
1

Formal Specification

•Techniques for the
unambiguous
specification of
software

Objectives
• To explain why formal specification
techniques help discover problems in
system requirements

• To describe the use of algebraic
techniques for interface
specification

• To describe the use of model-based
techniques for behavioural
specification

Topics covered
• Formal specification in the software
process

• Interface specification
• Behavioural specification

Formal methods
• Formal specification is part of a more

general collection of techniques that are
known as ‘formal methods’

• These are all based on mathematical
representation and analysis of software

• Formal methods include
– Formal specification
– Specification analysis and proof
– Transformational development
– Program verification

Acceptance of formal methods
• Formal methods have not become

mainstream software development
techniques as was once predicted
– Other software engineering techniques have

been successful at increasing system quality.
– Market changes have made time-to-market

rather than software with a low error count
the key factor. Formal methods do not
reduce time to market

– Formal methods are hard to scale up to large
systems

Use of formal methods
• Their principal benefits are in
reducing the number of errors in
systems so their main area of
applicability is critical systems

• In this area, the use of formal
methods is most likely to be cost-
effective

2

Specification in the software
process

• Specification and design are
intermingled.

• Architectural design is essential to
structure a specification.

• Formal specifications are expressed
in a mathematical notation with
precisely defined vocabulary, syntax
and semantics. Specification

Specification and design
Requirements

Definition
Requirements

Definition

Requirements
Specification

Requirements
Specification

Architectural
Design

Architectural
Design

Software
Specification
Software

Specification

High-level
Design

High-level
DesignDesign

Increasing Contractor Involvement

Decreasing Client Involvement

Specification in the software
process

Requirements
Definition

Requirements
Definition

Requirements
Specification

Requirements
Specification

System
Modeling
System
Modeling

Architectural
Design

Architectural
Design

Formal
Specification

Formal
Specification

High-level
Design

High-level
Design

Specification techniques
• Algebraic approach

– The system is specified in terms of its
operations and their relationships

• Model-based approach
– The system is specified in terms of a
state model that is constructed using
mathematical constructs such as sets
and sequences. Operations are defined
by modifications to the system’s state

Formal specification languages

1. CSP
2. Petri Nets

1. Z
2. VDM
3. B

Model-based

LotosLarchAlgebraic

ConcurrentSequential

Use of formal specification
• Formal specification involves investing

more effort in the early phases of
software development

• This reduces requirements errors as it
forces a detailed analysis of the
requirements

• Incompleteness and inconsistencies can
be discovered and resolved

• Hence, savings as made as the amount of
rework due to requirements problems is
reduced

3

Specification

Specification

Design &
Implementation

Design &
Implementation

Validation

Validation

Without formal specification With formal specification

Co
st

Development costs with formal specification Interface specification
• Large systems are decomposed into

subsystems with well-defined interfaces
between these subsystems

• Specification of subsystem interfaces
allows independent development of the
different subsystems

• Interfaces may be defined as abstract
data types or object classes

• The algebraic approach to formal
specification is particularly well-suited to
interface specification

Sub-system interfaces

Sub-system
A

Sub-system
A

Sub-system
B

Sub-system
B

Interface
objects

The structure of an algebraic
specification

Sort <name>
Imports <list of specification names>
Sort <name>
Imports <list of specification names>

Informal description of the sort and its operationsInformal description of the sort and its operations

Operation signatures setting out the names and the
types of the parameters to the operations defined
over the sort

Operation signatures setting out the names and the
types of the parameters to the operations defined
over the sort
Axioms defining the operations over the sortAxioms defining the operations over the sort

<Specification Name> (Generic Parameter)

Specification components
• Introduction

– Defines the sort (the type name) and
declares other specifications that are used

• Description
– Informally describes the operations on the

type
• Signature

– Defines the syntax of the operations in the
interface and their parameters

• Axioms
– Defines the operation semantics by defining

axioms which characterise behaviour

Systematic algebraic
specification

• Algebraic specifications of a system
may be developed in a systematic
way
– Specification structuring.
– Specification naming.
– Operation selection.
– Informal operation specification
– Syntax definition
– Axiom definition

4

Specification operations
• Constructor operations. Operations
which create entities of the type
being specified

• Inspection operations. Operations
which evaluate entities of the type
being specified

• To specify behaviour, define the
inspector operations for each
constructor operation

Interface specification in critical
systems

• Consider an air traffic control system
where aircraft fly through managed
sectors of airspace

• Each sector may include a number of
aircraft but, for safety reasons, these
must be separated

• In this example, a simple vertical
separation of 300m is proposed

• The system should warn the controller if
aircraft are instructed to move so that
the separation rule is breached

A sector object
• Critical operations on an object
representing a controlled sector are
– Enter. Add an aircraft to the
controlled airspace

– Leave. Remove an aircraft from the
controlled airspace

– Move. Move an aircraft from one
height to another

– Lookup. Given an aircraft identifier,
return its current height

Primitive operations
• It is sometimes necessary to introduce

additional operations to simplify the
specification

• The other operations can then be
defined using these more primitive
operations

• Primitive operations
– Create. Bring an instance of a sector into

existence
– Put. Add an aircraft without safety checks
– In-space. Determine if a given aircraft is in

the sector
– Occupied. Given a height, determine if there

is an aircraft within 300m of that height

Sector
specification

Enter (S, CS, H) =
 if In-space (S, CS) then S exception (Aircraft already in sector)
 elsif Occupied (S, H) then S exception (Height conflict)
 else Put (S, CS, H)

Leave (Create, CS) = Create exception (Aircraft not in sector)
Leave (Put (S, CS1, H1), CS) =
 if CS = CS1 then S else Put (Leave (S, CS), CS1, H1)

Move (S, CS, H) =
 if S = Create then Create exception (No aircraft in sector)
 elsif not In-space (S, CS) then S exception (Aircraft not in sector)
 elsif Occupied (S, H) then S exception (Height conflict)
 else Put (Leave (S, CS), CS, H)

-- NO-HEIGHT is a constant indicating that a valid height cannot be returned

Lookup (Create, CS) = NO-HEIGHT exception (Aircraft not in sector)
Lookup (Put (S, CS1, H1), CS) =
 if CS = CS1 then H1 else Lookup (S, CS)

Occupied (Create, H) = false
Occupied (Put (S, CS1, H1), H) =
 if (H1 > H and H1 - H ≤ 300) or (H > H1 and H - H1 ≤ 300) then true
 else Occupied (S, H)

In-space (Create, CS) = false
In-space (Put (S, CS1, H1), CS) =
 if CS = CS1 then true else In-space (S, CS)

sort Sector
imports INTEGER, BOOLEAN

Enter - adds an aircraft to the sector if safety conditions are satisfed
Leave - removes an aircraft from the sector
Move - moves an aircraft from one height to another if safe to do so
Lookup - Finds the height of an aircraft in the sector

Create - creates an empty sector
Put - adds an aircraft to a sector with no constraint checks
In-space - checks if an aircraft is already in a sector
Occupied - checks if a specified height is available

Enter (Sector, Call-sign, Height) → Sector
Leave (Sector, Call-sign) → Sector
Move (Sector, Call-sign, Height) → Sector
Lookup (Sector, Call-sign) → Height

Create → Sector
Put (Sector, Call-sign, Height) → Sector
In-space (Sector, Call-sign) → Boolean
Occupied (Sector, Height) → Boolean

SECTOR

Specification commentary
• Use the basic constructors Create
and Put to specify other operations

• Define Occupied and In-space using
Create and Put and use them to
make checks in other operation
definitions

• All operations that result in changes
to the sector must check that the
safety criterion holds

