
1

1

Empirical Evaluation of the Fault-detection
Effectiveness of Smoke Regression Test Cases

for GUI-based Software
Qing Xie

(qing@cs.umd.edu)

Atif Memon, Qing Xie

����������	
�	�
��
���	�������

���������	
��

��	�����
�������
�������������	
��

��	�����
�������
�������������	
��

��	�����
�������
�������������	
��

��	�����
�������
����

2

What is Smoke Test?

� Smoke test
� Borrowed from hardware testing

� A relatively simple check to see whether the product
“smokes”

� Check basic functionality of software
� Not exhaustive

� Daily/nightly build
� Software is compiled, linked and (re)tested on a daily

basis
� “Good” build if pass all smoke tests

3

Current Practice of Smoke
Testing

� Software
� Microsoft Windows Server 2003
� GNU projects
� Mozilla
� WINE
� AceDB

� Tools
� CruiseControl
� IncrediBuild

4

GUI Smoke Test

GUI

Underlying
Code

50% of code

Event

GUI smoke test
� All events

� Prefix may be needed

� All event interactions

5

Current Practice of GUI
Testing

� Tools
� Capture/replay (record/playback)

� WinRunner
� Extensions of JUnit (programming test cases)

� JFCUnit
� Pounder
� Abbot

6

Capture

INPUT/RESPONSE

TESTER INPUT

RESPONSE

DATABASE

TESTER

Capture/replay Tool

APPLICATION UNDER TEST

CAPTURE/REPLAY
TOOL

� Tester MANUALLY performs events on the software
� Tool records all user inputs and application response
� GUI test case
� Sequence of events

� Length 4 test case :

2

7

Replay

INPUT/RESPONSE

REPLAY INPUT

ACTUAL
RESPONSE

APPLICATION UNDER TEST
DATABASE

COMPARE

EXPECTED
RESPONSE

Capture/replay Tool

CAPTURE/REPLAY
TOOL

14

� Retrieves test case

� Gets actual response
� Replays it on modified application

� Verifies it against expected

8

What is Needed?

� Goal: Automatically test GUI every night
� Model of GUI

� Event Flow Graph
� State of GUI
� Obtain automatically using reverse engineering

technique
� Use the model

� Smoke test case generator
� Expected state generator

� Test executor
* Fully automated

9

Smoke Tests for GUIs

� GUI test case
� Sequence of events

� Test case length
� Length 1 – all events in the GUI
� Length 2 – all possible test cases of the form <ei, ej>,

where event ej can be performed immediately after
event ei

� Purpose is to test basic functionality quickly
� Execute all GUI events and event interactions

� Smoke test suite
� All length 1 and 2 test cases
� Necessary prefix 10

GUI Model – Event Flow Graph

File Edit Help
Open …
Save

Event-flow Graph

follows

DefinitionDefinition: Event : Event eeYY follows follows eeXX iffiff eeYY can be performed can be performed
immediately after immediately after eeXX..

FILELength 1:

Length 2: FILE SAVE

11

State of GUI
A GUI consists of Objects

Button

Form

Label

Window State
Width
AutoScroll

Align
Caption
Color
Font

Caption
Enabled
Visible
Height

wsNormal
1088
TRUE

Cancel
TRUE
TRUE
65

alNone
Files of type:
clBtnFace
(tFont) 12

Component View of DART

Generates expected
state as correct

behavior

Executes smoke test
cases automatically and
generates error reports

Creates smoke test
cases from GUI

model

DART: Daily Automated Regression Tester

Expected State
Generator

GUI
Model

Test Case
Generator

Test
Executor

Code
Instrumenter

State of GUI

GUI
Reverse Engineering

Tool

Traverses and
extracts GUI

model

Instruments code
to get test

coverage report

Event Flow Graph

3

13

���������	�
�����
�����������	�
�����
�����������	�
�����
�����������	�
�����
��

FIX BUGS

DEVELOPERS
AUTOMATED
REPORTING

SETUP
ITERATIVE

�����������	
���
	����	�����������	
���
	����	�����������	
���
	����	�����������	
���
	����	���� �������	����������	����������	����������	���

�����������	
���
	����	�����������	
���
	����	�����������	
���
	����	�����������	
���
	����	���� �������	��	�	���������	��	�	���������	��	�	���������	��	�	��

��

��	����
��	����
��	����
��	����

AUTOMATED
EXECUTION

COVERAGE
REPORT

ERROR
REPORT

������	
������	
������	
������	

�� ������� �� ������� �� ������� �� �������
AUTOMATED
GENERATION

EFG

EXPECTED STATE TEST CASES

State of GUI
����������	

14

Experiments

� Fault detection ability
� Total faults detected
� Relationship between fault detection ability and

smoke test case length
� Code coverage

� Relationship between code coverage and smoke test
cases

� Unexecuted code
� Cost

15

Experimental Process

� Choose subject applications
� Generate smoke test cases with expected state
� Seed faults
� Execute test cases

� Compare actual GUI state to the expected state
� Measure

� Number of Faults detected
� Code Coverage
� Time
� Space

16

Subject Applications

Subject Application Windows Widgets LOC Classes Methods Branches
TerpWord 11 132 4893 104 236 452

TerpSpreadSheet 9 165 12791 125 579 1521
TerpPaint 10 220 18376 219 644 1277
TerpCalc 1 92 9916 141 446 1306
TOTAL 31 609 45976 589 1905 4556

17

Test Cases Generation

Subject Application 1 2 3 1 2 3 Total
TerpWord 126 1140 12461 126 1140 3880 5146

TerpSpreadSheet 162 2742 56076 162 2742 2318 5222
TerpPaint 215 8077 502133 215 8077 0 8292
TerpCalc 87 7366 623702 87 7366 0 7453
TOTAL 590 19325 1194372 590 19325 6198 26113

Potential Test Cases
Length

Actual Generated Test Cases
Length

18

Fault Seeding

� Seed 200 faults in each application
� Create 200 versions for each application
� Exactly one fault in each version

� History-based
� From a bug tracking tool bugzilla

4

19

Test Case Execution

� Execute all test cases (5000+) on all 200
versions of the 4 subject applications
� 5000 * 200 * 4 = 4,000,000+
� Pentium 4 2.2GHz 256MB RAM

� Compare actual and expected state
� Report mismatches and crashes

20

Total Faults Detected

21

Faults Detected vs. Test Case
Length

22

Smoke Tests and Code
Coverage

TerpCalc

23

Unexecuted Code

� Some mouse/keyboard events not generated (40%)
� event handlers (e.g., right-click) not executed

� Exceptions not raised (30%)
� accounted for a large percentage of missed code

� Unable to execute code related to some widgets (10%)
� e.g., the close button in all windows

� Controlled environment (10%)
� reset environment variables before each run
� code related not executed (e.g., list of recently accessed files)

� Some require longer than 2 events (10%)

24

Conclusions

� Short GUI smoke tests are effective
� There are classes of faults that cannot be detected
� Short smoke tests execute a large percentage of

code
� Smoke testing process is feasible in terms of time

and storage space
� Future Work

� Increase code coverage
� Increase completeness of expected state generator
� Combine GUI-based smoke test and code-based

smoke test

5

25

THANK YOU

http://guitar.cs.umd.edu

