
1

CMSC 330:  Organization of 
Programming Languages

Object Oriented Programming 
with OCaml
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Reminders and Review

• Homework 2 was posted on Oct. 20
– Due on Oct. 30

• Project 3 due on Oct. 31
– Project 4 will be posted by then

• Midterm 2 on Nov. 1

• Closures
• Currying
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OCaml Data

• So far, we’ve seen the following kinds of data:
– Basic types (int, float, char, string)
– Lists

• One kind of data structure
• A list is either [] or h::t, deconstructed with pattern matching

– Tuples
• Let you collect data together in fixed-size pieces

– Functions

• How can we build other data structures?
– Building everything from lists and tuples is awkward
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Data Types

• Rect and Circle are type constructors- here a 
shape is either a Rect or a Circle

• Use pattern matching to deconstruct values, and 
do different things depending on constructor

type shape =
Rect of float * float (* width * length *)

| Circle of float (* radius *)

let area s =
match s with

Rect (w, l) -> w *. l
| Circle r -> r *. r *. 3.14

area (Rect (3.0, 4.0))
area (Circle 3.0)
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Data Types, con't.
type shape =

Rect of float * float (* width * length *)

| Circle of float (* radius *)

let l = [Rect (3.0, 4.0) ; Circle 3.0; Rect (10.0, 22.5)]

• What's the type of l?

• What's the type of l's first element?
l : shape list

shape
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Data Types (cont’d)

• The arity of a constructor is the number of 
arguments it takes
– A constructor with no arguments is nullary

– Constructors must begin with uppercase letter

type optional_int =
None

| Some of int

let add_with_default a = function
None -> a + 42

| Some n -> a + n

add_with_default 3 None (* 45 *)
add_with_default 3 (Some 4) (* 7 *)

NOTES
# type int_option = None | Some of int;;
The OCaml compiler will warn of a function
matching only Some … values and neglecting the
None value:
# let extract = function Some i -> i;;
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

None
val extract : int_option -> int = <fun>

This extract function then works as expected on
Some … values:

# extract (Some 3);;
- : int = 3

but causes a Match_failure exception to be
raised at run-time if a None value is given, as
none of the patterns in the pattern match of
the extract function match this value:

# extract None;;
Exception: Match_failure ("", 5, -40).
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Polymorphic Data Types

• This option type can work with any kind of data
– In fact, this option type is built-in to OCaml

type 'a option =
None

| Some of 'a

let add_with_default a = function
None -> a + 42

| Some n -> a + n

add_with_default 3 None (* 45 *)
add_with_default 3 (Some 4) (* 7 *)
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Recursive Data Types

• Do you get the feeling we can build up lists this 
way?

– Note:  Don’t have nice [1; 2; 3] syntax for this kind of 
list

type 'a list =
Nil

| Cons of 'a * 'a list

let rec length l = function
Nil -> 0

| Cons (_, t) -> 1 + (length t)

length (Cons (10, Cons (20, Cons (30, Nil))))
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Data Type Representations

• Values in a data type are stored either directly 
as integers or as pointers to blocks in the heap

type t =
A of int

| B
| C of int * int
| D
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Exercise:  A Binary Tree Data Type
• Write type bin_tree for binary trees over int

– trees should be ordered

• Implement the following
empty : bin_tree

is_empty : bin_tree -> bool

member : int -> bin_tree -> bool

insert : int -> bin_tree -> bin_tree

remove: int -> bin_tree -> bin_tree

equal : bin_tree -> bin_tree -> bool

fold : (int -> 'a -> 'a) -> bin_tree -> 'a -> 'a
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Modules

• So far, most everything we’ve defined has been 
at the “top-level” of OCaml
– This is not good software engineering practice

• A better idea:  Use modules to group associated 
types, functions, and data together
– Avoid polluting the top-level with unnecessary stuff

• For lots of sample modules, see the OCaml
standard library
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Creating a Module
module Shapes =

struct
type shape =

Rect of float * float (* width * length *)
| Circle of float (* radius *)

let area = function
Rect (w, l) -> w *. l

| Circle r -> r *. r *. 3.14

let unit_circle = Circle 1.0
end;;

unit_circle;; (* not defined *)
Shapes.unit_circle;;
Shapes.area (Shapes.Rect (3.0, 4.0));;
open Shapes;; (* import all names into current scope *)
unit_circle;; (* now defined *)
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Modularity and Abstraction

• Another reason for creating a module is so we 
can hide details
– For example, we can build a binary tree module, but 

we may not want to expose our exact representation 
of binary trees

– This is also good software engineering practice
• Prevents clients from relying on details that may change
• Hides unimportant information
• Promotes local understanding (clients can’t inject arbitrary 

data structures, only ones our functions create)
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Module Signatures

module type FOO =
sig
val add : int -> int -> int

end;;

module Foo : FOO =
struct
let add x y = x + y
let mult x y = x * y

end;;

Foo.add 3 4;; (* OK *)

Entry in signature Supply function types

Give type to module
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Module Signatures (cont’d)

• The convention is for signatures to be all capital 
letters
– This isn't a strict requirement, though

• Items can be omitted from a module signature
– This provides the ability to hide values

• The default signature for a module hides nothing
– You’ll notice this is what OCaml gives you if you just 

type in a module with no signature at the top-level
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Abstract Types in Signatures

• Now definition of shape is hidden

module type SHAPES =
sig
type shape
val area : shape -> float
val unit_circle : shape
val make_circle : float -> shape
val make_rect : float -> float -> shape

end;;

module Shapes : SHAPES =
struct
...
let make_circle r = Circle r
let make_rect x y = Rect (x, y)

end
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Abstract Types in Signatures

# Shapes.unit_circle

- : Shapes.shape = <abstr> (* OCaml won’t show impl *)

# Shapes.Circle 1.0

Unbound Constructor Shapes.Circle

# Shapes.area (Shapes.make_circle 3.0)

- : float = 29.5788

# open Shapes;;

# (* doesn’t make anything abstract accessible *)
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.ml and .mli files

• Put the signature in a foo.mli file, the struct in a 
foo.ml file
– Use the same names
– Omit the sig...end and struct...end parts
– The OCaml compiler will make a Foo module from 

these
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Example
type shape
val area : shape -> float
val unit_circle : shape
val make_circle : float -> shape
val make_rect : float -> float -> shape

type shape =
Rect of ...

...
let make_circle r = Circle r
let make_rect x y = Rect (x, y)

shapes.mli

shapes.ml

% ocamlc shapes.mli # produces shapes.cmi
% ocamlc shapes.ml # produces shapes.cmo
ocaml
# #load "shapes.cmo" (* load Shapes module *)
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Functors
• Modules can take other modules as arguments

– Such a module is called a functor
– You’re mostly on your own if you want to use these

• Example:  Set in standard library
module type OrderedType = sig

type t
val compare : t -> t -> int

end

module Make(Ord: OrderedType) =
struct ... end

module StringSet = Set.Make(String);;
(* works because String has type t,
implements compare *)
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So Far, only Functional Programming

• We haven’t given you any way so far to change 
something in memory
– All you can do is create new values from old

• This actually makes programming easier !
– Don’t care whether data is shared in memory

• Aliasing is irrelevant

– Provides strong support for compositional reasoning 
and abstraction

• Ex:  Calling a function f with argument x always produces 
the same result
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Imperative OCaml

• There are three basic operations on memory:
– ref : 'a -> 'a ref

• Allocate an updatable reference
– ! : 'a ref -> 'a

• Read the value stored in reference
– := : 'a ref -> 'a -> unit

• Write to a reference

let x = ref 3 (* x : int ref *)
let y = !x
x := 4
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Comparison to L- and R-values

• Recall that in C/C++/Java, there’s a strong 
distinction between l- and r-values
– An r-value refers to just a value, like an integer
– An l-value refers to a location that can be written

• A variable's meaning depends on where it appears
– On the right-hand side, it’s an r-value, and it refers to 

the contents of the variable
– On the left-hand side of an assignment, it’s an l-value, 

and it refers to the location the variable is stored in
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L-Values and R-Values (cont’d) (in C)

• Notice that x, y, and 3 all have type int

int x, y;

x = 3;

y = x;

3 = x;

Store 3 in
location x

Read 
contents of x 
and store in 
location y

Makes no 
sense
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Comparison to OCaml

• In OCaml, an updatable location and the 
contents of the location have different types
– The location has a ref type

int x, y;

x = 3;

y = x;

3 = x;

let x = ref 0;;
let y = ref 0;;

x := 3;; (* x : int ref *)

y := (!x);;

3 := x;; (* 3 : int; error *)
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Capturing a ref in a Closure

• We can use refs to make things like counters 
that produce a fresh number “everywhere”

let next =
let count = ref 0 in
function () ->
let temp = !count in

count := (!count) + 1;
temp;;

# next ();;
- : int = 0
# next ();;
- : int = 1

unit:
this is
how a
function
takes no
argument
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Semicolon Revisited; Side Effects

• Now that we can update memory, we have a 
real use for ; and () : unit
– e1; e2 means evaluate e1, throw away the result, and 

then evaluate e2, and return the value of e2
– () means “no interesting result here”
– It’s only interesting to throw away values or use () if 

computation does something besides return a result

• A side effect is a visible state change
– Modifying memory
– Printing to output
– Writing to disk
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Grouping with begin...end

• If you’re not sure about the scoping rules, use 
begin...end to group together statements with 
semicolons

let x = ref 0

let f () =
begin
print_string "hello";
x := (!x) + 1

end
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The Trade-Off of Side Effects

• Side effects are absolutely necessary
– That’s usually why we run software!  We want 

something to happen that we can observe

• They also make reasoning harder
– Order of evaluation now matters
– Calling the same function in different places may 

produce different results
– Aliasing is an issue

• If we call a function with refs r1 and r2, it might do strange 
things if r1 and r2 are aliased
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Exceptions
exception My_exception of int

let f n =
if n > 0 then
raise (My_exception n)

else
raise (Failure "foo")

let bar n =
try
f n

with My_exception n ->
Printf.printf "Caught %d\n" n

| Failure s ->
Printf.printf "Caught %s\n" s
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Exceptions (cont’d)

• Exceptions are declared with exception
– They may appear in the signature as well

• Exceptions may take arguments
– Just like type constructors
– May also be nullary

• Catch exceptions with try...with...
– Pattern-matching can be used in with
– If an exception is uncaught, the current function exits 

immediately and control transfers up the call chain 
until the exception is caught, or until it reaches the 
top level
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OCaml Language Choices

• Implicit or explicit declarations?
– Explicit – variables must be introduced with let before use
– But you don’t need to specify types

• Static or dynamic types?
– Static – but you don’t need to state types
– OCaml does type inference to figure out types for you
– Good:  less work to write programs
– Bad:  easier to make mistakes, harder to find errors


