CMSC 330: Organization of
Programming Languages

Functional Programming with OCaml|

Reminders / Announcements

* Project 2 due Oct. 12
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Review

function declaration

types

lists

matching
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Example

match e with pl -> el | ... | pn -> en

let is empty 1 = match 1 with
[1 -> true
| (h::t) -> false

is_empty I[] (* evaluates to true *)
is _empty [1] (* evaluates to false *)
is empty [1;2;3] (* evaluates to false *)
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More Examples

e let £ 1 =
match 1 with (hl::(h2:: )) -> hl + h2
- £ [1;2;3]
- (* evaluates to 3 *)

Two element
list [h1;h2]

e let gl = )
match 1 with [h1l; h2] -> hl + h2
- g [1; 2]
- (* evaluates to 3 ¥*)
- g [1; 2; 3]

- (* error! no pattern matches ¥*)
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An Abbreviation

e let £ p = e, Where p is a pattern, is a
shorthand for 1et £ x = match x with p -> e

* Examples
- let hd (h:: ) = h
- let tl (_::t) =t
- let £ (x::y:: ) =x + Yy
- let g [x; yv] =x + vy

» Useful if there’s only one acceptable input
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Pattern Matching Lists of Lists

* You can do pattern matching on these as well

* Examples
- let addFirsts ((x:: ) :: (y:: ) :: ) =x + Yy
® addFirsts [ [1; 2; 31; [4; 51; [7; 8; 91 1 =5

- let addFirstSecond ((x:: )::( ::y:: ):: ) =X + Y
e addFirstSecond [ [1; 2; 31; [4; 51; [7; 8; 91 1 =6

* Note: You probably won'’t do this much or at all
— You'll mostly write recursive functions over lists
— We’'ll see that soon
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OCaml Functions Take One Argument

» Recall this example

let plus (x, y) = X + Vi
plus (3, 4);;

— It looks like you're passing in two arguments
— Actually, you’re passing in a tuple instead
* And using pattern matching
» Tuples are constructed using (e1, ..., en)

— They're like C structs but without field labels, and
allocated on the heap

— Unlike lists, tuples do not need to be homogenous
— E.g,, (1, ["stringl"; "string2"]) is a valid tuple
* Tuples are deconstructed using pattern matching
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Examples with Tuples

e let plusThree (x, y, 2Z) = X + Yy + 2z
let addOne (x, y, z) = (x+1, y+1, z+1l)
- plusThree (addOne (3, 4, 5)) (* returns 15 *)

e let sum ((a, b), c) = (a+c, bi+c)
- sum ((1, 2), 3) = (4, 5)

e let plusFirstTwo (x::y:: , a) = (x + a, y + a)
- plusFirstTwo ([1; 2; 31, 4) = (5, 6)

e let tls (_::xs, _::ys) = (xs, ys)
- tls ([1; 2; 31, [4; 5; 6; 71) = ([2; 31, [5; 6; 71)

Remember, semicolon for lists, comma for tuples
- [1, 2] = [(1, 2)] = a list of size one

- (1; 2) = a syntax error
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Another Example

e let £ 1 = match 1 with x::(_::y) -> (x,y)
« Whatis £ [1;2;3;4]17
(1,103;41)
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List and Tuple Types

» Tuple types use * to separate components

» Examples
- (1, 2) : int * int
- (1, "string", 3.5) : int * string * float
- (1, ["a"; "b"], 'c') :
- [(1,2)]
- [(1, 2); (3, 4)]
- [(1,2); (1,2,3)]
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List and Tuple Types

* Tuple types use * to separate components

« Examples
- (1, 2) : int * int
- (1, "string", 3.5) : int * string * float
- (1, ["a"; "b"], 'c') : int * string list * char
- [(1,2)] : (int * int) list
- [(1, 2); (3, 4)] : (int * int) list
- [(1,2); (1,2,3)] : error
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Type declarations

+ type can be used to create new names for types
— useful for combinations of lists and tuples

* Examples
type my type = int * (int list)
(3, [1; 2]) : my type

type my type2 = int * char * (int * float)
(3, *a’, (5, 3.0)) : my type2
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Polymorphic Types

» Some functions we saw require specific list types
- let plusFirstTwo (x::y:: , a) = (x + a, y + a)
- plusFirstTwo : int list * int -> (int * int)

» But other functions work for any list
- let hd (h:: ) = h
- hd [1; 2; 3] (* returns 1 *)
- hd ["a"; "b"; "c"] (* returns "a" *)

« OCaml gives such functions polymorphic types
- hd : 'a list -> 'a
— this says the function takes a list of any element type

1a, and returns something of that type
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Examples of Polymorphic Types

e let tl (_::t) =t
- tl : 'a list -> 'a list
e let swap (x, y) = (y, x)
- swap : 'a * 'b -> 'b * 'a
e let tls ( _::xs, ::ys) = (xs, ys)
- tls : 'a list * 'b list -> 'a list * 'b list
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Tuples Are a Fixed Size

# let foo x = match x with
(a, b) ->a + b

| (a, b, ¢) ->a +b + c;;

This pattern matches values of type 'a * 'b
* 'c

but is here used to match values of type 'd
* le

 Thus there's never more than one
match case with tuples

owscawHow’s this instead? °




Conditionals

» Use if...then...else just like C/Java
— No parentheses and no end

if grade >= 90 then
print string "You got an A"
else if grade >= 80 then
print string "You got a B"
else if grade >= 70 then
print string "You got a C"
else
print string "You’re not doing so well"
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Conditionals (cont’d)

* [n OCaml, conditionals return a result

— The value of whichever branch is true/false
— Like ? :in C, C++, and Java
# if 7 > 42 then "hello" else "goodbye";;
- : string = "goodbye"
# let x = if true then 3 else 4;;
x : int = 3
# if false then 3 else 3.0;;

This expression has type float but is here used
with type int

 Putting this together with what we've seen
earlier, can you write fact, the factorial function?
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The Factorial Function

let rec fact n =
if n = 0 then
1
else
n * fact (n-1);;

* Notice no return statements
— So this is pretty much how it needs to be written

* The rec part means “define a recursive function”
— This is special for technical reasons
—letx=etline2 X in scope within e2

—letrecx=e1ine2 xin scope within e2 and e1
* OCaml will complain if you use let instead of let rec
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More examples of let (try to evaluate)

e let x 1 in x ; x;;

e let x X in x;;

e let x = 4;
let x = x + 1 in x;;
e let £ n = 10;;
let £fn =3if n = 0 then 1 elsen * £ (n - 1);;
£ 0;;
£ 1;;

e let £ x £f x;;
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More examples of let

o let x =1 in x ; Xx;; (* error, x is unbound *)
o let x = x in x;; (* error, x is unbound *)
o let x = 4;

let x x + 1 in x;; (* 5 *)

e let £fn=31if n = 0 then 1 elsen * £ (n - 1);;
£ 0;; (¥ 1 *)
£ 1;; (¥ 1 *)

o let £ x = £ x;; (* error *)
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Recursion = Looping

* Recursion is essentially the only way to iterate
— (The only way we’re going to talk about)

* Another example

let rec print up to (n, m) =
print_int n; print string "\n";
if n < m then print up to (n + 1, m)
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Lists and Recursion

» Lists have a recursive structure
— And so most functions over lists will be recursive

let rec length 1 = match 1 with
[1 ->0
| (_::t) -> 1 + (length t)

— This is just like an inductive definition
» The length of the empty list is zero
» The length of a nonempty list is 1 plus the length of the tail

— Type of length function?
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