
1

CMSC 330:  Organization of 
Programming Languages

Threads

CMSC 330 2

Reminders

• Homework 2 due on Oct. 30
• Project 3 due Oct. 31
• Midterm 2 on Nov. 1

• Done with OCaml… now onto Threads…



2

CMSC 330 3

Computation Abstractions

CPU 1 CPU 2

p3p1 p2 p4

t1

t2

t1

t2

t3

t1
t4

t5

A computer

Processes
(e.g., JVM’s)

Threads

CMSC 330 4

Processes vs. Threads

int x;
foo() {
…x…
}

int x;
foo() {
…x…
}

int x;

foo() {
…x…

}

foo() {
…x…
}

Processes do not
share data

Threads share data
within a process



3

CMSC 330 5

So, What Is a Thread?

• Conceptually: it is a parallel computation 
occurring within a process

• Implementation view: it’s a program counter 
and a stack.  The heap and static area are 
shared among all threads

• All programs have at least one thread (main)

CMSC 330 6

Implementation View

• Per-thread stack and instruction pointer
– Saved in memory when thread suspended
– Put in hardware esp/eip when thread resumes

eip

eip

eipesp

esp

esp



4

CMSC 330 7

Tradeoffs

• Threads can increase performance
– Parallelism on multiprocessors
– Concurrency of computation and I/O

• Natural fit for some programming patterns
– Event processing
– Simulations

• But increased complexity
– Need to worry about safety, liveness, composition

• And higher resource usage

CMSC 330 8

Programming Threads

• Threads are available in many languages
– C, C++, Objective Caml, Java, SmallTalk …

• In many languages (e.g., C and C++), threads 
are a platform specific add-on
– Not part of the language specification

• They're part of the Java language specification



5

CMSC 330 9

Java Threads
• Every application has at least one thread

– The “main” thread, started by the JVM to run the 
application’s main() method

• main() can create other threads
– Explicitly, using the Thread class
– Implicitly, by calling libraries that create threads as a 

consequence
• RMI, AWT/Swing, Applets, etc.

CMSC 330 10

Thread Creation

execution (time) main thread

thread starts

thread starts

thread ends
thread
join



6

CMSC 330 11

Thread Creation in Java

• To explicitly create a thread:
– Instantiate a Thread object

• An object of class Thread or a subclass of Thread

– Invoke the object’s start() method
• This will start executing the Thread’s run() method 

concurrently with the current thread 

– Thread terminates when its run() method returns

CMSC 330 12

Running Example:  Alarms

• Goal: let's set alarms which will be triggered in 
the future
– Input: time t (seconds) and message m
– Result: we’ll see m printed after t seconds



7

CMSC 330 13

Example: Synchronous alarms

while (true) {
System.out.print("Alarm> ");

// read user input
String line = b.readLine();
parseInput(line); // sets timeout

// wait (in secs)
try {

Thread.sleep(timeout * 1000);
} catch (InterruptedException e) { }
System.out.println("("+timeout+") "+msg);

}

like phone calls

thrown when another thread calls interrupt

CMSC 330 14

Making It Threaded (1)

public class AlarmThread extends Thread {
private String msg = null;
private int timeout = 0;

public AlarmThread(String msg, int time) {
this.msg = msg;
this.timeout = time;

}

public void run() {
try {

Thread.sleep(timeout * 1000);
} catch (InterruptedException e) { }
System.out.println("("+timeout+") "+msg);

}
}



8

CMSC 330 15

Making It Threaded (2)

while (true) {
System.out.print("Alarm> ");

// read user input
String line = b.readLine();
parseInput(line);
if (m != null) {
// start alarm thread
Thread t = new AlarmThread(m,tm);
t.start();

}
}

CMSC 330 16

Alternative: The Runnable Interface

• Extending Thread prohibits a different parent

• Instead implement Runnable
– Declares that the class has a void run() method

• Construct a Thread from the Runnable
– Constructor Thread(Runnable target)
– Constructor Thread(Runnable target, String name)



9

CMSC 330 17

Thread Example Revisited
public class AlarmRunnable implements Runnable {

private String msg = null;
private int timeout = 0;

public AlarmRunnable(String msg, int time) {
this.msg = msg;
this.timeout = time;

}

public void run() {
try {

Thread.sleep(timeout * 1000);
} catch (InterruptedException e) { }
System.out.println("("+timeout+") "+msg);

}
}

CMSC 330 18

Thread Example Revisited (2)

while (true) {
System.out.print("Alarm> ");

// read user input
String line = b.readLine();
parseInput(line);
if (m != null) {

// start alarm thread
Thread t = new Thread(

new AlarmRunnable(m,tm));
t.start();

}
}



10

CMSC 330 19

Notes: Passing Parameters

• run() doesn’t take parameters

• We “pass parameters” to the new thread by 
storing them as private fields
– In the extended class
– Or the Runnable object
– Example: the time to wait and the message to print in 

the AlarmThread class

CMSC 330 20

Concurrency
• A concurrent program is one that has multiple 

threads that may be active at the same time
– Might run on one CPU

• The CPU alternates between running different threads
• The scheduler takes care of the details

– Switching between threads might happen at any time
– Might run in parallel on a multiprocessor machine

• One with more than one CPU
• May have multiple threads per CPU

• Multiprocessor machines are becoming more 
common
– Multi-CPU machines aren't that expensive any more
– Dual-core CPUs are available now



11

CMSC 330 21

Scheduling Example (1)

CPU 1

CPU 2

p1

p2

p1

p2

One process per CPU

p2 threads: p1 threads:

CMSC 330 22

Scheduling Example (2)

CPU 1

CPU 2

p1

p2

p1

p2

Threads shared between CPUs

p2 threads: p1 threads:



12

CMSC 330 23

Concurrency and Shared Data

• Concurrency is easy if threads don’t interact
– Each thread does its own thing, ignoring other threads
– Typically, however, threads need to communicate with 

each other

• Communication is done by sharing data
– In Java, different threads may access the heap 

simultaneously
– But the scheduler might interleave threads arbitrarily
– Problems can occur if we’re not careful.

CMSC 330 24

Data Race Example
public class Example extends Thread {

private static int cnt = 0; // shared state
public void run() {

int y = cnt;
cnt = y + 1;

}
public static void main(String args[]) {

Thread t1 = new Example();
Thread t2 = new Example();
t1.start();
t2.start();

}
}



13

CMSC 330 25

Data Race Example
static int cnt = 0;
t1.run() {

int y = cnt;
cnt = y + 1;

}
t2.run() {

int y = cnt;
cnt = y + 1;

}

cnt = 0

Start: both threads ready to
run.  Each will increment the
global cnt. 

Shared state

CMSC 330 26

Data Race Example
static int cnt = 0;
t1.run() {

int y = cnt;
cnt = y + 1;

}
t2.run() {

int y = cnt;
cnt = y + 1;

}

cnt = 0

T1 executes, grabbing
the global counter value into
its own y.

Shared state

y = 0



14

CMSC 330 27

Data Race Example
static int cnt = 0;
t1.run() {

int y = cnt;
cnt = y + 1;

}
t2.run() {

int y = cnt;
cnt = y + 1;

}

cnt = 1

T1 executes again, storing its
value of y + 1 into the counter.

Shared state

y = 0

CMSC 330 28

Data Race Example
static int cnt = 0;
t1.run() {

int y = cnt;
cnt = y + 1;

}
t2.run() {

int y = cnt;
cnt = y + 1;

}

cnt = 1

T1 finishes.  T2 executes, 
grabbing the global
counter value into its own y.

Shared state

y = 0

y = 1



15

CMSC 330 29

Data Race Example
static int cnt = 0;
t1.run() {

int y = cnt;
cnt = y + 1;

}
t2.run() {

int y = cnt;
cnt = y + 1;

}

cnt = 2

T2 executes, storing its
incremented cnt value into
the global counter.

Shared state

y = 0

y = 1

CMSC 330 30

But When it's Run Again?



16

CMSC 330 31

Data Race Example
static int cnt = 0;
t1.run() {

int y = cnt;
cnt = y + 1;

}
t2.run() {

int y = cnt;
cnt = y + 1;

}

cnt = 0

Start: both threads ready to
run.  Each will increment the
global count. 

Shared state

CMSC 330 32

Data Race Example
static int cnt = 0;
t1.run() {

int y = cnt;
cnt = y + 1;

}
t2.run() {

int y = cnt;
cnt = y + 1;

}

cnt = 0

T1 executes, grabbing
the global counter value into
its own y.

Shared state

y = 0



17

CMSC 330 33

Data Race Example
static int cnt = 0;
t1.run() {

int y = cnt;
cnt = y + 1;

}
t2.run() {

int y = cnt;
cnt = y + 1;

}

cnt = 0

T1 is preempted.  T2
executes, grabbing the global
counter value into its own y.

Shared state

y = 0

y = 0

CMSC 330 34

Data Race Example
static int cnt = 0;
t1.run() {

int y = cnt;
cnt = y + 1;

}
t2.run() {

int y = cnt;
cnt = y + 1;

}

cnt = 1

T2 executes, storing the
incremented cnt value.

Shared state

y = 0

y = 0



18

CMSC 330 35

Data Race Example
static int cnt = 0;
t1.run() {

int y = cnt;
cnt = y + 1;

}
t2.run() {

int y = cnt;
cnt = y + 1;

}

cnt = 1

T2 completes.  T1
executes again, storing the
incremented original counter
value (1) rather than what the
incremented updated value
would have been (2)!

Shared state

y = 0

y = 0

CMSC 330 36

What Happened?
• Different schedules led to different outcomes

– This is a data race or race condition

• A thread was preempted in the middle of an 
operation
– Reading and writing cnt was supposed to be atomic-

to happen with no interference from other threads
– But the schedule (interleaving of threads) which was 

chosen allowed atomicity to be violated
– These bugs can be extremely hard to reproduce, and 

so hard to debug
• Depends on what scheduler chose to do, which is hard to 

predict



19

CMSC 330 37

Question

• If instead of
int y = cnt;

cnt = y+1;

• We had written
– cnt++;

• Would the result be any different?
• Answer:  NO!

– Don’t depend on your intuition about atomicity

CMSC 330 38

Question

• If you run a program with a race condition, will 
you always get an unexpected result?
– No!  It depends on the scheduler, i.e., which JVM 

you’re running, and on the other 
threads/processes/etc, that are running on the same 
CPU

• Race conditions are hard to find



20

CMSC 330 39

What’s Wrong with the Following?

• Threads may be interrupted after the while but 
before the assignment x = 1
– Both may think they “hold” the lock!

• This is busy waiting
– Consumes lots of processor cycles

Thread 1
while (x != 0);
x = 1;
cnt++;
x = 0;

Thread 2
while (x != 0);
x = 1;
cnt++;
x = 0;

static int cnt = 0;
static int x = 0;


