

CMSC 330: Organization of Programming Languages

Lambda Calculus Introduction

Introduction

- We've seen that several language conveniences aren't strictly necessary
 - Multi-argument functions: use currying or tuples
 - Loops: use recursion
 - Side-effects: we don't need them either
- Goal: come up with a "core" language that's as small as possible and still Turing complete
 - This will give a way of illustrating important language features and algorithms

CMSC 330

2

Revised Rule for Application

$$\begin{array}{c} A; E_1 \rightarrow (A', \lambda x. E) \quad A; E_2 \rightarrow v \\ \hline A, A', x:v; E \rightarrow v' \end{array}$$
$$A; (E_1 E_2) \rightarrow v'$$

- To apply something to an argument:
 - Evaluate it to produce a closure
 - Evaluate the argument (call-by-value)
 - Evaluate the body of the closure, in
 - The current environment, extended with the closure's environment, extended with the binding for the parameter

CMSC 330

3

Example

$$\begin{array}{l} \bullet; (fun x = (fun y = + x y)) \rightarrow (\bullet, \lambda x. (fun y = + x y)) \\ \quad \quad \quad \bullet; 3 \rightarrow 3 \\ \bullet; 3; (fun y = + x y) \rightarrow (x:3, \lambda y. (+ x y)) \\ \bullet; (fun x = (fun y = + x y)) 3 \rightarrow (x:3, \lambda y. (+ x y)) \end{array}$$

CMSC 330

4

Lambda Calculus

- A lambda calculus expression is defined as

$e ::= x$	variable
$\lambda x. e$	function
$e e$	function application

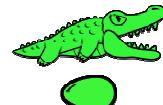
- $\lambda x. e$ is like `(fun x -> e)` in OCaml
- That's it! Only higher-order functions

CMSC 330

5

Intuitive Understanding

- Before we work more with the mathematical notation of lambda calculus, we're going to play a puzzle game!



- From: <http://worrydream.com/AlligatorEggs/>

CMSC 330

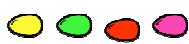
6

Puzzle Pieces

- Hungry alligators: eat and guard family

- Old alligators: guard family

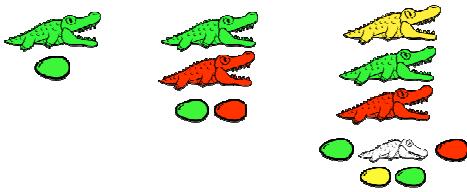
- Eggs: hatch into new family



CMSC 330

7

Example Families



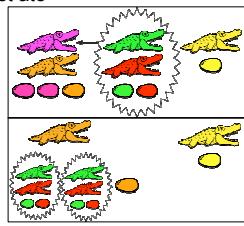
- Families are shown in columns
- Alligators guard families *below* them

CMSC 330

8

Puzzle Rule 1: The Eating Rule

- If families are side-by-side the top left alligator eats the entire family to her right
- The top left alligator dies
- Any eggs she was guarding of the same color hatch into what she just ate



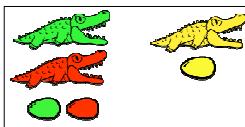
CMSC 330

9

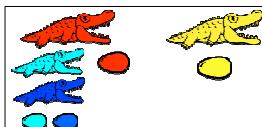
Eating Rule Practice

- What happens to these alligators?

Puzzle 1:



Puzzle 2:



Answer 1:

Answer 2:

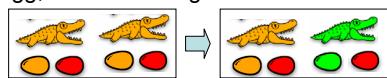
CMSC 330

10

Puzzle Rule 2: The Color Rule

- If an alligator is about to eat a family and a color appears in *both families* then we need to change that color in one of the families.

- If a color appears in both families, but *only* as an egg, no color change is made.

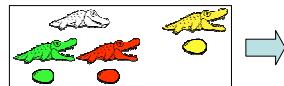


CMSC 330

11

Puzzle Rule 3: The Old Alligator Rule

- When an old alligator is only guarding one family it dies.

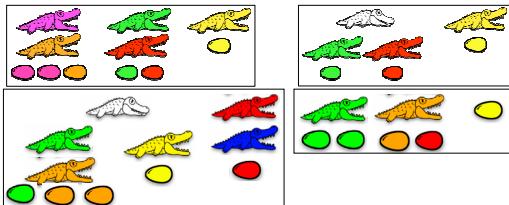


CMSC 330

12

Challenging Puzzles!

- Try to reduce these groups of alligators as much as possible using the three puzzle rules:



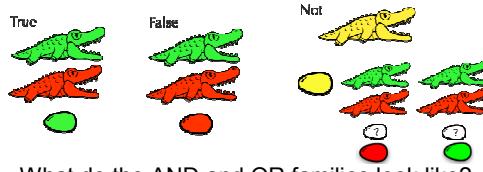
- Challenge your neighbors with puzzles of your own.

CMSC 330

13

More Puzzles

- When Family Not eats Family True it becomes Family False and when Not eats False it becomes True... what color should the white eggs be?



- What do the AND and OR families look like?

CMSC 330

14

Lambda Calculus

- A lambda calculus expression is defined as

$e ::= x$	variable (e: egg)
$\lambda x. e$	function (λx : alligator)
$e e$	function application (adjacency of families)

- $\lambda x. e$ is like `(fun x -> e)` in OCaml
- That's it! Only higher-order functions

CMSC 330

15

Three Conveniences

- Syntactic sugar for local declarations
 - `let x = e1 in e2` is short for $(\lambda x. e2) e1$
- The scope of λ extends as far to the right as possible
 - $\lambda x. \lambda y. x$ is $\lambda x. (\lambda y. (x y))$
- Function application is left-associative
 - $x y z$ is $(x y) z$
 - Same rule as OCaml

CMSC 330

16

Operational Semantics

- All we've got are functions, so all we can do is call them
- To evaluate $(\lambda x. e1) e2$
 - Evaluate $e1$ with x bound to $e2$
- This application is called "beta-reduction"
 - $(\lambda x. e1) e2 \rightarrow e1[x/e2]$ (the eating rule)
 - $e1[x/e2]$ is $e1$ where occurrences of x are replaced by $e2$
 - Slightly different than the environments we saw for OCaml
 - Do substitutions to replace formals with actuals, instead of carrying around environment that maps formals to actuals
 - We allow reductions to occur anywhere in a term

CMSC 330

17

Examples (try with alligators too)

- $(\lambda x. x) z \rightarrow z$
- $(\lambda x. y) z \rightarrow y$
- $(\lambda x. x y) z \rightarrow zy$
 - A function that applies its argument to y
- $(\lambda x. x y) (\lambda z. z) \rightarrow (\lambda z. z) y \rightarrow y$
- $(\lambda x. \lambda y. x) z \rightarrow \lambda y. z y$
 - A curried function of two arguments that applies its first argument to its second
- $(\lambda x. \lambda y. x y) (\lambda z. z z) x \rightarrow$
 $\lambda y. ((\lambda z. z z) y) x \rightarrow (\lambda z. z z) x \rightarrow xx$

CMSC 330

18

Static Scoping and Alpha Conversion

- Lambda calculus uses static scoping
- Consider the following
 - $(\lambda x.x (\lambda x.x)) z \rightarrow ?$
 - The rightmost “ x ” refers to the second binding
 - This is a function that takes its argument and applies it to the identity function
- This function is “the same” as $(\lambda x.x (\lambda y.y))$
 - Renaming bound variables consistently is allowed
 - This is called *alpha-renaming* or *alpha conversion* (color rule)
 - Ex. $\lambda x.x = \lambda y.y = \lambda z.z$ $\lambda y.\lambda x.y = \lambda z.\lambda x.z$

CMSC 330

19

Static Scoping (cont'd)

- How about the following?
 - $(\lambda x.\lambda y.x y) y \rightarrow ?$
 - When we replace y inside, we don't want it to be “captured” by the inner binding of y
- This function is “the same” as $(\lambda x.\lambda z.x z)$

CMSC 330

20