CMSC 330: Organization of Programming Languages

Theory of Regular Expressions

The Theory Behind r.e.'s

- That's it for the basics of Ruby
 - If you need other material for your project, come to office hours or check out the documentation
- Next up: How do r.e.'s really work?
 - Mixture of a very practical tool (string matching with r.e.'s) and some nice theory
 - A great computer science result

A Few Questions about Regular Expressions

- What does a regular expression represent?
 - Just a set of strings
- What are the basic components of r.e.'s?
 - E.g., we saw that e+ is the same as ee*
- How are r.e.'s implemented?
 - We'll see how to build a structure to parse r.e.'s

CMSC 330

3

Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ
- Example alphabets:

```
- Binary: \Sigma = \{0,1\}
```

- Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$

- Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$

CMSC 330

Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("" in Ruby)
 - |s| is the length of string s
 - |Hello| = 5, $|\epsilon| = 0$
 - Note: \emptyset is the empty set (with 0 elements); $\emptyset \neq \{ \epsilon \}$
- Example strings:
 - $-0101 \in \Sigma = \{0,1\}$ (binary)
 - 0101 ∈ Σ = decimal
 - 0101 ∈ Σ = alphanumeric

CMSC 330

5

Definition: Concatenation

- · Concatenation is indicated by juxtaposition
 - If s_1 = super and s_2 = hero, then s_1s_2 = superhero
 - Sometimes also written s₁·s₂
 - For any string s, we have $s\epsilon = \epsilon s = s$
 - You can concatenate strings from different alphabets, then the new alphabet is the union of the originals:
 - If s_1 = super $\in \Sigma_1$ = {s,u,p,e,r} and s_2 = hero $\in \Sigma_2$ = {h,e,r,o}, then s_1s_2 = superhero $\in \Sigma_3$ = {e,h,o,p,r,s,u}

CMSC 330

Definition: Language

- A language is a set of strings over an alphabet
- Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
 - Give an example element of this language (123) 456-7890
 - Are all strings over the alphabet in the language? No
 - Is there a Ruby regular expression for this language?

```
/\(d{3,3}\) \d{3,3}-\d{4,4}/
```

- Example: The set of all strings over Σ
 - Often written Σ*

CMSC 330

7

Languages (cont'd)

 Example: The set of strings of length 0 over the alphabet Σ = {a, b, c}

```
- \{s \mid s \in \Sigma^* \text{ and } |s| = 0\} = \{\epsilon\} \neq \emptyset
```

- Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language?

No. Matching brackets so they are balanced is impossible. $\{\{\{\}\}\}\}$ or $\{^3\}^3$ or, in general, $\{^n\}^n$

- Can r.e.'s represent all possible languages?
 - The answer turns out to be no!
 - The languages represented by regular expressions are called, appropriately, the <u>regular languages</u>

CMSC 330

Operations on Languages

- Let Σ be an alphabet and let L, L₁, L₂ be languages over Σ
- Concatenation L₁L₂ is defined as

```
- L_1L_2 = {xy | x ∈ L<sub>1</sub> and y ∈ L<sub>2</sub>}

- Example: L<sub>1</sub> = {"hi", "bye"}, L<sub>2</sub> = {"1", "2"}

• L<sub>1</sub>L<sub>2</sub> = {"hi1", "hi2", "bye1", "bye2"}
```

Union is defined as

```
- L_1 \cup L_2 = \{ x \mid x \in L_1 \text{ or } x \in L_2 \}

- Example: L_1 = \{\text{"hi", "bye"}\}, L_2 = \{\text{"1", "2"}\}

• L_1 \cup L_2 = \{\text{"hi", "bye", "1", "2"}\}
```

CMSC 330

a

Operations on Languages (cont'd)

Define Lⁿ inductively as

```
- L^0 = \{\epsilon\}
- L^n = LL^{n-1} for n > 0
```

In other words,

```
-L^{1} = LL^{0} = L\{\epsilon\} = L

-L^{2} = LL^{1} = LL

-L^{3} = LL^{2} = LLL

-...
```

CMSC 330

Examples of Lⁿ

- Let L = {a, b, c}
- Then

```
- L^{0} = \{\epsilon\}
- L^{1} = \{a, b, c\}
- L^{2} = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}
```

CMSC 330

11

Operations on Languages (cont'd)

• Kleene closure is defined as

$$L^* = U_{i \in [0..\infty]} L^i$$

• In other words...

L* is the language (set of all strings) formed by concatenating together zero or more strings from L

CMSC 330

Definition of Regexps

 Given an alphabet Σ, the regular expressions over Σ are defined inductively as

regular expression	denotes language	
Ø	Ø	
8	{ε}	
each element $\sigma \in \Sigma$	{σ}	

– ...

CMSC 330

13

Definition of Regexps (cont'd)

 Let A and B be regular expressions denoting languages L_A and L_B, respectively

regular expression	denotes language	
AB	L_AL_B	
(A B)	L _A UL _B	
A*	L _A *	

- There are no other regular expressions over Σ
- We use ()'s as needed for grouping

CMSC 330

The Language Denoted by an r.e.

 For a regular expression e, we will write [[e]] to mean the language denoted by e

```
- [[a]] = {a}
- [[(a|b)]] = {a, b}
```

 If s∈[[re]], we say that re accepts, describes, or recognizes s.

CMSC 330

Example 1

- All strings over $\Sigma = \{a, b, c\}$ such that all the a's are first, the b's are next, and the c's last
 - Example: aaabbbbccc but not abcb
- Regexp: a*b*c*
 - This is a valid regexp because:
 - a is a regexp ([[a]] = {a})
 - a* is a regexp ([[a*]] = {ε, a, aa, ...})
 - Similarly for b* and c*
 - So a*b*c* is a regular expression

(Remember that we need to check this way because regular expressions are defined inductively.)

Which Strings Does a*b*c* Recognize?

```
aabbbcc  \text{Yes; aa} \in [[a^*]], \text{ bbb} \in [[b^*]], \text{ and } \text{cc} \in [[c^*]], \text{ so entire string is in } \\ \quad [[a^*b^*c^*]]  abb  \text{Yes, abb} = \text{abb}\epsilon, \text{ and } \epsilon \in [[c^*]]  ac  \text{Yes}   \epsilon   \text{Yes}  aacbc  \text{No}  abcd  \text{No} -- \text{ outside the language}
```

Example 2

- All strings over $\Sigma = \{a, b, c\}$
- Regexp: (a|b|c)*
- Other regular expressions for the same language?

```
- (c|b|a)*
- (a*|b*|c*)*
- (a*b*c*)*
- ((a|b|c)*|abc)
- etc.
```

CMSC 330

Example 3

- All whole numbers containing the substring 330
- Regular expression: (0|1|...|9)*330(0|1|...|9)*
- What if we want to get rid of leading 0's?
- ((1|...|9)(0|1|...|9)*330(0|1|...|9)* | 330(0|1|...|9)*)
- Any other solutions?
- Challenge: What about all whole numbers not containing the substring 330?
 Is it recognized by a regexp?

 Yes. We'll see how to find it later...

CMSC 330

Example 4

- What is the English description for the language that (10|0)*(10|1)* denotes?
 - $-(10|0)^*$
 - 0 may appear anywhere
 - 1 must always be followed by 0
 - $-(10|1)^*$
 - 1 may appear anywhere
 - 0 must always be preceded by 1
 - Put together, all strings of 0's and 1's where every pair of adjacent 0's precedes any pair of adjacent 1's

What Strings are in (10|0)*(10|1)*?

00101000 110111101

```
First part in [[(10|0)*]]

Second part in [[(10|1)*]]

Notice that 0010 also in [[(10|0)*]]

But remainder of string is not in [[(10|1)*]]
```

0010101

Yes

101

Yes

011001

No

CMSC 330

Example 5

- What language does this regular expression recognize?
 - $-((1|\epsilon)(0|1|...|9)|(2(0|1|2|3))):(0|1|...|5)(0|1|...|9)$
- · All valid times written in 24-hour format
 - -10:17
 - -23:59
 - -0:45
 - -8:30

CMSC 330

Two More Examples

- (000|00|1)*
 - Any string of 0's and 1's with no single 0's
- (00|0000)*
 - Strings with an even number of 0's
 - Notice that some strings can be accepted more than one way
 - 000000 = 00.00.00 = 00.0000 = 0000.00
 - How else could we express this language?
 - (00)*
 - · (00|000000)*
 - (00|0000|000000)*
 - etc...

CMSC 330

23

Regular Languages

- The languages that can be described using regular expressions are the regular languages or regular sets
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^nb^n \mid n > 0\}$ (a^n = sequence of n a's)
- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools

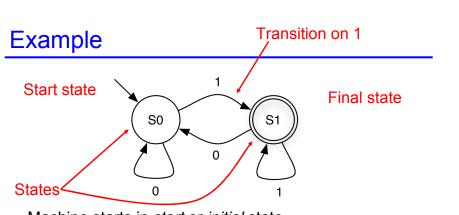
Ruby Regular Expressions

- Almost all of the features we've seen for Ruby r.e.'s can be reduced to this formal definition
 - /Ruby/ concatenation of single-character r.e.'s
 - /(Ruby|Regular)/ union
 - /(Ruby)*/ Kleene closure
 - /(Ruby)+/ same as (Ruby)(Ruby)*
 - /(Ruby)?/ same as (ε |(Ruby)) (// is ε)
 - -/[a-z]/ same as (a|b|c|...|z)
 - / [^0-9]/ − same as (a|b|c|...) for a,b,c,... ∈ Σ {0..9}
 - ^, \$ correspond to extra characters in alphabet

CMSC 330

Implementing Regular Expressions

- We can implement regular expressions by turning them into a *finite automaton*
 - A "machine" for recognizing a regular language

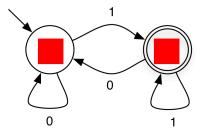


- Machine starts in start or initial state
- · Repeat until the end of the string is reached:
 - Scan the next symbol s of the string
 - Take transition edge labeled with s
- The string is *accepted* if the automaton is in a *final* or accepting state when the end of the string is reached

Example

0 0 1 0 1 1 accepted

Example



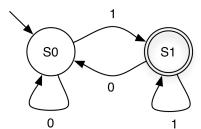
001010

not accepted

CMSC 330

29

What Language is This?



- All strings over {0, 1} that end in 1
- What is a regular expression for this language? (0|1)*1

CMSC 330

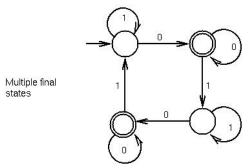
Formal Definition

- A deterministic finite automaton (DFA) is a 5tuple (Σ, Q, q₀, F, δ) where
 - Σ is an alphabet
 - · the strings recognized by the DFA are over this set
 - Q is a nonempty set of states
 - q₀ ∈ Q is the start state
 - F ⊆ Q is the set of final states
 - How many can there be?
 - $-\delta$: Q x Σ → Q specifies the DFA's transitions
 - What's this definition saying that δ is?

CMSC 330

More on DFAs

• A finite state automata can have more than one final state:



 A string is accepted as long as there is at least one path to a final state

Our Example, Formally

$$-\Sigma = \{0, 1\}$$

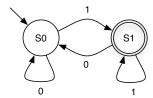
$$-Q = \{S0, S1\}$$

$$-Q_0 = S0$$

$$-F = \{S1\}$$

$$- \frac{\delta |0|}{S0|S0|S1}$$

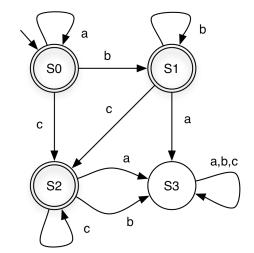
$$- \frac{S0|S0|S1}{S1|S0|S1}$$



CMSC 330

33

Another Example

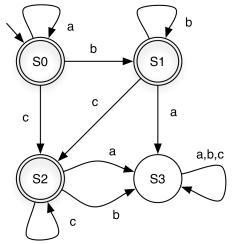


string	state at end	accepts ?
aabcc	S2	Y
acc	S2	Y
bbc	S2	Y
aabbb	S1	Y
aa	S0	Y
3	S0	Y
acba	S3	N

(a,b,c notation shorthand for three self loops)

CMSC 330

Another Example (cont'd)



What language does this DFA accept? a*b*c*

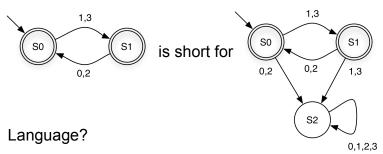
S3 is a *dead state* – a nonfinal state with no transition to another state

CMSC 330

35

Shorthand Notation

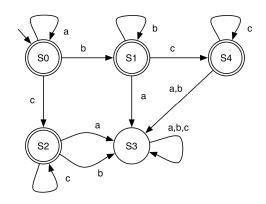
 If a transition is omitted, assume it goes to a dead state that is not shown



Strings over {0,1,2,3} with alternating even and odd digits, beginning with odd digit

CMSC 330

What Lang. Does This DFA Accept?



a*b*c* again, so DFAs are not unique

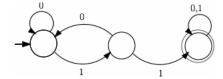
CMSC 330

37

Practice

Give the English descriptions and the DFA or regular expression of the following languages:

- ((0|1)(0|1)(0|1)(0|1)(0|1))*
 - all strings with length a multiple of 5
- (01)*|(10)*|(01)*0|(10)*1
 - all alternating binary strings



all binary strings containing the substring "11"

CMSC 330

Practice

Give the regular expressions and DFAs for the following languages:

- You and your neighbors' names
- All valid DNA strings (including only ACGT and appearing in multiples of 3)
- All binary strings containing an even length substring of all 1's
- All binary strings containing exactly two 1's
- All binary strings that start and end with the same number