
1

CMSC 330: Organization of
Programming Languages

Functional Programming with OCaml

CMSC 330 2

Reminders / Announcements

• Project 2 due Oct. 12

2

CMSC 330 3

Review

• function declaration

• types

• lists

• matching

CMSC 330 4

Example
match e with p1 -> e1 | ... | pn -> en

let is_empty l = match l with

[] -> true

| (h::t) -> false

is_empty [] (* evaluates to true *)

is_empty [1] (* evaluates to false *)

is_empty [1;2;3] (* evaluates to false *)

3

CMSC 330 5

More Examples
• let f l =

match l with (h1::(h2::_)) -> h1 + h2

– f [1;2;3]

– (* evaluates to 3 *)

• let g l =

match l with [h1; h2] -> h1 + h2

– g [1; 2]

– (* evaluates to 3 *)

– g [1; 2; 3]

– (* error! no pattern matches *)

Two element
list [h1;h2]

CMSC 330 6

An Abbreviation

• let f p = e, where p is a pattern, is a
shorthand for let f x = match x with p -> e

• Examples
– let hd (h::_) = h

– let tl (_::t) = t

– let f (x::y::_) = x + y

– let g [x; y] = x + y

• Useful if there’s only one acceptable input

4

CMSC 330 7

Pattern Matching Lists of Lists

• You can do pattern matching on these as well

• Examples
– let addFirsts ((x::_) :: (y::_) :: _) = x + y

• addFirsts [[1; 2; 3]; [4; 5]; [7; 8; 9]] = 5

– let addFirstSecond ((x::_)::(_::y::_)::_) = x + y

• addFirstSecond [[1; 2; 3]; [4; 5]; [7; 8; 9]] = 6

• Note: You probably won’t do this much or at all
– You’ll mostly write recursive functions over lists
– We’ll see that soon

CMSC 330 8

OCaml Functions Take One Argument
• Recall this example

– It looks like you’re passing in two arguments
– Actually, you’re passing in a tuple instead

• And using pattern matching

• Tuples are constructed using (e1, ..., en)

– They’re like C structs but without field labels, and
allocated on the heap

– Unlike lists, tuples do not need to be homogenous
– E.g., (1, ["string1"; "string2"]) is a valid tuple

• Tuples are deconstructed using pattern matching

let plus (x, y) = x + y;;
plus (3, 4);;

5

CMSC 330 9

Examples with Tuples
• let plusThree (x, y, z) = x + y + z

let addOne (x, y, z) = (x+1, y+1, z+1)

– plusThree (addOne (3, 4, 5)) (* returns 15 *)

• let sum ((a, b), c) = (a+c, b+c)

– sum ((1, 2), 3) = (4, 5)

• let plusFirstTwo (x::y::_, a) = (x + a, y + a)

– plusFirstTwo ([1; 2; 3], 4) = (5, 6)

• let tls (_::xs, _::ys) = (xs, ys)

– tls ([1; 2; 3], [4; 5; 6; 7]) = ([2; 3], [5; 6; 7])

• Remember, semicolon for lists, comma for tuples
– [1, 2] = [(1, 2)] = a list of size one

– (1; 2) = a syntax error

CMSC 330 10

Another Example
• let f l = match l with x::(_::y) -> (x,y)

• What is f [1;2;3;4]?
(1,[3;4])

6

CMSC 330 11

List and Tuple Types

• Tuple types use * to separate components

• Examples
– (1, 2) : int * int

– (1, "string", 3.5) : int * string * float

– (1, ["a"; "b"], 'c') :

– [(1,2)] :

– [(1, 2); (3, 4)] :

– [(1,2); (1,2,3)] :

CMSC 330 12

List and Tuple Types

• Tuple types use * to separate components

• Examples
– (1, 2) : int * int

– (1, "string", 3.5) : int * string * float

– (1, ["a"; "b"], 'c') : int * string list * char

– [(1,2)] : (int * int) list

– [(1, 2); (3, 4)] : (int * int) list

– [(1,2); (1,2,3)] : error

7

CMSC 330 13

Type declarations

• type can be used to create new names for types
– useful for combinations of lists and tuples

• Examples
type my_type = int * (int list)

(3, [1; 2]) : my_type

type my_type2 = int * char * (int * float)

(3, ‘a’, (5, 3.0)) : my_type2

CMSC 330 14

Polymorphic Types

• Some functions we saw require specific list types
– let plusFirstTwo (x::y::_, a) = (x + a, y + a)

– plusFirstTwo : int list * int -> (int * int)

• But other functions work for any list
– let hd (h::_) = h

– hd [1; 2; 3] (* returns 1 *)

– hd ["a"; "b"; "c"] (* returns "a" *)

• OCaml gives such functions polymorphic types
– hd : 'a list -> 'a

– this says the function takes a list of any element type
'a, and returns something of that type

8

CMSC 330 15

Examples of Polymorphic Types
• let tl (_::t) = t

– tl : 'a list -> 'a list

• let swap (x, y) = (y, x)

– swap : 'a * 'b -> 'b * 'a

• let tls (_::xs, _::ys) = (xs, ys)

– tls : 'a list * 'b list -> 'a list * 'b list

CMSC 330 16

Tuples Are a Fixed Size
let foo x = match x with

(a, b) -> a + b

| (a, b, c) -> a + b + c;;

This pattern matches values of type 'a * 'b
* 'c

but is here used to match values of type 'd
* 'e

• Thus there's never more than one
match case with tuples
– How’s this instead?

9

CMSC 330 17

Conditionals

• Use if...then...else just like C/Java
– No parentheses and no end

if grade >= 90 then
print_string "You got an A"

else if grade >= 80 then
print_string "You got a B"

else if grade >= 70 then
print_string "You got a C"

else
print_string "You’re not doing so well"

CMSC 330 18

Conditionals (cont’d)

• In OCaml, conditionals return a result
– The value of whichever branch is true/false
– Like ? : in C, C++, and Java

if 7 > 42 then "hello" else "goodbye";;

- : string = "goodbye"

let x = if true then 3 else 4;;

x : int = 3

if false then 3 else 3.0;;

This expression has type float but is here used
with type int

• Putting this together with what we’ve seen
earlier, can you write fact, the factorial function?

10

CMSC 330 19

The Factorial Function

• Notice no return statements
– So this is pretty much how it needs to be written

• The rec part means “define a recursive function”
– This is special for technical reasons
– let x = e1 in e2 x in scope within e2
– let rec x = e1 in e2 x in scope within e2 and e1

• OCaml will complain if you use let instead of let rec

let rec fact n =
if n = 0 then

1
else

n * fact (n-1);;

CMSC 330 20

More examples of let (try to evaluate)
• let x = 1 in x ; x;;

• let x = x in x;;

• let x = 4;

let x = x + 1 in x;;

• let f n = 10;;

let f n = if n = 0 then 1 else n * f (n – 1);;

f 0;;

f 1;;

• let f x = f x;;

11

CMSC 330 21

More examples of let
• let x = 1 in x ; x;; (* error, x is unbound *)

• let x = x in x;; (* error, x is unbound *)

• let x = 4;

let x = x + 1 in x;; (* 5 *)

• let f n = if n = 0 then 1 else n * f (n – 1);;

f 0;; (* 1 *)

f 1;; (* 1 *)

• let f x = f x;; (* error *)

CMSC 330 22

Recursion = Looping

• Recursion is essentially the only way to iterate
– (The only way we’re going to talk about)

• Another example
let rec print_up_to (n, m) =

print_int n; print_string "\n";
if n < m then print_up_to (n + 1, m)

12

CMSC 330 23

Lists and Recursion

• Lists have a recursive structure
– And so most functions over lists will be recursive

– This is just like an inductive definition
• The length of the empty list is zero
• The length of a nonempty list is 1 plus the length of the tail

– Type of length function?

let rec length l = match l with
[] -> 0

| (_::t) -> 1 + (length t)

