CMSC 330: Organization of Programming Languages

Theory of Regular Expressions

The Theory Behind r.e.'s

- · That's it for the basics of Ruby
 - If you need other material for your project, come to office hours or check out the documentation
- Next up: How do r.e.'s really work?
 - Mixture of a very practical tool (string matching with r.e.'s) and some nice theory
 - A great computer science result

CMSC 330

A Few Questions about Regular Expressions

- · What does a regular expression represent?
 - Just a set of strings
- What are the basic components of r.e.'s?
 - E.g., we saw that e+ is the same as ee*
- · How are r.e.'s implemented?
 - We'll see how to build a structure to parse r.e.'s

CMSC 330

• An alphabet is a finite s

- · An alphabet is a finite set of symbols
 - Usually denoted Σ
- · Example alphabets:
 - Binary: $\Sigma = \{0,1\}$
 - Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
 - Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$

CMSC 330

Definition: String

- A string is a finite sequence of symbols from Σ
 - $-\varepsilon$ is the empty string ("" in Ruby)
 - |s| is the length of string s
 - |Hello| = 5, $|\epsilon| = 0$
 - Note: \emptyset is the empty set (with 0 elements); $\emptyset \neq \{ \epsilon \}$
- · Example strings:
 - 0101 \in Σ = {0,1} (binary)
 - 0101 ∈ Σ = decimal
 - 0101 $\in \Sigma$ = alphanumeric

CMSC 330

Definition: Concatenation

- Concatenation is indicated by juxtaposition
 - If s_1 = super and s_2 = hero, then s_1s_2 = superhero
 - Sometimes also written s₁·s₂
 - For any string s, we have $s\epsilon = \epsilon s = s$
 - You can concatenate strings from different alphabets, then the new alphabet is the union of the originals:
 - If s_1 = super $\in \Sigma_1$ = {s,u,p,e,r} and s_2 = hero $\in \Sigma_2$ = {h,e,r,o}, then s_1s_2 = superhero $\in \Sigma_3$ = {e,h,o,p,r,s,u}

CMSC 330

Definition: Language

- A language is a set of strings over an alphabet
- Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
 - Give an example element of this language (123) 456-7890
 - Are all strings over the alphabet in the language? No
 - Is there a Ruby regular expression for this language? /\(\d{3,3}\) \d{3,3}-\d{4,4}/
- Example: The set of all strings over Σ
 - Often written Σ*

Languages (cont'd)

- Example: The set of strings of length 0 over the alphabet $\Sigma = \{a, b, c\}$
 - $-\{s\mid s\in\Sigma^* \text{ and } |s|=0\}=\{\epsilon\}\neq\emptyset$
- · Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language?

No. Matching brackets so they are balanced is impossible. $\{\{\{\}\}\}\$ or $\{^3\}^3$ or, in general, $\{^n\}^n$

- Can r.e.'s represent all possible languages?
 - The answer turns out to be no!
 - The languages represented by regular expressions are called, appropriately, the regular languages

Operations on Languages

- Let Σ be an alphabet and let L, L₁, L₂ be languages over ∑
- Concatenation L₁L₂ is defined as

```
-L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}
- Example: L_1 = \{\text{"hi", "bye"}\}, L_2 = \{\text{"1", "2"}\}

    L<sub>1</sub>L<sub>2</sub> = {"hi1", "hi2", "bye1", "bye2"}
```

· Union is defined as

```
- L_1 \cup L_2 = \{ x \mid x \in L_1 \text{ or } x \in L_2 \}
- Example: L_1 = \{\text{"hi", "bye"}\}, L_2 = \{\text{"1", "2"}\}

    L<sub>1</sub>UL<sub>2</sub> = {"hi", "bye", "1", "2"}
```

CMSC 330

Operations on Languages (cont'd)

- Define Lⁿ inductively as
 - $-L^0 = \{\epsilon\}$
 - $L^n = LL^{n-1}$ for n > 0
- · In other words,
 - $-L^{1}=LL^{0}=L\{\epsilon\}=L$
 - $-L^2 = LL^1 = LL$
 - $-L^3 = LL^2 = LLL$

CMSC 330

Examples of Lⁿ

- Let L = {a, b, c}
- Then
 - $-L^0 = \{\epsilon\}$
 - $-L^1 = \{a, b, c\}$
 - $-L^2$ = {aa, ab, ac, ba, bb, bc, ca, cb, cc}

CMSC 330

 $L^* = U_{i \in [0,\infty]} L^i$

· In other words...

L* is the language (set of all strings) formed by concatenating together zero or more strings from L

Operations on Languages (cont'd)

· Kleene closure is defined as

CMSC 330

Definition of Regexps

 Given an alphabet Σ, the regular expressions over ∑ are defined inductively as

regular expression	denotes language
Ø	Ø
ε	{ε}
each element $\sigma \in \Sigma$	{σ}

Definition of Regexps (cont'd)

• Let A and B be regular expressions denoting languages L_A and L_B, respectively

regular expression	denotes language
AB	L_AL_B
(A B)	L _A UL _B
A*	L _A *

- There are no other regular expressions over Σ
- · We use ()'s as needed for grouping

The Language Denoted by an r.e.

• For a regular expression e, we will write [[e]] to mean the language denoted by e

```
-[[a]] = {a}
-[[(a|b)]] = {a, b}
```

• If s∈[[re]], we say that re accepts, describes, or recognizes s.

CMSC 330

Example 1

- All strings over $\Sigma = \{a, b, c\}$ such that all the a's are first, the b's are next, and the c's last
 - Example: aaabbbbccc but not abcb
- Regexp: a*b*c*
 - This is a valid regexp because:
 - a is a regexp ([[a]] = {a})
 - a* is a regexp ([[a*]] = {ε, a, aa, ...})
 - · Similarly for b* and c*
 - So a*b*c* is a regular expression

(Remember that we need to check this way because regular expressions are defined inductively.)

CMSC 330

Which Strings Does a*b*c* Recognize?

```
aabbbcc
         Yes; aa \in [[a^*]], bbb \in [[b^*]], and cc \in [[c^*]], so entire string is in
           [[a*b*c*]]
    abb
         Yes, abb = abb\epsilon, and \epsilon \in [[c^*]]
    ac
         Yes
         Yes
    aacbc
        No
CMSC 330 No -- outside the language
```

Example 2

- All strings over $\Sigma = \{a, b, c\}$
- · Regexp: (a|b|c)*
- · Other regular expressions for the same language?
 - (c|b|a)*
 - (a*|b*|c*)*
 - (a*b*c*)*
 - ((a|b|c)*|abc)
 - etc.

Example 3

- All whole numbers containing the substring 330
- Regular expression: (0|1|...|9)*330(0|1|...|9)*
- What if we want to get rid of leading 0's?
- ((1|...|9)(0|1|...|9)*330(0|1|...|9)* | 330(0|1|...|9)*)
- · Any other solutions?
- Challenge: What about all whole numbers not containing the substring 330?
 Is it recognized by a regexp?

 Yes. We'll see how to find it later...

CMSC 330

330

Example 4

- What is the English description for the language that (10|0)*(10|1)* denotes?
 - $-(10|0)^*$
 - 0 may appear anywhere
 - 1 must always be followed by 0
 - -(10|1)*
 - 1 may appear anywhere
 - 0 must always be preceded by 1
 - Put together, all strings of 0's and 1's where every pair of adjacent 0's precedes any pair of adjacent 1's

CMSC 330

What Strings are in (10|0)*(10|1)*?

00101000 110111101

First part in [[(10|0)*]]

Second part in [[(10|1)*]]

Notice that 0010 also in [[(10|0)*]]

But remainder of string is not in [[(10|1)*]]

0010101

Yes

101

Yes 011001

No CMSC 330

No

Example 5

- What language does this regular expression recognize?
 - $-((1|\epsilon)(0|1|...|9)|(2(0|1|2|3))):(0|1|...|5)(0|1|...|9)$
- · All valid times written in 24-hour format
 - 10:17
 - 23:59
 - 0:45
 - 8:30

CMSC 330

22

Two More Examples

- (000|00|1)*
 - Any string of 0's and 1's with no single 0's
- · (00|0000)*
 - Strings with an even number of 0's
 - Notice that some strings can be accepted more than one way
 - 000000 = 00·00·00 = 00·0000 = 0000·00
 - How else could we express this language?
 - (00)*
 - (00|000000)*
 - (00|0000|000000)*
 - etc..

CMSC 330

23

Regular Languages

- The languages that can be described using regular expressions are the regular languages or regular sets
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^nb^n \mid n > 0\}$ $(a^n = sequence of n a's)$
- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)

- Regular expressions are commonly used in parsing tools

Ruby Regular Expressions

- Almost all of the features we've seen for Ruby r.e.'s can be reduced to this formal definition
 - /Ruby/ concatenation of single-character r.e.'s
 - /(Ruby|Regular)/ union
 - /(Ruby)*/ Kleene closure
 - /(Ruby)+/ same as (Ruby)(Ruby)*
 - /(Ruby)?/ same as (ε |(Ruby)) (// is ε)
 - /[a-z]/ same as (a|b|c|...|z)
 - / [^0-9]/ same as (a|b|c|...) for a,b,c,... ∈ Σ {0..9}
 - ^, \$ correspond to extra characters in alphabet

CMSC 330

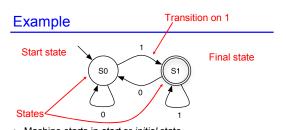
25

Implementing Regular Expressions

- We can implement regular expressions by turning them into a *finite automaton*
 - A "machine" for recognizing a regular language

Example

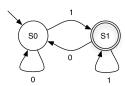
1
001011
accepted



- · Machine starts in start or initial state
- Repeat until the end of the string is reached:
 - Scan the next symbol s of the string
 - Take transition edge labeled with s
- The string is accepted if the automaton is in a final or accepting state when the end of the string is reached

Example 1 001010 not accepted

What Language is This?



- All strings over {0, 1} that end in 1
- What is a regular expression for this language? (0|1)*1

CMSC 330

Formal Definition

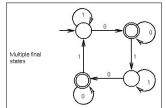
- A deterministic finite automaton (DFA) is a 5-tuple (Σ , Q, q₀, F, δ) where
 - Σ is an alphabet
 - the strings recognized by the DFA are over this set
 - Q is a nonempty set of states
 - $-q_0 \in Q$ is the start state
 - F ⊆ Q is the set of final states
 - How many can there be?
 - $-\delta$: Q x Σ → Q specifies the DFA's transitions
 - What's this definition saying that $\boldsymbol{\delta}$ is?

CMSC 330

31

More on DFAs

A finite state automata can have more than one final state:



 A string is accepted as long as there is at least one path to a final state

CMSC 330

CMSC 330

0 32

Our Example, Formally

$$-\Sigma = \{0, 1\}$$

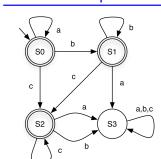
$$-Q = {S0, S1}$$

$$-q_0 = S0$$

$$-F = {S1}$$

CMSC 330

Another Example



state at end	accepts ?
S2	Y
S2	Y
S2	Y
S1	Y
S0	Y
S0	Y
S3	N
	\$2 \$2 \$2 \$1 \$0 \$0

(a,b,c notation shorthand for three self loops)

Another Example (cont'd)



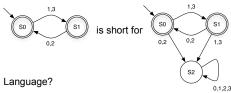
What language does this DFA accept? a*b*c*

S3 is a dead state – a nonfinal state with no transition to another state

SC 330

Shorthand Notation

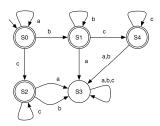
• If a transition is omitted, assume it goes to a dead state that is not shown



Strings over $\{0,1,2,3\}$ with alternating even and odd digits, beginning with odd digit

CMSC 330

What Lang. Does This DFA Accept?



a*b*c* again, so DFAs are not unique

CMSC 330

Practice

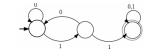
Give the English descriptions and the DFA or regular expression of the following languages:

((0|1)(0|1)(0|1)(0|1)(0|1))*

all strings with length a multiple of 5

• (01)*|(10)*|(01)*0|(10)*1

all alternating binary strings



all binary strings containing the substring "11"

CMSC 330

38

Practice

Give the regular expressions and DFAs for the following languages:

- You and your neighbors' names
- All valid DNA strings (including only ACGT and appearing in multiples of 3)
- All binary strings containing an even length substring of all 1's
- All binary strings containing exactly two 1's
- All binary strings that start and end with the same number

CMSC 330