are bound
?::::dm Sz last element to formal reference
PTG : —— parameters in called
- rafey
e Retb procedures
begin

if F+1=L then PairMax(S|

else begin
MD := (F+L) DIV 2;

oy UlLviaX D
GetMax(F,MD,M1). - M1
GetMax(MD+1,L,M2); Globall e
PairMax(M1,M2,MX):; §_ =
endif; M2
end;

procedure PairMax; Lets consi
Input LIK: reference integer; reference parameters MX
begin that reach across

ifI>] then K :=1 .

elseK:=J; procedure boundaries

end;

The Def-uses

A test case

Execute and
check

All def-use
pairs are
covered

Any missed
def-uses?

module Main
declare

for I := 1to N do read(S[1]);

N]

declare M1,M2,MD: ini
begin
if F+1=L then PairMax(S[F],;
else begin
MD := (F+L) DIV 2;
GetMax(FMD M1);
GetMax(M2);,

ifI>) then K :=1
elseK:=1J;

