Goals of testing

+ Reveal faults
+ Correctness
+ Reliability
- Usability
+ Robustness
+ Performance

Facts About Testing

* Question “does program P obey
specification S" is undecidable!

+ Every testing technique embodies some
compromise between accuracy and
computational cost

* Facts
- Inaccuracy is not a limitation of the
technique
- It is theoretically impossible to devise a
completely accurate technique
- Every practical technique must sacrifice
accuracy in some way

Cost/benefit

+ Testing takes more than 50% of
the total cost of software
development
- More for critical software

+ Software quality will become the
dominant success criterion

Types of Verification

- Execution-based Verification
* Non-execution based Verification

- Discussion

Execution-based
Verification

+ Generating and executing test cases on
the software
+ Types of testing
- Testing to specifications
« Black-box testing

- Testing to code
+ Glass-box (white-box) testing

- Remember: difference is in generating test
cases only! Verification of correctness is
usually done via specifications in both cases

Black-box Testing

- Discussion: MAC/ATM machine
example
- Specs
+ Cannot withdraw more than $300
+ Cannot withdraw more than your account
balance

x —| Software

White-box Testing

*+ Example
x: 1..1000;

INPUT-FROM-USER(x);
If (x<=300){

INPUT-FROM-FILE(BALANCE);

If (x <= BALANCE)

GiveMoney x;

else Print "You don't have $x in your account!l"}
else

Print “"You cannot withdraw more than $300";
Eject Card;

Top-down/Bottom-up

* Bottom-up

- Lowest level modules tested first
+ Don't depend on any other modules
« Driver
- Auxiliary code that calls the module
+ Top-down
- Executive module tested first

+ Stub

- Auxiliary code that simulates the results of a
routine

Discussion

* Which is superior?
* Neither can be done exhaustively
- Too many test cases

+ Each technique has its strengths - use
both
- Generally, first use black-box
- Then white-box for missed code

* Accept that all faults cannot be
detected
- When to stop?

Determining Adequacy

+ Statement coverage
- Statements

+ Branch coverage
- Both IF and ELSE

* Path coverage
+ All-def-use-path coverage

+ Philosophy: what does it all mean?
- Does coverage guarantee absence of faults?
- Can we always get 100% coverage?

Surprise Quiz
+ Determine test cases so that each
print statement is executed at
least once

input(x);
if (x < 100)
print “Line 1;
else {
if (x <50) print "Line 2"

else print "Line 3";

Sampling the State Space

- If (i == j)

+ Do something wrong
- Else

+ Do the right thing
- Endif

* Uniform sampling of the input space
+ Test adequacy criteria

- Designed to insure behaviors chosen are
appropriately distributed to increase the
likelihood of revealing errors

Non-execution Based
+ Key idea

- Review by a team of experts: syntax
checker?

+ Code readings

+ Walkthroughs

- Manual simulation by team leader

* Inspections

- Developer narrates the reading

+ Formal verification of correctness

- Very expensive

- Justified in critical applications

- Semi-formal: some assertions

Non-execution Based
. JPL

- On the average, 2 hour inspection
- 4 major and 14 minor faults
- Saved $25,000 per inspection
* Rate of faults
- Decreases exponentially by phase
+ Cleanroom approach

- Incremental development, formal specs
and design, readings, inspections

Simulation

Integration with system hardware is
central to the design

Model the external hardware
* Model the interface

* Examples
Discussion

Boundary-value Analysis

Partition the program domain into
input classes

* Choose test data that lies both
inside each input class and at the
boundary of each class

Select input that causes output at
each class boundary and within each
class

+ Also known as stress testing

Testing Approaches

Top-down
Bottom-up
* Big bang

Unit testing
Integration testing
+ Stubs

+ System testing

Glossary

* Fault

- An incorrect step, process, or data definition
in a computer program

+ Error (ISO)

- A discrepancy between a computed,
observed, or measured value or condition and
the true, specified, or theoretically correct
value or condition

* Failure (IEEE)
- The inability of a system or component to

perform its required functions within
specified performance requirements

Glossary
+ Exception (IEEE)

- An event that causes suspension of normal
program operation. Types include addressing
exception, data exception, operation
exception, overflow exception, protection
exception, underflow exception

+ Anomaly (TEEE)

- Anything observed in the documentation or
operation of software that deviates from
expectations based on previously verified
software products or reference documents

Structural Testing

- Coverage-based testing
- Test cases to satisfy statement
coverage
- Or branch coverage, etc
+ Complexity-based testing

- Cyclomatic complexity
+ Graph representation
+ Find the basis set
+ # Of braches +1

Mutation Testing

- Errors are introduced in the
program to produce “mutants”

 Run test suite on all mutants and
the original program

Test Case Generation

* Test input to the software

- Some researchers/authors also
define the test case to contain the
expected output for the test input

Category-partition Method

* Key idea
- Method for creating functional test
suites
- Role of test engineer
* Analyze the system specification
+ Write a series of formal test specifications
- Automatic generator
+ Produces test descriptions

AI Planning Method

* Key idea
- Input to command-driven software is a
sequence of commands
- The sequence is like a plan
+ Scenario to test
- Initial state
- Goal state

Example
+ VCR command-line software
- Commands
- Rewind
+ If at the end of tape
- Play
+ If fully rewound
- Eject
+ If at the end of tape
- Load

+ If VCR has ho tape

Preconditions & Effects

* Rewind
- Precondition: if at end of tape
- Effects: at beginning of tape

* Play
- Precondition: if at beginning of tape
- Effects: at end of tape

- Eject
- Precondition: if at end of tape
- Effects: VCR has no tape

* Load
- Precondition: if VCR has no tape
- Effects: VCR has tape

Preconditions & Effects

+ Rewind
- Precondition: end_of_tape
- Effects: —end_of_tape

+ Play
- Precondition: —end_of_tape
- Effects: end_of_tape

+ Eject
- Precondition: end_of_tape
- Effects: —has_tape

-+ Load
- Precondition: —has_tape
- Effects: has_tape

Initial and Goal States

+ Initial state

- end_of_tape
+ Goal state

- —end_of_tape
* Plan?

- Rewind

Initial and Goal States

* Initial state

- —end_of_tape & has_tape
* Goal state

- —=has_tape
* Plan?

- Play

- Eject

Iterative Relaxation

+ Key idea
- Path-oriented testing
- Problem: generation of test data that
causes a program to follow a given
path
+ Technique
- Choose arbitrary input
- Iteratively refine it until all the
branch predicates on the given path
evaluate to the desired outcome

Example
Program

6

input variables
X, Y, 2

Test Coverage & Adequacy

* How much testing is enough?
* When to stop testing
+ Test data selection criteria
* Test data adequacy criteria
- Stopping rule
- Degree of adequacy
* Test coverage criteria

* Objective measurement of test
quality

Preliminaries

+ Test data selection
- What test cases
+ Test data adequacy criteria
- When to stop testing
- Examples
- Statement coverage
- Branch coverage
- Def-use coverage
- Path coverage

Goodenough & Gerhart ['75]

* What is a software test adequacy

criterion

- Predicate that defines "what
properties of a program must be
exercised to constitute a thorough
test”, i.e., One whose successful
execution implies no errors in a tested
program

Uses of Test Adequacy

* Objectives of testing

* In terms that can be measured
- For example branch coverage

+ Two levels of testing
- First as a stopping rule

- Then as a guideline for additional test
cases

Categories of Criteria

- Specification based
- All-combination criterion
+ Choices
- Each-choice-used criterion
+ Program based
- Statement
- Branch
* Note that in both the above types, the
correctness of the output must be
checked against the specifications

Others

*+ Random testing
- Statistical testing

Classification according to

underlying testing approach
+ Structural testing
- Coverage of a particular set of
elements in the structure of the
program
* Fault-based testing

- Some measurement of the fault
detecting ability of test sets

* Error-based testing
- Check on some error-prone points

Structural Testing

* Program-based structural testing

- Control-flow based adequacy criteria
+ Statement coverage
* Branch coverage

+ Path coverage
- Length-i path coverage
+ Multiple condition coverage
- All possible combinations of truth values of
predicates

- Data-flow based adequacy criteria

Structural Testing

- Data-flow based adequacy criteria
- All definitions criterion
- Each definition to some reachable use
- All uses criterion
- Definition to each reachable use
+ All def-use criterion
- Each definition to each reachable use

Fault-based Adequacy

+ Error seeding

- Introducing artificial faults to
estimate the actual number of faults

* Program mutation testing

- Distinguishing between original and
mutants
+ Competent programmer assumption
- Mutants are close to the program
+ Coupling effect assumption
- Simple and complex errors are coupled

Test Oracles

- Discussion
- Automation of oracle necessary
- Expected behavior given
- Necessary parts of an oracle

Test Oracle

- A test oracle determines whether a
system behaves correctly for test
execution

+ Webster dictionary - oracle

- A person giving wise or authoritative
decisions or opinions

- An authoritative or wise expression or
answer

Purpose of Test Oracle

+ Sequential systems
- Check functionality
* Reactive (event-driven) systems
- Check functionality
- Timing
- Safety

Reactive Systems

.

Complete specification requires use
of multiple computational paradigms
Oracles must judge all behavioral
aspects in comparison with all
system specifications and
requirements

Hence oracles may be developed
directly from formal specifications

.

.

Parts of an Oracle

+ Oracle information
- Specifies what constitutes correct behavior
+ Examples: input/output pairs, embedded assertions
+ Oracle procedure
- Verifies the test execution results with
respect to the oracle information
+ Examples: equality
+ Test monitor
- Captures the execution information from the
run-time environment
+ Examples
- Simple systems: directly from output

- Reactive systems: events, timing information,
stimuli, and responses

Regression Testing

+ Developed first version of software
+ Adequately tested the first version
* Modified the software: Version 2 now

needs to be tested

+ How to test version 2?
* Approaches

- Retest entire software from scratch

- Only test the changed parts, ignoring
unchanged parts since they have already
been tested

- Could modifications have adversely affected
unchanged parts of the software?

Regression Testing

“Software maintenance task
performed on a modified program to
instill confidence that changes are
correct and have not adversely
affected unchanged portions of the
program.”

Regression Testing Vs.
Development Testing

* During regression testing, an
established test set may be
available for reuse

+ Approaches
- Retest all

- Selective retest (selective regression
testing) < main focus of research

Formal Definition

* Given a program P,

- Its modified version P', and

* A fest set T
- Used previously to test P

* Find a way, making use of T to gain
sufficient confidence in the
correctness of P’

Selective Retesting

/ T \
Tests to rerun Tests not to rerun
* Tests to rerun
- Select those tests that will produce
different output when run on P
* Modification-revealing test cases
+ It is impossible to always find the set of

modification-revealing fest cases - (we cannot predict
when P will halt for a test)

- Select modification-traversing test cases

+ If it executes a hew or modified statement in P’ or
misses a statement in P' that it executed in P

Procedure avg

81. count = 0
g2. fread(fileptr,n)
p3, while (not EOF) do

P4, if (n<0)
85. return(error)
else
S6. numarray[count] = n
87. count++
endif
s8. fread(fileptr,n)

endwhile
89. avg = calcavg(numarray,count)

810. return(avg)

Fig. 1. Procedure avg and its CFG.

T = {t2, t3}

Cost of Regression Testing

|

4=

Cost = C,
Selective Retest

Retest All

We want C, < C,

Key is the test selection algorithm/technique

!

Cost = C,

We want fo maintain the same “quality of testing”

Factors to Consider

* Testing costs
* Fault-detection ability
+ Test suite size vs. Fault-detection

ability

- Specific situations where one

technique is superior to another

10

