Software Testing

Testing: Our Experiences

Software
to be tested
Pk 7A
Output f ;2)
N

Generation

5

Test Case . When 1'0 Sfop?

Software
to be tested
Verification
%
73
Output <) /
h §
Test Coverage
Enough?
Yes

A Real Testing Example
Test Cases

Just a list.
132 -
il > 31 — rted list. - iPECSI.'
= ated entry. ares a 'ST
{3.2.3} - of numbers;
{} — returns a
sorted list.

{'1| -2}

| {-Zv '1} |

Output

Test Case Automated TeS'ring
s

Generation_

)

(5
) — [o]

Software
to be tested
Verification
s
73
Output <) /
h §
No Test Coverage
Enough?

Yes

Automated Testing
Cemerator

Software
to be tested

Output || f|F——

Coverage
Evaluator

Verifier
OR
Test Oracle

Testing the New Version

Original Original

Test Software
Cases

Modified

Software

Regression Testing

Original
Software

Modified
Software

What is Testing?

* Process of determining whether a
task has been correctly carried out
[Schach '96]

* Goals of testing

- Reveal Faults

« Correctness

+ Reliability

+ Usability Conflicting Goals?
+ Robustness

+ Performance

Types of Testing

+ Execution-based Testing
* Non-execution based Testing

+ Discussion

Execution-based Testing

* Generating and Executing Test
Cases on the Software

+ Types of Execution-based Testing
- Testing to Specifications

- Black-box Testing
- Testing to Code

- Glass-box (White-box) Testing

Black-box Testing

- Discussion: MAC/ATM Machine

Example
- Specs
+ Cannot withdraw more than $300

+ Cannot withdraw more than your account

balance
—

x —»| Software

White-box Testing

+ Example
x: 1..1000:

Generate test cases

to cover each statement
INPUT-FROM-USER(x);

If (x <= 300) {

INPUT-FROM-FILE(BALANCE);

If (x <= BALANCE)

GiveMoney x;

else Print “"You don't have $x in your account!!"}
else

Print "You cannot withdraw more than $300";
Eject Card;

Discussion

* Which is superior?
- Each technique has its strengths -
Use both

Determining Adequacy

- Statement coverage

* Branch coverage

* Path coverage

* All-def-use-path coverage

Surprise Quiz
- Determine test cases so that each
print statement is executed at
least once

input(x);
if (x < 100)
print "Line 1";
else {
if (x <B0) print "Line 2"

else print "Line 3"

Non-execution Based
+ Walkthroughs

- Manual simulation by team leader
+ Inspections

- Developer narrates the reading
+ Key Idea

- Review by a team of experts: Syntax
checker?

+ Code Readings

- Formal Verification of Correctness
- Very Expensive
- Justified in Critical Applications

- Semi-formal: Some Assertions

Simulation

+ Integration with system hardware is
central to the design

+ Model the external hardware
+ Model the interface

+ Examples
- Discussion

Boundary-value Analysis

* Partition the program domain into
input classes

+ Choose test data that lies both
inside each input class and at the
boundary of each class

* Select input that causes output at
each class boundary and within each
class

+ Also known as stress testing

Testing Approaches

+ Top-down
* Bottom-up
- Big Bang

* Unit testing

* Integration testing
- Stubs

+ System testing

Mutation Testing

- Errors are introduced in the
program to produce “mutants”

* Run test suite on all mutants and
the original program

Test Case Generation

* Test Input to the Software
- Some researchers/authors also

define the test case to contain the
expected output for the test input

Category-partition Method
* Key idea

- Method for creating functional test
suites
- Role of test engineer
+ Analyze the system specification
+ Write a series of formal test specifications
- Automatic generator
* Produces test descriptions

Steps

- Decompose the functional specification

into functional units
- Characteristics of functional units
- They can be tested independently
+ Examples
- A top-level user command
- Or a function

+ Decomposition may require several stages
- Similar to high-level decomposition done

by software designers

- May be reused, although independent
decomposition is recommended

Steps

- Examine each functional unit

- Identify parameters
+ Explicit input to the functional unit

- Environmental conditions
+ Characteristics of the system's state
* Test Cases
- Specific values of parameters
- And environmental conditions

Steps

- "Test cases are chosen to maximize

chances of finding errors”

+ For each parameter & environmental

condition
- Find categories
+ Major property or characteristic
+ Examples
- Browsers, Operating Systems, array size
+ For each category
- Find choices

» Examples: (IE 5.0, IE 4.5, Netscape 7.0), (Windows
NT, Linux), (100, 0, -1)

Steps

- Develop “Formal Test Specification’
for each functional unit
- List of categories
- Lists of choices within each category
* Constraints
* Automatically produces a set of
“test frames”
- Consists of a set of choices

g

AT Planning Method
* Key Idea

- Input to Command-driven software is a
sequence of commands

- The sequence is like a plan
+ Scenario to test

- Initial state

- Goal state

Example
* VCR command-line software
- Commands
- Rewind
+ If at the end of tape
- Play
« If fully rewound
- Eject
+ If at the end of tape
- Load

+ If VCR has no tape

Preconditions & Effects

+ Rewind
- Precondition: If at end of tape
- Effects: At beginning of tape

+ Play
- Precondition: If at beginning of tape
- Effects: At end of tape

- Eject
- Precondition: If at end of tape
- Effects: VCR has no tape

* Load
- Precondition: If VCR has no tape
- Effects: VCR has tape

Preconditions & Effects

+ Rewind

- Precondition: end_of_tape
- Effects: —end_of_tape

« Play

- Precondition: —end_of tape
- Effects: end_of tape

- Eject

- Precondition: end _of tape
- Effects: —has_tape

- Load

- Precondition: —has_tape
- Effects: has_tape

Initial and Goal States

+ Initial State

- end_of tape

- Goal State

- —end_of_tape

+ Plan?

- Rewind

Initial and Goal States

- Initial State

- —end_of tape & has_tape
* Goal State

- —has_tape

* Plan?

- Play

- Eject

Test Coverage & Adequacy

* How much testing is enough?
* When to stop testing
+ Test data selection criteria

+ Test data adequacy criteria
- Stopping rule
- Degree of adequacy

+ Test coverage criteria

- Objective measurement of test
quality

Preliminaries

* Test data selection

- What test cases

* Test data adequacy criteria
- When to stop testing

+ Examples

- Statement Coverage

- Branch coverage

- Def-use coverage

- Path coverage

Goodenough & Gerhart ['75]

* What is a software test adequacy
criterion
- Predicate that defines “"what
properties of a program must be
exercised to constitute a thorough
test”, i.e., one whose successful

execution implies no errors in a tested

program

Uses of test adequacy

+ Objectives of testing

+ In terms that can be measured
- For example branch coverage

* Two levels of testing

- First as a stopping rule

- Then as a guideline for additional test
cases

Categories of Criteria

- Specification based

- All-combination criterion
- choices

- Each-choice-used criterion

* Program based

- Statement
- Branch

+ Note that in both the above types, the

correctness of the output must be
checked against the specifications

Others

* Random testing
- Statistical testing
* Interface based

