
1

Software Requirements

Descriptions and specifications
of a system

What is a requirement?
• May range from

– a high-level abstract statement of a service
or

– a statement of a system constraint to a
detailed mathematical functional specification

• Requirements may be used for
– a bid for a contract

• must be open to interpretation
– the basis for the contract itself

• must be defined in detail

• Both the above statements may be called
requirements

ECLIPSE/Workstation/Tools/DE/FS/3.5.1

Function Add node

Description Adds a node to an existing design. The user selects the type of node, and its position.
When added to the design, the node becomes the current selection. The user chooses the node position by
moving the cursor to the area where the node is added.

Inputs Node type, Node position, Design identifier.

Source Node type and Node position are input by the user, Design identifier from the database.

Outputs Design identifier.

Destination The design database. The design is committed to the database on completion of the
operation.

Requires Design graph rooted at input design identifier.

Pre-condition The design is open and displayed on the user's screen.

Post-condition The design is unchanged apart from the addition of a node of the specified type
at the given position.

Side-effects None

Definition: ECLIPSE/Workstation/Tools/DE/RD/3.5.1

Example Example

……
4.A.5 The database shall support the generation and control of
configuration objects; that is, objects which are themselves groupings
of other objects in the database. The configuration control facilities
shall allow access to the objects in a version group by the use of an
incomplete name.
……

……
4.A.5 The database shall support the generation and control of
configuration objects; that is, objects which are themselves groupings
of other objects in the database. The configuration control facilities
shall allow access to the objects in a version group by the use of an
incomplete name.
……

Types of requirements
• Written for customers

– User requirements
• Statements in natural language plus diagrams of the

services the system provides and its operational
constraints.

• Written as a contract between client and
contractor
– System requirements

• A structured document setting out detailed
descriptions of the system services.

• Written for developers
– Software specification

• A detailed software description which can serve as a
basis for a design or implementation.

User requirements readers
• Client managers
• System end-users
• Client engineers
• Contractor managers
• System architects

2

System requirements readers
• System end-users
• Client engineers
• System architects
• Software developers

Software specification readers
• Client engineers (maybe)
• System architects
• Software developers

We will come back to user
and system requirements

Functional requirements
• Statements of services the system
should provide, how the system
should react to particular inputs
and how the system should behave
in particular situations.

Functional requirements
• Describe functionality or system services
• Depend on the type of software,

expected users and the type of system
where the software is used

• Functional user requirements may be
high-level statements of what the
system should do but functional system
requirements should describe the system
services in detail

Examples of functional
requirements

1. The user shall be able to search either
all of the initial set of databases or
select a subset from it.

2. The system shall provide appropriate
viewers for the user to read documents
in the document store.

3. Every order shall be allocated a unique
identifier (ORDER_ID) which the user
shall be able to copy to the account’s
permanent storage area.

1. The user shall be able to search either
all of the initial set of databases or
select a subset from it.

2. The system shall provide appropriate
viewers for the user to read documents
in the document store.

3. Every order shall be allocated a unique
identifier (ORDER_ID) which the user
shall be able to copy to the account’s
permanent storage area.

3

Requirements imprecision
• Problems arise when requirements are

not precisely stated
• Ambiguous requirements may be

interpreted in different ways by
developers and users

• Consider the term ‘appropriate viewers’
– User intention - special purpose viewer for

each different document type
– Developer interpretation - Provide a text

viewer that shows the contents of the
document

Requirements completeness and
consistency

• In principle, requirements should be both
complete and consistent

• Complete
– They should include descriptions of all

facilities required
• Consistent

– There should be no conflicts or
contradictions in the descriptions of the
system facilities

• In practice, it is difficult (?impossible?)
to produce a complete and consistent
requirements document

What requirements are these?
• It shall be possible for all necessary

communication between the APSE and
the user to be expressed in the standard
Ada character set

• The system development process and
deliverable documents shall conform to
the process and deliverables defined in
XYZCo-SP-STAN-95

• The system shall not disclose any
personal information about customers
apart from their name and reference
number to the operators of the system

• It shall be possible for all necessary
communication between the APSE and
the user to be expressed in the standard
Ada character set

• The system development process and
deliverable documents shall conform to
the process and deliverables defined in
XYZCo-SP-STAN-95

• The system shall not disclose any
personal information about customers
apart from their name and reference
number to the operators of the system

Non-functional requirements
• constraints on the services or
functions offered by the system
such as timing constraints,
constraints on the development
process, standards, etc.

Non-functional requirements
• Define system properties and constraints

e.g. reliability, response time and
storage requirements. Constraints are
I/O device capability, system
representations, etc.

• Process requirements may also be
specified mandating a particular system,
programming language or development
method

• Non-functional requirements may be
more critical than functional
requirements. If these are not met, the
system is useless

Non-functional classifications
• Product requirements

– Requirements which specify that the
delivered product must behave in a particular
way e.g. execution speed, reliability, etc.

• Organizational requirements
– Requirements which are a consequence of

organizational policies and procedures e.g.
process standards used, implementation
requirements, etc.

• External requirements
– Requirements which arise from factors which

are external to the system and its
development process e.g. interoperability
requirements, legislative requirements, etc.

4

Non-functional requirement
types

Usability
Requirements

Performance
Requirements

Space
Requirements

Efficiency
Requirements

Reliability
Requirements

Portability
Requirements

Product
Requirements

Delivery
Requirements

Implementation

Standards
Requirements

Organizational
Requirements

Interoperability
Requirements

Ethical
Requirements

Privacy
Requirements

Safety
Requirements

Legislative
Requirements

External
Requirements

Non-functional
Requirements

Non-functional requirements
examples

• Product requirement
– 4.C.8 It shall be possible for all necessary

communication between the APSE and the user to
be expressed in the standard Ada character set

• Organizational requirement
– 9.3.2 The system development process and

deliverable documents shall conform to the
process and deliverables defined in XYZCo-SP-
STAN-95

• External requirement
– 7.6.5 The system shall not disclose any personal

information about customers apart from their
name and reference number to the operators of
the system

Goals and requirements
• Non-functional requirements may be very

difficult to state precisely and imprecise
requirements may be difficult to verify.

• Goal
– A general intention of the user such as ease

of use
• Verifiable non-functional requirement

– A statement using some measure that can be
objectively tested

• Goals are helpful to developers as they
convey the intentions of the system
users

Examples
• A system goal

– The system should be easy to use by
experienced controllers and should be
organized in such a way that user errors are
minimized.

• A verifiable non-functional requirement
– Experienced controllers shall be able to use

all the system functions after a total of two
hours training. After this training, the
average number of errors made by
experienced users shall not exceed two per
day.

Requirements measures

•Percentage of target dependent statements
•Number of target systems

Portability

•Time to restart after failure
•Percentage of events causing failure
•Probability of data corruption on failure

Robustness

•Mean time to failure
•Probability of unavailability
•Rate of failure occurrence
•Availability

Reliability

•Training time
•Number of help frames

Ease of use

•K Bytes
•Number of RAM chips

Size

•Processed transactions/second
•User/event response time
•Screen refresh time

Speed

MeasureProperty

Requirements interaction
• Conflicts between different non-

functional requirements are common in
complex systems

• Spacecraft system
– To minimize weight, the number of separate

chips in the system should be minimized
– To minimize power consumption, lower power

chips should be used
– However, using low power chips may mean

that more chips have to be used. Which is
the most critical requirement?

5

Domain requirements
• Requirements that come from the
application domain of the system
and that reflect characteristics of
that domain

Domain requirements
• Derived from the application domain and

describe system characteristics and
features that reflect the domain

• May be new functional requirements,
constraints on existing requirements or
define specific computations

• If domain requirements are not
satisfied, the system may be unworkable

Library system domain
requirements

• There shall be a standard user interface
to all databases which shall be based on
the Z39.50 standard.

• Because of copyright restrictions, some
documents must be deleted immediately
on arrival. Depending on the user’s
requirements, these documents will
either be printed locally on the system
server for manually forwarding to the
user or routed to a network printer.

Domain requirements problems
• Understandability

– Requirements are expressed in the
language of the application domain

– This is often not understood by
software engineers developing the
system

• Implicitness
– Domain specialists understand the area
so well that they do not think of
making the domain requirements
explicit

Back to user and system
requirements

User requirements
• Should describe functional and non-
functional requirements so that
they are understandable by system
users who don’t have detailed
technical knowledge

• User requirements are defined using
natural language, tables and
diagrams

6

Database requirement

……
4.A.5 The database shall support the generation and control of
configuration objects; that is, objects which are themselves groupings
of other objects in the database. The configuration control facilities
shall allow access to the objects in a version group by the use of an
incomplete name.
……

……
4.A.5 The database shall support the generation and control of
configuration objects; that is, objects which are themselves groupings
of other objects in the database. The configuration control facilities
shall allow access to the objects in a version group by the use of an
incomplete name.
……

Requirement problems
• Database requirements includes
both conceptual and detailed
information
– Describes the concept of configuration
control facilities

– Includes the detail that objects may
be accessed using an incomplete name

Editor grid requirement

……
2.6 Grid facilities To assist in the positioning of entities on a diagram,
the user may turn on a grid in either centimetres or inches, via an
option on the control panel. Initially, the grid is off. The grid may be
turned on and off at any time during an editing session and can be
toggled between inches and centimetres at any time. A grid option
will be provided on the reduce-to-fit view but the number of grid
lines shown will be reduced to avoid filling the smaller diagram
with grid lines.
……

……
2.6 Grid facilities To assist in the positioning of entities on a diagram,
the user may turn on a grid in either centimetres or inches, via an
option on the control panel. Initially, the grid is off. The grid may be
turned on and off at any time during an editing session and can be
toggled between inches and centimetres at any time. A grid option
will be provided on the reduce-to-fit view but the number of grid
lines shown will be reduced to avoid filling the smaller diagram
with grid lines.
……

Requirement problems
• Grid requirement mixes three
different kinds of requirement
– Conceptual functional requirement (the
need for a grid)

– Non-functional requirement (grid units)
– Non-functional UI requirement (grid
switching)

Why the problems?

Problems with natural language
• Lack of clarity

– Precision is difficult without making
the document difficult to read

• Requirements confusion
– Functional and non-functional
requirements tend to be mixed-up

• Requirements mix-up
– Several different requirements may
be expressed together

7

Structured presentation

2.6 Grid facilities
2.6.1 The editor shall provide a grid facility where a

matrix of horizontal and vertical lines provide a
background to the editor window. T his grid shall be
a p assive grid where the alignment of entities is the
user's responsibility.
Rationale: A grid helps the user to create a tidy
diagram with well-spaced entities. Although an active
grid, where entities 'snap-to' grid lines can be useful,
the positioning is imprecise. The user is the best person
to decide where entities should be positioned.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6

Detailed user requirement

3.5.1 Adding nodes to a design
3.5.1.1 The editor shall provide a f acility for users to add nodes of a specified type to their

design.
3.5.1.2 The sequence of actions to add a node should be as follows:

1. The user should select the type of node to be added.
2. The user should move the cursor to the approximate node position in the diagram and
indicate that the node symbol should be added at that point.
3. The user should then drag the node symbol to its final position.
Rationale: The user is the best person to decide where to position a node on the diagram.
This approach gives the user direct control over node type selection and positioning.

Specification: ECLIPSE/WS/Tools/DE/FS. Section 3.5.1

Guidelines for writing
requirements

• Invent a standard format and use it
for all requirements

• Use language in a consistent way.
Use “shall” for mandatory
requirements, “should” for desirable
requirements

• Use text highlighting to identify
key parts of the requirement

• Avoid the use of computer jargon

System requirements
• More detailed specifications of user
requirements

• Serve as a basis for designing the
system

• May be used as part of the system
contract

Problems with NL specification
• Ambiguity

– The readers and writers of the requirement
must interpret the same words in the same
way. NL is naturally ambiguous so this is
very difficult

• Over-flexibility
– The same thing may be said in a number of

different ways in the specification
• Lack of modularisation

– NL structures are inadequate to structure
system requirements

Alternatives to NL specification
Notation Description
Structured
natural
language

This approach depends on defining standard forms or
templates to express the requirements specification.

Design
description
languages

This approach uses a language like a programming language
but with more abstract features to specify the requirements
by defining an operational model of the system.

Graphical
notations

A graphical language, supplemented by text annotations is
used to define the functional requirements for the system.
An early example of such a graphical language was SADT
(Ross, 1977; Schoman and Ross, 1977). More recently, use-
case descriptions (Jacobsen, Christerson et al., 1993) have
been used. I discuss these in the following chapter.

Mathematical
specifications

 These are notations based on mathematical concep ts such
as finite-state machines or sets. These unambiguous
specifications reduce the arguments between customer and
contractor about system functionality. Howeve r, most
customers don’t understand formal specifications and are
reluctant to accept it as a system contract. I discuss formal
specification in Chapter 9.

8

Structured language
specifications

• A limited form of natural language
may be used to express
requirements

• This removes some of the problems
resulting from ambiguity and
flexibility and imposes a degree of
uniformity on a specification

• Often best supported using a
forms-based approach

Form-based specifications
• Definition of the function or entity
• Description of inputs and where
they come from

• Description of outputs and where
they go to

• Indication of other entities required
• Pre and post conditions (if
appropriate)

• The side effects (if any)

Form-based node specification

ECLIPSE/Workstation/Tools/DE/FS/3.5.1

Function Add node

Description Adds a node to an existing design. The user selects the type of node, and its position.
When added to the design, the node becomes the current selection. The user chooses the node position by
moving the cursor to the area where the node is added.

Inputs Node type, Node position, Design identifier.

Source Node type and Node position are input by the user, Design identifier from the database.

Outputs Design identifier.

Destination The design database. The design is committed to the database on completion of the
operation.

Requires Design graph rooted at input design identifier.

Pre-condition The design is open and displayed on the user's screen.

Post-condition The design is unchanged apart from the addition of a node of the specified type
at the given position.

Side-effects None

Definition: ECLIPSE/Workstation/Tools/DE/RD/3.5.1

PDL-based requirements
definition

• Requirements may be defined using a
language like a programming language but
with more flexibility of expression

• Most appropriate in two situations
• Where an operation is specified as a sequence of

actions and the order is important
• When hardware and software interfaces have to be

specified
• Disadvantages are

– The program definition language (PDL) may
not be sufficiently expressive to define
domain concepts

– The specification will be taken as a design
rather than a specification

Part of an ATM specification

class ATM {
// declarations here
public static void main (String args[]) throws InvalidCard {

try {
thisCard.read () ; // may throw InvalidCard exception
pin = KeyPad.readPin () ; attempts = 1 ;
while (!thisCard.pin.equals (pin) & attempts < 4)

{ pin = KeyPad.readPin () ; attempts = attempts + 1 ;
}
if (!thisCard.pin.equals (pin))

throw new InvalidCard ("Bad PIN");
thisBalance = thisCard.getBalance () ;
do { Screen.prompt (" Please select a service ") ;

service = Screen.touchKey () ;
switch (service) {

case Services.withdrawalWithReceipt:
receiptRequired = true ;

PDL disadvantages
• PDL may not be sufficiently expressive

to express the system functionality in an
understandable way

• Notation is only understandable to people
with programming language knowledge

• The requirement may be taken as a
design specification rather than a model
to help understand the system

9

Interface specification
• Most systems must operate with other

systems and the operating interfaces
must be specified as part of the
requirements

• Three types of interface may have to be
defined
– Procedural interfaces
– Data structures that are exchanged
– Data representations

• Formal notations are an effective
technique for interface specification

PDL interface description

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printer p) ;
void print (Printer p, PrintDoc d) ;
void displayPrintQueue (Printer p) ;
void cancelPrintJob (Printer p, PrintDoc d) ;
void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;

} //PrintServer

Viewpoint-oriented elicitation
• Stakeholders represent different
ways of looking at a problem or
problem viewpoints

• This multi-perspective analysis is
important as there is no single
correct way to analyze system
requirements

Banking ATM system
• The example used here is an auto-teller

system which provides some automated
banking services

• I use a very simplified system which
offers some services to customers of the
bank who own the system and a narrower
range of services to other customers

• Services include cash withdrawal,
message passing (send a message to
request a service), ordering a statement
and transferring funds

Autoteller viewpoints
• Bank customers
• Representatives of other banks
• Hardware and software maintenance

engineers
• Marketing department
• Bank managers and counter staff
• Database administrators and security

staff
• Communications engineers
• Personnel department

Types of viewpoints
– Data sources or sinks

• Viewpoints are responsible for producing or consuming
data.

• Analysis involves checking that data is produced and
consumed and that assumptions about the source and
sink of data are valid

– Representation frameworks
• Viewpoints represent particular types of system

model.
• These may be compared to discover requirements

that would be missed using a single representation.
Particularly suitable for real-time systems

– Receivers of services
• Viewpoints are external to the system and receive

services from it.
• Most suited to interactive systems

10

External viewpoints
• Natural to think of end-users as
receivers of system services

• Viewpoints are a natural way to
structure requirements elicitation

• It is relatively easy to decide if a
viewpoint is valid

• Viewpoints and services may be
used to structure non-functional
requirements

Method-based analysis
• Widely used approach to requirements

analysis. Depends on the application of a
structured method to understand the
system

• Methods have different emphases. Some
are designed for requirements elicitation,
others are close to design methods

• A viewpoint-oriented method (VORD) is
used as an example here. It also
illustrates the use of viewpoints

The VORD method
Viewpoint

Identification
Viewpoint

Identification

Viewpoint
Structuring
Viewpoint

Structuring

Viewpoint
Documentation

Viewpoint
Documentation

Viewpoint
System
Mapping

Viewpoint
System
Mapping

VORD process model
• Viewpoint identification

– Discover viewpoints which receive system
services and identify the services provided to
each viewpoint

• Viewpoint structuring
– Group related viewpoints into a hierarchy.

Common services are provided at higher-
levels in the hierarchy

• Viewpoint documentation
– Refine the description of the identified

viewpoints and services
• Viewpoint-system mapping

– Transform the analysis to an object-oriented
design

VORD standard forms

Viewpoint template Service template
Reference: The viewpoint name. Reference: The service name.
Attributes: Attributes providing

viewpoint information.
Rationale: Reason why the service is

provided.
Events: A reference to a set of event

scenarios describing how
the system reacts to
viewpoint events.

Specification: Reference to a list of service
specifications. These may
be expressed in different
notations.

Services A reference to a set of
service descriptions.

Viewpoints: List of viewpoint names
receiving the service.

Sub-VPs: The names of sub-
viewpoints.

Non-functional
requirements:

Reference to a set of non -
functional requirements
which constrain the service.

Provider: Reference to a list of system
objects which provide the
service.

Viewpoint identification

Query
balance

Get
transactions

Cash
withdrawal

Transaction
log

Machine
supplies

Card
returning

Remote
software
upgrade

Order
cheques

User
interface

Account
information

Message
log

Software
size Invalid

user
System cost Printe

r Security

Card
retention

Stolen
card

Order
statement

Remote
diagnostics Reliability

Update
account

Funds
transfer

Message
passing

Card
validation

Customer
database

Manager

Account
holder

Foreign
customer

Hardware
maintenance

Bank
teller

11

Viewpoint service information

Service List

1. Withdraw cash
2. Query balance

Service List

1. Withdraw cash
2. Query balance
3. Order checks
4. Send message
5. Transaction list
6. Order statement
7. Transfer funds

Service List

1. Run diagnostics
2. Add cash
3. Add paper
4. Send Message

Foreign CustomerAccount Holder Bank Teller

Viewpoint data/control

Data Input

1. Card details
2. PIN
3. Amount required
4. Message

Account
Holder

Control Input

1. Start transaction
2. Cancel transaction
3. End transaction
4. Select service

Viewpoint hierarchy

Account
holder

Foreign
customer

Customer

Teller Manager Engineer

Bank staff

All VPs

Services

Order checks
Send message
Transaction list
Order statement
Transfer funds

Services

Withdraw cash
Query balance

Customer/cash withdrawal
templates

• Reference
– Customer

• Attributes
– Account number
– PIN
– Start transaction

• Events
– Select service
– Cancel transaction
– End transaction

• Services
– Cash withdrawal
– Balance enquiry

• Sub-VPs
– Account holder
– Foreign customer

• Reference
– Customer

• Attributes
– Account number
– PIN
– Start transaction

• Events
– Select service
– Cancel transaction
– End transaction

• Services
– Cash withdrawal
– Balance enquiry

• Sub-VPs
– Account holder
– Foreign customer

• Reference
– Cash withdrawal

• Rationale
– To improve customer service

and reduce paperwork
• Specification

– Users choose this service by
pressing the cash withdrawal
button. They then enter the
amount required. This is
confirmed and, if the funds
are low, the balance is
delivered

• VPs
– Customer

• Non-functional requirements
– Deliver cash within 1 minute

of amount being confirmed
• Provider

– Filled in later

• Reference
– Cash withdrawal

• Rationale
– To improve customer service

and reduce paperwork
• Specification

– Users choose this service by
pressing the cash withdrawal
button. They then enter the
amount required. This is
confirmed and, if the funds
are low, the balance is
delivered

• VPs
– Customer

• Non-functional requirements
– Deliver cash within 1 minute

of amount being confirmed
• Provider

– Filled in later

Scenarios
• Scenarios are descriptions of how a
system is used in practice

• They are helpful in requirements
elicitation as people can relate to
these more readily than abstract
statement of what they require
from a system

• Scenarios are particularly useful
for adding detail to an outline
requirements description

Scenario descriptions
• System state at the beginning of
the scenario

• Normal flow of events in the
scenario

• What can go wrong and how this is
handled

• Other concurrent activities
• System state on completion of the
scenario

12

Event scenarios
• Event scenarios may be used to
describe how a system responds to
the occurrence of some particular
event such as ‘start transaction’

• VORD includes a diagrammatic
convention for event scenarios.
– Data provided and delivered
– Control information
– Exception processing
– The next expected event

Retain cardRetain card
Stolen cardStolen card

Return cardReturn card
Invalid cardInvalid card

Return cardReturn card
TimeoutTimeout

Event scenario - start
transaction

User OK

Return cardReturn card
Incorrect PINIncorrect PIN

Re-enter PINRe-enter PIN
Incorrect PINIncorrect PIN

Validate userValidate user

Request PINRequest PIN

Select
service
Select
service

Account
number

Card

PIN

Card present

Valid card

Account
Number

PIN

Ellipses. data provided from
or delivered to a viewpoint
Ellipses. data provided from
or delivered to a viewpoint

Control information enters and
leaves at the top of each box
Control information enters and
leaves at the top of each box

Data leaves from the
right of each box
Data leaves from the
right of each box

Exceptions are shown at
the bottom of each box
Exceptions are shown at
the bottom of each box

Name of next event is in
shaded box
Name of next event is in
shaded box

Use cases
• Use-cases are a scenario based
technique in the UML which identify
the actors in an interaction and
which describe the interaction itself

• A set of use cases should describe
all possible interactions with the
system

Lending use-case

Lending Services

Class of InteractionsActors

Library use-cases

Lending Services

User administration

Catalog Services

Library
user

Supplier

Library
staff

Sequence Diagrams
• Sequence diagrams may be used to
add detail to use-cases by showing
the sequence of event processing in
the system

13

Uncatalog item

Catalogue management:
Sequence Diagram

Bookshop
supplier

Cataloguer:
Library staff

Item:
Library
item

Item:
Library
item

Books:
catalog
Books:
catalog

Acquire

Catalog item

New

Dispose

Requirements engineering
processes

• The processes used for RE vary widely
depending on the application domain, the
people involved and the organization
developing the requirements

• However, there are a number of generic
activities common to all processes
– Requirements elicitation
– Requirements analysis
– Requirements validation
– Requirements management

The Requirements Engineering
Process

Feasibility
Study

Feasibility
Study

Requirements
Elicitation & Analysis

Requirements
Elicitation & Analysis

Requirements
Specification
Requirements
Specification

Requirements
Validation

Requirements
Validation

Requirements
Document

Requirements
Document

User & System
Requirements

User & System
Requirements

System
Models
System
Models

Feasibility
Report

Feasibility
Report

Feasibility studies
• A feasibility study decides whether
or not the proposed system is
worthwhile

• A short focused study that checks
– If the system contributes to
organizational objectives

– If the system can be engineered using
current technology and within budget

– If the system can be integrated with
other systems that are used

Feasibility study implementation
• Based on information assessment (what is

required), information collection and
report writing

• Questions for people in the organization
– What if the system wasn’t implemented?
– What are current process problems?
– How will the proposed system help?
– What will be the integration problems?
– Is new technology needed? What skills?
– What facilities must be supported by the

proposed system?

Elicit: by Webster dictionary
Main Entry: elic·it
Pronunciation: i-'li-s&t
Function: transitive verb
Etymology: Latin elicitus, past participle of
elicere, from e- + lacere to allure
Date: 1605
1 : to draw forth or bring out (something
latent or potential) <hypnotism elicited his
hidden fears>
2 : to call forth or draw out (as
information or a response) <her remarks
elicited cheers>

Main Entry: elic·it
Pronunciation: i-'li-s&t
Function: transitive verb
Etymology: Latin elicitus, past participle of
elicere, from e- + lacere to allure
Date: 1605
1 : to draw forth or bring out (something
latent or potential) <hypnotism elicited his
hidden fears>
2 : to call forth or draw out (as
information or a response) <her remarks
elicited cheers>

14

Elicitation
• Sometimes called requirements elicitation

or requirements discovery
• Involves technical staff working with

customers to find out about the
application domain, the services that the
system should provide and the system’s
operational constraints

• May involve end-users, managers,
engineers involved in maintenance, domain
experts, trade unions, etc. These are
called stakeholders

Requirements Analysis
• Stakeholders don’t know what they really

want
• Stakeholders express requirements in

their own terms
• Different stakeholders may have

conflicting requirements
• Organizational and political factors may

influence the system requirements
• The requirements change during the

analysis process. New stakeholders may
emerge and the business environment
change

The requirements analysis
process

Requirements
Validation

Requirements
Validation

Requirements
Definition &
Specification

Requirements
Definition &
Specification

ClassificationClassification

Requirements
Collection

Requirements
Collection

Domain
Understanding

Domain
Understanding PrioritizationPrioritization

Conflict
Resolution
Conflict

Resolution

Process
Entry

Requirements validation
• Concerned with demonstrating that
the requirements define the system
that the customer really wants

• Requirements error costs are high
so validation is very important
– Fixing a requirements error after
delivery may cost up to 100 times the
cost of fixing an implementation error

Requirements Validation
• Validity. Does the system provide the

functions that best support the
customer’s needs?

• Consistency. Are there any requirements
conflicts?

• Completeness. Are all functions required
by the customer included?

• Realism. Can the requirements be
implemented given available budget and
technology

• Verifiability. Can the requirements be
checked?

Requirements validation
techniques

• Requirements reviews
– Systematic manual analysis of the

requirements
• Prototyping

– Using an executable model of the system to
check requirements.

• Test-case generation
– Developing tests for requirements to check

testability
• Automated consistency analysis

– Checking the consistency of a structured
requirements description

15

Requirements reviews
• Regular reviews should be held while the

requirements definition is being
formulated

• Both client and contractor staff should
be involved in reviews

• Reviews may be formal (with completed
documents) or informal. Good
communications between developers,
customers and users can resolve problems
at an early stage

Review checks
• Verifiability. Is the requirement
realistically testable?

• Comprehensibility. Is the
requirement properly understood?

• Traceability. Is the origin of the
requirement clearly stated?

• Adaptability. Can the requirement
be changed without a large impact
on other requirements?

Requirements management
• Requirements management is the process

of managing changing requirements during
the requirements engineering process and
system development

• Requirements are inevitably incomplete
and inconsistent
– New requirements emerge during the process

as business needs change and a better
understanding of the system is developed

– Different viewpoints have different
requirements and these are often
contradictory

Requirements management planning
• During the requirements engineering

process, you have to plan:
– Requirements identification

• How requirements are individually identified
– A change management process

• The process followed when analyzing a requirements
change

– Traceability policies
• The amount of information about requirements

relationships that is maintained
– CASE tool support

• The tool support required to help manage
requirements change

Traceability
• Traceability is concerned with the

relationships between requirements, their
sources and the system design

• Source traceability
– Links from requirements to stakeholders who

proposed these requirements
• Requirements traceability

– Links between dependent requirements
• Design traceability

– Links from the requirements to the design

A traceability matrix

Req id 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2
1.1 R
1.2 U U R U
1.3 R R
2.1 R U U
2.2 U
2.3 R U
3.1 R
3.2 R

U = “uses the requirement”, R = “Some other weaker relationship”

16

CASE tool support
• Requirements storage

– Requirements should be managed in a secure,
managed data store

• Change management
– The process of change management is a

workflow process whose stages can be
defined and information flow between these
stages partially automated

• Traceability management
– Automated retrieval of the links between

requirements

Enduring and volatile
requirements

• Enduring requirements. Stable
requirements derived from the core
activity of the customer organisation.
E.g. a hospital will always have doctors,
nurses, etc. May be derived from domain
models

• Volatile requirements. Requirements
which change during development or when
the system is in use. In a hospital,
requirements derived from health-care
policy

Requirements change
• The priority of requirements from
different viewpoints changes during
the development process

• System customers may specify
requirements from a business
perspective that conflict with end-
user requirements

• The business and technical
environment of the system changes
during its development

Requirements evolution
Initial

understanding
of problem

Initial
understanding
of problem

Changed
understanding
of problem

Changed
understanding
of problem

Initial
requirements

Initial
requirements

Changed
requirements
Changed

requirements

Time

Requirements change management
• Should apply to all proposed changes to

the requirements
• Principal stages

– Problem analysis. Discuss requirements
problem and propose change

– Change analysis and costing. Assess effects
of change on other requirements

– Change implementation. Modify requirements
document and other documents to reflect
change

Requirements change management

Change analysis
and costing

Change analysis
and costing

Problem analysis
and change specification

Problem analysis
and change specification

Identified problem

Change implementation Change implementation

Revised requirements

17

The requirements document
• The requirements document is the
official statement of what is
required of the system developers

• Should include both a definition and
a specification of requirements

• It is NOT a design document. As
far as possible, it should set of
WHAT the system should do rather
than HOW it should do it

Users of a requirements
document

– System customers
• Specify the requirements and read them to check

that they meet their needs
– Managers

• Use the requirements document to plan a bid for the
system and to plan the system

– System engineers
• Use the requirements to understand what system is

to be developed
– System test engineers

• Use the requirements to develop validation tests for
the system

– System maintenance engineers
• Use the requirements to help understand the system

and the relationship between its parts

Requirements document
requirements

• Specify external system behaviour
• Specify implementation constraints
• Easy to change
• Serve as reference tool for maintenance
• Record forethought about the life cycle

of the system i.e. predict changes
• Characterise responses to unexpected

events

IEEE requirements standard
• Introduction
• General description
• Specific requirements
• Appendices
• Index
• This is a generic structure that
must be instantiated for specific
systems

