
1

CMSC 330: Organization of
Programming Languages

Lambda Calculus Introduction

CMSC 330 2

Introduction

• We’ve seen that several language
conveniences aren’t strictly necessary
– Multi-argument functions: use currying or tuples
– Loops: use recursion
– Side-effects: we don't need them either

• Goal: come up with a “core” language that’s as
small as possible and still Turing complete
– This will give a way of illustrating important language

features and algorithms

CMSC 330 3

Revised Rule for Application

• To apply something to an argument:
– Evaluate it to produce a closure
– Evaluate the argument (call-by-value)
– Evaluate the body of the closure, in

• The current environment, extended with the closure’s
environment, extended with the binding for the parameter

A; (E1 E2) �

A; E1 � (A', �x.E)
A, A', x:v; E � v'

A; E2 � v

v'

CMSC 330 4

Example

•; (fun x = (fun y = + x y)) 3 �

•; (fun x = (fun y = + x y)) �

(x:3, �y.(+ x y))
•; 3 � 3

(•, �x.(fun y = + x y))

x:3; (fun y = + x y) �

(x:3, �y.(+ x y))

CMSC 330 5

Lambda Calculus

• A lambda calculus expression is defined as

e ::= x variable
| �x.e function
| e e function application

• �x.e is like (fun x -> e) in OCaml

• That’s it! Only higher-order functions

CMSC 330 6

Intuitive Understanding

• Before we work more with the mathematical
notation of lambda calculus, we’re going to play
a puzzle game!

• From: http://worrydream.com/AlligatorEggs/

2

CMSC 330 7

Puzzle Pieces

• Hungry alligators: eat and guard family

• Old alligators: guard family

• Eggs: hatch into new family

CMSC 330 8

Example Families

• Families are shown in columns
• Alligators guard families below them

CMSC 330 9

Puzzle Rule 1: The Eating Rule
• If families are side-by-side the top left alligator eats the

entire family to her right
• The top left alligator dies
• Any eggs she was guarding of the same color hatch into

what she just ate

CMSC 330 10

Eating Rule Practice

• What happens to these alligators?
Puzzle 1: Puzzle 2:

Answer 1: Answer 2:

CMSC 330 11

Puzzle Rule 2: The Color Rule

• If an alligator is about to eat a family and a color
appears in both families then we need to
change that color in one of the families.

• If a color appears in both families, but only as
an egg, no color change is made.

CMSC 330 12

Puzzle Rule 3: The Old Alligator Rule

• When an old alligator is only guarding one
family it dies.

3

CMSC 330 13

Challenging Puzzles!
• Try to reduce these groups of alligators as much as

possible using the three puzzle rules:

• Challenge your neighbors with puzzles of your own.
CMSC 330 14

More Puzzles

• When Family Not eats Family True it becomes
Family False and when Not eats False it
becomes True… what color should the white
eggs be?

• What do the AND and OR families look like?

CMSC 330 15

Lambda Calculus

• A lambda calculus expression is defined as

e ::= x variable (e: egg)
| �x.e function (�x: alligator)
| e e function application

(adjacency of families)
• �x.e is like (fun x -> e) in OCaml

• That’s it! Only higher-order functions

CMSC 330 16

Three Conveniences

• Syntactic sugar for local declarations
– let x = e1 in e2 is short for (�x.e2) e1

• The scope of � extends as far to the right as
possible
– �x. �y.x y is �x.(�y.(x y))

• Function application is left-associative
– x y z is (x y) z
– Same rule as OCaml

CMSC 330 17

Operational Semantics

• All we’ve got are functions, so all we can do is
call them

• To evaluate (�x.e1) e2
– Evaluate e1 with x bound to e2

• This application is called “beta-reduction”
– (�x.e1) e2 � e1[x/e2] (the eating rule)

• e1[x/e2] is e1 where occurrences of x are replaced by e2
• Slightly different than the environments we saw for Ocaml

– Do substitutions to replace formals with actuals, instead
of carrying around environment that maps formals to
actuals

– We allow reductions to occur anywhere in a term
CMSC 330 18

Examples (try with alligators too)

• (�x.x) z �
• (�x.y) z �
• (�x.x y) z �

– A function that applies its argument to y
• (�x.x y) (�z.z) �
• (�x.�y.x y) z �

– A curried function of two arguments that applies its
first argument to its second

• (�x.�y.x y) (�z.zz) x �

z
y

(�z.z) y � y

zy

�y.z y

�y.((�z.zz)y)x � (�z.zz)x � xx

4

CMSC 330 19

Static Scoping and Alpha Conversion

• Lambda calculus uses static scoping

• Consider the following
– (�x.x (�x.x)) z � ?

• The rightmost “x” refers to the second binding

– This is a function that takes its argument and applies
it to the identity function

• This function is “the same” as (�x.x (�y.y))
– Renaming bound variables consistently is allowed

• This is called alpha-renaming or alpha conversion (color rule)

– Ex. �x.x = �y.y = �z.z �y.�x.y = �z.�x.z
CMSC 330 20

Static Scoping (cont’d)

• How about the following?
– (�x.�y.x y) y � ?
– When we replace y inside, we don’t want it to be

“captured” by the inner binding of y

• This function is “the same” as (�x.�z.x z)

