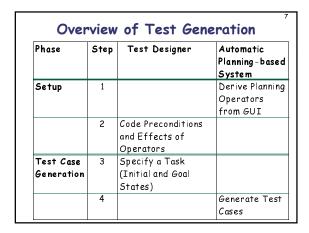
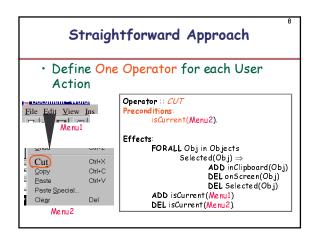

Plan Generation for GUI Testing

- The 21st International Conference on Software Engineering
- The Fifth International Conference on Artificial Intelligence
- Planning and Scheduling IEEE Transactions on Software Engineering

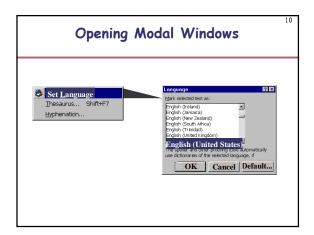
Why Planning for GUI Testing

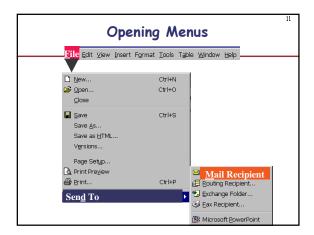

- · GUIs are Event Driven
- · Individual User Events
 - NOT ENOUGH!
 - Sequences of User Events lead to Different States
- Test Case: Sequence of User Events
- · How to Generate Test Cases?
- Use Planning to Select Likely Test Cases

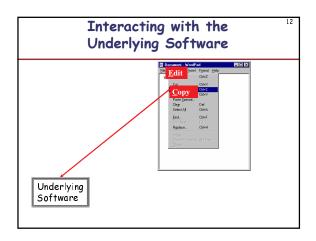

Selecting Test Sequences Infinitely Many Randomly Choose Sequences Expert Chooses Sequences Automatically Generate Events for COMMONLY USED TASKS Document World Date of the Common World Date of

A Plan for a GUI Task Select Text ("This") This is the text. This is the text. Select Text ("text") Mouse Click (U) This is the lext.

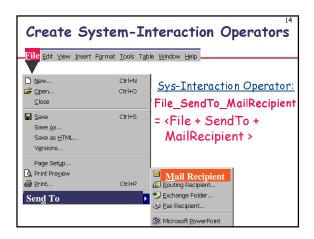
Outline

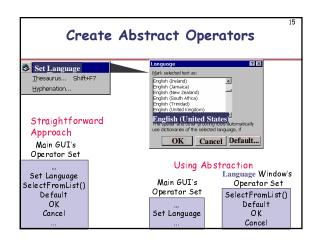

- Using Planning for Test Case Generation
 - Overall Approach
 - Exploiting GUI Structure
 - Generating Alternative Test Cases
- Experimental Results
- · Related Research
- Concluding Remarks

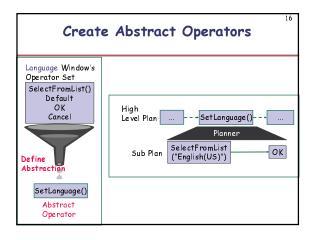


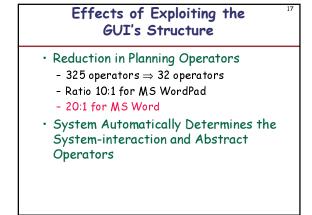


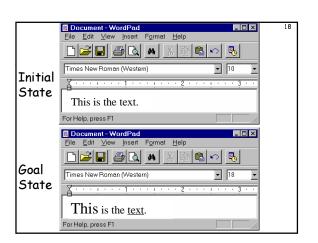
Exploit the GUI's Structure

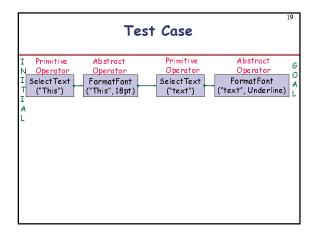

- · Reduce the Number of Operators
 - System more Efficient
 - Easier for the Test Designer

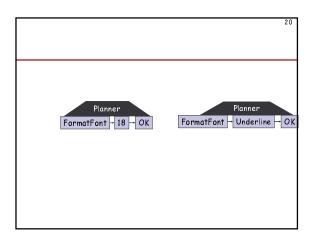


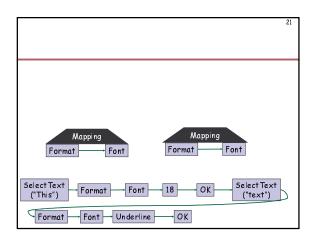


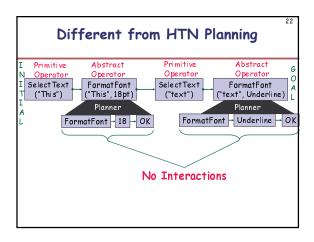


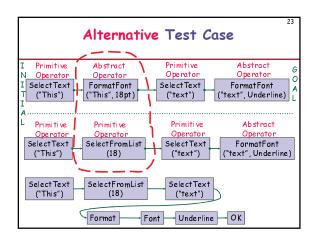

Create Hierarchical Operators Two Types of Abstractions - Combine Buttons ⇒ Create SystemInteraction Operators - Decompose GUI Hierarchically ⇒ Create Abstract Operators











Methods to Generate Alternative
Test Cases

• Different Results from Planner
• Abstract Operator Decompositions
• Linearizations of the Partial-order
Plan

Feasibility Study

- Purpose
 - To Determine whether Planning is a Feasible Approach for GUI Test Case Generation
 - · Execution Time
 - · Human Effort
- Experimental Design
 - GUI: MS WordPad
 - Planner: IPP [Koehler et al. '97]
 - Hardware Platform: 300 MHz Pentium based Machine, 200 MB RAM, Linux OS
 - 8 Tasks, Multiple Test Cases for each Task

Experimental Results

(Task)	Plan	Sub Plan	Total		
Plan	Time	Time	Time		
No.	(sec.)	(sec.)	(sec.)		
1	3,16	0	3,16		
2	3,17	0	3,17		
3	3.2	0.01	3,21		
4	3,38	0.01	3.39		
5	3.44	0.02	3.46		
6	4.09	0.04	4,13		
7	8.88	0.02	8.9		
8	40.47	0.04	40.51		

Related Work

- · GUI Testing
 - FSM [Esmelioglu and Apfelbaum] and VFSM [Shahady and Siewiorek] Models.
 - Genetic Algorithm Technique [Kasik and George]
 - Visual TDE for GUIs [Foster, Goradia, Ostrand, and Szermer]
- Planning for Testing
 - [Adele Howe, Anneliese Von Mayrhauser, Richard Mraz in ASE '97]

Concluding Remarks

28

- Automatic Planning is a Feasible Approach for GUI Test Case Generation
- Automatic Generation of Preconditions and Effects from GUI Specifications
- · Generate Expected Output (Automated Verification)

29

Coverage Criteria for GUI Testing

8th European Software Engineering Conference (ESEC) and 9th ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE-9), Vienna University of Technology, Austria, Sept. 10-14, 2001.

Coverage Criteria

30

- · Two purposes
 - Test data selection criteria
 - · Rules used to select test cases
 - Test data adequacy criteria
 - Rules used to determine how much testing has been done
- Common Examples for Conventional Software
 - Statement coverage
 - Branch coverage
 - Path coverage

Structural
Representation
of the Code

Coverage Criteria for GUIs

- · Cannot use code-based coverage
 - Source code not always available
 - Event-based input
 - · Different level of abstraction
- · Our Contribution
 - Hierarchical structure of the GUI in terms of events
 - Coverage criteria based on events

Outline

- · GUI Definition
- Representation of GUIs
- · Coverage Criteria
- · Case Study
- Conclusions

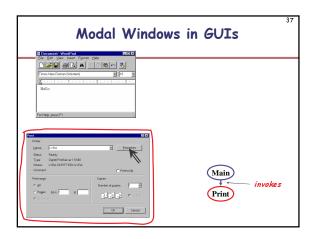
GUI Definition

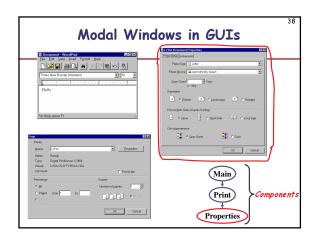
- Hierarchical
- · Graphical Front-end
- Accepts User-generated and Systemgenerated events
- Fixed sets of events
- · Deterministic Output
- State of the GUI is the set of Objects and their Properties

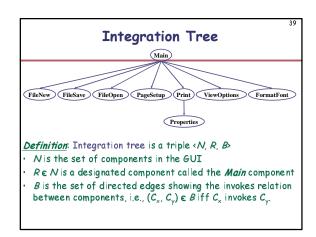
GUI Representation

34

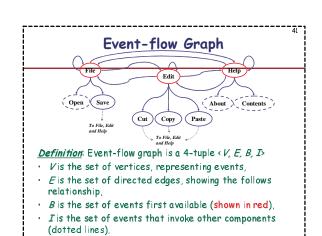
- Motivation
 - GUI testing needs a "Unit of Testing"
 - · Manageable
 - · Test the unit comprehensively
 - · Test interactions among units
 - GUIs are created using library elements
 - Need to test these elements before packaging them for reuse
 - Certain level of confidence that the element has been adequately tested
 - User of these elements should be able to test the element in its context of use

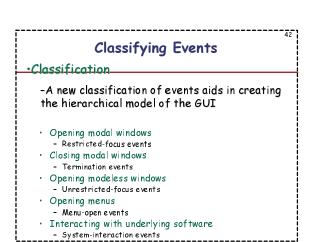

Model GUI Hierarchically


Hierarchy


- GUIs are decomposed into a hierarchy of components
- Hierarchical decomposition makes testing intuitive and efficient
- Several hierarchical views of GUIs
- We examine Modal Dialogs to create the hierarchical model

Modal Windows in GUIs The first live part from the first live of the first live of


6



Coverage Criteria

Intuitively

- Each component is a unit of testing
- Test events within each component
 - · Intra-component coverage criteria
- Test events across components
 - · Inter-component coverage criteria

Coverage Criteria

- · Intra-component Coverage
 - Event coverage
 - Individual events
 - · Each node in the event-flow graph
 - Event-interaction coverage
 - Each pair of events
 - Each edge in the event-flow graph
 - Length-n event sequence coverage
 - · Sequences of events
 - · Bounded by length
 - Length-1 event sequences
 - Length-2, length-6 event sequences
 - · Paths in the event-flow graph

Coverage Criteria

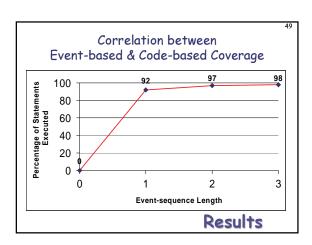
Case Study

- · Inter-component Coverage

 - Invocation coverage · Invoke each component
 - · Each restricted-focus event
 - Invocation-termination coverage
 - · Invoke each component and terminate it
 - · Restricted-focus event followed by a termination
 - Inter-component length-n coverage
 - · Longer sequences from one component to another
 - · Bounded by length

· Purpose

- To determine:
 - · How many test cases do we need to test WordPad
 - · Correlation between event and code-based coverage
- · Experimental design
 - GUI: our version of MS WordPad (36 modal windows, 362 events)
 - Hardware platform: 350 MHz Pentium based machine, 256 MB RAM


Test Cases for WordPad

	Event-sequence Length							
Component Name		2'	1	2	3	4	5	6
Main			56	791	14354	255720	4490626	78385288
FileOpen			10	80	640	5120	40960	327680
FileSave			10	80	640	5120	40960	327680
Print			12	108	972	8748	78732	708588
Properties			13	143	1573	17303	190333	2093663
PageSetup			11	88	704	5632	45056	360448
FormatFont			9	63	441	3087	21609	151263
Print+Properties		2		13	260	3913	52520	663013
Main+FileOpen Main+FileSave		2		10	100	1180	17160	278760
		2		10	100	1180	17160	278760
Main+PageSetup	1	2		11	110	1298	18876	306636
Main+FormatFont		2		9	81	909	13311	220509
Main+Print+Properties				12	145	1930	28987	466578

Results

Correlation between Event-based & Code-based Coverage

- · Code Instrumentation
- · Generated all event sequences up to length 3. Total test cases: 21,659
- · Executed all 21,659 cases and obtained execution traces
- · Statement coverage

