
1

CMSC 330: Organization of
Programming Languages

More on Scope
Operational Semantics

CMSC 330 2

Tail Calls

• A tail call is a function call that is the last thing a
function does before it returns

let add x y = x + y
let f z = add z z (* tail call *)

let rec length = function
[] -> 0

| (_::t) -> 1 + (length t) (* not a tail call *)

let rec length a = function
[] -> a

| (_::t) -> length (a + 1) t (* tail call *)

CMSC 330 3

Tail Recursion

• Recall that in OCaml, all looping is via recursion
– Seems very inefficient
– Needs one stack frame for recursive call

• A function is tail recursive if it is recursive and
the recursive call is a tail call

CMSC 330 4

Tail Recursion (cont’d)

• However, if the program is tail recursive...
– Can instead reuse stack frame for each recursive call

let rec length l = match l with
[] -> 0

| (_::t) -> 1 + (length t)

length [1; 2]

[1;2]l
[2]l
[]l

eax: 0eax: 1eax: 2

CMSC 330 5

Tail Recursion (cont’d)

• The same stack frame is reused for the next
call, since we’d just pop it off and return anyway

let rec length a l = match l with
[] -> a

| (_::t) -> (length (a + 1) t)

length 0 [1; 2]

a

[1;2]l
0
[2]
1
[]
2

eax: 2

CMSC 330 6

Names and Binding
• Programs use names to refer to things

– E.g., in x = x + 1, x refers to a variable

• A binding is an association between a name and what it refers to
– int x; /* x is bound to a stack

location containing an int
*/

– int f (int) { ... } /* f is bound to a
function */

– class C { ... } /* C is bound to a class */

– let x = e1 in e2 (* x is bound to e1 *)

2

CMSC 330 7

Name Restrictions

• Languages often have various restrictions on
names to make lexing and parsing easier
– Names cannot be the same as keywords in the

language
– OCaml function names must be lowercase
– OCaml type constructor and module names must be

uppercase
– Names cannot include special characters like ; , : etc

• Usually names are upper- and lowercase letters, digits, and
_ (where the first character can’t be a digit)

• Some languages also allow more symbols like ! or -

CMSC 330 8

Names and Scopes

• Good names are a precious commodity
– They help document your code
– They make it easy to remember what names

correspond to what entities

• We want to be able to reuse names in different,
non-overlapping regions of the code

CMSC 330 9

Names and Scopes (cont’d)

• A scope is the region of a program where a
binding is active
– The same name in a different scope can refer to a

different binding (refer to a different program object)

• A name is in scope if it's bound to something
within the particular scope we’re referring to

CMSC 330 10

Example
• i is in scope

– in the body of w, the
body of y, and after the
declaration of j in z

– but all those i’s are
different

• j is in scope
– in the body of x and z

void w(int i) {
...

}

void x(float j) {
...

}

void y(float i) {
...

}

void z(void) {
int j;
char *i;
...

}

CMSC 330 11

Ordering of Bindings

• Languages make various choices for when
declarations of things are in scope

CMSC 330 12

Order of Bindings – OCaml

• let x = e1 in e2 – x is bound to e1 in scope of e2
• let rec x = e1 in e2 – x is bound in e1 and in e2

let x = 3 in
let y = x + 3 in... (* x is in scope here *)

let x = 3 + x in ... (* error, x not in scope *)

let rec length = function
[] -> 0

| (h::t) -> 1 + (length t) (* ok, length in scope *)
in ...

3

CMSC 330 13

Order of Bindings – C

• All declarations are in scope from the
declaration onward
int i;
int j = i; /* ok, i is in scope */
i = 3; /* also ok */

void f(...) { ... }

int i;
int j = j + 3; /* error */
f(...); /* ok, f declared */

f(...); /* may be error; need prototype (or oldstyle C) */

void f(...) { ... }

CMSC 330 14

Order of Bindings – Java

• Declarations are in scope from the declaration
onward, except for methods and fields, which
are in scope throughout the class
class C {

void f(){
...g()... // OK

}

void g(){
...

}
}

CMSC 330 15

Shadowing Names

• Shadowing is rebinding a name in an inner
scope to have a different meaning
– May or may not be allowed by the language

C

int i;

void f(float i) {

{
char *i = NULL;
...

}

}

OCaml

let g = 3;;
let g x = x + 3;;

Java

void h(int i) {
{
float i; // not allowed
...

}
}

CMSC 330 16

Namespaces
• Languages have a “top-level” or outermost scope

– Many things go in this scope; hard to control collisions
• Common solution seems to be to add a hierarchy

– OCaml: Modules
• List.hd, String.length, etc.
• open to add names into current scope

– Java: Packages
• java.lang.String, java.awt.Point, etc.
• import to add names into current scope

– C++: Namespaces
• namespace f { class g { ... } }, f::g b, etc.
• using namespace to add names to current scope

CMSC 330 17

Mangled Names
• What happens when these names need to be

seen by other languages?
– What if a C program wants to call a C++ method?

• C doesn’t know about C++’s naming conventions

• For multilingual communication, names are
often mangled into some flat form
– E.g., class C { int f(int *x, int y) { ... } }

becomes symbol __ZN1C3fEPii in g++
– E.g., native valueOf(int) in java.lang.String

corresponds to the C function
Java_java_lang_String_valueOf__I

CMSC 330 18

Static Scope Recall

• In static scoping, a name refers to its closest
binding, going from inner to outer scope in the
program text
– Languages like C, C++, Java, Ruby, and OCaml are

statically scoped
int i;

{
int j;

{
float i;

j = (int) i;
}

}

4

CMSC 330 19

Free and Bound Variables
• The bound variables of a scope are those

names that are declared in it
• If a variable is not bound in a scope, it is free

– The bindings of variables which are free in a scope
are "inherited" from declarations of those variables in
outer scopes in static scoping

{ /* 1 */
int j;

{ /* 2 */
float i;

j = (int) i;
}

}

i is bound in
scope 2j is free in

scope 2

j is bound in
scope 1

CMSC 330 20

Static Scoping and Nested Functions

let add x = (fun y -> x + y)

(add 3) 4 ���� <closure> 4 ���� 3 + 4 ���� 7

• To allow arbitrary nested functions with higher-
order functions and static scoping, we needed
closures

CMSC 330 21

Nested Functions (cont’d)

• We need closures for upward funargs
– Functions that are returned by other functions

• If we only have downward funargs, then we
don’t need full closures
– These are functions that are only passed inward
– So when they’re called, any nonlocal variables they

access from outer scopes are still around

CMSC 330 22

Example

• When g is called, x is still on the stack

let f x =
let g y = x + y in
g 3

x
yg y = x + y

CMSC 330 23

Example

• When g is called, x is still on the stack

let app f z = f z

let f x =
let g y = x + y in
app g 3

x

y
g y = x + y

app f z = f z

f
z

CMSC 330 24

Downward Funargs
• It turns out that if we only pass functions

downward, there are cheaper implementation
strategies for static scoping than closures

• They're called static links and displays, and
they're used by
– Pascal and Algol-family languages
– gcc nested functions

• We won’t go into details, though (CMSC 430 covers
these in exciting detail.)

5

CMSC 330 25

Dynamic Scope

• In a language with dynamic scoping, a name
refers to its closest binding at runtime
– LISP was the common example

Scheme (top-level scope only is dynamic)

(define f (lambda () a))
; defines a no-argument function which returns a

(define a 3) ; bind a to 3
(f) ; calls f and returns 3
(define a 4)
(f) ; calls f and returns 4

CMSC 330 26

Nested Dynamic Scopes

• Full dynamic scopes can be nested
– Static scope relates to the program text
– Dynamic scope relates to program execution trace

Perl (the keyword local introduces dynamic scope)

$l = "global";

sub A {
local $l = "local";
B();

}

sub B { print "$l\n"; }

B(); A(); B();

global
local
global

CMSC 330 27

Static vs. Dynamic Scope

Static scoping
– Local understanding of

function behavior

– Know at compile-time
what each name refers
to

– A bit trickier to
implement

Dynamic scoping
– Can be hard to

understand behavior of
functions

– Requires finding name
bindings at runtime

– Easier to implement (just
keep a global table of
stacks of variable/value
bindings)

CMSC 330: Organization of
Programming Languages

Operational Semantics

CMSC 330 29

Introduction

• So far we’ve looked at regular expressions,
automata, and context-free grammars
– These are ways of defining sets of strings
– We can use these to describe what programs you

can write down in a language
• (Almost...)

– I.e., these describe the syntax of a language

• What about the semantics of a language?
– What does a program “mean”?

CMSC 330 30

Roadmap: Compilation of program
Grammar:
S�A
A � id = E
E � T+E | T
T � P * T | P
P � id | n | (E)

Program:
X = 2 + 3

Compilation:
Push X
Push 2
Push 3
Add top 2
Assign top to

second

Postorder:
postfix
X 2 3 + =

(Rec Des) Parsing:
ast

=

+

32

X

Program semantics:
What does program
mean

?
Is this correct?
What is program

supposed to do?

6

CMSC 330 31

Operational Semantics
• There are several different kinds of semantics

– Denotational: A program is a mathematical function
– Axiomatic: Develop a logical proof of a program

• Give predicates that hold when a program (or
part) is executed

• We will briefly look at operational semantics
– A program is defined by how you execute it on a

mathematical model of a machine

• We will look at a subset of OCaml as an
example

CMSC 330 32

Roadmap: Semantics of a program
Grammar:
S�A
A � id = E
E � T+E | T
T � P * T | P
P � id | n | (E)

Program:
X = 2 + 3

Compilation:
Push X
Push 2
Push 3
Add top 2
Assign top to

second

Postorder:
postfix
X 2 3 + =

(Rec Des) Parsing:
ast

=

+

32

X

value

Program semantics:

=

+

32

X

CMSC 330 33

Evaluation

• We’re going to define a relation E � v
– This means “expression E evaluates to v”

• So we need a formal way of defining programs
and of defining things they may evaluate to

• We’ll use grammars to describe each of these
– One to describe abstract syntax trees E
– One to describe OCaml values v

CMSC 330 34

OCaml Programs

• E ::= x | n | true | false | [] | if E then E else E
| fun x = E | E E

– x stands for any identifier
– n stands for any integer
– true and false stand for the two boolean values
– [] is the empty list
– Using = in fun instead of -> to avoid some confusion

later

CMSC 330 35

Values

• v ::= n | true | false | [] | v::v
– n is an integer (not a string corresp. to an integer)

• Same idea for true, false, []

– v1::v2 is the pair with v1 and v2
• This will be used to build up lists
• Notice: nothing yet requires v2 to be a list

– Important: Be sure to understand the difference
between program text S and mathematical objects v.

• E.g., the text 3 evaluates to the mathematical number 3

– To help, we’ll use different colors and italics
• This is usually not done, and it’s up to the reader to

remember which is which

CMSC 330 36

Grammars for Trees
• We’re just using grammars to describe trees

E ::= x | n | true | false | [] | if E then E else E
| fun x = E | E E

v ::= n | true | false | [] | v::v

type value =
Val_Num of int

| Val_Bool of bool
| Val_Nil
| Val_Pair of value *

value

type ast =
Id of string

| Num of int
| Bool of bool
| Nil
| If of ast * ast * ast
| Fun of string * ast
| App of ast * ast

Given a program, we saw
last time how to convert
it to an ast (e.g.,
recursive descent parsing)

Goal: For any ast, we want an operational rule
to obtain a value that represents the execution
of ast

7

CMSC 330 37

Operational Semantics Rules

• Each basic entity evaluates to the
corresponding value

n � n

true � true

false � false

[] � []

CMSC 330 38

Operational Semantics Rules (cont’d)
• How about built-in functions?

– We’re applying the + function
• (we put parens around it because it’s not in infix notation;

will skip this from now on)
• Ignore currying for the moment, and pretend we have multi-

argument functions
– On the right-hand side, we’re computing the

mathematical sum; the left-hand side is source code
– But what about + (+ 3 4) 5 ?

• We need recursion

(+) n m � n + m

CMSC 330 39

Rules with Hypotheses

• To evaluate + E1 E2, we need to evaluate E1,
then evaluate E2, then add the results
– This is call-by-value

– This is a “natural deduction” style rule
– It says that if the hypotheses above the line hold,

then the conclusion below the line holds
• i.e., if E1 executes to value n and if E2 executes to value m,

then + E1 E2 executes to value n+m

+ E1 E2 � n + m

E1 � n E2 � m

CMSC 330 40

Error Cases

• Because we wrote n, m in the hypothesis, we mean that they must
be integers

• But what if E1 and E2 aren’t integers?
– E.g., what if we write + false true ?
– It can be parsed, but we can’t execute it

• We will have no rule that covers such a case
– Convention: If there is not rule to cover a case, then the expression is

erroneous
– A program that evaluates to a stuck expression produces a run time

error in practice

+ E1 E2 � n + m

E1 � n E2 � m

CMSC 330 41

Trees of Semantic Rules

• When we apply rules to an expression, we
actually get a tree
– Corresponds to the recursive evaluation procedure

• For example: + (+ 3 4) 5

+ (+ 3 4) 5 �

(+ 3 4) � 5 �

3 � 4 �

7

3 4

5

12

CMSC 330 42

Rules for If

• Examples
– if false then 3 else 4 � 4

– if true then 3 else 4 � 3

• Notice that only one branch is evaluated

if E1 then E2 else E3 �

E1 � true E2 � v

v

if E1 then E2 else E3 �

E1 � false E3 � v

v

8

CMSC 330 43

Rule for ::

• So :: allocates a pair in memory
• Are there any conditions on E1 and E2?

– No! We will allow E2 to be anything
– OCaml’s type system will disallow non-lists

:: E1 E2 �

E1 � v1 E2 � v2

v1::v2

CMSC 330 44

Rules for Identifiers

• Let’s assume for now that the only identifiers
are parameter names
– Ex. (fun x = + x 3) 4
– When we see x in the body, we need to look it up
– So we need to keep some sort of environment

• This will be a map from identifiers to values

x � ???

CMSC 330 45

Semantics with Environments
• Extend rules to the form A; E � v

– Means in environment A, the program text E evaluates to v
• Notation:

– We write • for the empty environment
– We write A(x) for the value that x maps to in A
– We write A, x:v for the same environment as A, except x is now v

• x might or might not have mapped to anything in A
– We write A, A' for the environment with the bindings of A' added to and

overriding the bindings of A
– The empty environment can be omitted when things are clear, and in adding

other bindings to an empty environment we can write just those bindings if
things are clear

CMSC 330 46

Rules for Identifiers and Application

• To evaluate a user-defined function applied to an
argument:
– Evaluate the argument (call-by-value)
– Evaluate the function body in an environment in which

the formal parameter is bound to the actual argument
– Return the result

A; x � A(x)

A; ((fun x = E1) E2) � v'

A; E2 � v A, x:v; E1 � v'

no hypothesis means
“in all cases”

CMSC 330 47

Example: (fun x = + x 3) 4 = ?

•; (fun x = + x 3) 4 �

•; 4 � •, x:4; + x 3 �4

•, x:4; x � 4 •, x:4; 3 � 3

7

7

CMSC 330 48

Nested Functions

• This works for cases of nested functions
– ...as long as they are fully applied

• But what about the true higher-order cases?
– Passing functions as arguments, and returning

functions as results
– We need closures to handle this case
– ...and a closure was just a function and an environment
– We already have notation around for writing both parts

9

CMSC 330 49

Closures

• Formally, we add closures (A, �x.E) to values
– A is the environment in which the closure was created
– x is the parameter name
– E is the source code for the body

• �x will be discussed next time. Means a binding
of x in E.

• v ::= n | true | false | [] | v::v
| (A, �x.E)

CMSC 330 50

Revised Rule for Lambda

• To evaluate a function definition, create a
closure when the function is created
– Notice that we don’t look inside the function body

A; fun x = E � (A, �x.E)

CMSC 330 51

Revised Rule for Application

• To apply something to an argument:
– Evaluate it to produce a closure
– Evaluate the argument (call-by-value)
– Evaluate the body of the closure, in

• The current environment, extended with the closure’s
environment, extended with the binding for the parameter

A; (E1 E2) �

A; E1 � (A', �x.E)
A, A', x:v; E � v'

A; E2 � v

v'

CMSC 330 52

Example

Let <previous> = (fun x = (fun y = + x y)) 3

•; (fun x = (fun y = + x y)) 3 �

•; (fun x = (fun y = + x y)) �

(x:3, �y.(+ x y))
•; 3 � 3

(•, �x.(fun y = + x y))

x:3; (fun y = + x y) �

(x:3, �y.(+ x y))

CMSC 330 53

Example (cont’d)

•; (<previous> 4)�

•; <previous> � (x:3, �y.(+ x y))

•; 4 � 4
x:3, y:4; (+ x y) �

7

7

CMSC 330 54

Why Did We Do This? (cont’d)

• Operational semantics are useful for
– Describing languages

• Not just OCaml! It’s pretty hard to describe a big language
like C or Java, but we can at least describe the core
components of the language

– Giving a precise specification of how they work
• Look in any language standard – they tend to be vague in

many places and leave things undefined

– Reasoning about programs
• We can actually prove that programs do something or don’t

do something, because we have a precise definition of how
they work

