
1

1

Static and dynamic verification

• Software inspections
– Concerned with analysis of the static system

representation to discover problems (static
verification)

– May be supplement by tool-based document and
code analysis

• Software testing
– Concerned with exercising and observing

product behaviour (dynamic verification)
– The system is executed with test data and its

operational behaviour is observed

2

Static and dynamic V&V

Formal
specification

High-level
design

Requirements
specification

Detailed
design Program

Prototype Dynamic
validation

Static
verification

2

3

V& V goals

• Verification and validation should establish
confidence that the software is fit for
purpose

• This does NOT mean completely free of
defects

• Rather, it must be good enough for its
intended use and the type of use will
determine the degree of confidence that is
needed

4

V & V confidence

• Depends on system’s purpose, user
expectations and marketing environment
– Software function

• The level of confidence depends on how critical the
software is to an organization

– User expectations
• Users may have low expectations of certain kinds of

software
– Marketing environment

• Getting a product to market early may be more
important than finding defects in the program

3

5

• Careful planning is required to get the
most out of testing and inspection
processes

• Planning should start early in the
development process

• The plan should identify the balance
between static verification and testing

• Test planning is about defining standards
for the testing process rather than
describing product tests

V & V planning

6

Software inspections

• Involve people examining the source
representation with the aim of discovering
anomalies and defects

• Do not require execution of a system so
may be used before implementation

• May be applied to any representation of
the system (requirements, design, test
data, etc.)

• Very effective technique for discovering
errors

4

7

Inspection success

• Many different defects may be
discovered in a single inspection
– In testing, one defect may mask another

so several executions are required
• The reuse domain and programming

knowledge
– reviewers are likely to have seen the

types of error that commonly arise

8

Inspections and testing

• Inspections and testing are complementary
and not opposing verification techniques

• Both should be used during the V & V
process

• Inspections can check conformance with a
specification but not conformance with the
customer’s real requirements

• Inspections cannot check characteristics
such as performance, usability, etc.

5

9

Program inspections

• Formalized approach to document reviews
• Intended explicitly for defect

DETECTION (not correction)
• Defects may be logical errors, anomalies in

the code that might indicate an erroneous
condition (e.g. an uninitialized variable) or
non-compliance with standards

10

Inspection pre-conditions

• A precise specification must be available
• Team members must be familiar with the

organization standards
• Syntactically correct code must be available
• An error checklist should be prepared
• Management must accept that inspection will

increase costs early in the software process
• Management must not use inspections for staff

appraisal

6

11

The inspection process

Inspection
meeting

Individual
preparation

Overview

Planning

Rework

Follow-up

12

Inspection procedure

• System overview presented to inspection
team

• Code and associated documents are
distributed to inspection team in advance

• Inspection takes place and discovered
errors are noted

• Modifications are made to repair
discovered errors

• Re-inspection may or may not be required

7

13

Inspection teams

• Made up of at least 4 members
• Author of the code being inspected
• Inspector who finds errors,

omissions and inconsistencies
• Reader who reads the code to the

team
• Moderator who chairs the meeting

and notes discovered errors

14

Inspection checklists

• Checklist of common errors should be used
to drive the inspection

• Error checklist is programming language
dependent

• The 'weaker' the type checking, the larger
the checklist

• Examples: Initialization, loop termination,
array bounds, etc.

8

Inspection checks
Fault class Inspection check
Data faults Are all program variables initialised before their values

are used?
Have all constants been named?
Should the lower bound of arrays be 0, 1, or something
else?
Should the upper bound of arrays be equal to the size of
the array or Size -1?
If character strings are used, is a delimiter explicitly
assigned?

Control faults For each conditional statement, is the condition correct?
Is each loop certain to terminate?
Are compound statements correctly bracketed?
In case statements, are all possible cases accounted for?

Input/output faults Are all input variables used?
Are all output variables assigned a value before they are
output?

Interface faults Do all function and procedure calls have the correct
number of parameters?
Do formal and actual parameter types match?
Are the parameters in the right order?

Is each loop certain to terminate?
Are compound statements correctly bracketed?
In case statements, are all possible cases accounted for?

Input/output faults Are all input variables used?
Are all output variables assigned a value before they are
output?

Interface faults Do all function and procedure calls have the correct
number of parameters?
Do formal and actual parameter types match?
Are the parameters in the right order?
If components access shared memory, do they have the
same model of the shared memory structure?

Storage management
faults

If a linked structure is modified, have all links been
correctly reassigned?
If dynamic storage is used, has space been allocated
correctly?
Is space explicitly de-allocated after it is no longer
required?

Exception
management faults

Have all possible error conditions been taken into
account?

Inspection checks

9

17

Inspection rate

• 500 statements/hour during overview
• 125 source statement/hour during

individual preparation
• 90-125 statements/hour can be inspected
• Inspection is therefore an expensive

process
• Inspecting 500 lines costs about 40

man/hours
effort = $$

18

Automated static analysis

• Static analysers are software tools for
source text processing

• They parse the program text and try to
discover potentially erroneous conditions
and bring these to the attention of the V &
V team

• Very effective as an aid to inspections. A
supplement to but not a replacement for
inspections

10

19

Static analysis checks

Fault class Static analysis check
Data faults Variables used before initialisation

Variables declared but never used
Variables assigned twice but never used
between assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening
assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management
faults

Unassigned pointers
Pointer arithmetic

20

Stages of static analysis

• Control flow analysis. Checks for loops with
multiple exit or entry points, finds unreachable
code, etc.

• Data use analysis. Detects uninitialized
variables, variables written twice without an
intervening assignment, variables which are
declared but never used, etc.

• Interface analysis. Checks the consistency of
routine and procedure declarations and their
use

11

21

Stages of static analysis

• Information flow analysis. Identifies the
dependencies of output variables. Does not
detect anomalies itself but highlights
information for code inspection or review

• Path analysis. Identifies paths through the
program and sets out the statements
executed in that path. Again, potentially
useful in the review process

• Both these stages generate vast amounts
of information. Must be used with care.

LINT static analysis
138% more lint_ex.c

#include <stdio.h>
printarray (Anarray)

int Anarray;
{

printf(“%d”,Anarray);
}
main ()
{

int Anarray[5]; int i; char c;
printarray (Anarray, i, c);
printarray (Anarray) ;

}

139% cc lint_ex.c
140% lint lint_ex.c

lint_ex.c(10): warning: c may be used before set
lint_ex.c(10): warning: i may be used before set
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) ::
lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) ::
lint_ex.c(11)
printf returns value which is always ignored

12

23

Use of static analysis

• Particularly valuable when a language
such as C is used which has weak
typing and hence many errors are
undetected by the compiler

• Less cost-effective for languages like
Java that have strong type checking
and can therefore detect many
errors during compilation

