CMSC 330: Organization of
Programming Languages

Lambda Calculus Introduction

Introduction

* We've seen that several language
conveniences aren’t strictly necessary
— Multi-argument functions: use currying or tuples
— Loops: use recursion
— Side-effects: we don't need them either

» Goal: come up with a “core” language that's as
small as possible and still Turing complete

— This will give a way of illustrating important language
features and algorithms

CMSC 330 2

Revised Rule for Application

Example

A E, - (A AX.E) A E, - v
A A, xv,E->V
A (Ef Ey) > V'

* To apply something to an argument:
— Evaluate it to produce a closure
— Evaluate the argument (call-by-value)

— Evaluate the body of the closure, in

 The current environment, extended with the closure’s
environment, extended with the binding for the parameter
CMSC 330

3

s (funx=({funy=+xy))> (, A (funy=+xy))
3> 3
x:3; (funy=+xy) - (x:3, Ay.(+ x y))

s (funx=(funy=+xy)) 3- (x:3, Ay.(+xy))

CMSC 330 4

Lambda Calculus

* A lambda calculus expression is defined as

e =X variable
| Ax.e function
| ee function application

* Ax.eislike (fun x -> e) in OCaml

* That'sit! Only higher-order functions

CMSC 330

Intuitive Understanding

» Before we work more with the mathematical
notation of lambda calculus, we’re going to play
a puzzle game!

» From: http://worrydream.com/AlligatorEggs/

CMSC 330

Puzzle Pieces

* Hungry alligators: eat and guard family

» Old alligators: guard family

» Eggs: hatch into new family

OCO@®

CMSC 330 7

Example Families

» Families are shown in columns
+ Alligators guard families below them

CMSC 330 8

Puzzle Rule 1: The Eating Rule

« If families are side-by-side the top left alligator eats the
entire family to her right

The top left alligator dies

Any eggs she was guarding of the same color hatch into
what she just ate

CMSC 330

Eating Rule Practice

* What happens to these alligators?
Puzzle 1: Puzzle 2:

Q@ o®
Answer 1: Answer 2:
@ @

Puzzle Rule 2: The Color Rule

« If an alligator is about to eat a family and a color
appears in both families then we need to
change that color in one of the families.

Puzzle Rule 3: The Old Alligator Rule

T S O O e O
@ O@ (@] (@Y]

« If a color appears in both families, but only as
an egg, no color change is made.

Q&
o@ O@ 0@ 0@

CMSC 330 1

* When an old alligator is only guarding one
family it dies.

CMSC 330 12

Challenging Puzzles!

Try to reduce these groups of alligators as much as
possible using the three puzzle rules:

More Puzzles

+ Challenge your neighbors with puzzles of your own.

CMSC 330 13

* When Family Not eats Family True it becomes
Family False and when Not eats False it
becomes True... what color should the white
eggs be?

Not e
(@)
@
* What do the AND and OR families look like?

CMSC 330 14

ok

Lambda Calculus

* A lambda calculus expression is defined as

e =X variable (e: egg)
| Ax.e function (Ax: alligator)
| ee function application

(adjacency of families)
* M.eislike (fun x -> e) in OCaml

* That'sit! Only higher-order functions

CMSC 330 15

Three Conveniences

+ Syntactic sugar for local declarations
— letx =e1in e2is short for (Ax.e2) e1

» The scope of A extends as far to the right as
possible
— M. Ay.xy is AX.(Ay.(x Y))

» Function application is left-associative
—-xyzis(xy)z
— Same rule as OCaml

CMSC 330 16

Operational Semantics

» All we've got are functions, so all we can do is
call them

* To evaluate (Ax.e1) e2
— Evaluate e1 with x bound to e2

» This application is called “beta-reduction”
— (Ax.e1) e2 — e1[x/e2] (the eating rule)

« e1[x/e2] is e1 where occurrences of x are replaced by e2
« Slightly different than the environments we saw for Ocaml

— Do substitutions to replace formals with actuals, instead
of carrying around environment that maps formals to
actuals

— We allow reductions to occur anywhere in a term
CMSC 330 17

Examples (try with alligators too)

* (MXx)z- z
c (Ay)z-> Y
* (Mxy)z—> zy
— A function that applies its argument to y
* (MXxy)(Az.z) > (Az.z)y-y
* (MAYy.XYy)Zz—> Ayzy

— A curried function of two arguments that applies its
first argument to its second

* (AAy.XY) (Az.zz) X -
Ay.((Az.zz)y)x — (Az.zz)x —» xx

CMSC 330 18

Static Scoping and Alpha Conversion

* Lambda calculus uses static scoping

» Consider the following
— (XX (Ax.x))z—>?
* The rightmost “x” refers to the second binding

— This is a function that takes its argument and applies
it to the identity function

+ This function is “the same” as (Ax.x (Ay.y))
— Renaming bound variables consistently is allowed
« This is called alpha-renaming or alpha conversion (color rule)
— ExX.AXXX=Ay.y=Az.z Ay.AX.y = AZ.AXx.Z

CMSC 330 19

Static Scoping (cont’d)

* How about the following?
— (AAYXY)y—>?

— When we replace y inside, we don’t want it to be
“captured” by the inner binding of y

 This function is “the same” as (Ax.Az.x z)

CMSC 330 20

