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Tail Calls

• A tail call is a function call that is the last thing a 
function does before it returns

let add x y = x + y
let f z = add z z (* tail call *)

let rec length = function
[] -> 0

| (_::t) -> 1 + (length t) (* not a tail call *)

let rec length a = function
[] -> a

| (_::t) -> length (a + 1) t (* tail call *)
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Tail Recursion

• Recall that in OCaml, all looping is via recursion
– Seems very inefficient
– Needs one stack frame for recursive call

• A function is tail recursive if it is recursive and 
the recursive call is a tail call
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Tail Recursion (cont’d)

• However, if the program is tail recursive...
– Can instead reuse stack frame for each recursive call

let rec length l = match l with
[] -> 0

| (_::t) -> 1 + (length t)

length [1; 2]

[1;2]l
[2]l
[]l

eax: 0eax: 1eax: 2
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Tail Recursion (cont’d)

• The same stack frame is reused for the next 
call, since we’d just pop it off and return anyway

let rec length a l = match l with
[] -> a

| (_::t) -> (length (a + 1) t)

length 0 [1; 2]

a

[1;2]l
0
[2]
1
[]
2

eax: 2
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Names and Binding
• Programs use names to refer to things

– E.g., in x = x + 1, x refers to a variable

• A binding is an association between a name and what it refers to
– int x; /* x is bound to a stack

location containing an int
*/

– int f (int) { ... } /* f is bound to a
function */

– class C { ... } /* C is bound to a class */

– let x = e1 in e2 (* x is bound to e1 *)
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Name Restrictions

• Languages often have various restrictions on 
names to make lexing and parsing easier
– Names cannot be the same as keywords in the 

language
– OCaml function names must be lowercase
– OCaml type constructor and module names must be 

uppercase
– Names cannot include special characters like ; , : etc

• Usually names are upper- and lowercase letters, digits, and 
_ (where the first character can’t be a digit)

• Some languages also allow more symbols like ! or -
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Names and Scopes

• Good names are a precious commodity
– They help document your code
– They make it easy to remember what names 

correspond to what entities

• We want to be able to reuse names in different, 
non-overlapping regions of the code
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Names and Scopes (cont’d)

• A scope is the region of a program where a 
binding is active
– The same name in a different scope can refer to a 

different binding (refer to a different program object)

• A name is in scope if it's bound to something 
within the particular scope we’re referring to
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Example
• i is in scope

– in the body of w, the 
body of y, and after the 
declaration of j in z

– but all those i’s are 
different

• j is in scope
– in the body of x and z

void w(int i) {
...

}

void x(float j) {
...

}

void y(float i) {
...

}

void z(void) {
int j;
char *i;
...

}
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Ordering of Bindings

• Languages make various choices for when 
declarations of things are in scope
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Order of Bindings – OCaml

• let x = e1 in e2 – x is bound to e1 in scope of e2
• let rec x = e1 in e2 – x is bound in e1 and in e2

let x = 3 in
let y = x + 3 in... (* x is in scope here *)

let x = 3 + x in ... (* error, x not in scope *)

let rec length = function
[] -> 0

| (h::t) -> 1 + (length t) (* ok, length in scope *)
in ...
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Order of Bindings – C

• All declarations are in scope from the 
declaration onward
int i;
int j = i; /* ok, i is in scope */
i = 3; /* also ok */

void f(...) { ... }

int i;
int j = j + 3; /* error */
f(...); /* ok, f declared */

f(...); /* may be error; need prototype (or oldstyle C) */

void f(...) { ... }
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Order of Bindings – Java

• Declarations are in scope from the declaration 
onward, except for methods and fields, which 
are in scope throughout the class
class C {

void f(){
...g()... // OK

}

void g(){
...

}
}
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Shadowing Names

• Shadowing is rebinding a name in an inner 
scope to have a different meaning
– May or may not be allowed by the language

C

int i;

void f(float i) {

{
char *i = NULL;
...

}

}

OCaml

let g = 3;;
let g x = x + 3;;

Java

void h(int i) {
{
float i; // not allowed
...

}
}
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Namespaces
• Languages have a “top-level” or outermost scope

– Many things go in this scope; hard to control collisions
• Common solution seems to be to add a hierarchy

– OCaml:  Modules
• List.hd, String.length, etc.
• open to add names into current scope

– Java:  Packages
• java.lang.String, java.awt.Point, etc.
• import to add names into current scope

– C++:  Namespaces
• namespace f { class g { ... } }, f::g b, etc.
• using namespace to add names to current scope
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Mangled Names
• What happens when these names need to be 

seen by other languages?
– What if a C program wants to call a C++ method?

• C doesn’t know about C++’s naming conventions

• For multilingual communication, names are 
often mangled into some flat form
– E.g., class C { int f(int *x, int y) { ... } }

becomes symbol __ZN1C3fEPii in g++
– E.g., native valueOf(int) in java.lang.String

corresponds to the C function 
Java_java_lang_String_valueOf__I
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Static Scope Recall

• In static scoping, a name refers to its closest 
binding, going from inner to outer scope in the 
program text
– Languages like C, C++, Java, Ruby, and OCaml are 

statically scoped
int i;

{
int j;

{
float i;

j = (int) i;
}

}
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Free and Bound Variables
• The bound variables of a scope are those 

names that are declared in it
• If a variable is not bound in a scope, it is free

– The bindings of variables which are free in a scope 
are "inherited" from declarations of those variables in 
outer scopes in static scoping

{ /* 1 */
int j;

{ /* 2 */
float i;

j = (int) i;
}

}

i is bound in
scope 2j is free in

scope 2

j is bound in
scope 1
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Static Scoping and Nested Functions

let add x = (fun y -> x + y)

(add 3) 4 ���� <closure> 4 ���� 3 + 4 ���� 7

• To allow arbitrary nested functions with higher-
order functions and static scoping, we needed 
closures
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Nested Functions (cont’d)

• We need closures for upward funargs
– Functions that are returned by other functions

• If we only have downward funargs, then we 
don’t need full closures
– These are functions that are only passed inward
– So when they’re called, any nonlocal variables they 

access from outer scopes are still around
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Example

• When g is called, x is still on the stack

let f x =
let g y = x + y in
g 3

x
yg y = x + y
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Example

• When g is called, x is still on the stack

let app f z = f z

let f x =
let g y = x + y in
app g 3

x

y
g y = x + y

app f z = f z

f
z
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Downward Funargs
• It turns out that if we only pass functions 

downward, there are cheaper implementation 
strategies for static scoping than closures

• They're called static links and displays, and 
they're used by
– Pascal and Algol-family languages
– gcc nested functions

• We won’t go into details, though (CMSC 430 covers 
these in exciting detail.)
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Dynamic Scope

• In a language with dynamic scoping, a name 
refers to its closest binding at runtime
– LISP was the common example

Scheme (top-level scope only is dynamic)

(define f (lambda () a))
; defines a no-argument function which returns a

(define a 3) ; bind a to 3
(f) ; calls f and returns 3
(define a 4)
(f) ; calls f and returns 4
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Nested Dynamic Scopes

• Full dynamic scopes can be nested
– Static scope relates to the program text
– Dynamic scope relates to program execution trace

Perl (the keyword local introduces dynamic scope)

$l = "global";

sub A {
local $l = "local";
B();

}

sub B { print "$l\n"; }

B(); A(); B();

global
local
global
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Static vs. Dynamic Scope

Static scoping
– Local understanding of 

function behavior

– Know at compile-time 
what each name refers 
to

– A bit trickier to 
implement

Dynamic scoping
– Can be hard to 

understand behavior of 
functions

– Requires finding name 
bindings at runtime

– Easier to implement (just 
keep a global table of 
stacks of variable/value 
bindings )

CMSC 330:  Organization of 
Programming Languages

Operational Semantics
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Introduction

• So far we’ve looked at regular expressions, 
automata, and context-free grammars
– These are ways of defining sets of strings
– We can use these to describe what programs you 

can write down in a language
• (Almost...)

– I.e., these describe the syntax of a language

• What about the semantics of a language?
– What does a program “mean”?
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Roadmap: Compilation of program
Grammar:
S�A
A � id = E
E � T+E | T
T � P * T | P
P � id | n | (E)

Program:
X = 2 + 3

Compilation:
Push X
Push 2
Push 3
Add top 2
Assign top to

second

Postorder:
postfix
X 2 3 + =

(Rec Des) Parsing: 
ast

=

+

32

X

Program semantics:
What does program 
mean

?
Is this correct?
What is program 

supposed to do?
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Operational Semantics
• There are several different kinds of semantics

– Denotational:  A program is a mathematical function
– Axiomatic:  Develop a logical proof of a program

• Give predicates that hold when a program (or 
part) is executed

• We will briefly look at operational semantics
– A program is defined by how you execute it on a 

mathematical model of a machine

• We will look at a subset of OCaml as an 
example
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Roadmap: Semantics of a program
Grammar:
S�A
A � id = E
E � T+E | T
T � P * T | P
P � id | n | (E)

Program:
X = 2 + 3

Compilation:
Push X
Push 2
Push 3
Add top 2
Assign top to

second

Postorder:
postfix
X 2 3 + =

(Rec Des) Parsing: 
ast

=

+

32

X

value

Program semantics:

=

+

32

X
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Evaluation

• We’re going to define a relation E � v
– This means “expression E evaluates to v”

• So we need a formal way of defining programs 
and of defining things they may evaluate to

• We’ll use grammars to describe each of these
– One to describe abstract syntax trees E
– One to describe OCaml values v
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OCaml Programs

• E ::= x | n | true | false | [] | if E then E else E
| fun x = E | E E

– x stands for any identifier
– n stands for any integer
– true and false stand for the two boolean values
– [] is the empty list
– Using = in fun instead of -> to avoid some confusion 

later
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Values

• v ::= n | true | false | [] | v::v
– n is an integer (not a string corresp. to an integer)

• Same idea for true, false, []

– v1::v2 is the pair with v1 and v2
• This will be used to build up lists
• Notice:  nothing yet requires v2 to be a list

– Important: Be sure to understand the difference 
between program text S and mathematical objects v.

• E.g., the text 3 evaluates to the mathematical number 3

– To help, we’ll use different colors and italics
• This is usually not done, and it’s up to the reader to 

remember which is which
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Grammars for Trees
• We’re just using grammars to describe trees

E ::= x | n | true | false | [] | if E then E else E
|   fun x = E | E E

v ::= n | true | false | [] | v::v

type value =
Val_Num of int

| Val_Bool of bool
| Val_Nil
| Val_Pair of value *

value

type ast =
Id of string

| Num of int
| Bool of bool
| Nil
| If of ast * ast * ast
| Fun of string * ast
| App of ast * ast

Given a program, we saw
last time how to convert
it to an ast (e.g.,
recursive descent parsing)

Goal: For any ast, we want an operational rule
to obtain a value that represents the execution
of ast
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Operational Semantics Rules

• Each basic entity evaluates to the 
corresponding value

n � n

true � true

false � false

[] � []
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Operational Semantics Rules (cont’d)
• How about built-in functions?

– We’re applying the + function
• (we put parens around it because it’s not in infix notation; 

will skip this from now on)
• Ignore currying for the moment, and pretend we have multi-

argument functions
– On the right-hand side, we’re computing the 

mathematical sum; the left-hand side is source code
– But what about + (+ 3 4) 5 ?

• We need recursion

( + ) n m � n + m
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Rules with Hypotheses

• To evaluate + E1 E2, we need to evaluate E1, 
then evaluate E2, then add the results
– This is call-by-value

– This is a “natural deduction” style rule
– It says that if the hypotheses above the line hold, 

then the conclusion below the line holds
• i.e., if E1 executes to value n and if E2 executes to value m, 

then + E1 E2 executes to value n+m

+ E1 E2 � n + m

E1 � n E2 � m
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Error Cases

• Because we wrote n, m in the hypothesis, we mean that they must 
be integers

• But what if E1 and E2 aren’t integers?
– E.g., what if we write + false true ?
– It can be parsed, but we can’t execute it

• We will have no rule that covers such a case
– Convention:  If there is not rule to cover a case, then the expression is 

erroneous
– A program that evaluates to a stuck expression produces a run time 

error in practice

+ E1 E2 � n + m

E1 � n E2 � m
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Trees of Semantic Rules

• When we apply rules to an expression, we 
actually get a tree
– Corresponds to the recursive evaluation procedure

• For example: + (+ 3 4 ) 5

+ ( + 3 4) 5 �

(+ 3 4) � 5 �

3 � 4 �

7

3 4

5

12
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Rules for If

• Examples
– if false then 3 else 4 � 4

– if true then 3 else 4 � 3

• Notice that only one branch is evaluated

if E1 then E2 else E3 �

E1 � true E2 � v

v

if E1 then E2 else E3 �

E1 � false E3 � v

v
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Rule for ::

• So :: allocates a pair in memory
• Are there any conditions on E1 and E2?

– No!  We will allow E2 to be anything
– OCaml’s type system will disallow non-lists

:: E1 E2 �

E1 � v1 E2 � v2

v1::v2
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Rules for Identifiers

• Let’s assume for now that the only identifiers 
are parameter names
– Ex.  (fun x = + x 3) 4
– When we see x in the body, we need to look it up
– So we need to keep some sort of environment

• This will be a map from identifiers to values

x � ???
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Semantics with Environments
• Extend rules to the form A; E � v

– Means in environment A, the program text E evaluates to v
• Notation:

– We write • for the empty environment
– We write A(x) for the value that x maps to in A
– We write A, x:v for the same environment as A, except x is now v

• x might or might not have mapped to anything in A
– We write A, A' for the environment with the bindings of A' added to and 

overriding the bindings of A
– The empty environment can be omitted when things are clear, and in adding 

other bindings to an empty environment we can write just those bindings if 
things are clear
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Rules for Identifiers and Application

• To evaluate a user-defined function applied to an 
argument:
– Evaluate the argument (call-by-value)
– Evaluate the function body in an environment in which 

the formal parameter is bound to the actual argument
– Return the result

A; x � A(x)

A; ( (fun x = E1)  E2) � v'

A; E2 � v A, x:v; E1 � v'

no hypothesis means
“in all cases”
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Example: (fun x = + x 3)  4 = ?

•; (fun x = + x 3)  4 �

•; 4 � •, x:4; + x 3 �4

•, x:4; x � 4 •, x:4; 3 � 3

7

7
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Nested Functions

• This works for cases of nested functions
– ...as long as they are fully applied

• But what about the true higher-order cases?
– Passing functions as arguments, and returning 

functions as results
– We need closures to handle this case
– ...and a closure was just a function and an environment
– We already have notation around for writing both parts
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Closures

• Formally, we add closures (A, �x.E) to values
– A is the environment in which the closure was created
– x is the parameter name
– E is the source code for the body

• �x will be discussed next time. Means a binding 
of x in E.

• v ::= n | true | false | [] | v::v
|  (A, �x.E)
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Revised Rule for Lambda

• To evaluate a function definition, create a 
closure when the function is created
– Notice that we don’t look inside the function body

A;  fun x = E  � (A, �x.E)
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Revised Rule for Application

• To apply something to an argument:
– Evaluate it to produce a closure
– Evaluate the argument (call-by-value)
– Evaluate the body of the closure, in

• The current environment, extended with the closure’s 
environment, extended with the binding for the parameter

A; (E1 E2) �

A; E1 � (A', �x.E)
A, A', x:v; E � v'

A; E2 � v

v'
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Example

Let <previous> = (fun x = (fun y = + x y))  3

•; (fun x = (fun y = + x y))  3 �

•; (fun x = (fun y = + x y)) �

(x:3, �y.(+ x y))
•; 3 � 3

(•, �x.(fun y = + x y))

x:3; (fun y = + x y) �

(x:3, �y.(+ x y))

CMSC 330 53

Example (cont’d)

•; ( <previous> 4 )�

•; <previous> � (x:3, �y.(+ x y))

•; 4 � 4
x:3, y:4; (+ x y) �

7

7

CMSC 330 54

Why Did We Do This? (cont’d)

• Operational semantics are useful for
– Describing languages

• Not just OCaml!  It’s pretty hard to describe a big language 
like C or Java, but we can at least describe the core 
components of the language

– Giving a precise specification of how they work
• Look in any language standard – they tend to be vague in 

many places and leave things undefined

– Reasoning about programs
• We can actually prove that programs do something or don’t 

do something, because we have a precise definition of how 
they work


