
1

CMSC 330: Organization of
Programming Languages

Object Oriented Programming
with OCaml

CMSC 330 2

Reminders and Review

• Homework 2 was posted on Oct. 20
– Due on Oct. 30

• Project 3 due on Oct. 31
– Project 4 will be posted by then

• Midterm 2 on Nov. 1

• Closures
• Currying

CMSC 330 3

OCaml Data

• So far, we’ve seen the following kinds of data:
– Basic types (int, float, char, string)
– Lists

• One kind of data structure
• A list is either [] or h::t, deconstructed with pattern matching

– Tuples
• Let you collect data together in fixed-size pieces

– Functions

• How can we build other data structures?
– Building everything from lists and tuples is awkward

CMSC 330 4

Data Types

• Rect and Circle are type constructors- here a
shape is either a Rect or a Circle

• Use pattern matching to deconstruct values, and
do different things depending on constructor

type shape =
Rect of float * float (* width * length *)

| Circle of float (* radius *)

let area s =
match s with

Rect (w, l) -> w *. l
| Circle r -> r *. r *. 3.14

area (Rect (3.0, 4.0))
area (Circle 3.0)

CMSC 330 5

Data Types, con't.
type shape =

Rect of float * float (* width * length *)

| Circle of float (* radius *)

let l = [Rect (3.0, 4.0) ; Circle 3.0; Rect (10.0, 22.5)]

• What's the type of l?

• What's the type of l's first element?
l : shape list

shape

CMSC 330 6

Data Types (cont’d)

• The arity of a constructor is the number of
arguments it takes
– A constructor with no arguments is nullary

– Constructors must begin with uppercase letter

type optional_int =
None

| Some of int

let add_with_default a = function
None -> a + 42

| Some n -> a + n

add_with_default 3 None (* 45 *)
add_with_default 3 (Some 4) (* 7 *)

NOTES
type int_option = None | Some of int;;
The OCaml compiler will warn of a function
matching only Some … values and neglecting the
None value:
let extract = function Some i -> i;;
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

None
val extract : int_option -> int = <fun>

This extract function then works as expected on
Some … values:

extract (Some 3);;
- : int = 3

but causes a Match_failure exception to be
raised at run-time if a None value is given, as
none of the patterns in the pattern match of
the extract function match this value:

extract None;;
Exception: Match_failure ("", 5, -40).

2

CMSC 330 7

Polymorphic Data Types

• This option type can work with any kind of data
– In fact, this option type is built-in to OCaml

type 'a option =
None

| Some of 'a

let add_with_default a = function
None -> a + 42

| Some n -> a + n

add_with_default 3 None (* 45 *)
add_with_default 3 (Some 4) (* 7 *)

CMSC 330 8

Recursive Data Types

• Do you get the feeling we can build up lists this
way?

– Note: Don’t have nice [1; 2; 3] syntax for this kind of
list

type 'a list =
Nil

| Cons of 'a * 'a list

let rec length l = function
Nil -> 0

| Cons (_, t) -> 1 + (length t)

length (Cons (10, Cons (20, Cons (30, Nil))))

CMSC 330 9

Data Type Representations

• Values in a data type are stored either directly
as integers or as pointers to blocks in the heap

type t =
A of int

| B
| C of int * int
| D

CMSC 330 10

Exercise: A Binary Tree Data Type
• Write type bin_tree for binary trees over int

– trees should be ordered

• Implement the following
empty : bin_tree

is_empty : bin_tree -> bool

member : int -> bin_tree -> bool

insert : int -> bin_tree -> bin_tree

remove: int -> bin_tree -> bin_tree

equal : bin_tree -> bin_tree -> bool

fold : (int -> 'a -> 'a) -> bin_tree -> 'a -> 'a

CMSC 330 11

Modules

• So far, most everything we’ve defined has been
at the “top-level” of OCaml
– This is not good software engineering practice

• A better idea: Use modules to group associated
types, functions, and data together
– Avoid polluting the top-level with unnecessary stuff

• For lots of sample modules, see the OCaml
standard library

CMSC 330 12

Creating a Module
module Shapes =

struct
type shape =

Rect of float * float (* width * length *)
| Circle of float (* radius *)

let area = function
Rect (w, l) -> w *. l

| Circle r -> r *. r *. 3.14

let unit_circle = Circle 1.0
end;;

unit_circle;; (* not defined *)
Shapes.unit_circle;;
Shapes.area (Shapes.Rect (3.0, 4.0));;
open Shapes;; (* import all names into current scope *)
unit_circle;; (* now defined *)

3

CMSC 330 13

Modularity and Abstraction

• Another reason for creating a module is so we
can hide details
– For example, we can build a binary tree module, but

we may not want to expose our exact representation
of binary trees

– This is also good software engineering practice
• Prevents clients from relying on details that may change
• Hides unimportant information
• Promotes local understanding (clients can’t inject arbitrary

data structures, only ones our functions create)

CMSC 330 14

Module Signatures

module type FOO =
sig
val add : int -> int -> int

end;;

module Foo : FOO =
struct
let add x y = x + y
let mult x y = x * y

end;;

Foo.add 3 4;; (* OK *)

Entry in signature Supply function types

Give type to module

CMSC 330 15

Module Signatures (cont’d)

• The convention is for signatures to be all capital
letters
– This isn't a strict requirement, though

• Items can be omitted from a module signature
– This provides the ability to hide values

• The default signature for a module hides nothing
– You’ll notice this is what OCaml gives you if you just

type in a module with no signature at the top-level

CMSC 330 16

Abstract Types in Signatures

• Now definition of shape is hidden

module type SHAPES =
sig
type shape
val area : shape -> float
val unit_circle : shape
val make_circle : float -> shape
val make_rect : float -> float -> shape

end;;

module Shapes : SHAPES =
struct
...
let make_circle r = Circle r
let make_rect x y = Rect (x, y)

end

CMSC 330 17

Abstract Types in Signatures

Shapes.unit_circle

- : Shapes.shape = <abstr> (* OCaml won’t show impl *)

Shapes.Circle 1.0

Unbound Constructor Shapes.Circle

Shapes.area (Shapes.make_circle 3.0)

- : float = 29.5788

open Shapes;;

(* doesn’t make anything abstract accessible *)

CMSC 330 18

.ml and .mli files

• Put the signature in a foo.mli file, the struct in a
foo.ml file
– Use the same names
– Omit the sig...end and struct...end parts
– The OCaml compiler will make a Foo module from

these

4

CMSC 330 19

Example
type shape
val area : shape -> float
val unit_circle : shape
val make_circle : float -> shape
val make_rect : float -> float -> shape

type shape =
Rect of ...

...
let make_circle r = Circle r
let make_rect x y = Rect (x, y)

shapes.mli

shapes.ml

% ocamlc shapes.mli # produces shapes.cmi
% ocamlc shapes.ml # produces shapes.cmo
ocaml
#load "shapes.cmo" (* load Shapes module *)

CMSC 330 20

Functors
• Modules can take other modules as arguments

– Such a module is called a functor
– You’re mostly on your own if you want to use these

• Example: Set in standard library
module type OrderedType = sig

type t
val compare : t -> t -> int

end

module Make(Ord: OrderedType) =
struct ... end

module StringSet = Set.Make(String);;
(* works because String has type t,
implements compare *)

CMSC 330 21

So Far, only Functional Programming

• We haven’t given you any way so far to change
something in memory
– All you can do is create new values from old

• This actually makes programming easier !
– Don’t care whether data is shared in memory

• Aliasing is irrelevant

– Provides strong support for compositional reasoning
and abstraction

• Ex: Calling a function f with argument x always produces
the same result

CMSC 330 22

Imperative OCaml

• There are three basic operations on memory:
– ref : 'a -> 'a ref

• Allocate an updatable reference
– ! : 'a ref -> 'a

• Read the value stored in reference
– := : 'a ref -> 'a -> unit

• Write to a reference

let x = ref 3 (* x : int ref *)
let y = !x
x := 4

CMSC 330 23

Comparison to L- and R-values

• Recall that in C/C++/Java, there’s a strong
distinction between l- and r-values
– An r-value refers to just a value, like an integer
– An l-value refers to a location that can be written

• A variable's meaning depends on where it appears
– On the right-hand side, it’s an r-value, and it refers to

the contents of the variable
– On the left-hand side of an assignment, it’s an l-value,

and it refers to the location the variable is stored in

CMSC 330 24

L-Values and R-Values (cont’d) (in C)

• Notice that x, y, and 3 all have type int

int x, y;

x = 3;

y = x;

3 = x;

Store 3 in
location x

Read
contents of x
and store in
location y

Makes no
sense

5

CMSC 330 25

Comparison to OCaml

• In OCaml, an updatable location and the
contents of the location have different types
– The location has a ref type

int x, y;

x = 3;

y = x;

3 = x;

let x = ref 0;;
let y = ref 0;;

x := 3;; (* x : int ref *)

y := (!x);;

3 := x;; (* 3 : int; error *)

CMSC 330 26

Capturing a ref in a Closure

• We can use refs to make things like counters
that produce a fresh number “everywhere”

let next =
let count = ref 0 in
function () ->
let temp = !count in

count := (!count) + 1;
temp;;

next ();;
- : int = 0
next ();;
- : int = 1

unit:
this is
how a
function
takes no
argument

CMSC 330 27

Semicolon Revisited; Side Effects

• Now that we can update memory, we have a
real use for ; and () : unit
– e1; e2 means evaluate e1, throw away the result, and

then evaluate e2, and return the value of e2
– () means “no interesting result here”
– It’s only interesting to throw away values or use () if

computation does something besides return a result

• A side effect is a visible state change
– Modifying memory
– Printing to output
– Writing to disk

CMSC 330 28

Grouping with begin...end

• If you’re not sure about the scoping rules, use
begin...end to group together statements with
semicolons

let x = ref 0

let f () =
begin
print_string "hello";
x := (!x) + 1

end

CMSC 330 29

The Trade-Off of Side Effects

• Side effects are absolutely necessary
– That’s usually why we run software! We want

something to happen that we can observe

• They also make reasoning harder
– Order of evaluation now matters
– Calling the same function in different places may

produce different results
– Aliasing is an issue

• If we call a function with refs r1 and r2, it might do strange
things if r1 and r2 are aliased

CMSC 330 30

Exceptions
exception My_exception of int

let f n =
if n > 0 then
raise (My_exception n)

else
raise (Failure "foo")

let bar n =
try
f n

with My_exception n ->
Printf.printf "Caught %d\n" n

| Failure s ->
Printf.printf "Caught %s\n" s

6

CMSC 330 31

Exceptions (cont’d)

• Exceptions are declared with exception
– They may appear in the signature as well

• Exceptions may take arguments
– Just like type constructors
– May also be nullary

• Catch exceptions with try...with...
– Pattern-matching can be used in with
– If an exception is uncaught, the current function exits

immediately and control transfers up the call chain
until the exception is caught, or until it reaches the
top level

CMSC 330 32

OCaml Language Choices

• Implicit or explicit declarations?
– Explicit – variables must be introduced with let before use
– But you don’t need to specify types

• Static or dynamic types?
– Static – but you don’t need to state types
– OCaml does type inference to figure out types for you
– Good: less work to write programs
– Bad: easier to make mistakes, harder to find errors

