CMSC 330: Organization of
Programming Languages

Functional Programming with OCaml|

Reminders / Announcements

* Project 2 due Oct. 12

CMSC 330 2

Review

function declaration

types

lists

matching

CMSC 330

Example

match e with pl -> el | ... | pn -> en

let is empty 1 = match 1 with
[1 -> true
| (h::t) -> false

is_empty I[] (* evaluates to true *)
is _empty [1] (* evaluates to false *)
is empty [1;2;3] (* evaluates to false *)

CMSC 330

More Examples

e let £ 1 =
match 1 with (hl::(h2::)) -> hl + h2
- £ [1;2;3]
- (* evaluates to 3 *)

Two element
list [h1;h2]

e let gl =)
match 1 with [h1l; h2] -> hl + h2
- g [1; 2]
- (* evaluates to 3 ¥*)
- g [1; 2; 3]

- (* error! no pattern matches ¥*)

CMSC 330 5

An Abbreviation

e let £ p = e, Where p is a pattern, is a
shorthand for 1et £ x = match x with p -> e

* Examples
- let hd (h::) = h
- let tl (_::t) =t
- let £ (x::y::) =x + Yy
- let g [x; yv] =x + vy

» Useful if there’s only one acceptable input

CMSC 330 6

Pattern Matching Lists of Lists

* You can do pattern matching on these as well

* Examples
- let addFirsts ((x::) :: (y::) ::) =x + Yy
® addFirsts [[1; 2; 31; [4; 51; [7; 8; 91 1 =5

- let addFirstSecond ((x::)::(::y::)::) =X + Y
e addFirstSecond [[1; 2; 31; [4; 51; [7; 8; 91 1 =6

* Note: You probably won'’t do this much or at all
— You'll mostly write recursive functions over lists
— We’'ll see that soon

CMSC 330 7

OCaml Functions Take One Argument

» Recall this example

let plus (x, y) = X + Vi
plus (3, 4);;

— It looks like you're passing in two arguments
— Actually, you’re passing in a tuple instead
* And using pattern matching
» Tuples are constructed using (e1, ..., en)

— They're like C structs but without field labels, and
allocated on the heap

— Unlike lists, tuples do not need to be homogenous
— E.g,, (1, ["stringl"; "string2"]) is a valid tuple
* Tuples are deconstructed using pattern matching

CMSC 330 8

Examples with Tuples

e let plusThree (x, y, 2Z) = X + Yy + 2z
let addOne (x, y, z) = (x+1, y+1, z+1l)
- plusThree (addOne (3, 4, 5)) (* returns 15 *)

e let sum ((a, b), c) = (a+c, bi+c)
- sum ((1, 2), 3) = (4, 5)

e let plusFirstTwo (x::y:: , a) = (x + a, y + a)
- plusFirstTwo ([1; 2; 31, 4) = (5, 6)

e let tls (_::xs, _::ys) = (xs, ys)
- tls ([1; 2; 31, [4; 5; 6; 71) = ([2; 31, [5; 6; 71)

Remember, semicolon for lists, comma for tuples
- [1, 2] = [(1, 2)] = a list of size one

- (1; 2) = a syntax error
CMSC 330 9

Another Example

e let £ 1 = match 1 with x::(_::y) -> (x,y)
« Whatis £ [1;2;3;4]17
(1,103;41)

CMSC 330 10

List and Tuple Types

» Tuple types use * to separate components

» Examples
- (1, 2) : int * int
- (1, "string", 3.5) : int * string * float
- (1, ["a"; "b"], 'c') :
- [(1,2)]
- [(1, 2); (3, 4)]
- [(1,2); (1,2,3)]

CMSC 330 1"

List and Tuple Types

* Tuple types use * to separate components

« Examples
- (1, 2) : int * int
- (1, "string", 3.5) : int * string * float
- (1, ["a"; "b"], 'c') : int * string list * char
- [(1,2)] : (int * int) list
- [(1, 2); (3, 4)] : (int * int) list
- [(1,2); (1,2,3)] : error

CMSC 330 12

Type declarations

+ type can be used to create new names for types
— useful for combinations of lists and tuples

* Examples
type my type = int * (int list)
(3, [1; 2]) : my type

type my type2 = int * char * (int * float)
(3, *a’, (5, 3.0)) : my type2

CMSC 330 13

Polymorphic Types

» Some functions we saw require specific list types
- let plusFirstTwo (x::y:: , a) = (x + a, y + a)
- plusFirstTwo : int list * int -> (int * int)

» But other functions work for any list
- let hd (h::) = h
- hd [1; 2; 3] (* returns 1 *)
- hd ["a"; "b"; "c"] (* returns "a" *)

« OCaml gives such functions polymorphic types
- hd : 'a list -> 'a
— this says the function takes a list of any element type

1a, and returns something of that type

CMSC 330 14

Examples of Polymorphic Types

e let tl (_::t) =t
- tl : 'a list -> 'a list
e let swap (x, y) = (y, x)
- swap : 'a * 'b -> 'b * 'a
e let tls (_::xs, ::ys) = (xs, ys)
- tls : 'a list * 'b list -> 'a list * 'b list
CMSC 330 15

Tuples Are a Fixed Size

let foo x = match x with
(a, b) ->a + b

| (a, b, ¢) ->a +b + c;;

This pattern matches values of type 'a * 'b
* 'c

but is here used to match values of type 'd
* le

 Thus there's never more than one
match case with tuples

owscawHow’s this instead? °

Conditionals

» Use if...then...else just like C/Java
— No parentheses and no end

if grade >= 90 then
print string "You got an A"
else if grade >= 80 then
print string "You got a B"
else if grade >= 70 then
print string "You got a C"
else
print string "You’re not doing so well"

CMSC 330 17

Conditionals (cont’d)

* [n OCaml, conditionals return a result

— The value of whichever branch is true/false
— Like ? :in C, C++, and Java
if 7 > 42 then "hello" else "goodbye";;
- : string = "goodbye"
let x = if true then 3 else 4;;
x : int = 3
if false then 3 else 3.0;;

This expression has type float but is here used
with type int

 Putting this together with what we've seen
earlier, can you write fact, the factorial function?

CMSC 330 18

The Factorial Function

let rec fact n =
if n = 0 then
1
else
n * fact (n-1);;

* Notice no return statements
— So this is pretty much how it needs to be written

* The rec part means “define a recursive function”
— This is special for technical reasons
—letx=etline2 X in scope within e2

—letrecx=e1ine2 xin scope within e2 and e1
* OCaml will complain if you use let instead of let rec

CMSC 330 19

More examples of let (try to evaluate)

e let x 1 in x ; x;;

e let x X in x;;

e let x = 4;
let x = x + 1 in x;;
e let £ n = 10;;
let £fn =3if n = 0 then 1 elsen * £ (n - 1);;
£ 0;;
£ 1;;

e let £ x £f x;;

CMSC 330 20

10

More examples of let

o let x =1 in x ; Xx;; (* error, x is unbound *)
o let x = x in x;; (* error, x is unbound *)
o let x = 4;

let x x + 1 in x;; (* 5 *)

e let £fn=31if n = 0 then 1 elsen * £ (n - 1);;
£ 0;; (¥ 1 *)
£ 1;; (¥ 1 *)

o let £ x = £ x;; (* error *)

CMSC 330

21

Recursion = Looping

* Recursion is essentially the only way to iterate
— (The only way we’re going to talk about)

* Another example

let rec print up to (n, m) =
print_int n; print string "\n";
if n < m then print up to (n + 1, m)

CMSC 330

22

11

Lists and Recursion

» Lists have a recursive structure
— And so most functions over lists will be recursive

let rec length 1 = match 1 with
[1 ->0
| (_::t) -> 1 + (length t)

— This is just like an inductive definition
» The length of the empty list is zero
» The length of a nonempty list is 1 plus the length of the tail

— Type of length function?

CMSC 330

23

12

